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Abstract 
This paper illustrates how outliers can affect both the estimation and testing of leverage effect by 
focusing on the TGARCH model. Three estimation methods are compared through Monte Carlo 
experiments: Gaussian Quasi-Maximum Likelihood, Quasi-Maximum Likelihood based on the 
t-Student likelihood and Least Absolute Deviation method. The empirical behavior of the t-ratio and 
the Likelihood Ratio tests for the significance of the leverage parameter is also analyzed. Our results put 
forward the unreliability of Gaussian Quasi-Maximum Likelihood methods in the presence of outliers. 
In particular, we show that one isolated outlier could hide true leverage effect whereas two consecutive 
outliers bias the estimated leverage coefficient in a direction that crucially depends on the sign of the 
first outlier and could lead to wrongly reject the null of no leverage effect or to estimate asymmetries of 
the wrong sign. By contrast, we highlight the good performance of the robust estimators in the 
presence of an isolated outlier. However, when there are patches of outliers, our findings suggest that 
the sizes and powers of the tests as well as the estimated parameters based on robust methods may still 
be distorted in some cases. We illustrate these results with two series of daily returns, namely the Spain 
IGBM Consumer Goods index and the futures contracts of the Natural gas. 
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1 Introduction

One of the empirical stylized facts about the series of �nancial returns is the leverage

e¤ect, which refers to the asymmetric response of volatility to positive and negative past

returns. In particular, the volatility tends to be higher following negative return shocks

(�bad�news) than following positive shocks (�good�news) of the same magnitude. This

feature conveys a generally negative cross-correlation between lagged asset returns and

volatility; see Black (1976) who originally put it forward using the debt-to-equity ratio

and Engle (2011) who provides the economic underpinning of volatility asymmetries

following simple asset pricing theory. See also Hibbert et al. (2008) for a behavioral

explanation of the negative asymmetric return�volatility relationship.

In the econometric literature there have been several methods proposed to repre-

sent and estimate conditional heteroscedasticity and leverage e¤ect, like the asymmetric

GARCH-type models (see the review in Rodríguez and Ruiz (2012)), the non-parametric

high-frequency methods in Andersen et al. (2001) and the observation-driven models

proposed by Creal et al. (2013) and Harvey (2013), to name but a few. In practice, when

these methods are applied to estimate and test for the leverage e¤ect, mixed results come

up. For example, Andersen et al. (2001) found statistically signi�cant leverage e¤ect for

most of the stocks returns of the DJIA stock market index by using realized volatilities,

although they point out that this e¤ect has a marginal economic importance. In turn,

Zivot (2009) and Rodríguez and Ruiz (2012) also report signi�cant leverage e¤ect by

applying GARCH-type methods to di¤erent series of returns, including a particular as-

set stock, a stock market index and exchange rates. However, Ait-Sahalia et al. (2013)

discuss what they call the leverage e¤ect puzzle, which relies on the fact that the empir-

ical correlation between returns and changes in volatility estimated from high frequency

data becomes nearly zero for most assets tested, despite the many economic reasons for

expecting such correlation to be negative. In Energy markets, it is also common to �nd

di¤erent results concerning the leverage e¤ect. For example, Kristoufek (2014) �nds

the inverse leverage e¤ect (positive correlation between returns and volatility) in future

prices of the natural gas by using correlation-based methods for non-stationary series,

whereas Chkili et al. (2014) �nd the standard leverage e¤ect when asymmetric and

long-memory models are estimated to spot and future returns of the same commodity.
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The mixed results on the sign and the signi�cance of the leverage e¤ect could be

partly explained, among other reasons, by the harmful e¤ect of the extreme observa-

tions usually encountered in the returns. For instance, it is already well known that

the presence of outliers can have misleading e¤ects on the identi�cation of both con-

ditional heteroscedasticity and leverage e¤ect; see Carnero et al. (2007) and Carnero

et al. (2016), respectively. Moreover, it is also proved that the presence of outliers

renders the Gaussian Quasi Maximum Likelihood (QML) estimators unreliable in sym-

metric GARCH models; see Sakata and White (1998), Mendes (2000), Carnero et al.

(2007) and Muler and Yohai (2008), among others. In this context, robust estimators

based on maximizing non-Gaussian heavy-tailed likelihoods have been proposed and

their main properties have been established; see, for instance, Newey and Steigerwald

(1997), Sakata and White (1998), Berkes and Horvath (2004) and Fan et al (2014).

Another robust alternative for GARCH-type models is the log-transform-based Least

Absolute Deviations (LAD) estimator proposed by Peng and Yao (2003) and further dis-

cussed in Huang et al. (2008). Related works also include Pan et al. (2008), Francq and

Zakoian (2013) and Hill (2015), among others. Alternatively, some authors deal with

this problem by applying methodologies based on detecting and correcting outliers; see,

for example, Laurent et al. (2016) and the references therein.

In this paper, we face the problem of how outliers can a¤ect the inference on the

leverage parameter in asymmetric GARCH-type models: Does the sign of the outliers

matter? How much the size of the outliers worsen the results? Is the e¤ect of one

isolated outlier comparable to that of consecutive outliers? Which estimation method is

more resistant to outliers? To answer these questions, we conduct an extensive Monte

Carlo study that includes models with high, low and none leverage and di¤erent types

of outliers (isolated and in patches, positive and negative, big and small). For each set-

ting, we compare the performance of three estimation methods: QML, Quasi-Maximum

Likelihood estimator based on maximizing the Student-t likelihood (QML-t) and LAD.

We also analyze the size and power of the t-ratio and the Likelihood Ratio tests for

the signi�cance of the leverage parameter. Among the several asymmetric GARCH-

type models proposed in the literature, we focus on the Threshold GARCH (TGARCH)

model of Zakoian (1994) since, according to Rodríguez and Ruiz (2012), this is more

�exible than its competitors to properly represent the dynamics of �nancial returns.
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Previous works related to our paper are Pan et al. (2008), who establish the asymp-

totic properties of both QML and LAD estimators for a general model that nests the

TGARCH and compare, for a particular parametrization, the �nite sample performance

of both estimators, and Francq and Zakoian (2013), who compare the asymptotic rela-

tive e¢ ciencies of QML and LAD estimators for a model that also nests the TGARCH.

Our paper provides new insights on the topic in two ways. First, we also evaluate the

QML-t estimator, that turns out to be more robust than LAD in most cases, and second,

our Monte Carlo study is exhaustive enough to cover the multiple problems often found

in real data where di¤erent type of outliers may come up.

Our results show that QML-based methods become unreliable in the presence of

outliers and could lead to either hide true leverage e¤ects (when there is one isolated

outlier) or detect spurious leverage or leverage of the wrong sign (in the presence of two

consecutive outliers). As expected, the robust estimators considered (QML-t and LAD)

always outperform QML although they are still slightly biased in the presence of big

consecutive outliers. In this case, the bias direction crucially depends on the sign of the

�rst outlier and could lead to wrongly reject the null of no leverage e¤ect. These results

are further enhanced in our empirical application, where two particular series of �nancial

returns are analyzed, namely a daily series of the Spain IGBM Consumer Goods index

including one isolated negative outlier and a daily series of futures contracts of Natural

gas including two consecutive outliers of opposite sign being the �rst one positive.

The rest of the paper is organized as follows. Section 2 reviews the TGARCH model

and describes the three estimation methods to be analyzed (QML, QML-t and LAD)

and the two signi�cance tests considered (t-ratio and Likelihood Ratio tests). Section 3

is devoted to the �nite sample performance of these estimators and tests in the presence

of outliers for di¤erent parameter sets and di¤erent types of outliers. Section 4 illustrates

our main results with an empirical application based on the two series of daily returns

mentioned above. Finally, Section 5 concludes the paper with a summary of the main

conclusions.
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2 Statistical inference in the TGARCH model

2.1 TGARCH model: de�nition and main properties

As Rodríguez and Ruiz (2012) point out, the TGARCH model is an appropriate and

�exible GARCH-type model to represent the features and dynamic properties of �nancial

returns, namely excess kurtosis, conditional heteroscedasticity and leverage e¤ect. In

this model, the series of demeaned returns, yt, is speci�ed by the following equation:

yt = �t "t; (1)

where �t is the volatility and "t is a sequence of independent and identically distributed

random variables with zero mean and unit variance. To accommodate the asymmetric

relationship between past returns and volatility, �t is parametrized as a function of both

the magnitude and the sign of past returns. In particular, the equation for the volatility

in the TGARCH(1,1) model is1

�t = �0 + � jyt�1j + ��t�1 + �yt�1: (2)

When yt�1 is positive, the volatility response is linear in yt�1 with slope (� + �) but if

yt�1 is negative, the slope of the response is (� � �). Thus, the volatility can respond
asymmetrically to rises and falls in stock prices and the value of � is expected to be

negative. Under the constraints �0 > 0, � � 0 and � � j�j, �t is always positive and
represents the conditional standard deviation of yt. Moreover, the model is covariance

stationary if �2 < 1��2��2�2���1, where �1 = Ej"tj:When this condition is satis�ed,
the marginal variance of returns is given by

�2y = �
2
0

1 + ��1 + �

(1� ��1 � �)(1� �2 � �2 � �2 � 2���1)
:

An advantage of the TGARCH model is that it parametrizes the conditional stan-

dard deviation rather than the conditional variance. This makes it easier to work out

analytical expressions for its unconditional higher-order moments and cross-moments.

He and Teräsvirta (1999) and He et al. (2008) provide the moment structure as well

1It is important to be aware that other parametrizations are possible (see Appendix A) and that
the GJR model, proposed by Glosten et al. (1993), is sometimes erroneously referred to as TGARCH.
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as the autocorrelation of the squared and absolute returns and the cross-correlation be-

tween squared and lagged returns; see also the results in Hwang and Basawa (2004).

Moreover, as the TGARCH model involves absolute values rather than squares, it is

expected to be less sensitive to extreme observations than similar models involving con-

ditional variances and squared returns, like the GJR and the QARCH models in Glosten

et al. (1993) and Sentana (1995), respectively.

Another advantage of the TGARCH model is that it contains, as a special case,

a model without leverage whose properties are very similar to those of the standard

GARCH. Such a model is the absolute-value GARCH (AVGARCH) model of Taylor

(1986) and Schwert (1989), that comes up by taking � = 0 in (2). Thus, model selection

can be easily performed by testing the signi�cance of the leverage parameter � with the

usual t-ratio test and/or the Likelihood Ratio test. On the other hand, the TGARCH

model is a particular case of the Asymmetric Power ARCH (A-PARCH) model proposed

by Ding et al (1993) with power parameter equals to one. Hence, the asymptotic theory

in Pan et al. (2008) and Francq and Zakoian (2013) regarding estimation and hypothesis

testing in that general model can be applied. By contrast, the asymptotic theory for

other popular asymmetric GARCH-type models, like the EGARCH model proposed

by Nelson (1991), is scarce. Only some results on the consistency of the Gaussian

QML estimator in that model can be found in Straumann and Mikosch (2006) and

Wintenberger (2013).

2.2 Gaussian QML estimation

The TGARCH(1,1) model de�ned in equations (1)-(2) can be estimated by maximizing

the conditional log-likelihood function, which, given initial values y0 and �0, is as follows

L(�) =

TX
t=1

lt(�) =

TX
t=1

�
�1
2
log �2t + log f

�
yt
�t

��
; (3)

where � = (�0; �; �; �)
0 denotes the parameter vector to be estimated and f(�) is the

probability density of "t. In particular, if the log-likelihood function in (3) is computed

as if "t were assumed to be N(0; 1), the corresponding Gaussian log-likelihood function,
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denoted as LG(�), comes up, namely

LG(�) = �
T

2
log 2� � 1

2

TX
t=1

�
log �2t +

y2t
�2t

�
: (4)

The resultant estimator obtained from maximizing LG(�) is the well-known QML esti-

mator. This estimator, that will be denoted as b�QML, is the most commonly used one

for GARCH-type models and, in particular, for the TGARCH model introduced above;

see, for instance, Zivot (2009) and Francq and Zakoian (2010, chapter 10). Moreover,

this estimator is provided in most software packages, such as E-VIEWS, G@RCH4.0,

MFE MATLAB Toolbox, SAS, Stata, Splus and R. Obviously, if the true distribution

of "t is N(0; 1), the resultant estimator will be the Maximum Likelihood estimator.

Pan et al. (2008) show that QML is consistent and asymptotically normal for an

asymmetric power-transformed GARCH model that includes as a particular case the

TGARCH model, provided that "t is symmetrically distributed with E"2t = 1 and E"
4
t <

1 and some regularity assumptions hold. In such a framework, they show that

p
T (b�QML � �)

L�! N(0;��1
��1); (5)

where

�(�) = E

�
@2lt(�)

@�@�0

�
and 
(�) = E

�
@lt(�)

@�

@lt(�)

@�0

�
:

Hence, we can approximate the asymptotic variance of b�QML by the so-called �sandwich�

estimator

V ar(b�QML) � H(b�QML)
�1B(b�QML)H(b�QML)

�1; (6)

where H(�) denotes the Hessian matrix of the log-likelihood and B(�) is the inner

product of the gradient (or score) of the log-likelihood, namely

H(�) =
TX
t=1

@2lt(�)

@�@�0
; B(�) =

TX
t=1

@lt(�)

@�

@lt(�)

@�0
:

On the other hand, Muler and Yohai (2008) point out that maximizing (4) is equiv-

alent to minimizing

M0;T (�) =
1

T � 2

TX
t=2

�0(xt � log �2t (�));
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where xt = log(y2t ) and �0 = � log(g0), where g0 is the density of log("2t ) when the
distribution of "t is assumed to be N(0,1), that is

g0(x) =
1p
2�
e�

1
2
(ex�x);

so that

�0(x) = log(
p
2�) +

1

2
(ex � x): (7)

Hence, the QML estimator, that could be alternatively de�ned as

b�QML = argmin
�
M0;T (�);

corresponds to an M-estimator with auxiliary function �0 in (7). This function as well

as its 1st derivative, �00 =
1
2
(ex � 1), are both unbounded, rendering QML not robust,

i.e., a few outliers can have a large in�uence on this estimator.

The lack of robustness of the QML estimator in symmetric GARCHmodels is already

well documented; see Sakata and White (1998), Mendes (2000), Carnero et al. (2007)

and Muler and Yohai (2008), among others. In Section 3 we analyze the e¤ect of the

outliers on QML in TGARCH models through Monte Carlo experiments. In particular,

we investigate if the sign of the outliers, that is irrelevant in symmetric models, makes

any di¤erence when estimating the parameters of asymmetric models.

2.3 QML-t estimation

In order to gain resistance against outliers, some authors propose to use estimators based

on maximizing non-Gaussian heavy-tailed log-likelihoods; see, for instance, Sakata and

White (1998). Actually, in the seminal paper of Nelson (1991), the EGARCH model

is estimated by maximizing the loglikelihood function in (3) assuming that "t follows a

GED distribution normalized to have zero mean and unit variance. Another common

practise is to maximize the conditional log-likelihood in (3) computed as if "t followed

a Student-t distribution with � degrees of freedom normalized to have zero mean and

unit variance. In such a case, the log-likelihood function, denoted as LStud, becomes:

LStud(�) = T log

 
�((� + 1)=2)p
�(� � 2)�(�=2)

!
� 1
2

TX
t=1

�
log �2t + (� + 1) log

�
1 +

1

� � 2
y2t
�2t

��
;

(8)
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where the vector parameter is � = (�0; �; �; �; �)
0. The resultant estimator obtained

from maximizing LStud(�) is the so-called QML-t estimator denoted as b�QML�t.

As far as we know, no asymptotic theory exists for QML-t estimation in the context

of asymmetric GARCH models. Hence, we will assume the usual practice of researchers

using GARCH-type models that the asymptotic distribution of QML-t is that in (5)

and we will approximate its asymptotic variance by the �sandwich� estimator in (6)

replacing b�QML by b�QML�t. Empirical applications performing QML-t estimation of the

TGARCH model can be found in Zivot (2009), Francq and Zakoian (2010, chapter 10)

and Rodríguez and Ruiz (2012).

Muler and Yohai (2008) point out that maximizing (8) is equivalent to minimizing

M1;T (�) =
1

T � 2

TX
t=2

�1;�(xt � log �2t (�));

where xt = log(y2t ) and �1;� = � log(g1), where g1 is the density of log("2t ) when the
distribution of "t is assumed to be a standardized Student, i.e.,

g1(x) =
�
�
�+1
2

�p
�(� � 2)�

�
�
2

�ex2 �1 + ex

� � 2

���+1
2

;

so that

�1;�(x) = �
x

2
+
� + 1

2
log

�
1 +

ex

� � 2

�
� log �

�
� + 1

2

�
+ log

�p
�(� � 2)�(�

2
)
�
: (9)

Hence, the QML-t estimator could be alternatively de�ned as

b�QML�t = argmin
�
M1;T (�);

and so it also corresponds to an M-estimator with the auxiliary function �1;� in (9).

This function is unbounded but its 1st derivative, �01;�(x) =
�ex��+2
2(��2+ex) ; is bounded; thus,

QML-t is expected to be more robust than QML, although it can still be a¤ected by

some type of outliers.

Carnero et al. (2007) analyze the robustness of QML-t for symmetric ARCH and

GARCH models and conclude that it is resistant against outliers without loosing e¢ -

ciency when estimating the parameters of ARCH models. However, it fails to be robust

when estimating the parameter � of the GARCH(1,1) model. In Section 3 we analyze

the �nite sample behavior of the QML-t estimator, as compared to QML, in TGARCH

models in the presence of outliers.
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2.4 LAD estimation

As an alternative to QML, Peng and Yao (2003) propose the LAD estimator and they

show that, in the context of GARCH models, this estimator is robust to heavy tails

of the innovation distribution and it is asymptotically normal and unbiased under mild

conditions for the error distribution. Huang et al. (2008) perform a comparison between

both QML and LAD, where the latter is viewed as a quasi-maximum likelihood estimator

based on the hypothesis that the log-squared innovations follow a Laplace distribution.

Pan et al. (2008) establish the asymptotic properties of both QML and LAD estimators

for an asymmetric power-transformed GARCH model that nests the TGARCH. They

also compare, for a particular parametrization, the �nite sample performance of both

estimators and show that the LAD is more accurate than QML for heavy-tailed errors.

For the LAD estimator to be applied, the model should be reparametrized in such

a way that the median (instead of the mean) of the squared innovations is equal to 1,

while the mean of the innovations remains unchanged and equal to 0. In particular,

for the TGARCH model we are interested in, the reparametrization is as follows. Let

M = median("2t ) > 0 and let �
�
t = M

1=2�t and "�t = M
�1=2"t, so that median("�2t ) = 1.

Then, the TGARCH model de�ned in equations (1)-(2) may now be expressed as

yt = ��t "
�
t ;

��t = ��0 + �
�jyt�1j+ ���t�1 + ��yt�1;

where ��0 =M
1=2�0, �� =M1=2�, �� =M1=2� and the parameter vector to be estimated

is �� = (��0; �
�; �; ��)0: Notice that, under this new parametrization, the parameters ��0,

�� and �� di¤er from those in the old setting by a common positive constant factor while

the parameter � remains unchanged. The LAD estimator is based on the regression

equation for the log-squared transformation, namely

log y2t = log �
�2
t + log "

�2
t ;

where the error terms log "�2t are independent and identically distributed with median

equals to 0. Now, the LAD estimator of �� is de�ned as:

b��LAD = argmin
�

TX
t=2

j log y2t � log ��2t (�)j .
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Notice that, since some of the parameters estimated by LAD di¤er from the origi-

nal parameters by a common positive factor, to compare the LAD estimates to those

obtained by other methods, the former should be corrected by the corresponding scale

factorM�1=2: Moreover, for the standard errors of the LAD estimators to be computed,

it is required to estimate the density of the log-squared innovations by the kernel method.

Hence, the additional problem of choosing the bandwidth and the kernel function to be

used should be addressed; see Pan et al. (2008).

Interestingly, Muler and Yohai (2008) show that the LAD estimator can also be

regarded as an M-estimator de�ned as

b��LAD = argmin
�
M2;T (�);

with

M2;T (�) =
1

T � 2

TX
t=2

�2(xt � log �2t (�));

where xt = log(y2t ) and �2 is the following auxiliary function

�2(x) = jx� u0j; (10)

where u0 = logM . The function �2 in (10) is unbounded but �
0
2(x) = sign(x � u0) is

bounded. Thus, as QML-t, this estimator is more robust than QML, although large

outliers can still have a strong e¤ect on it, as we will see in Section 3.

To summarize, Figure 1 plots the functions �0, �1;� and �2 in (7), (9) and (10), re-

spectively, as well as their 1st derivatives. For the QML-t, we consider � = 3 and for

the LAD we take u0 = 0: This �gure clearly shows up the di¤erences and similarities be-

tween the three functions: all of them are unbounded but, whereas �00 is still unbounded,

�01;� and �
0
2 are both bounded, making the corresponding estimators, QML-t and LAD,

more robust to outliers than QML.

2.5 Testing the signi�cance of the leverage coe¢ cient

The goal of estimating asymmetric GARCH models, like the TGARCH, is capturing

the leverage e¤ect through the leverage parameter �. Hence, once the model has been
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Figure 1: Function � and its �rst derivative in M-estimators
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estimated, the following signi�cance testing problem is usually considered

H0 : � = 0 against H1 : � 6= 0:

The most widely used test for this problem is the t test based on the QML estimation

of the model. This test employs the statistic t = b�=(s:e:(b�)), where the standard error is
computed as the square root of the corresponding diagonal element of the approximate

asymptotic variance (6); see, for instance, Zivot (2009). At the asymptotic signi�cance

level �, the standard rejection region is thus

fjtj > ��1(1� �=2)g: (11)

Alternatively, the Likelihood Ratio (LR) test can be performed. This test employs the

statistic LR = �2(Lc � Lu), where Lc is the constrained log-likelihood (estimating the
model under the null) and Lu is the unconstrained log-likelihood. At the asymptotic

signi�cance level �, the standard rejection region of the LR test is

fLR > �21(1� �)g; (12)

where �21(1 � �) is the (1 � �)�quantile of the �21 distribution. Other approaches are
possible; see, for instance, the Wald test based on LAD estimation in Pan et al. (2008).

Despite the popularity of the LR and t tests, Francq and Zakoian (2010) warn about

using their standard forms in (12) and (11), respectively, to test for the signi�cance

of GARCH coe¢ cients. In particular, they point out that the standard version of the

t-test in (11) is not of asymptotic level � but only �=2. In turn, they propose modi-

�ed versions of both tests which are appropriate for statistical inference in symmetric

GARCH models. Whether those results apply to asymmetric GARCH models, like the

TGARCH, is still an open question, but we conjecture that this would be the case.

Furthermore, the problem will be enhanced in the presence of outliers, as we will see in

the next section, where we analyze the empirical behavior of the standard versions of

the t and LR tests in (11) and (12), respectively, in the context of TGARCH models

contaminated with outliers.
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3 Monte Carlo simulation

In this section we report the results on several Monte Carlo experiments comparing the

performance of the three estimators described in Section 2, for two TGARCH models

and a symmetric AVGARCH model contaminated with one isolated outlier and with

two consecutive outliers of di¤erent sizes and sign. As far as we know, this is the �rst

time that these three estimators are compared in such a framework. Previous work on

standard GARCH models include Peng and Yao (2003), who compare QML and LAD in

ARCH(2) and GARCH(1,1) models, and Muler and Yohai (2008), who compare, in the

GARCH(1,1) model, the behavior of several estimators, including QML, QML-t (with

�xed degrees of freedom � = 3) and LAD. Also, Pan et al. (2008) compare numerically

QML and LAD for a general PTTGARCH(1,1) model that allows for leverage e¤ect.

However, their comparison is based on the average absolute error of all the model para-

meters, a criteria that misses the sign of the leverage parameter and does not allow to

disentangle the e¤ect of outliers on each parameter.

3.1 Data generation and estimators

In our Monte Carlo experiments, the data are generated by the following scheme:

yt = �t "t,

zt =

�
yt + ! if t = � ; :::; � + k � 1
yt otherwise

with "t � N(0; 1), so that E"2t = 1 and M = median("2t ) = 0:454936: The volatility

process �t is generated by equation (2) with three true parameter sets:

Parameter set 1 �0 = 0:0475, � = 0:15, � = 0:83, � = �0:05
Parameter set 2 �0 = 0:0746, � = 0:12, � = 0:825, � = �0:11
Parameter set 3 �0 = 0:0746, � = 0:12, � = 0:825, � = 0

The �rst two parameter sets de�ne TGARCH models capturing leverage e¤ects of

di¤erent magnitude, while the latter de�nes a symmetric AVGARCH (without leverage)

that is nested in the TGARCH model with parameter set 2. This allows us to evaluate

the properties of some statistical tests for model selection, such as the Likelihood Ratio
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test. Moreover, the parameters values of the two TGARCH models have been chosen

to resemble the values usually encountered in real empirical applications and to make

them somehow comparable, since their marginal variance and kurtosis are very similar.

In particular, with these parameter sets, the marginal variance, the kurtosis and the

1st-order cross-correlation between squared and past returns are the following:

Marginal variance Kurtosis 1st-order cross-correlation
Parameter set 1 1 5:389 �0:0647
Parameter set 2 1 5:727 �0:135
Parameter set 3 0:9175 3:492 0

Since we are interested in the e¤ect of both the size and the sign of the outliers,

we consider positive and negative outliers and we take the case of no outliers as a

benchmark. In particular, the sizes of the outliers considered are the following: ! =

f0;�10;�20;�30;�40;�50g. For each model, we generate 1000 independent samples
of size T = 1000.2 Then we contaminate each sample, �rst, with k = 1 isolated outlier

of size ! at time t = T=2 and second, with k = 2 consecutive outliers of the same size

but opposite signs placed at t = fT=2; T=2 + 1g. For instance, we contaminate with a
negative outlier (! = �10) at time t = 500 and a second one positive (! = 10) at time
t = 501 and then we repeat the experiments by contaminating �rst with a positive outlier

(! = 10) at time t = 500 and a second one negative (! = �10) at time t = 501. Then,
we repeat this procedure with each size of the outlier considered. For each replicate, we

compute the estimates of the parameters (�0; �; �; �) by the three methods explained

above and we also compute their average over all replicates. For QML and QML-t

estimates, we also compute, for each replicate, the asymptotic standard deviation of each

estimator and the corresponding t-ratios to test for the signi�cance of each parameter.

For comparison purposes, the LAD estimates are corrected by the corresponding scale

factorM�1=2 (see Section 2.4). Moreover, for QML-t, the parameter � is also estimated.

3.2 Simulation results on estimation

As we are interested in the possible e¤ect of the outliers on the leverage e¤ect, we focus

our discussion on the Monte Carlo results for the parameter �. Actually, our results for
2The results for T = f500, 5000g; not displayed to save space, are available upon request.
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the parameters �0, � and � (not displayed here to save space) resemble those obtained in

Carnero et al. (2007, 2012) for symmetric GARCH models. In particular, QML always

overestimates �0 and underestimates � in the presence of outliers, either isolated or in

patches, and it overestimates � if there are two consecutive outliers. On the other hand,

QML-t is robust to one isolated outlier without losing the good properties of QML for

uncontaminated series, but it fails to be robust to patches of big outliers, especially

when estimating parameters � and �. Moreover, we have also checked that the sign of

the outliers does not make a great di¤erence on estimating the parameters �0, � and �;

it is only the magnitude of the outlier rather than its sign what makes the di¤erence.

However, as Figures 2 and 3 will show, this is not the case when estimating the leverage

parameter �, where the sign of the outliers is essential.

Figure 2 displays, in its left-hand side panels, the Box-plots of the QML estimates of

� for the three models considered (one for each row) in series contaminated with one sin-

gle outlier of size ! for all the sizes considered, from the most negative value (! = �50)
to the highest positive one (! = 50). The central panels and the right-hand side panels

of Figure 2 display the same plots for the QML-t and LAD estimates, respectively. Fig-

ure 3 displays similar Box-plots to those in Figure 2 but for series contaminated with

two consecutive outliers of the same magnitude but opposite sign for all the outlier sizes

considered. In particular, the labels in the x-axis of these plots represent the sign and

size of the �rst outlier, being the 2nd one of the same magnitude but opposite sign. For

instance, the Box-plot labelled as ��50� represents the distribution of the 1000 esti-
mated values of � from 1000 series contaminated with two consecutive outliers, namely

f�50; 50g, placed at t = f500; 501g, while the Box-plot labelled as �50�corresponds to
the estimated values of � from 1000 series contaminated with two consecutive outliers,

namely f50;�50g, placed at t = f500; 501g.

Several conclusions emerge from these �gures. First, QML is not robust to the

presence of moderate-large outliers, as expected: both the bias and dispersion of QML

estimates of � increase with the size of the outliers. Actually, in the presence of moderate-

large outliers, the estimates can take any value within the admissible parameter space,

18



Figure 2: Boxplots of estimated � with QML, QML-t and LAD in the presence of one
isolated outlier
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Figure 3: Boxplots of estimated � with QML, QML-t and LAD in the presence of two
consecutive outliers
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rendering QML unreliable. Moreover, in models with leverage e¤ect (� 6= 0), the pres-
ence of one isolated outlier of either sign pushes QML estimate of � towards zero and

hence could hide true leverage e¤ect. This result agrees with the conclusions in Carnero

et al (2016) regarding the identi�cation of leverage based on the cross-correlogram be-

tween past returns and current squared returns. Another remarkable feature is that, in

general, two consecutive outliers are more harmful in QML than one isolated outlier of

the same magnitude. Comparing Figures 2 and 3, we can see that, for a given model,

both the bias and the interquartile range of QML estimates are always larger in the

presence of two consecutive outliers than in the presence of one isolated outlier of the

same size. However, the e¤ect of two consecutive outliers on QML estimates of � clearly

depends on the sign of the �rst outlier. If this is negative, QML underestimates � and

so it could yield spurious asymmetries (in models with no leverage) or it could over-

estimate the magnitude of the true leverage. By contrast, � is overestimated in series

contaminated with two consecutive outliers where the the 1st one is positive. Hence, in

this case, QML could estimate spurious asymmetries (in models with no leverage) or it

could either estimate asymmetries of the wrong sign or even no asymmetries in models

with true leverage e¤ect. Again, this agrees with the results in Carnero et al. (2016)

regarding the impact of consecutive outliers in the identi�cation of the leverage e¤ect.

Figures 2 and 3 also show that both QML-t and LAD always outperform QML in

the presence of outliers, as expected. Moreover, in the presence of one isolated outlier,

both estimators perform quite well, even if the outlier is very large. However, they

become slightly downward biased in the presence of two big consecutive outliers with

the �rst one being negative. By contrast, when there are no outliers, QML is the best

one, as expected, whereas LAD is the worst. Noticeably, QML-t does not lose much

e¢ ciency with respect to QML in this case; a similar �nding is reported in Muler and

Yohai (2008) for standard GARCH models.

In order to better appreciate the di¤erences between QML-t and LAD, in Figure

4 we compare in more detail the results from these two estimators for some selected

outlier sizes, namely ! = f0;�10;�20;�30g. As we can see, QML-t outperforms LAD
in all cases, but in the presence of two consecutive outliers, it still su¤ers from some

biases, especially if the 1st outlier is negative. Moreover, in models with no leverage

or even with low leverage, the presence of two consecutive outliers, being the �rst one
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positive, pushed QML-t estimated � upwards leading to a possible erroneous detection

of inverse leverage. Hence, there is still place to improve robustness in the estimation of

asymmetric GARCH-type models, a topic that is left for further research.

3.3 Simulation results on signi�cance tests

In this section we analyze the empirical properties of both the t-test and LR test using

the standard rejection regions (11) and (12), respectively, to test H0 : � = 0 against

H1 : � 6= 0: We only perform this analysis with the two likelihood-based estimators,

namely QML and QML-t. In all cases, the nominal size considered is 5%: In order to

assess the empirical size of both tests, we simulated 1000 independent samples of size

T=1000 of an AVGARCH (Parameter set 3) and, for each sample, we �tted a TGARCH

model, by both QML and QML-t, and computed the corresponding t-ratio and log-

likelihood. To calculate the LR statistic, we also �tted an AVGARCH and compare

its log-likelihood with that of the �tted TGARCH. On the other hand, to analyze the

empirical power of the tests, we simulated 1000 independent samples of size T=1000

of a TGARCH with Parameter set 2 (� = �0:11) and, for each sample, we proceed
as before. We have also performed the same experiments with a TGARCH model with

Parameter set 1 (� = �0:05) obtaining similar conclusions.
Figure 5 compares the empirical size of the t test (left-hand side panels) and the LR

test (right-hand side panels) based on both QML and QML-t estimates of TGARCH

models contaminated with 1 isolated outlier (top panels) and with two consecutive

outliers (bottom panels). That is, it represents the proportion of rejections under the

null (H0 : � = 0), based on 5% critical value of t and LR tests using the standard

rejection regions (11) and (12), respectively. The main conclusions we can draw from

this �gure are as follows. As expected, both the LR and t-test based on QML-t are

always more robust to outliers than those based on QML. Moreover, as the outlier size

increases, the tests based on QML become more oversized, i.e., they erroneously reject

the null more often that they should and so they tend to identify spurious leverage. This

problem is especially remarkable in the LR test, which could reach an over-rejection as

huge as 80% in the presence of outliers of size larger than 15. By contrast, the tests
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Figure 4: Boxplots of estimated � with QML-t and LAD in the presence of one isolated
and two consecutive outliers
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based on QML-t keep the nominal size quite well and even better in the presence of 2

outliers than in the presence on 1 isolated outlier. It is also worth mentioning that, even

with no outliers, the t-test does not reach the nominal size 5%. This could be related

to the warning of Francq and Zakoian (2010), mentioned in Section 2.5, regarding the

inappropriateness of the standard rejection region (11) in GARCH settings. This topic

is out of the scope of this paper but deserves further research.

Figure 6 compares the empirical powers of the t test (left-hand side panels) and the

LR test (right-hand side panels) based on both QML and QML-t estimates of TGARCH

models contaminated with 1 isolated outlier (top panels) and with two consecutive out-

liers (bottom panels). That is, this �gure displays, for each test, the relative frequency

of rejection of the hypothesis H0 : � = 0 (no leverage) on 1000 independent realizations

of length T = 1000 of the TGARCH model with parameter � = �0:11 (Parameter set
2). This �gure shows that, in terms of power, both the LR and t-test based on QML-t

are again more robust to outliers than those based on QML, as expected. The power of

the tests based on QML decreases rapidly with the size of the outlier, although the loss

of power is not that big in the LR test, which keeps the power around 80% when it is

based on QML, even in the presence of huge outliers. However, the loss of power due

to outliers of the t-test based on QML is dramatic. By contrast, the power of the tests

based on QML-t is around 1 in all cases, regardless of the size, the sign and the amount

of the outliers in the sample.

4 Empirical application

In this section we illustrate the previous results by �tting both the AVGARCH and

the TGARCH models to two series of daily returns from di¤erent markets by using

the estimation methods describe above. For each series and estimated model, we check

whether the leverage parameter is signi�cant or not by applying both the t-ratio and

LR tests. The two series analyzed have been chosen to represent the possible e¤ects

than one isolated outlier and two consecutive outliers have on the inferential statistics.
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Figure 5: Monte Carlo size. Proportion of rejections based on 5% critical value of t and
LR tests under H0 : � = 0
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Figure 6: Monte Carlo power. Proportion of rejections based on 5% critical value of t
and LR tests under H1 : � = �0:11
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4.1 Data description and dynamic properties

The series analyzed are daily close-to-close returns of the Spain IGBM Consumer Goods

index observed from June 3, 2002 to December 31, 2015, comprising 3398 observations,

and daily open-to-open returns of futures contracts of Natural gas from January 4,

2000 to June 28, 2013, comprising 3368 observations3. In both cases, the returns are

computed as yt = 100� (log(Pt)� log(Pt�1)); where Pt is the closing price at time t for
the IGBM series but it represents the open price at date t for the Natural gas. The two

series are plotted in Figure 7. As we can see, they both display volatility clustering and

some occasional extreme values that could be regarded as outliers. For instance, the

IGBM returns exhibit several extreme observations, the largest one corresponding to

December 30, 2004, when the index drops by �25:3%. The Natural gas returns exhibit
two extreme consecutive observations, the �rst one positive and the second one negative,

of magnitudes about 12 times the standard deviation of the series. These outliers are

due to large changes in the open price of the Natural gas on the 13th, 14th and 15th of

April 2006, with values of 6.78, 11.26 and 7.15 dollars, respectively.

Table 1 contains descriptive statistics of the two series considered, as well as the

Jarque-Bera and the Ljung-BoxQ(20) test statistics, the heteroscedastic-correctedQc(20)

test statistic proposed by Diebold (1988), and the test statistic CH(20); proposed by

Cumby and Huizinga (1992) which is also robust to conditional heteroscedasticity. We

also include the values of the statistics Q and CH applied to the squared returns, de-

noted by Q2(20) and CH2(20), respectively, to test for conditional heteroscedasticity.

As expected, both series exhibit excess kurtosis and the Jarque-Bera test for Normality

always rejects the null. The values of Qc(20) and CH(20) never reject the null at 5% sig-

ni�cance level, suggesting that both returns are uncorrelated, as expected. Surprisingly,

the values of Q2(20) and CH2(20) are not signi�cant for the IGBM series, suggesting

that its conditional variance is constant over time, while the values of these test statis-

tics are signi�cant at 1% for the Natural gas, indicating strong evidence of conditional

heteroscedasticity.

3The data for the IGBM Consumer Goods index was downloaded from www.invertia.com and the
corresponding one for Natural gas was obtained from the additional �les in Kristoufek (2014).
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Figure 7: Daily returns for IGBM Consumer Goods index and Natural gas
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Table 1: Descriptive statistics of the returns

Statistic IGBM Consumer Goods Natural gas
Mean 0:0439 0:0149

Std.Dev. 1:3320 3:7653

Skewness �2:0142 0:7462

Kurtosis 44:542 21:765

Jarque-Bera 246630��� 4973���

Sample size 3398 3368

Q(20) 37:537�� 48:547���

Qc(20) 28:989� 18:593

CH(20) 28:956� 18:975

Q2(20) 2:9310 631:56���

CH2(20) 23:119 75:94���

�;�� ;���: statistically signi�cant at 10%, 5% and 1% respectively
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Figure 8 displays, in its �rst row, the correlograms of the returns with the corrected

95% con�dence bands proposed by Diebold (1988) for conditionally hereroscedastic se-

ries. These bands are wider than the usual Barlett bands and show no evidence of

autocorrelated returns. The correlogram of squared returns, displayed in the 2nd row

of Figure 8, suggests no correlation in the squared returns of IGBM, looking like the

typical correlogram of a white noise series and con�rming the previous result on the

tests Q2(20) and CH(20). Nevertheless, it should be noticed that the pattern of this

correlogram can also be due to the harmful e¤ect of one isolated outlier on conditionally

heteroscedastic series; see Carnero et al. (2007). On the other hand, for the Natural

gas, we can see the typical pattern of the correlogram of the squared observations in

the presence of two consecutive outliers, that is, a very high positive and signi�cant 1st

order correlation while the others are pushed downwards towards zero; see Carnero et al.

(2007). However, when the robust autocorrelations of squares proposed by Teräsvirta

and Zhao (2011) are computed (see the 3rd row of Figure 8), another picture comes

up. For both, the IGBM and the Natural gas, all these correlations become signi�-

cantly di¤erent from zero, suggesting that the conditional variances of both returns are

not constant over time, as expected, and con�rming that the patterns of the sample

autocorrelations are due to the presence of outliers.

Finally, the last two rows of Figure 8 display the sample cross-correlations between

past and squared returns and their robust counterparts, respectively. The latter are

computed using the proposal in Carnero et al. (2016) based on applying the Ramsay

weighting scheme to the sample variances and cross-covariances. Again, the picture

changes depending on whether we look at the sample or the robust cross-correlations.

For the IGBM returns, the sample cross-correlations suggest no leverage e¤ect. By

contrast, most of the robust cross-correlations are negative suggesting possible leverage

e¤ect in this series. As discussed in Carnero et al. (2016), this is the expected pattern

due to one isolated outlier, which biases all sample cross-correlations towards zero hiding

true leverage. On the other hand, for the Natural gas, the patterns are quite di¤erent,
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Figure 8: Correlograms of returns and squared returns and cross-correlograms between
lagged returns and squared returns
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whereas all the robust cross-correlations are around zero, indicating no leverage e¤ect,

the 1st sample cross-correlation is pushed upwards to a signi�cant positive value, sug-

gesting inverse leverage e¤ect (positive relationship between volatility and past returns).

Again, this is the expected pattern due to the presence of two consecutive outliers, being

the �rst one positive; see Carnero et al. (2016). Therefore, the inverse leverage e¤ect

found in the Natural gas by some authors (see Kristoufek (2014) and the references

therein) could be an artifact due to the misleading e¤ect of outliers.

4.2 Estimating and testing for leverage e¤ect

We describe below the results from estimating the TGARCH and AVGARCH models

to the two return series described above. Since the results in Section 3 suggest a better

performance of QML-t over LAD and the computation of the standard errors of the

latter is cumbersome, we focus our comparison on QML and QML-t, although the

estimated leverage parameter by LAD will be also commented. Table 2 displays the

estimation results obtained by QML and QML-t as well as some diagnostics based on

the residuals, b"t = yt=b�t, where b�t is the estimated volatility for each model. The
estimation has been carried out with the Oxford MFE Toolbox for Matlab, taking into

account the reparametrization used in this package (see Appendix A) in order to compute

the estimated parameter values and their corresponding standard errors.4

As we can see, there are remarkable di¤erences between the results obtained for the

two returns series and, for each series, there are also some di¤erences between both

estimation methods that are worth mentioning. Since we are interested in the e¤ects

of outliers on estimating and testing the leverage e¤ect, our comments will be focused

on the leverage parameter �. For the IGBM series, we can see that, regardless of the

estimation method, the parameter � in the TGARCH model is estimated negative, as

it is expected if there is leverage e¤ect. The LAD estimate is also negative (b�LAD =

�0:0229). However, the leverage coe¢ cient is not statistically signi�cant when the

4To check for the robustness of our results, we have repeated the estimation by QML and QML-
t in Stata, obtaining similar results. We have also estimated EGARCH models leading to similar
conclusions.
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Table 2: Estimation of the TGARCH and AVGARCH models with QML and QML-t

Estimator Parameter IGBM Consumer Goods Natural gas
TGARCH AVGARCH TGARCH AVGARCH

QML ! 0:1041
(0:053)

�� 0:0919
(0:043)

�� 0:1019
(0:059)

� 0:1063
(0:071)

� 0:0500
(0:030)

� 0:0515
(0:031)

� 0:0749
(0:029)

�� 0:0794
(0:036)

��

� 0:8858
(0:018)

��� 0:8942
(0:012)

��� 0:9172
(0:035)

��� 0:9128
(0:043)

���

� �0:0171
(0:013)

0:0077
(0:012)

Log-Likelihood �5697:7 �5700:8 �9028:7 �9029:9

Residuals
Q(20)

CH(20)

25:515

29:660�
24:981

29:134�
22:239

15:991

22:167

15:875

Q2(20)

CH2(20)

0:138

2:910

0:140

2:835

51:178���

11:688

57:708���

12:460

QML-t ! 0:0292
(0:009)

��� 0:0310
(0:011)

��� 0:0833
(0:023)

��� 0:0788
(0:023)

���

� 0:0911
(0:014)

��� 0:0982
(0:015)

��� 0:0806
(0:010)

��� 0:0813
(0:010)

���

� 0:9087
(0:016)

��� 0:9016
(0:018)

��� 0:9144
(0:012)

��� 0:9152
(0:012)

���

� �0:0373
(0:009)

��� 0:0185��
(0:007)

� 5:2918 5:2311 6:7494 6:7402

Log-Likelihood �5191:7 �5203:9 �8779:8 �8784:0

Residuals
Q(20)

CH(20)

14:520

27:645

15:451

27:182

20:864

16:273

21:393

15:904

Q2(20)

CH2(20)

0:113

7:642

0:151

7:967

25:894

12:371

47:320��

14:130
�;�� ;���: statistically signi�cant at 10%, 5%, and 1%, respectively
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QML-based t-ratio test is applied but becomes signi�cant when QML-t is used. In

particular, the values (and p-values) of the t-statistic are �1:330 (0:1836) and �4:276
(0:000), respectively. Meanwhile, the values (and p-values) of the LR test statistic for

H0 : � = 0 (AVGARCH) against H1 : � 6= 0 (TGARCH) are 6:248 (0:0124) and 24:356
(0:000) when the models are estimated by QML and QML-t, respectively, con�rming

that � is signi�cant when QML-t is used but it is not longer signi�cant at 1% when

QML is applied. This result agrees with our discussion in Section 3 where we show

that a single isolated outlier (like the one existing in the IGBM series) biases the QML

estimated � towards zero and could hide true leverage. Then, it seems that, in this case,

QML-t is more reliable than QML suggesting that there is leverage e¤ect in the IGBM

returns, although this is hidden by the huge return observed on December 30, 2004,

when the model is estimated by QML.

For the Natural gas series, the parameter � is estimated positive by both QML and

QML-t and also by LAD (b�LAD = 0:0217), suggesting inverse leverage e¤ect. However,
its statistical signi�cance also depends on the estimator used as well as the test statistic

chosen. For this series, the values (and p-values) of both the t-ratio and LR test statistics

are 0:636 (0:5247) and 2:377 (0:123), respectively, when QML is used, indicating no

evidence of leverage e¤ect at any reasonable signi�cance level. But, when the model is

estimated using QML-t, the values (and p-values) of these two test statistics are 2:550

(0:0108) and 8:458 (0:0036), respectively, showing evidence of inverse leverage e¤ect at

5% signi�cance level (or even at 1% if the LR test is selected). This somehow surprising

result could be related to our �ndings in Section 3, where we show that QML-t could

be still biased in the presence two big consecutive outliers, with the estimated � being

pushed upwards if the �rst of these outliers is positive, as it is the case in the Natural

gas series. Therefore, we should be very careful in concluding that there is actually

inverse leverage e¤ect in this series, as this could be a misleading e¤ect caused by the

two consecutive extreme observations present in this series. Finally, it is also worth

mentioning that the thickness parameter � of the Student error distribution in QML-t,

indicates fat tails in both returns.

When looking at residuals diagnostics, as expected, the values of the test statis-

tics Q2(20) and CH2(20) for remaining autocorrelation in the squared residuals, have

been reduced remarkably in all estimated models, as compared to their values for the
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returns displayed in Table 1. Only for the Natural gas, the values of Q2(20) remain

signi�cant at 1% when the two models are estimated by QML. However, when QML-t

is used, both statistics Q2(20) and CH2(20) are not longer signi�cant for the TGARCH

model, suggesting that this model has been able to properly capture the dynamics in

the conditional variance of the returns.

To further illustrate how the potential outliers can bias the estimation and testing

of the leverage e¤ect, we consider a rolling window scheme of size T � = 1000 through

the whole sample, starting at point t = 1 and moving forwards up to covering the

last 1000 observations of the full sample. For the IGBM and the Natural gas series,

this amounts to analyzing 2398 and 2368 subsamples, respectively, covering periods of

di¤erent volatilities and types and sizes of outliers, according to the following steps:

1. Select the 1st subsample for IGBM (04/06/2002 - 31/07/2006) and for Natural

gas (04/01/2000 - 9/01/2004), estimate the parameter � by the three methods

considered (QML, QML-t and LAD) and compute, for QML and QML-t, the

corresponding t-ratio and LR test statistics for these subseries.

2. Delete the 1st observation, add a new observation at the end of the subsample and

re-estimate the model and test again for leverage.

3. Repeat the process until we reach the end of the full samples, where we cover the

last subsamples for IGBM (26/01/2012 - 31/12/2015) and Natural gas (23/06/2009

- 28/06/2013).

Figure 9 plots, in its �rst row, the estimated values of � across the rolling window for

the two series considered and for the three estimation methods applied, i.e., it plots the

values of b�QML, b�QML�t and b�LAD for each of the 2398 subseries of the IGBM series (left-

hand side panel) and for each of the 2368 subseries of the natural gas series (right-hand

side panel). As a benchmark, the zero line is also displayed to account for no leverage.

Similarly, Figure 9 plots the corresponding p-values of both the t-ratio (2nd row) and

the LR (3rd row) tests to test H0 : � = 0 against H0 : � 6= 0. The horizontal line

represents the 5% signi�cance level and consequently, those subsamples with p-values

below this line are those where the leverage e¤ect is signi�cant at 5% signi�cance level.
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Figure 9: Leverage parameter � in a TGARCH model estimated with subsamples of size
T = 1000 using a rolling window of both the IGBM Consumer Goods index and Natural
gas daily returns (top panels) and the corresponging p-values of the t-ratio and LR test
statistics to test for the statistical signi�cance of �.
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Several conclusions emerge from this �gure. First, we observe how extreme observa-

tions can bias the estimated leverage parameter and the corresponding test statistics and

could lead to a wrong conclusion about the sign and magnitude of the leverage e¤ect.

As expected, the QML estimated values of � present several sharp drops and rises which

do not appear in their robust counterparts. These sharp changes are usually due to the

entrance and/or an exit of outlying observations in the corresponding subsample. For

instance, in the IGBM series, the exit of the observation in December 30, 2004, where

the index sustained its largest drop (y642 = �25:33), conveys a sudden fall in b�QML from

a positive value to a negative value around �0:035 (see the graph in the top left-hand
side panel). Noticeably, for the �rst subseries corresponding at the beginning of the

full sample, i.e., for those including that isolated outlier, b�QML is always positive but

not signi�cant at any reasonable signi�cance level, as judged by the t-ratio test (see the

corresponding p-values displayed in the left panel in the 2nd row of Figure 9). Moreover,

for these subsamples, there are big di¤erences between b�QML and the robust estimates,b�QML�t and b�LAD, which are both both mainly negative and very similar to each other.
Actually, when QML-t is used, the p-values of both signi�cance tests show that � is

statistically signi�cant for several subsamples, indicating the presence of leverage e¤ect.

Recall that, according to our results in Section 3, these di¤erences are expected in the

presence of one isolated outlier, which seems to be the cause here of the upwards bias

observed in b�QML, as compared to the robust estimators.

It is also worth noting that, when we look at the patterns after the exit of that

outlying negative observation of the IGBM index, i.e. when the subseries analyzed do

not longer contain this outlier, the di¤erences between the three estimators (QML, QML-

t and LAD) are considerably reduced, specially for the last subseries at the end of the

sample. Actually, for these subseries, which are free from outliers (see the calm period

in the IGBM returns displayed in Figure 7 at the end of the sample), we observe that,

regardless of the estimator and the test statistics used, � is always estimated negative

and statistically signi�cant indicating the presence of leverage e¤ect. Again, this result

agrees with our �ndings in Section 3 for the simulated series without outliers.

When looking at the results for the Natural gas (right-hand side panels), we observe

remarkable di¤erences among the three estimators considered, specially for the subseries

located around the middle of the sample, i.e., those including the two huge consecutive
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outliers present in this series (y1566 = 50:73 and y1567 = �45:41). In these cases, our
results in Section 3 show that even the robust estimators could still be slightly biased.

In particular, when these two observations, the �rst one being positive and the next one

negative, are in a subsample, we expect b�QML but also b�QML�t to be upwards biased.

Another remarkable feature from the Natural gas results in Figure 9, is that the values

of b�QML and b�QML�t for the subseries at the end of the period (see the graph in the

top right-hand side panel), are very similar to each other but quite di¤erent from the

values of b�LAD: the former take negative values (standard leverage) whereas the latter
estimate � > 0 (inverse leverage). This feature could be related to the fact that LAD

is underperforming if no outliers are present in the series, as discussed in Section 3.

Accordingly, for most of the subseries at the end of the period, neither the t-ratio nor

the LR test statistics based on QML and QML-t reject the null, H0 : � = 0, in these

subseries. Therefore, we wonder whether the inverse leverage e¤ect found in the Natural

gas returns by some authors (see, for example, Kristoufek (2014) and the references

therein) could be due to the harmful e¤ect of these consecutive outliers.

Alternatively, the patterns of the estimated parameters displayed in Figure 9 could

be indicating that the leverage e¤ect is time-varying, as suggested by Bandi and Reno

(2012), Yu (2012) and Jensen and Maheu (2014), but this is a di¤erent problem that is

out of the scope of this paper.

5 Conclusions

This paper has analyzed the e¤ects of outliers on the estimation and testing for the

leverage e¤ect in the context of the TGARCH model. It is shown that, as expected,

QML-t and LAD always outperform QML in the presence of outliers. Actually, one

isolated outlier could lead QML to hide true leverage e¤ect whereas two consecutive

outliers bias the QML estimated leverage in a direction that crucially depends on the sign

of the �rst outlier. If this is negative (positive), QML underestimates (overestimates)

the leverage parameter. Therefore, in these cases, QML could hide true leverage or

estimate spurious asymmetries or asymmetries of the wrong sign. However, both robust

estimators perform very well when there is one isolated outlier, but they are still slightly

biased in the presence of patches of big outliers, leading, in some cases, to inaccurate
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estimates of the leverage coe¢ cient. In general, QML-t seems to outperform LAD

because it is robust to moderate-big outliers without losing much e¢ ciency, as compared

to QML, when there are no outliers. That is not the case for LAD, which performs much

worse than QML with no outliers. These results are further illustrated with the empirical

analysis of two return series from �nancial and energy markets, including one isolated

negative outlier and two consecutive outliers, respectively.
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Appendix A. Parametrizations of the TGARCH(1,1)
model

There are several (equivalent) parametrizations of the TGARCH(1,1) model proposed

in the econometric literature and also in the econometric software packages. Hence, in

order to compare estimates and standard errors from di¤erent papers and/or di¤erent

software packages, it is important to be very careful about which parametrization is

being used in each case. The one we have adopted in this paper is taken from Rodríguez

and Ruiz (2012) and it is given by the following equations:

yt = �t "t;

�t = �0 + � jyt�1j + ��t�1 + �yt�1: (A.1)

Hence, the volatility equation (A.1) can be re-written as:

�t =

(
�0 + (�+ �) yt�1 + ��t�1 if yt�1 � 0
�0 � (�� �) yt�1 + ��t�1 if yt�1 < 0

: (A.2)

In turn, the original proposal in Zakoian (1994) de�nes the volatility as follows:

�t = �0 + �
+y+t�1 � ��y�t�1 + ��t�1; (A.3)

where:

y+t = max(yt; 0); y
�
t = min(yt; 0):

Hence, the volatility equation (A.3) can be re-written as:

�t =

(
�0 + �

+yt�1 + ��t�1 if yt�1 � 0
�0 � ��yt�1 + ��t�1 if yt�1 < 0

: (A.4)

Therefore, comparing (A.2) and (A.4), the following relationship comes up between the

parameters of both parametrizations:

�+ � = �+

�� � = �� () � = 1
2
(�+ + ��)

� = 1
2
(�+ � ��) :

He and Teräsvirta (1999) consider the same volatility speci�cation as Zakoian (1994),

but they write it down in a slightly di¤erent way, namely

�t = �0 + �t�1f� + [�+(1� I("t�1)) + ��I("t�1)] j"t�1jg; (A.5)
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where

I("t�1) =

(
1 if "t�1 < 0

0 otherwise
:

Hence, taking into account that yt�1 = �t�1"t�1 and sign(yt�1) = sign("t�1), the volatil-

ity equation (A.5) can be easily re-written as in (A.4).

Another proposal, very similar to that in Rodríguez and Ruiz (2012), can be found

in He et al. (2008), whose volatility equation is as follows

�t = �0 + �t�1f� + � j"t�1j+ ��"t�1g: (A.6)

Hence, taking into account that yt�1 = �t�1"t�1, the volatility equation (A.6) can be

re-written as in (A.1) with �� = �.

Finally, the MFE Toolbox for Matlab that we have used in our Monte Carlo ex-

periments and empirical application, employs the following volatility equation for the

TGARCH(1,1) model:

�t = �0 + �1jyt�1j + 
1jyt�1j I(yt�1 < 0) + ��t�1; (A.7)

where

I(yt�1 < 0) =

(
1 if yt�1 < 0

0 otherwise
:

Hence, the volatility equation (A.7) can be re-written as:

�t =

(
�0 + �1 yt�1 + ��t�1 if yt�1 � 0
�0 � (�1 + 
1) yt�1 + ��t�1 if yt�1 < 0

: (A.8)

Therefore, comparing (A.2) and (A.8), the following relationships come up:

�+ � = �1
�� � = �1 + 
1

() � = �1 +
1
2

1

� = �1
2

1

:

These relationships should be taken into account to properly compute the correct point

estimates and standard errors of our parameters (�0; �; �; �)0 from the estimated pa-

rameters computed by the MFE Toolbox, namely (b�0; b�1; b�; b
1), and their asymptotic
variance-covariance matrix.

Another parametrizations of the TGARCH(1,1) model are still possible; see, for

instance, Hentschel (1995).
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