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Francisco J. Goerlich* 

 

Abstract 
 
This paper investigates alternative measures of life expectancy that take into account distributional 
considerations in the length of life of the generation in a period life table. Virtually all the literature studying 
inequality in the length of life distribution has used inequality tools from the income distribution analysis, 
focusing on life expectancy and inequality as separate, albeit related, issues. We propose an alternative, 
integrated framework that allows us to combine both dimensions in a single index, and provide an axiomatic 
derivation that delivers the particular indexes to be used given a set of axioms. We illustrate the proposed 
index using data from the Human Mortality Database. 
 
Keywords: Life expectancy, Life table, Duration, Indexes, Length of life, Inequality. 
JEL classification: J10, J11, J14. 

Resumen  
 
Este trabajo investiga medidas alternativas de esperanza de vida que tienen en cuenta aspectos distributivos en 
relación a la duración de la vida en la generación de una tabla de vida de periodo. La práctica totalidad de la 
literatura que estudio la desigualdad en el tiempo de vida utiliza el instrumental derivado de la medición de la 
desigualdad en la distribución de la renta, centrándose en la esperanza de vida y la desigualdad como aspectos 
separados, aunque relacionados. El trabajo propone un marco alternativo integrado que permite combinar 
ambas dimensiones en un único índice, y proporciona una derivación axiomática que conduce a una familia 
concreta de índices. Los índices propuestos se ilustran con una aplicación a partir de la Human Mortality 
Database.     
 
Palabras clave: Esperanza de Vida, Tabla de Mortalidad, Índices de Duración, Duración de la Vida, 
Desigualdad.  
Clasificación JEL: J10, J11, J14. 
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1. Introduction.  

Life expectancy at birth summarizes in a single number the mortality conditions 

of a given population, and it does so in a way that is independent of the age structure 

of the underlying population. Essentially this means that the indicator is comparable, 

in time and across societies, with populations having very different age structures. This 

feature has contributed to make life expectancy one of the most widely used 

indicators in international comparisons on development. Additionally, life expectancy 

at birth is one of the simplest summary measures of population health for a 

community (Murray et al. 2002) and as a consequence, of its degree of development 

(Sen 1998, 1999). 

For all these reasons life expectancy has become one essential index in the 

complex and elusive concept of quality of life: without life there is no possibility to 

enjoy the consumption opportunities represented by per capita income, the other 

widely used development indicator in international comparisons. However, the Stiglitz, 

Sen, and Fitoussi (2009) report recently recognized the need to look beyond GDP to 

measure the progress of actual societies. This was in fact the goal of the United 

Nations Development Program (UNDP 2019) Human Development Index, together 

with many other proposals to include life expectancy as part of synthetic quality of life 

indexes (Osberg and Sharpe 2002). 

In the same vein this paper attempts to go beyond life expectancy by trying to 

introduce distributional aspects into a single life expectancy index constructed from 

the standard biometric functions of a period life table, but that can be computed more 

generally for a population or a real generation. 

The structure of the paper is as follows. The next section tries to motivate the life 

expectancy index proposed by looking at standard biometric curves: the survival 

function and the distribution of age at death in the life table. A critical assessment of 

the literature on length of life inequality follows. The fourth section introduces the 

proposed measure and the fifth offers an illustrative application. A final brief section 

concludes. 
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2. Motivation. 

Figure 1 represents the survival function of the Spanish life table population for 

2009. The area under the curve represents life expectancy at birth, which was 81.64 

years at that date, and the curve itself summarizes the mortality experience of the 

Spanish population in 2009 as projected onto a fictitious generation.1  

It should be obvious that many different shapes of the survival function are 

consistent with a given figure for life expectancy. Figure 2 depicts some of them. It is 

worth mentioning the implications of these curves for the mortality experience of the 

population they represent. 

Figure 1: Survival function of total population. Spain. 2009 
  Life expectancy at birth 81.64 years 

 
                                                           
1 Our set up is the standard period life tables since we end up by proposing a new biometric function – a 
new column – in these tables. It is well known that in period life tables age specific mortality rates for a 
given period (usually a year) are applied to a given number of newborns (usually 100,000), the fictitious 
life table generation, and they are followed until the generation dies out. This is of some importance 
because in making distributional adjustments to the measures of life expectancy we should take into 
account the special kind of data at hand. 
This is to say, life expectancy is not obtained from survey data as it is for inequality or poverty measures. 
Similarly, life expectancy is a summary measure for a population, as is per capita income for a society; 
but we do not have individual ‘life lines’ for real people, although we are able to collect individual 
income data from surveys or administrative records for inequality analysis. 
The particular structure of the data available will affect the way in which we can adapt the life 
expectancy index to incorporate distributional considerations. 
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Figure 2: Alternative survival functions with the same life expectancy at birth 

 

• Abrupt step (blue) line: According to this line everybody survives until the age of 

81.64 years. Everybody is born at the same instant and also dies at the same age, 

which coincides with the life expectancy for this population. Note that everybody 

has the same length of life. 

• Dotted (red) line: According to this line 25.78% of the population dies at birth – 

they have no life– and the remaining 74.22% of the population survives until the 

age of 110. So mortality is concentrated at two points in the life of the generation, 

at the beginning and at the end; nobody dies between these two extremes. 

These two survival functions represent extreme –and unrealistic– cases. In the 

first case everybody has the same life length and there is no inequality in the 

distribution of the length of life. Note that in this case the survival function is a perfect 

rectangular as Wilmoth and Horiuchi (1999) note. Hence rectangularization of a 

survival curve is directly associated with decreasing variability in the distribution of 

ages at death. As deaths become more concentrated in an increasingly narrow age 
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range, the slope of the survival function becomes steeper in that range. And the curve 

itself ends up as a rectangle. 

In the second case it is a lottery whether you die just at the start of life or at the 

end of life, dependent on health status and medical technology. There are only two 

possible outcomes and the inequality in the distribution of length of life is maximum: 

you either die at birth or survive for the maximum possible time. 

In both cases, however, the population’s life expectancy is identical, 81.64 years, 

although the two situations are extremely different and obviously society cannot value 

them in the same way. 

• Dashed (green) line: According to this line every newborn survives until the age of 

30 and then 20% of the population dies. The remaining 80% survives until the age 

of 60 and then another 20% of the initial population dies. The remaining 60% 

survive until the age of 90 and then a further 11.8% of the initial population dies. 

The survivors, 48.2% of the initial population, live to the age of 110 years and then 

they all die abruptly. 

• Continuously descending (purple) line: According to this line the newborns 

decrease linearly by a constant amount. The generation lives until the incredible 

age of 163 years (twice the life expectancy of the actual survival curve as depicted 

in Figure 1), although the maximum age shown in Figure 2 is only 110 years. 

All these survival functions represent the same life expectancy but have very 

different implications for the age at death distribution. Society can clearly value these 

functions in different ways. The purpose of this paper is to propose a way of 

incorporating this aspect into a more general measure of life expectancy, at any age, 

and at the same time to lay its foundations from an axiomatic point of view: a 

distributionally adjusted life expectancy. 

It is worth stressing that although the economic literature has a clear preference 

for equality, which can be achieved for a given amount of total income or wealth 

resources just by a convenient set of transfers; there is no clear preference for equality 

in the length of life distribution in the demographic or public health literature. In this 

latter case there is no possibility for transfers, and life expectancy and measures of 
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spread of the distribution are clearly related. Reducing childhood mortality will 

increase life expectancy but at the same time will reduce inequality. Reducing 

mortality at older ages will increase life expectancy but will also increase inequality in 

the length of life distribution. We return to these questions in future sections. 

Nevertheless, given that life expectancy at birth –the area under the survival 

function in Figure 1– is in fact the average length of life of the fictitious generation in 

the life table, or equivalently the mean age at death of this generation, it is of interest 

to see what this distribution looks like. Figure 3 shows the age distribution of deaths 

corresponding to the survival function depicted in Figure 1.2 

The general shape of this curve is well known. It has two modes, one at age 0, 

and the other at a much older age, 89 years in Figure 3. What is not apparent from the 

figure is that the relative importance of the two modes has switched over time. 

Mortality at birth was the dominant mode before the demographic transition. 

Reductions in mortality among younger groups increased life expectancy, decreased 

inequality in the length of life distribution, and amplified the importance of the modal 

age at older ages, which eventually became the dominant mode in mature societies. 

Figure 3 makes it clear why our interest should reside not only in the mean of the 

distribution –life expectancy at birth– but also in other distributional patterns of the 

length of life distribution. Although we concentrate only on measures of location the 

mean is not the only interesting statistic. Some national statistical institutes published 

the median age at death –the age at which half of the generation has died and the 

other half is still alive– in their period life tables at the beginning of the 20th century 

(INE 1952, 1958). Also some authors have proposed the mode age at death as a more 

appropriate measure of longevity than life expectancy at birth (Canudas-Romo 2008). 

                                                           
2 Dividing the ordinates in Figure 1 by the size of the generation, 100,000 people, we obtain the 
corresponding probability density function. 
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Figure 3: Age distributions of death of total population. Spain. 2009 
  Number of deaths in the life table generation 

 

3. A critical assessment of the literature. 

This paper does not directly take into account the question of measuring length 

of life inequality, but of course it will do so indirectly since its purpose is to develop a 

life expectancy index that incorporates distributional features. 

A few papers in the demographic tradition deal with the issue of measuring 

inequality in length of life, essentially using the technical apparatus of the income 

distribution economic literature without too much theoretical discussion.3 Many 

                                                           
3 Given that inequality in length of life has extensively used the tools developed for the analysis of 
income distribution it seems of interest to compare the typical age distribution of deaths, as depicted in 
Figure 3, with the typical income distribution that can be found elsewhere. 
First, we notice that the age distribution of deaths is always bimodal. Economists would say that it is a 
polarized distribution (Esteban and Ray 1994), so maybe polarization measures could also help in 
characterizing the length of life distribution. We do not pursue this point further in this paper. 
Second, ignoring the mode at age zero, x = 0, the age distribution of deaths is a reflected mirror image 
of the typical income distribution. People dying in the early stages of their lives are the ‘poor’, but in this 
case they are very few. People dying at very old ages are the ‘rich’, and they account for a substantial 
part of the population. While the income distribution is right-skewed – so the mean is greater than the 
median, which in turns is greater than the mode – and has a very long right tail, the age distribution of 
deaths is left-skewed – so the mean is lower than the median, which in turns is lower than the mode as 
can be seen in Figure 3 – and has a long left tail bounded at x = 0. 
These similarities can probably be exploited further in comparing income and length of life distributions, 
but again we do not pursue this further here. 
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others include Hanada (1983), Illsey and Le Grand (1987) –who compute inequality 

from distributions of deaths by age in real populations– Wilmoth and Horiuchi (1999), 

Anand and Nanthikesan (2000), Shkolnikov, Andreev, and Begun (2003), Edwards and 

Tuljapurkar (2005), Smits and Monden (2009), Edwards (2011), Seaman, Leyland, and 

Popham (2016), or Jordá and Niño-Zarazúa (2017). 

In addition, a few papers have taken up the issue of incorporating inequality into 

the health dimension of the Human Development Index (HDI) –for example Hicks 

(1997), Foster, Lopez-Calva, and Szekely (2005), or Kovacevic (2010)– and given that 

life expectancy at birth is used to measure the health dimension in the HDI they are 

closest in spirit to this paper. 

This literature, however, does not discuss many of the key assumptions used in 

measuring income or wealth inequality where the aversion to inequality has a more 

intuitive appeal. Some key assumptions commonly employed in this literature cannot 

be directly transposed to the health context. While reducing inequality in the income 

distribution is possible, without altering the mean, through a transfer of income from 

the rich to the poor – the so called Pigou (1932)–Dalton (1920) condition – a reduction 

of inequality in the length of life distribution cannot be achieved by this mechanism. 

We simply cannot reduce longevity of older people to increase the length of life of 

younger people. Although it seems sensible to assume that some aversion to 

inequality in the length of life does exist, this is not easily assessed. 

The other important question that is neglected in this literature is whether the 

appropriate inequality measures for analyzing the length of life distribution should be 

scale invariant (relative) or translation invariant (absolute). Usually this is solved in 

practice by employing different kinds of indicators from both families (Wilmoth and 

Horiuchi 1999, Edwards 2011) but no real justification is offered. Scale invariant 

indicators are usually used for dealing with income variables since this guarantees that 

inequality is independent of the scale. Just as it is irrelevant whether we measure 

income in euros, dollars, or pounds, the same could be said with respect to inequality 

in the length of life distribution, which should be the same regardless of whether we 

measure length of life in years or months. 
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However, relative inequality measures have another important implication that 

may be not so appealing when we deal with health outcomes. Two length of life 

distributions with different means –life expectancy at birth– will be ranked as equal by 

scale invariant indicators if the relative distance between individuals in terms of the 

length of life is exactly the same. The following example, taken (and expanded) from 

Jordá and Niño-Zarazúa (2017), clearly shows this situation. Imagine we are interested 

in ranking two distributions with two individuals each according to their inequality 

only. In distribution A we have two individuals; one lived for only 5 years and the other 

for 50 years. Life expectancy at birth of this distribution is 27.5 years. In distribution B 

we have two individuals; one lived for only 6 years and the other for 60 years. Life 

expectancy at birth of this distribution is 33 years. Relative inequality indicators will 

rank both distributions as equally unequal, since the relative distance between the 

older and the younger is of the order of ten in both distributions. Notice that we have 

20% longer life in distribution B than in distribution A, 11 years, and that distribution B 

can be obtained from distribution A simply by multiplying the length of life of each 

individual by the scale factor 1.2. By contrast, absolute inequality indicators will rank 

distribution B as more unequal than distribution A since the absolute difference in 

lifespan between individuals in distribution B is 54 years, but in distribution A it is just 

45 years. 

Now let us imagine we have distribution C with two individuals; one lived for 

10.5 years and the other for 55.5 years. Life expectancy at birth of this distribution is 

33 years, the same as in distribution B. Absolute inequality indicators will rank 

distribution A and distribution C as equally unequal since the absolute difference in 

lifespan between individuals in both distributions is the same: 45 years. By contrast, 

relative inequality indicators will rank distribution C as more equal than distribution A 

since the relative distance between the older and the younger is of the order of ten in 

distribution A but only of the order of 5.3 in distribution C. Notice that again we have 

20% longer life in distribution C than in distribution A, 11 years, and that distribution C 

can be obtained from distribution A by simply adding half of this, 5.5 years of life, to 

each individual. 
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How the observed increments in life expectancy should be distributed among the 

generation in the life table to consider inequality constant when we compare the 

spread of the distribution independently of the mean is not a trivial question. Scale 

invariant or translation invariant inequality indexes provide different answers 

according to different perspectives. Whereas some demographers prefer absolute 

inequality measures (Wilmoth and Horiuchi 1999; Edwards 2011), others argue in favor 

of relative ones (Shkolnikov, Andreev, and Begun 2003; Smits and Monden 2009), and 

most of them present a plethora of different indexes in order to obtain robust results 

(Jordá and Niño-Zarazúa 2017).  

Contrary to what happens in economics, the great tendencies – but not the finer 

details – seem to be robust to the choice of absolute vs. relative indicators of 

inequality (Smits and Monden 2009). Part of the reason is due to the strong negative 

association found between life expectancy at birth and length of life inequality, 

especially during the demographic transition.4 It is widely known that the 

epidemiological transition goes hand in hand with a substantial mortality compression 

(Edwards and Tuljapurkar 2005). Although reducing mortality at any age will increase 

life expectancy, inequality reductions are only achieved if reductions in younger age 

mortality rates are greater than reductions in older age mortality rates. Figure 3 clearly 

shows that the reduction in younger age mortality rates compresses the age 

distribution of deaths while reducing older age mortality rates tends to expand the 

distribution. As a result, and given that modern mortality patterns are characterized by 

a high average age at death with much lower variability than in the past, there is 

evidence –especially in mature societies– that actual increases in life expectancy do 

not necessarily lead to lower inequality, which in addition may differ widely among 

societies at the same level of life expectancy. 

The bottom line of this argument is that the choice between scale vs. translation 

invariant inequality indicators may be more important now than in the past, given that 

the relation between life expectancy at birth and length of life inequality is likely to be 

less strong in the future as mortality reductions shift to older ages. 

                                                           
4 This is good news for demography because in economics there is no clear association, neither weak 
nor strong, between growth and inequality. 
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However, a more fundamental question about what type of inequality indicators, 

relative vs. absolute, are the most appropriate in this setting comes from the fact that 

the length of life distribution should be a bounded distribution, even if the actual 

bound is unclear. We know that for bounded distributions only absolute inequality 

indicators are consistent if we measure inequality in achievements, length of life in our 

case, and in shortfalls, life lost up to the bound in our case. This insight comes from the 

health economics literature (Lambert and Zheng 2011; Lasso de la Vega and Aristondo 

2012), and also has implications for measuring the inequality of the poor (Aristondo, 

Goerlich and Lasso de la Vega 2015), which is also a bounded distribution. 

Focusing only on length of life inequality may eventually lead us to unethical 

conclusions. Imagine that a policy objective is to reduce length of life inequality per se. 

In that case it could be argued that we should devote resources to prevent and treat 

diseases that can lead to premature deaths, while letting older people die, since that 

would reduce the inequality in the length of life. Equalizing the length of life 

distribution cannot be an objective on its own right. We should take into account that 

length of life inequality is just one aspect of health inequality, which in turn should not 

be confused with health inequity (Braveman and Gruskin 2003). 

Instead of focusing on length of life inequality, a more productive line of work 

that to some extent escapes the discussion about relative vs. absolute inequality 

indexes would be to focus on developing life expectancy indicators that take into 

account the duration of lives at different ages so they are sensitive to distributional 

considerations. The idea parallels the measures of unemployment Sengupta (2009) 

and Shorrocks (2009a, 2009b) develop that take into account spell duration, with the 

difference that incidence is not an issue here given that everybody will eventually die. 

We develop this idea in the next section. 

4. Life expectancy indexes in a life table population. 

4.1. Life expectancy and inequality in length of life. 

Consider the standard notation in a period life table in discrete time (Preston, 

Heuveline and Guillot 2001), where x denotes age, dx the deaths occurred throughout 

the age interval [x, x + 1), and ax the average number of years lived within the age 
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interval [x, x + 1) for people dying at that age.5 Hence the average length of life for 

those persons is x xz x a= + . As shown in the appendix, life expectancy at birth, 0e , can 

be written as 

 0
0 0

0

( )x x x
x x x

x x

d x ae z
d

≥
≥

≥

Σ +
= = Σ ω

Σ
 (1) 

where 
0

x
x

x x

d
d≥

ω =
Σ

, the proportion of deaths in the interval [x, x + 1), so 0 1x x≥Σ ω = . 

The same expression holds for life expectancy at age 0x > , simply by redefining the 

remaining length of life, conditional on having reached age x, and the corresponding 

weights, x i x i ie z≥= Σ ω ; so without loss of generality we use (1) in the derivations that 

follow. The important point here is that our object of interest is a weighted 

distribution, { } 0
;x x x
z

≥
ω , and the weights are more important than the survey sampling 

weights in the analysis of income inequality. 

We follow an axiomatic approach similar to Shorrocks (2009b) in developing a 

life expectancy index adjusted for distributional considerations, taking into account 

that Shorrocks (2009b) deals with unemployment and its duration, which is a ‘bad’, 

whereas we deal with length of life, which is a ‘good’, and while not everybody is 

unemployed everybody will eventually die, so incidence is not an issue here but 

intensity and inequality are. 

Let the vector 0 1 2( , , ,..., ,...)xz z z z=z  represent the length of life, which is 

naturally ordered, 1x xz z +>  for 0x ≥ , and collects the characteristic of interest: life 

length, x xz x a= + ; and let 0 1 2( , , ,..., ,...)x= ω ω ω ωω  represent the proportion of 

deaths in each interval [x, x + 1) for 0x ≥ . As we have just observed, the mean of this 

distribution is just life expectancy at birth, 0 0x x xe z≥= Σ ω , which summarizes the life 

intensity of our distribution. 

However, life expectancy is indifferent to how the total life time, 0x x xd z≥Σ , is 

distributed among the generation of interest. Let us consider that society has a 

                                                           
5 See the appendix for the full notation and the derivations that follow. 
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preference, weak or strong, for equality in the distribution of length of life. In other 

words we favor rectangular survival functions, following Figure 2, or highly 

concentrated age distribution of deaths, following Figure 3. 

A simple way, although not the only one, to incorporate distributional aspects 

into the measurement of life expectancy is to consider power means of order α, 

 
1

0( ; ) ; 1x x xU zα α
α ≥ = Σ ω α ≤ z ω  (2) 

For 1α =  we are back to life expectancy at birth, 1 0( ; )U e=z ω , but for 1α < , 

( ; )Uα z ω  introduces a preference for equality as we shall see in the sequel. 

Some properties of ( ; )Uα z ω  are worth remembering (Steel 2004: chapter 8): 

• For a given distribution ( ; )Uα z ω  is increasing in α, so *( ; ) ( ; )U Uα α<z zω ω  for 

* 1−∞ < α < α ≤ . Hence, 0( ; )U eα <z ω  for 1α < . 

• For 0α =  we have the geometric mean (as a limit), 0 0( ; ) x
x xU zω≥= Πz ω . 

• For 1α = −  we have the harmonic mean, 
1

1 0( ; ) x
x

x

U
z

−

− ≥

 ω
= Σ 
 

z ω . 

• As α→ −∞  we get the minimum value of z , 0z , 0 0 0( ; ) min{ }x xU z z a−∞ ≥= = =z ω

. Hence as α decreases, we increasingly focus on mortality of younger people. 

• ( ; )Uα z ω  is homogeneous of degree one in z , ( ; ) ( ; ); 0U Uα αλ = λ ∀λ >z zω ω . 

• ( ; )Uα z ω  is homogeneous of degree zero in 0 1 2( , , ,..., ,...)xd d d d=d , since this 

leaves unaltered the weights, 0 1 2( , , ,..., ,...)x= ω ω ω ωω . 

• ( ; )Uα z ω  is monotonically increasing in each of the elements of z . 

• Given the meaning we attach to z , ages arranged in an increasing immutable 

order, ( ; )Uα z ω  is monotonically increasing in ω  in the following sense: 

( ; ) ( ; )U Uα α ′<ω ωz z  where ′ω  is obtained from ω  in the following form: 

x x′ω > ω , x j x j− −′ω < ω  and x j x x j x− −′ ′ω +ω = ω +ω  for some 0x >  and some 

0 j x< ≤ , while ,y y y x′ω = ω ∀ ≠ . 
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• ( ; )Uα z ω  is concave as a function of z  for 1α ≤ , and strictly concave for 1α <  

(Magnus and Neudecker 1988, chapter 11, theorem 33).6  

For 1α <  the family measure ( ; )Uα z ω  satisfies six basic properties: 

(A1) Normalization: If there is no life 0,x xω = ∀ , so =ω 0 , ( ; ) 0Uα =z 0 . 

(A2) Symmetry or anonymity: ( ; ) ( ; )U Uα α ′ ′=ω ωz z  whenever ( ; )′ ′z ω  is obtained 

from ( ; )z ω  by a permutation, so ( ; ) ( ; )′ ′ = Π Πz zω ω  for some permutation matrices, 

Π . 

The symmetry or anonymity condition (A2) implies that what matters is the 

length of life vector and the associated deaths but not the characteristics of the 

individuals dying at a particular age, x. Personal features do not enter into the life 

expectancy index. This property is redundant if ( ; )Uα z ω  is calculated from a period 

life table, as in our case, since it is constructed from a fictitious generation, but we 

retain it just for the more general case in which ( ; )Uα z ω  is calculated from a real 

cohort or even a population, a possibility that it is not disregarded from our definition.7 

(A3) Replication invariance: ( ; ) ( ; )U Uα α ′ ′=ω ωz z  whenever ( ; )′ ′z ω  is obtained from 

( ; )z ω  by a replication of the generation. 

The replication invariance condition (A3) is a standard assumption when we have 

to compare societies of different sizes. As in the case of (A2) this property is redundant 

if ( ; )Uα z ω  is calculated from a period life table since in that case it is constructed from 

a fictitious generation with a given number of newborns, l0 = 100,000, that will 

eventually die, 0 0x xd l≥Σ = . Duplicating l0 makes no difference to life expectancy by 

construction. As before, we retain (A3) to cover more general cases that are not 

excluded on a priori grounds. 

                                                           
6 This is in fact the reason for restricting the parameter space in the definition of ( ; )Uα z ω  since power 
means are defined for any real value of α. 
7 Even if life expectancy at birth is constructed to allow comparison between societies with very 
different population structures, obtaining the average life expectancy of a population, the so called life 
potential index, is not meaningless from an economic point of view (Goerlich and Soler 2013). In 
addition, weighting life tables by actual population shares is common in global analysis of life span 
inequality (Edwards 2011; Jordá and Niño-Zarazúa 2017). 
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(A4) Monotonicity: ( ; ) ( ; )U Uα α ′ ′<ω ωz z   if some people live longer, but nobody lives 

less, so the total amount of life time increases, 0 0x x x x x xd z d z≥ ≥ ′ ′Σ < Σ . Hence, ′ω  is 

obtained from ω  in the following form: x x′ω > ω , x j x j− −′ω < ω  and 

x j x x j x− −′ ′ω +ω = ω +ω  for some 0x >  and some 0 j x< ≤ , while ,y y y x′ω = ω ∀ ≠ . ′z  

can be equal to z , or may have additional ages if extreme longevity is increased. 

The monotonicity condition is more intuitively enunciated in terms of xd . So 

given 0 1 2( , , ,..., ,...)xd d d d=d , we have a distribution 0 1 2( , , ,..., ,...)xd d d d′ ′ ′ ′ ′=d  in which 

some people live longer but nobody lives less. That is, ′d  is obtained from d  in the 

following form: x xd d′ > , x j x jd d− −′ <  and x j x x j xd d d d− −′ ′+ = +  for some 0x >  and some 

0 j x< ≤ , while ,y yd d y x′ = ∀ ≠ . 

This form of stating the monotonicity condition assumes ( ; )Uα z ω  is calculated 

from a life table, so if we have more deaths at age x, we should necessarily have fewer 

deaths at age x j−  since the size of the generation is fixed in advance, 0 0x xd l≥Σ = . 

This restriction is not necessary if ( ; )Uα z ω  is calculated from a real population. 

The monotonicity condition implies that the life expectancy index should 

increase as life is extended for at least one individual. Note that this will affect 

inequality, although we cannot anticipate in which direction. If the increment in the 

length of life takes place for an age below 0e  then inequality is reduced; if the 

increment in the length of life takes place for an age above 0e  then inequality is 

increased. If x is to one side of 0e  and x j−  to the other then we cannot say in 

advance. Contrary to what happens in the analysis of the income distribution, the level 

and the spread of the length of life distribution cannot be fully separated in a life table. 

These four properties –normalization, symmetry, replication invariance, and 

monotonicity– are all satisfied by life expectancy, 1( ; )U ωz . The next one is not. 

To motivate the next property let us consider a situation in which we are 

concerned with the distribution of some amount of total life time, 0x x xd z≥Σ , so we are 

back to Figures 1 and 2, and the question of interest is which survival curve do we 
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prefer given that all of them have the same life expectancy at birth. If the proposed life 

expectancy index (2) makes sense, it should be the case that a rectangular survival 

function should be preferred over the rest. More generally, when comparing two 

survival functions with the same life expectancy, society should have a preference for 

the one closest to rectangularity. In other words society should prefer two individuals 

to each live for 50 years over one individual living 100 years and the other dying at the 

moment of birth; or society should prefer two individuals to live for 40 and 60 years 

over 20 and 80 years each. From the point of view of society as a whole, if a 

hypothetical social welfare function defined over our distribution of interest, 

{ } 0
;x x x
z

≥
ω , is increasing in life length and concave, this assumption can be justified 

(Sen 1973).8 

(A5) Preference for Equality in the length of life: ( ; ) ( ; )U Uα α ′ ′<ω ωz z  if both 

distributions, { } 0
;x x x
z

≥
ω  and { } 0

;x x x
z

≥
′ ′ω , have the same total life time, 

0 0x x x x x xd z d z≥ ≥ ′ ′Σ = Σ , but { } 0
;x x x
z

≥
′ ′ω  is obtained from { } 0

;x x x
z

≥
ω  by a life time 

equalization transformation. 

In our case { } 0
;x x x
z

≥
′ ′ω  is obtained from { } 0

;x x x
z

≥
ω  by means of a life time 

equalization transformation if, given two ages x and y, the former is obtained from the 

latter in the following form: x x x x y yz z z′ ′ω > ω > ω , where x x y y x x y yz z z z′ ′ ′ ′ω +ω = ω +ω  and 

, ,k k k kz z k x y′ ′ω = ω ∀ ≠ . 

The preference for equality in length of life is more intuitively enunciated in 

terms of xd , given that what matters is the life time at different ages, x xd z . A life time 

equalization transformation implies x x x x y yd z d z d z′ ′> > , where 

x x y y x x y yd z d z d z d z′ ′ ′ ′+ = +  and , ,k k k kd z d z k x y′ ′= ∀ ≠ . 

                                                           
8 The above argument is the essential justification for (2). It makes sense in income distribution since 
this is essentially Pigou–Dalton, and also in the case of unemployment duration (Sengupta 2009; 
Shorrocks 2009a, 2009b) where we can justify a preference for short spells or a preference for spell 
splits, given that it makes sense to assume a welfare loss from unemployment being an increasingly and 
strictly convex function of unemployment duration. But although this assumption is intuitive it is less 
appealing in terms of the length of life distribution, either from a demographic or an epidemiological 
perspective. 
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Property (A5) is the analogue to the Pigou–Dalton principle of transfers in the 

analysis of income inequality, but as mentioned above it has no clear justification as 

such in this context because life years cannot be transferred. One way to justify its 

inclusion here is to have a preference for younger lives, so from society’s point of view 

one additional year of life of a young person is valued more than the same additional 

year for an older person. This property is not satisfied for life expectancy but it is for 

( ; )Uα z ω  when 1α < . The parameter α in ( ; )Uα z ω  governs the degree of preference 

for equality since the lower the value, the higher the preference for equality, but also 

the higher the preference for younger lives since as α→ −∞  we increasingly pay more 

attention to the life of the youngest people as we will see later on.  

(A6) Homogeneity in the length of life. ( ; ) ( ; ); 0U Uα αλ = λ ∀λ >ω ωz z . 

So if everybody’s length of life doubles, the life expectancy index doubles. 

Two characteristics of the family of life expectancy index ( ; )Uα z ω  make it 

attractive from a practical point of view. First, it can be shown to be a multiple of life 

expectancy at birth. Second, it can be multiplicative decomposed into two terms taking 

into account the two key aspects of the length of life distribution: average life and 

inequality. Hence we can measure the contribution of any of these aspects to the 

evolution of the life expectancy index. 

Lemma 1: ( ; )Uα z ω  can by written as 

 0( ; ) (1 )U e Aα α= −ωz  (3) 

where 
0

1

0

1
x

x
x

zA
e

≥

α α

α

  
 = − ω  
   
∑ . 

Proof:  
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x
x
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e

≥

α α

α

  
 = − ω  
   
∑      ⇒     

0

1

0

1
x

x
x

z A
e

≥

α α

α

  
 ω = − 
   
∑  

Hence, multiplying both sides by 0e ,  

1

0 0(1 ) ( ; )x x xe A z Uα α
α ≥ α − = Σ ω =  ωz  

■ 
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0

1

0

1
x

x
x

zA
e

≥

α α

α

  
 = − ω  
   
∑  is the relative Atkinson (1970) inequality index for 1α < , so 

this parameter has a clear interpretation as the aversion to inequality. As α→ −∞ , 

0

0

1 zA
eα → − , and Aα  takes its maximum value. 

This formulation makes clear that ( ; )Uα ωz  belongs to the class of ‘equal 

equivalent length of life’ indexes that could be derived from a social welfare function 

defined over our distribution of interest, { } 0
;x x x
z

≥
ω , which is symmetric, increasing in 

life length, and concave. So 0( ; ) (1 )U e Aα α= −ωz  is well founded in welfare economics. 

For a particular application it remains to choose the value of α. This relates to 

the question of our aversion to inequality in the length of life; a value not much lower 

than 1 will probably suffice. In economic applications a common value is 0α = , so 

0
0

0

1
x

x xzA
e

ω
≥Π

= − , and 0 0 0 0( ; ) (1 ) x
x xU e A zω≥= − = Πz ω , and the life index is the 

geometric mean of the distribution of the length of life distribution. Hence, using the 

geometric mean instead of the arithmetic mean as a life index incorporates a 

preference for equality in length of life. 

4.2. Life length profiles and life length dominance. 

In inequality analysis a common graphical device is the Lorenz (1905) curve, 

which plots cumulative income shares against population shares after income has been 

ordered in a non-decreasing fashion. Ordering distributions by non-intersecting Lorenz 

curves corresponds to unanimous inequality orderings according to a wide class of 

relative inequality measures that satisfy certain properties –essentially the Pigou–

Dalton principle of transfers–.9 This result was extended by Shorrocks (1983) when 

comparing income distributions with different means so levels matter, using the 

generalized Lorenz curve, which plots cumulative income means against population 

                                                           
9 The Lorenz curve also appears in some studies of length of life inequality (Anand and Nanthikesan 
2000; Shkolnikov, Andreev, and Begun 2003). 
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shares after income has been ordered in a non-decreasing fashion.10 Ordering 

distributions by non-intersecting generalized Lorenz curves corresponds to unanimous 

welfare orderings according to a wide class of social welfare functions that satisfy 

certain properties –essentially symmetry, monotonicity, and concavity–. 

Jenkins and Lambert (1997) establish similar results for poverty orderings. They 

name the corresponding curve the ‘TIP’ curve: the “Three I´s of Poverty”, namely the 

incidence, intensity, and inequality dimensions of poverty, whereas for unemployment 

duration sensitive indexes Shorrocks (2009b) named it the duration profile. Since 

incidence is not an issue here we are back to a generalized Lorenz curve analogy. 

For any { } 0
;x x x
z

≥
ω , the length of life profile, ( , ; )D pz ω , is computed in a simple 

way: just plot cumulative means, 0
p
x x xz=Σ ω ,11 against cumulative death shares, 0

p
x x=Σ ω , 

from the life table. As observed above, z is naturally ordered since it represents ages at 

death. Figure 4 depicts some typical length of life profiles. 

The graph of the life of length profile provides a highly convenient way of 

summarizing information on life length in our distribution, { } 0
;x x x
z

≥
ω . As Figure 4 

shows, the curve starts at the origin and is continuous, non-decreasing, and convex. Its 

maximum corresponds to life expectancy at birth, as life expectancy increases the life 

length profiles shift upwards, and the curvature represents the inequality: the more 

convex the function the higher the inequality. 

A distribution { } 0
;x x x
z

≥
′ ′ω  life length dominates { } 0

;x x x
z

≥
ω , in a weak form, 

whenever the curve of the former lies on or above that of the latter, 

 ( , ; ) ( , ; ) [0,1]D p D p p′ ′ ≥ ∀ ∈z zω ω  (4) 

In terms of Figure 4 distributions A and C life length dominate distribution B, 

although neither A or C dominates over the other. Shorrocks (1983) establishes a 

                                                           
10 The generalized Lorenz curve seems to be absent in length of life inequality studies. 

11 A Lorenz curve will just plot cumulative life years, 0 0
p
x x x x x xd z d z= ≥Σ Σ , against cumulative death 

shares, 0
p
x x=Σ ω , in the life table, but since we are not interested in inequality per se we focus on the 

generalized Lorenz curve. 
Note in passing that the ordinates of the generalized Lorenz curve are just the ordinates of the Lorenz 
curve multiplied by the mean of the distribution, e0. 
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fundamental result in ordering distributions by means of life expectancy indexes of the 

type (2), ( ; )Uα z ω . If { } 0
;x x x
z

≥
′ ′ω  life length dominates { } 0

;x x x
z

≥
ω , then 

( ; ) ( ; )U Uα α ′ ′<ω ωz z  for 1α < . Hence the family of life expectancy indexes ( ; )Uα z ω  

for 1α <  is fully consistent with partial orderings that come from length profiles, but 

the direct examination of life length profiles gives us a full picture of the evolution of 

life in its two dimensions: mean level – intensity – and inequality. So in a practical 

application the best course of action is to examine the life length profiles directly. 

Figure 4: Life length profiles 

 

This result, the relation between life length dominance and partial orderings 

employing ( ; )Uα z ω  indexes, holds true for a wider class of life expectancy indexes. In 

fact it is true for all life expectancy indexes satisfying properties (A2)–(A5) above. 

Two additional alternatives to the ( ; )Uα z ω  family, (2), are worth mentioning. 

1. Consider the alternative family of life expectancy indexes 
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For 1β =  we are back to life expectancy at birth, 1 0( ; )U e=z ω , but for 1β < , 

( ; )Uβ ωz  introduces a preference for equality. ( ; )Uβ ωz  satisfies properties (A1)–(A5), 

but not (A6), homogeneity in length of life, since ( ; )Uβ ωz  is homogeneous of degree 

β, ( ; ) ( ; ); 0U Uββ βλ = λ ∀λ >ω ωz z . As a consequence ( ; )Uβ ωz  is not proportional to 

life expectancy at birth. However, since (5) is just a mean this measure is 

decomposable by population sub-groups.12 

Lemma 2: ( ; )Uβ ωz  can by written as 

 0( ; ) (1 )U e Eβ
β β= −ωz  (6) 

where 
0 0

1
x

x
x

zE
e

≥

β

β

 
= − ω  

 
∑ . 

Proof:  

 
0 0
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e
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z E
e
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β

β

 
ω = − 

 
∑  

Hence, multiplying both sides by 0eβ ,  

0 0(1 ) ( ; )x x xe E z Uβ β
β ≥ β− = Σ ω = z ω  

■ 

0 0

1
x

x
x

zE
e

≥

β

β

 
= − ω  

 
∑  is the counterpart of a generalized entropy index with coefficient 

β (Shorrocks 1980, 1984). As β→ −∞ , 1Eβ → , and Eβ  takes its maximum value. 

Because ( ; )Uβ ωz  cannot be written as proportional to 0e  this family has less appeal 

than ( ; )Uα z ω . 

                                                           
12 A property not especially attractive in the context of the standard life table model since for example 
the life expectancy at birth of the total population cannot be written in a simple form as a weighted 
average of the life expectancy at birth of males and females because they are computed independently 
from artificial generations. 



21 
 

2. Generalized Lorenz evaluation. 

Another way of obtaining an expression similar to (3) is to take twice the area 

under the life length profile, which yields 

 0( ; ) (1 )GU e G= −z ω  (7) 

where G is the Gini index for the distribution { } 0
;x x x
z

≥
ω  

 0 0
0

1( ; )
2 x y x y x yG z z

e ≥ ≥= Σ Σ ω ω −z ω  (8) 

which can also be obtained by any other formula proposed in the literature (Hanada 

1983, Shkolnikov, Andreev, and Begun 2003). 

( ; )GU z ω  satisfies properties (A1)–(A6) since G is a relative inequality measure 

and hence homogeneous of degree zero, so ( ; ) ( ; ); 0G GU Uλ = λ ∀λ >z zω ω . However, 

( ; )GU z ω  cannot be written as some form of a generalized mean, such as (2) or (5), nor 

does it depend on a coefficient picking up the aversion to inequality. Both of these 

characteristics make it less attractive than ( ; )Uα z ω . 

5. An illustrative example. 

We now illustrate the historical evolution of our generalized life expectancy 

index, ( ; )Uα z ω , for a sample of countries using data from the Human Mortality 

Database (Shkolnikov, Barbieri, and Wilmoth 2019). The full set of complete, single 

year, period life tables were used. These cover 40 countries and 49 populations 

because for some countries we have more than one reference population; for example 

for Germany we have three sets of life tables: East Germany, West Germany and the 

aggregate. Temporal span varies according to the country and runs from 1751 for 

Sweden – the only country with data from the 18th century – to 2017 for most 

countries. Of course most of the data are available from the mid-20th century 

onwards. In total we have 13,920 complete life tables, covering the total population 

and both sexes, so we have 4,640 life tables for each sex. 
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For each complete period life table in the Human Mortality Database two 

additional columns were added for 0α = 13, a moderate degree of preference for 

equality in the length of life: (i) the generalized life expectancy index and (ii) and the 

corresponding inequality index. These are computed for any age, x, so the two 

additional columns are complete from birth to 110 years old.14 

Table 1 shows life expectancy, distributionally adjusted life expectancy, and the 

corresponding inequality index for two ages –at birth and at 65 years old– for selected 

years and countries as an illustration. By definition, distributionally adjusted life 

expectancy is lower than life expectancy. At birth Table 1 shows that the difference 

was important at the beginning of the 20th century, between 20 and 30 years, given 

that inequality in the length of life was substantial at that time. Early mortality was 

high, which tends to increase inequality. Over time life expectancy increases, but 

simultaneously inequality falls. The natural consequence is that distributionally 

adjusted life expectancy has increased historically much more than life expectancy at 

birth. In fact, at the beginning of the 21st century the difference is just between 2 and 

4 years. We can see that inequality has decreased by a factor of ten or even more. The 

Spanish case is remarkable. While life expectancy at birth increased by more than 30 

years between 1930 and 2016, distributionally adjusted life expectancy at birth 

increased almost twice as much to 60 years. The reason is the huge reduction in 

inequality in length of life in those years for Spain as Shkolnikov, Andreev, and Begun 

(2003) already noted. 

Because by lemma 1 the generalized life expectancy index, ( ; )Uα z ω , can be 

written as the product of life expectancy, 0e , and the corresponding equality index, 

(1 )Aα− , relative changes in the distributionally adjusted life expectancy can be broken 

down using logarithmic approximation to growth rates into the change due to life 

expectancy and the change due to the reduction in inequality. Using this 

decomposition and focusing on the extreme years, 1930 and 2016, Table 1 shows that 

the contribution of the reduction in inequality in length of life to the increase in the 

                                                           
13 A value 0.5α =  produced similar qualitative results. 
14 An R script, available from the author upon request, was developed to perform this calculation. These 
extended, distributionally adjusted, period life tables are available from the author upon request. 
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distributionally adjusted life expectancy at birth exceeds 50% in all cases, reaching 

around 60% in Canada, Denmark and Spain. Historically, then, not only have we 

observed an important increment in life expectancy at birth in all countries, but also a 

huge reduction in inequality in the length of life.  

This is good news for the length of life distribution because increments in the 

mean are associated overall with a reduction in dispersion, that is, with a fall in 

inequality. This is clearly a general pattern, so increments in life expectancy seem to 

have widespread benefits. However, in the income distribution literature the growth in 

per capita income is not always associated with a reduction in inequality, so growth 

does not benefit everybody in all cases. 

At age 65 we have a similar but less marked pattern. Life expectancy increases 

and inequality falls, but the reduction in inequality is much less pronounced: on 

average it is reduced by a factor of two. It seems interesting to note that while 

inequality in the length of life was lower at the age of 65 than at birth for all countries 

in 1930, just the opposite is true in 2016. Today inequality at older ages is much higher 

than at birth. This is because the reduction in infant mortality is the main reason for 

the decrease in inequality in the length of life, and at the same time for the increase in 

life expectancy at birth. 
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Table 1: Life expectancy, distributionally adjusted life expectancy, and inequality (α = 0) for selected years and countries. 
Both sexes combined. 

 
Source: Own calculations from the Human Mortality Database.

Life expectancy 64.90 58.96 61.40 62.22 49.25 56.80 60.77 60.18 64.66 63.17

1930 Dist. adjusted l ife expectancy 47.29 34.08 43.99 40.31 21.41 34.88 40.41 42.50 46.20 44.51
Inequality (A0) 0.2714 0.4219 0.2836 0.3521 0.5653 0.3860 0.3350 0.2939 0.2855 0.2954
Life expectancy 70.87 70.98 71.41 72.20 69.23 70.37 71.02 74.06 73.35 73.04

1960 Dist. adjusted l ife expectancy 60.96 58.89 61.13 62.01 52.85 58.51 60.62 66.20 64.42 64.59
Inequality (A0) 0.1398 0.1703 0.1440 0.1411 0.2366 0.1685 0.1465 0.1061 0.1218 0.1157
Life expectancy 77.04 77.43 77.38 74.87 77.00 76.84 75.74 77.91 77.01 77.59

1990 Distributionally l ife expectancy 71.84 72.63 72.50 69.92 71.72 71.62 70.71 73.55 72.28 73.40
Inequality (A0) 0.0676 0.0620 0.0631 0.0660 0.0685 0.0679 0.0663 0.0560 0.0614 0.0541
Life expectancy 82.89 82.16 83.46 80.88 83.07 82.39 81.04 82.07 81.55 82.34

2016 Dist. adjusted l ife expectancy 80.05 78.52 80.67 78.12 80.57 79.21 77.85 80.30 78.74 79.92
Inequality (A0) 0.0342 0.0443 0.0335 0.0342 0.0300 0.0386 0.0393 0.0216 0.0344 0.0295

Life expectancy 13.76 13.37 11.90 13.08 11.71 12.28 12.57 14.48 13.32 13.70

1930 Dist. adjusted l ife expectancy 10.63 10.26 8.99 10.18 8.67 9.33 9.59 11.28 10.37 10.75
Inequality (A0) 0.2280 0.2325 0.2439 0.2217 0.2594 0.2399 0.2371 0.2215 0.2217 0.2155
Life expectancy 14.19 14.82 14.11 14.39 14.20 14.36 13.91 16.09 14.97 14.54

1960 Dist. adjusted l ife expectancy 11.02 11.65 11.26 11.58 11.25 11.43 10.89 13.33 12.13 11.75
Inequality (A0) 0.2230 0.2136 0.2019 0.1951 0.2072 0.2040 0.2166 0.1713 0.1893 0.1919
Life expectancy 17.28 17.75 17.54 16.03 17.52 17.97 16.12 17.93 16.86 17.27

1990 Dist. adjusted l ife expectancy 14.10 14.49 14.60 12.76 14.57 14.93 12.84 14.60 13.78 14.33
Inequality (A0) 0.1840 0.1837 0.1675 0.2040 0.1683 0.1693 0.2036 0.1855 0.1830 0.1701
Life expectancy 21.23 21.05 21.26 19.48 21.16 21.41 19.85 19.83 19.76 20.30

2016 Dist. adjusted l ife expectancy 18.54 17.99 18.56 16.48 18.36 18.42 16.94 17.17 16.96 17.57
Inequality (A0) 0.1268 0.1456 0.1270 0.1542 0.1324 0.1395 0.1466 0.1342 0.1420 0.1345

       

Spain France
United 

Kingdom
Iceland Netherlands Sweden
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At birth (x  = 0)
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By looking at the relative contribution of both life expectancy and inequality to 

the relative changes in the distributionally adjusted life expectancy at age 65 for the 

period 1930–2016, we see now that the relative contribution of the inequality 

component is much lower at around 20%, with a maximum of 25% for Iceland. Hence 

at older ages the increment in the distributionally adjusted life expectancy comes 

mainly from increments in life expectancy, but the contribution of the reduction in 

inequality is not negligible. At age 65 we still find a strong negative relation between 

life expectancy and inequality. 

At age 85 (results not shown) the pattern is still less marked but follows the same 

tendency as at age 65. Even now we still find a positive contribution of the inequality 

component to the increment in the distributionally adjusted life expectancy: around 

15% for the period 1930–2016. Inequality still shows a decreasing temporal tendency 

at this age although its level is much higher than at younger ages. 

The details illustrated in Table 1 for selected years and countries are in fact quite 

general. Figure 5 shows this for all life tables from 1850 onwards and both sexes. Here 

we represent life expectancy and distributionally adjusted life expectancy at birth for 

men and women separately. In both cases we find the same convergence trend of the 

distributionally life expectancy approaching life expectancy over time. The reason 

behind this convergence is the strong and well known negative relation between the 

increases in life expectancy and the reduction in life length inequality (Wilmoth and 

Horiuchi 1999; Shkolnikov, Andreev, and Begun 2003; Smits and Monden 2009; 

Edwards 2011). This reduction in inequality was particularly strong during the mid-half 

of the 20th century and has slowed down considerably in recent years, essentially 

because infant mortality is so low in most developed countries that it is now difficult to 

reduce inequality in length of life any further. 
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Figure 5: Life expectancy and distributionally adjusted life expectancy at birth 
by sex 

a) Men 

 
b) Women 

 
Source: Own calculations from the Human Mortality Database. 
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This negative correlation between life expectancy and inequality in length of life 

can alternatively be seen by plotting the inequality measure against life expectancy at 

birth as in Figure 6. This is the representation preferred in most of the literature 

(Wilmoth and Horiuchi 1999; Shkolnikov, Andreev, and Begun 2003; Smits and 

Monden 2009; Edwards 2011), essentially by using different inequality measures. As 

Wilmoth and Horiuchi (1999) show that the choice of the inequality measure for 

computing length of life inequality at country level is not a critical one, we can just 

focus on the Atkinson index that forms part of our distributionally adjusted life 

expectancy index. 

As is apparent from Figure 6, the negative relationship between inequality in the 

length of life distribution and life expectancy is not a linear one since it clearly slows 

down for values of life expectancy at birth above 60. Note that for values of life 

expectancy at birth above 70 inequality is so low that it is extremely difficult to reduce 

it even more since additional increases in life expectancy come from reductions in 

mortality at older ages, which in addition tend to push inequality upwards. 

Figure 6: Life expectancy at birth versus inequality in length of life 

 
Source: Own calculations from the Human Mortality Database. 
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6. Final comments. 

This paper has theoretically derived a distributionally adjusted life expectancy 

index that summarizes in a single number the life expectancy and the inequality in 

length of life distribution at any age. This distributionally adjusted life expectancy index 

can be added as an additional column in a period life table to inform about inequality 

in the length of life distribution. The essential axiom that our new index should verify 

to make sense is a preference for equality in length of life; if this preference cannot be 

socially justified our index serves no purpose and life expectancy is a sufficient statistic. 

On the other hand if there is a preference for equality in the length of life 

distribution, then our set of axioms delivers a particular form of a distributionally 

adjusted life expectancy that is proportional to life expectancy, where the 

proportionality constant is one minus the Atkinson (1970) inequality family, a well-

known family of inequality indexes in the income distribution literature. Other 

alternatives are available and are reviewed in the paper but the proposed measure is 

axiomatically justified and is the most appealing one. 

Because the proposed index can be written as a product of life expectancy and 

an equality index, changes in distributionally adjusted life expectancy can be broken 

down into the relative contributions of changes in life expectancy and changes in 

equality in the distribution of length of life. 

An illustration of our measure using data from the Human Mortality Database 

shows an alternative way of looking at the strong and well known negative relation 

between the increases in life expectancy and the reduction in life length inequality. 

Both the distributionally adjusted life expectancy index and the corresponding 

inequality index can be routinely added to period life tables as additional biometric 

functions for any age, thereby enriching the information on the length of life 

distribution. 
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Appendix 

Notation 

We use the standard notation for period life tables in discrete time (Preston, 

Heuveline and Guillot 2001) as implemented for example in the Human Mortality 

Database methods protocol (Wilmoth et al. 2017). 

Let x denote ages, qx the probability of dying throughout the age interval 

[x, x + 1), its complementary, px = 1 − qx, the probability of surviving, and l0 = 100,000 

the number of the newborns in the life table population.15 Then, the number of 

survivors, lx, (of the initial 100,000) at age x is 

 
1

1 1 0
0

. .
x

x x x i
i

l l p l p
−

− −
=

= = ∏  (A.1) 

The distribution of deaths by age in the life table population is 

 1. .(1 )x x x x x x x x x xd l q l p l l p l l += = − = − = −  (A.2) 

until its extinction. 

The person-years, Lx, lived by the life table population in the age interval 

[x, x + 1) are 

 1 . (1 ).x x x x x x xL l a d l a d+= + = − −  (A.3) 

where ax represents the average number of years lived within the age interval 

[x, x + 1) for people dying at that age.  

The person-years remaining for individuals of age x equal 

 x i
i x

T L
≥

=∑  (A.4) 

Remaining life expectancy at age x is 

                                                           
15 We consider standard period life tables so the life table population corresponds to a fictitious 
generation and the population is closed. 



33 
 

 x
x

x

Te
l

=  (A.5) 

For x = 0 we obtain life expectancy at birth, 0
0

0

Te
l

= . 

Life expectancy: Mean of the distribution in the length of life 

Lemma A1: Life expectancy at birth, x = 0, viewed as the distribution of all life years of 

the life table population among the new born, 0
0

0

Te
l

= , is identical to the mean age at 

death; that is, the mean of the length of life distribution of the life table population, 

0
0

0

( )x x
x

x
x

d x a
e

d
≥

≥

+
=
∑
∑

, since the length of life for an individual dying in the interval 

[x, x + 1) is xx a+  and we have dx people in the life table population dying in that 

interval. 

Proof: First, because every newborn eventually dies, 0 0x xd l≥Σ = . 

Second, from the definition of Tx at x = 0 

 0 1
0 0

( . )x x x x
x x

T L l a d+
≥ ≥

= = +∑ ∑   

So it remains to show that 1
0 0

.x x
x x

l x d+
≥ ≥

=∑ ∑ . The RHS of this expression is 

1 2 3
0

1 2 3 4

1 2 3 4

1
0

. 2. 3. 4. ...

...

...

x x
x

x x x x
x x x x

x
x

x d d d d d

d d d d

l l l l
l

≥

≥ ≥ ≥ ≥

+
≥

= + + + +

= + + + +

= + + + +

=

∑

∑ ∑ ∑ ∑

∑
 

since the life table population extinguishes, so ,i x
i x

d l x
≥

= ∀∑ . 

■ 
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Thus the distribution of interest is the distribution of the length of life, 

x xz x a= + , weighted by the number of people dying at that age, xd . 

To generalize the above lemma to any age, x, note that conditional on having 

reached age x the origin to measure the remaining length of life is not 0 but x, so the 

remaining length of life from that point onwards is ( ) xi x a− +  for 0i x≥ > . 

Lemma A2: Life expectancy at any age, x, viewed as the distribution of all the future 

remaining life years of the life table population among the current survivors, x
x

x

Te
l

= , is 

identical to the mean age at death; that is, the mean of the length of life distribution 

for these survivors, 
( )( )i i

i x
x

i
i x

d i x a
e

d
≥

≥

− +
=
∑

∑
. 

Proof: First, because survivors will eventually die, i x i xd l≥Σ = . 

Second, from the definition of Tx 

 1( . )x i i i i
i x i x

T L l a d+
≥ ≥

= = +∑ ∑   

So it remains to show that 1 ( ).i i
i x i x

l i x d+
≥ ≥

= −∑ ∑ . The RHS of this expression is 

( ). . . . .i i i i x
i x i x i x i x

i x d i d x d i d x l
≥ ≥ ≥ ≥

− = − = −∑ ∑ ∑ ∑
 

and the first term of the second equality is 

1 2 3

1 2 3

1 2 3

. . ( 1). ( 2). ( 3). ...

. 2. 3. ...

. 2. 3. ...

i x x x x
i x

i x x x
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so 
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1 2 3 4

1 2 3 4

1

( ). 2. 3. 4. ...
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