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1 Introduction

Dynamic stochastic economic models do not generally admit closed-form so-
lutions and must be studied with numerical methods.1 Most methods for
solving such models fall into three broad classes: projection methods, which
approximate solutions on a prespecified domain using deterministic integra-
tion; perturbation methods, which find solutions locally using Taylor ex-
pansions of optimality conditions; and stochastic simulation methods, which
compute solutions on a set of simulated points using Monte Carlo integration.
All three classes of methods have their relative advantages and drawbacks,
and the optimal choice of a method depends on the application. Projection
methods are accurate and fast when applied to models with few state vari-
ables, however, their cost increases rapidly as the number of state variables
increases. Perturbation methods are practical to use in high-dimensional ap-
plications but the range of their accuracy is uncertain.2 Stochastic simulation
algorithms are simple to program although are generally less accurate than
projection methods and often numerically unstable.3 In the present paper,
we focus on the stochastic simulation class.4 We specifically develop a gen-
eralized stochastic simulation algorithm (GSSA) that combines advantages
of all three classes, namely, it is accurate, numerically stable, tractable in
high-dimensional applications and simple to program.
The key message of the present paper is as follows: a stochastic simula-

tion approach is attractive for solving economic models because it computes
solutions only in the part of the state space which is visited in equilibrium -

1For reviews of such methods, see Taylor and Uhlig (1990), Rust (1996), Gaspar and
Judd (1997), Judd (1998), Marimon and Scott (1999), Santos (1999), Christiano and Fisher
(2000), Miranda and Fackler (2002), Aruoba, Fernandez-Villaverde and Rubio-Ramirez
(2006), Heer and Maußner (2008), Den Haan (2010), and Kollmann, Maliar, Malin and
Pichler (2011).

2See Judd and Guu (1993), Gaspar and Judd (1997), and Kollmann et al. (2011b) for
accuracy assessments of perturbation methods.

3See Judd (1992), and Christiano and Fisher (2000) for a discussion.
4Stochastic simulations are widely used in economics and other fields; see Asmussen

and Glynn (2007) for an up-to-date review of such methods. In macroeconomic literature,
stochastic simulation methods have been used to approximate an economy’s path (Fair
and Taylor 1983), a conditional expectation function in the Euler equation (Marcet, 1988),
a value function (Maliar and Maliar, 2005), an equilibrium interest rate (Aiyagari, 1994),
and an aggregate law of motion of a heterogeneous-agent economy (Krusell and Smith,
1998), as well as to make inferences about the parameters of economic models (Smith,
1993) among others.
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the ergodic set. In Figure 1, we plot the ergodic set of capital and productiv-
ity level for a representative-agent growth model with a closed-form solution
(for a detailed description of this model, see Section 2.1).

The ergodic set takes the form of an oval andmost of the rectangular area that
sits outside of the oval’s boundaries is never visited. In the two-dimensional
case, a circle inscribed within a square occupies about 79% of the area of
the square, and an oval inscribed in this way occupies an even smaller area.
Thus, the ergodic set is at least 21% smaller than the square. In general,
the ratio of the volume of a d-dimensional hypersphere of diameter 1 to the
volume of a d-dimensional hypercube of width 1 is

Vd =

⎧⎪⎪⎨⎪⎪⎩
(π/2)

d−1
2

1·3·...·d for d = 1, 3, 5...

(π/2)
d
2

2·4·...·d for d = 2, 4, 6...

. (1)

The ratio Vd declines very rapidly with the dimensionality of the state space.
For example, for dimensions three, four, five, ten and thirty, this ratio is 0.52,
0.31, 0.16, 3 · 10−3 and 2 · 10−14, respectively.
The advantage of focusing on the ergodic set is twofold. First, when

computing a solution on an ergodic set that has the shape of a hypersphere,
we face just a fraction of the cost we would have faced on a hypercube grid,
used in conventional projection methods. The higher is the dimensionality
of a problem, the larger is the reduction in cost. Second, when fitting a
polynomial on the ergodic set, we focus on the relevant domain and can get
a better fit inside the relevant domain than conventional projection methods
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which face a trade off between the fit inside and outside the relevant domain.5

However, to fully benefit from the advantages of a stochastic simulation
approach, we must first stabilize the stochastic simulation procedure. The
main reason for the numerical instability of this procedure is that polyno-
mial terms constructed on simulated series are highly correlated with one
another even under low-degree polynomial approximations. Under the usual
least-squares methods, the multicollinearity problem leads to a failure of the
approximation (regression) step.
To achieve numerical stability, we build GSSA on approximation meth-

ods that are designed to handle ill-conditioned problems. In the context
of a linear regression model, we examine a variety of such methods includ-
ing least-squares (LS) methods using singular value decomposition (SVD)
and Tikhonov regularization, principal component regression method, and
least-absolute deviations (LAD) linear-programming methods (in particular,
we present primal and dual LAD regularization methods). In addition, we
explore how the numerical stability is affected by other factors such as a nor-
malization of variables, the choice of policy function to parameterize (capital
versus marginal-utility policy functions) and the choice of basis functions
(ordinary versus Hermite polynomials). Our stabilization strategies are re-
markably successful: our approximation methods deliver polynomial approx-
imations up to degree five (at least), while the ordinary least-squares method
fails to go beyond the second-degree polynomial in the studied examples.
We next focus on accuracy. We show that if Monte Carlo integration is

used for approximating conditional expectations, the accuracy of solutions is
dominated by sampling errors from a finite simulation. The sampling errors
decrease with the simulation length but the rate of convergence is low, and
high accuracy levels are impractical. For example, in a representative-agent
model, Monte Carlo integration leads to accuracy levels (measured by the
size of unit-free Euler equation errors on a stochastic simulation) of order
10−4 − 10−5 under the simulation length of 10, 000. The highest accuracy
is attained under second- or third-degree polynomials. Thus, even though
our stabilization strategies enable us to compute a high-degree polynomial

5The importance of this effect can be seen from the results of the January 2010 special
JEDC issue on numerical methods for solving Krusell and Smith’s (1998) model. An
Euler-equation method based on the Krusell-Smith type of simulation by Maliar, Maliar
and Valli (2010) delivers a more accurate aggregate law of motion than does any other
method participating in the comparison analysis, including projection methods; see Table
15 in Den Haan (2010).
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approximation, there is no point in doing so with Monte Carlo integration.
To increase the accuracy of solutions, we replace the Monte Carlo integra-

tion method with more accurate deterministic integration methods, namely,
the Gauss-Hermite quadrature and monomial methods. Such methods are
unrelated to the estimated density function and do not suffer from sampling
errors. In the representative-agent case, GSSA based on Gauss Hermite
quadrature integration delivers accuracy levels of order 10−9 − 10−10, which
are comparable to those attained by projection methods. Thus, under accu-
rate deterministic integration, high-degree polynomials do help increase the
accuracy of solutions.
Given that GSSA allows for a variety of approximation and integration

techniques, we can choose a combination of the techniques that takes into
account a trade off between numerical stability, accuracy and speed for a
given application. Some tendencies from our experiments are as follows.
LAD methods are generally more expensive than LS methods, however, they
deliver smaller mean absolute errors. In small- and moderate-scale prob-
lems, the LS method using SVD is more stable than the one using Tikhonov
regularization although the situation reverses in large-scale problems (SVD
becomes costly and numerically unstable). Gauss Hermite quadrature (prod-
uct) integration rules are very accurate, however, they are practical only with
few exogenous random variables (shocks). Monomial (non-product) integra-
tion rules deliver comparable accuracy and are feasible with many exogenous
random variables. Surprisingly, a quadrature integration method with just
one integration node is also sufficiently accurate in our examples, in par-
ticular, it is more accurate than a Monte Carlo integration method with
thousands of integration nodes.
We advocate versions of GSSA that use deterministic integration meth-

ods. Such versions of GSSA construct a solution domain using stochastic
simulations but compute integrals using methods that are unrelated to simu-
lations; these preferred versions of GSSA, therefore, lie between pure stochas-
tic simulation and pure projection algorithms. Importantly, GSSA keeps the
prominent feature of stochastic simulation methods, namely, their tractabil-
ity in high-dimensional applications. To illustrate this feature, we solve a
version of the neoclassical growth model with N heterogeneous countries
(the state space is composed of 2N variables). For small-scale economies,
N = 6, 4 and 2, GSSA computes the polynomial approximations up to
degrees three, four and five with the maximum absolute errors of 0.001%,
0.0006% and 0.0002%, respectively. For medium-scale economies, N ≤ 20,
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GSSA computes the second-degree polynomial approximations with the max-
imum absolute errors of 0.01%, which is comparable to highest accuracy
levels attained in the related literature; see Kollmann et al. (2011b). Fi-
nally, for large-scale economies with up to N = 200, GSSA computes the
first-degree polynomial approximations with the maximum absolute approx-
imation errors of 0.1%. The running time of GSSA depends on the cost of
the integration and approximation methods. Our cheapest setup delivers a
second-degree polynomial solution to a twenty-country model in about 18
minutes using MATLAB and a standard desktop computer.
We present GSSA in the context of examples in which all variables can be

expressed analytically in terms of capital policy function, but GSSA can be
applied in far more general contexts. In more complicated models (e.g. with
valued leisure), intratemporal choices, such as labor supply, are not analyt-
ically related to capital policy functions. One way to proceed under GSSA
would be to approximate intratemporal-choice policy functions as we do with
capital, however, this may reduce accuracy and numerical stability. Maliar,
Maliar and Judd (2011) describe two intertemporal-choice approaches, pre-
computation and iteration-on-allocations, that make it possible to find in-
tratemporal choices both accurately and quickly; these approaches are fully
compatible with GSSA. Furthermore, GSSA can be applied for solving mod-
els with occasionally binding borrowing constraints by using standard Kuhn-
Tucker conditions, as in, e.g., Marcet and Lorenzoni (1999), Christiano and
Fisher (2000), and Maliar et al. (2010). Finally, the approximation and inte-
gration methods described in the paper can be useful in the context of other
solution methods, for example, a simulation-based dynamic programming
method of Maliar and Maliar (2005).
GSSA is simple to program, and MATLAB codes are provided.6 Not only

can the codes solve the studied examples but they can be easily adapted to
other problems the reader may be interested in. In particular, the codes in-
clude generic routines that implement numerically stable LS and LAD meth-
ods, construct multi-dimensional polynomials and performmulti-dimensional
Gauss-Hermite quadrature and monomial integration methods. The codes
also contain a testsuite for evaluating the accuracy of solutions.
The rest of the paper is organized as follows: In Section 2, we describe

GSSA using an example of a representative-agent neoclassical growth model.
In Section 3, we discuss the reasons for numerical instability of stochastic

6The codes are available at http://www.stanford.edu/~maliars.
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simulation methods. In Section 4, we elaborate on strategies for enhancing
the numerical stability. In Section 5, we compare Monte Carlo and determin-
istic integration methods. In Section 6, we present the results of numerical
experiments. In Section 7, we conclude. The appendices are available in the
supplementary material, Judd, Maliar and Maliar (2011b).

2 Generalized stochastic simulation algorithm

We describe GSSA using an example of the standard representative-agent
neoclassical stochastic growth model. However, the techniques described in
the paper are not specific to this model and can be directly applied to other
economic models including those with many state and control variables. In
Section 7, we show how to apply GSSA for solving models with rare disasters
and models with multiple countries.

2.1 The model

The agent solves the following intertemporal utility-maximization problem:

max
{kt+1,ct}∞t=0

E0

∞X
t=0

βtu (ct) (2)

s.t. ct + kt+1 = (1− δ) kt + atf (kt) , (3)

ln at+1 = ρ ln at + t+1, t+1 ∼ N
¡
0, σ2

¢
, (4)

where initial condition (k0, a0) is given exogenously. Here, Et is the ex-
pectation operator conditional on information at time t; ct, kt and at are,
respectively, consumption, capital and productivity level; β ∈ (0, 1) is the
discount factor; δ ∈ (0, 1] is the depreciation rate of capital; ρ ∈ (−1, 1) is
the autocorrelation coefficient; and σ ≥ 0 is the standard deviation. The
utility and production functions, u and f , respectively, are strictly increas-
ing, continuously differentiable and concave. The solution to (2) − (4) is
represented by stochastic processes {ct, kt+1}∞t=0 which are measurable with
respect to {at}∞t=0. At each time t, the solution to (2)−(4) satisfies the Euler
equation:

u0 (ct) = Et {βu0 (ct+1) [1− δ + at+1f
0 (kt+1)]} , (5)

where u0 and f 0 are the first derivatives of the utility and production func-
tions, respectively. In a recursive (Markov) equilibrium, decisions of period
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t are functions of the current state (kt, at). Our objective is to find policy
functions for capital, kt+1 = K (kt, at), and consumption, ct = C (kt, at),
satisfying (3)− (5).

2.2 The GSSA algorithm

To solve the model (2) − (4), we approximate the capital policy function
kt+1 = K (kt, at). We choose some flexible functional form Ψ (kt, at; b) and
search for a vector of coefficients b such that

K (kt, at) ≈ Ψ (kt, at; b) , (6)

for some set of points (kt, at) in the state space. We re-write the Euler
equation (5) in the following equivalent form:

kt+1 = Et

½
β
u0 (ct+1)

u0 (ct)
[1− δ + at+1f

0 (kt+1)] kt+1

¾
. (7)

The condition (7) holds because u0 (ct) 6= 0 and because kt+1 is t-measurable.7
We now have expressed kt+1 in two ways: as a choice implied by the policy
function kt+1 = K (kt, at) and as a conditional expectation of a time t + 1
random variable in the right side of (7). This construction gives us a way to
express the capital policy function as a fixed point: substituting K (kt, at)
into the right side of (7) and computing the conditional expectation should
give us kt+1 = K (kt, at) for all (kt, at) in the relevant area of the state space.
GSSA finds a solution by iterating on the fixed-point construction (7)

via stochastic simulation. To be specific, we guess a capital policy function
(6), simulate a time-series solution, compute conditional expectation in each
simulated point and use simulated data to update the guess along iterations
until a fixed point is found. The formal description of GSSA is as follows:

Stage 1.

• Initialization:

— Choose an initial guess b(1).
7In a similar way, one can use the Euler equation (5) to express other t-measurable

variables, e.g., ln (kt+1), ct and u0 (ct).
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— Choose a simulation length, T , draw a sequence of productivity
shocks, { t}t=1,...,T , and compute {at}t=1,...,T+1 as defined in (4).

— Choose the initial state (k0, a0) for simulations.

• Step 1. At iteration p, use b(p) to simulate the model T periods forward,

kt+1 = Ψ
¡
kt, at; b

(p)
¢
,

ct = (1− δ) kt + atf (kt)− kt+1.

• Step 2. For t = 0, ..., T − 1, define yt to be an approximation of the
conditional expectation in (7) using J integration nodes and weights,
{ t+1,j}j=1,...,J and {ωt,j}j=1,...,J , respectively:

yt =
JX

j=1

½
ωt,j ·

µ
β
u0 (ct+1,j)

u0 (ct)
[1− δ + at+1,j f

0 (kt+1)] kt+1

¶¾
, (8)

where ct+1,j, the value of ct+1 if the innovation in productivity is t+1,j,
is defined for j = 1, ..., J by

at+1,j ≡ aρt exp ( t+1,j) ,

kt+2,j ≡ Ψ
¡
Ψ
¡
kt, at; b

(p)
¢
, aρt exp ( t+1,j) ; b

(p)
¢
,

ct+1,j ≡ (1− δ) kt+1 + at+1,jf (kt+1)− kt+2,j.

• Step 3. Find bb that minimizes the errors εt in the regression equation
according to some norm, k·k,

yt = Ψ (kt, at; b) + εt. (9)

• Step 4: Check for convergence and end Stage 1 if

1

T

TX
t=1

¯̄̄̄
¯k(p)t+1 − k

(p+1)
t+1

k
(p)
t+1

¯̄̄̄
¯ < , (10)

where
n
k
(p)
t+1

oT
t=1

and
n
k
(p+1)
t+1

oT
t=1

are the capital series obtained on

iterations p and p+ 1, respectively.
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• Step 5. Compute b(p+1) for iteration (p+ 1) using fixed-point iteration

b(p+1) = (1− ξ) b(p) + ξbb, (11)

where ξ ∈ (0, 1] is a damping parameter. Go to Step 1.

Stage 2.

The purpose of Stage 2 is to subject the candidate solution from Stage
1 to an independent and stringent test. Construct a new set of T test points
{kτ , aτ}T

test

τ=0 for testing the accuracy of the solution obtained in Stage 1 (this
can be a set of simulation points constructed with a new random draw or
some deterministic set of points). Re-write the Euler equation (5) at (kτ , aτ)
in a unit-free form,

E (kτ , aτ) ≡ Eτ

½
β
u0 (cτ+1)

u0 (cτ)
[1− δ + aτ+1f

0 (kτ+1)]

¾
− 1. (12)

For each point (kτ , aτ), compute E (kτ , aτ) by using a high-quality integra-
tion method in evaluating the conditional expectation in (12). We measure
the quality of a candidate solution by computing various norms, such as the
mean, variance, and/or supremum, of the errors (12). If the economic sig-
nificance of these errors is small, we accept the candidate b. Otherwise, we
tighten up Stage 1 by using a more flexible approximating function, and/or
increasing the simulation length, and/or improving the method used for com-
puting conditional expectations, and/or choosing a more demanding norm
when computing bb in Step 3.8
2.3 Discussion

GSSA relies on generalized notions of integration and approximation. First,
in Step 2, the formula (8) represents both Monte Carlo integration methods
and deterministic integration methods such as the Gauss-Hermite quadra-
ture and monomial methods. The choice of integration method is critical for
accuracy of GSSA and is analyzed in Section 5. Second, explanatory vari-
ables in the regression equation (9) are often highly collinear, which presents

8For the models considered in the paper, errors in the Euler equation are the only
source of approximation errors. In general, we need to check approximation errors in all
optimality conditions, the solutions to which are evaluated numerically.
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challenges to approximation methods. GSSA uses methods that are suitable
for dealing with collinear data, namely, the least-squares methods using SVD
and Tikhonov regularization, least-absolute deviation methods, and princi-
pal component regression method. The choice of approximation method is
critical for numerical stability of GSSA and is studied in Section 4.
GSSA is compatible with any functional form for Ψ that is suitable for

approximating policy functions. In this paper, we examine Ψ of the form

Ψ (kt, at; b) =
nX
i=0

biψi (kt, at) (13)

for a set of basis functions {ψi | i = 0, ..., n}, where b ≡ (b0, b1, ..., bn)
> ∈

Rn+1. In Appendix A, we examine cases where the coefficients b enter Ψ in a
non-linear manner and describe non-linear approximation methods suitable
for dealing with collinear data. The specification (13) implies that in Step 3,
the regression equation is linear,

y = Xb+ ε (14)

where y ≡ (y0, y1, ..., yT−1)> ∈ RT ; X ≡ [1T , x1, ..., xn] ∈ RT×(n+1) with 1T
being a T×1 vector whose entries are equal to 1 and xt,i = ψi (kt, at) being an
i-th basis function for i = 1, ..., n; and ε ≡ (ε0, ε1, ..., εT−1)> ∈ RT . (Note that
1T in X means that ψ0 (kt, at) = 1 for all t). The choice of a family of basis
functions used for constructing X can affect numerical stability of GSSA. In
Section 4.5.1, we consider families of ordinary and Hermite polynomials.9

The fixed-point iteration method in Step 4 is a simple derivative-free
method for finding a fixed point and is commonly used in the related liter-
ature. The advantage of this method is that its cost does not considerably
increase with the dimensionality of the problem. The shortcoming is that its
convergence is not guaranteed. One typically needs to set the damping para-
meter ξ in (11) at a value much less than one in order to attain convergence
(this however slows down the speed of convergence). We were always able to
find a value for ξ that gave us convergence.10

9GSSA can also use non-polynomial families of functions. Examples of non-polynomial
basis functions are trigonometric functions, step functions, neural networks, combinations
of polynomials with functions from other families.
10Other iterative schemes for finding fixed-point coefficients are time iteration and quasi-

Newton methods; see Judd (1998), pp. 553-558, and pp. 103-119, respectively. Time
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Finally, our convergence criterion (10) looks at the difference between the
time series from two iterations. We do not focus on changes in b since we
are interested in the function K (kt, at) and not in its representation in some
basis. The regression coefficients b have no economic meaning. The criterion
(10) focuses on the economic differences implied by different vectors b.

2.4 Relation to the literature

GSSA builds on the past literature for solving rational expectation models
but uses a different combination of familiar tools. GSSA differs from con-
ventional deterministic-grid methods in the choice of a solution domain: we
solve the model on a relatively small ergodic set instead of some, generally
much larger, prespecified domains used in, e.g., parameterized expectations
approaches (PEA) of Wright and Williams (1984), and Miranda and Helm-
berger (1988), projection algorithms of Judd (1992), Christiano and Fisher
(2000), and Kubler and Krueger (2004).11 An ergodic-set domain makes
GSSA tractable in high-dimensional applications; see condition (1).12

To construct the ergodic set realized in equilibrium, GSSA uses stochas-
tic simulation. This approach is taken in Marcet’s (1988) simulation-based
version of PEA used in, e.g., Den Haan andMarcet (1990), Marcet and Loren-
zoni (1999), and Maliar and Maliar (2003b). We differ from this literature
in the following respects: We incorporate accurate deterministic integration
methods, while the above literature uses a Monte Carlo integration method,
whose accuracy is limited. Furthermore, we rely on a variety of numerically
stable approximation methods, while the simulation-based version of PEA

iteration can be more stable than fixed-point iteration, however, it requires solving costly
nonlinear equations for finding future values of variables. Quasi-Newton methods can
be faster and can help achieve convergence if fixed-point iteration does not converge. A
stable version of a quasi-Newton method for a stochastic simulation approach requires a
good initial condition and the use of linesearch methods. Since derivatives are evaluated
via simulation, an explosive or implosive simulated series can make a Jacobian matrix ill-
conditioned and lead to non-convergence; we had this problem in some of our experiments.
11Kubler and Krueger’s (2004) method relies on a non-product Smolyak grid constructed

in a multi-dimensional hypercube. This construction reduces the number of grid points
inside the hypercube domain but not the size of the domain itself. Other methods using
prespecified non-product grids are Malin, Kubler and Krueger (2011), and Pichler (2011).
12Judd, Maliar and Maliar (2010) and Maliar et al. (2011) develop a projection method

operating on the ergodic set. The grid surrounding the ergodic set is constructed using
clustering methods.
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relies on standard least-squares methods, which are numerically unstable in
the given context.13 In addition, GSSA differs from the literature in the
use of a linear regression model that can be estimated with simple and re-
liable approximation methods.14 Unlike previous simulation-based methods,
GSSA delivers high-degree polynomial approximations and attains accuracy
comparable to the best accuracy attained in the literature.

3 Ill-conditioned LS problems

In this section, we discuss the stability issues that arise when standard least-
squares (LS) methods are used in the regression equation (14). The LS
approach to the regression equation (14) solves the problem:

min
b
ky −Xbk22 = min

b
[y −Xb]> [y −Xb] , (15)

where k·k2 denotes the L2 vector norm. The solution to (15) isbb = ¡X>X
¢−1

X>y. (16)

The LS problem (15) is often ill-conditioned when X is generated by stochas-
tic simulation. The degree of ill-conditioning is measured by the condition
number of the matrix X>X, denoted by K

¡
X>X

¢
. Let us order the eigen-

values, λi, i = 1, ..., n, of X>X by their magnitude, λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0.
The condition number of X>X is equal to the ratio of its largest eigenvalue,
λ1, to its smallest eigenvalue, λn, i.e. K

¡
X>X

¢
≡ λ1/λn. The eigenvalues of

X>X are defined by the standard eigenvalue decomposition X>X = V ΛV >,

13Concerning the simulated-based PEA, Den Haan and Marcet (1990) report that, even
for a low (second-degree) polynomial, cross terms are highly correlated with the other terms
and must be removed from the regression. The projection PEAs proposed in Christiano
and Fisher (2000) deal with multicollinearity by relying on a rectangular grid generated
by roots of Chebyshev polynomials. See Judd (1992) and Christiano and Fisher (2000)
for a discussion.
14The simulation-based PEA literature employs exponentiated polynomial specifica-

tion Ψ (kt, at; b) = exp (b0 + b1 ln (kt) + b2 ln (at) + ...). The resulting non-linear regression
model is estimated with non-linear least-squares (NLLS) methods. The use of NLLS meth-
ods is an additional source of numerical problems because such methods typically need a
good initial guess, may deliver multiple minima and on many occasions fail to converge;
moreover, non-linear optimization is costly because it requires computing Jacobian and
Hessian matrices; see Christiano and Fisher (2000) for a discussion.
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where Λ ∈ Rn×n is a diagonal matrix of eigenvalues of X>X, and V ∈ Rn×n

is an orthogonal matrix of eigenvectors of X>X. A large condition number
implies that X>X is close to being singular and not invertible, and tells us
that any linear operation, such as (16), is very sensitive to perturbation and
numerical errors (such as round off errors).
Two causes of ill-conditioning are multicollinearity and poor scaling of

the variables constituting X. Multicollinearity occurs when the variables
forming X are significantly correlated. The following example illustrates the
effects of multicollinearity on the LS solution (we analyze the sensitivity to
changes in y but the results are similar for the sensitivity to changes in X).

Example 1 Let X =

∙
1 + φ 1
1 1 + φ

¸
with φ 6= 0. Then, K

¡
X>X

¢
=³

1 + 2
φ

´2
. Let y = (0, 0)>. Thus, the OLS solution (16) is

³bb1,bb2´ = (0, 0).
Suppose y is perturbed by a small amount, i.e. y = (ε1, ε2)

>. Then, the OLS
solution is

bb1 = 1

φ

∙
ε1 (1 + φ)− ε2

2 + φ

¸
and bb2 = 1

φ

∙
ε2 (1 + φ)− ε1

2 + φ

¸
. (17)

Sensitivity of bb1 and bb2 to perturbation in y is proportional to 1/φ (increases
with K

¡
X>X

¢
).

The scaling problem arises when the columns (the variables) of X have
significantly different means and variances (due to differential scaling among
either the state variables, kt and at, or their functions, e.g., kt and k5t ). A
column with only very small entries will be treated as if it were a column of
zeros. The next example illustrates the effect of the scaling problem.

Example 2 Let X =

∙
1 0
0 φ

¸
with φ 6= 0. Then, K

¡
X>X

¢
= 1/φ. Let

y = (0, 0)>. Thus, the OLS solution (16) is
³bb1,bb2´ = (0, 0). Suppose y is

perturbed by a small amount, i.e. y = (ε1, ε2)
>. The OLS solution is

bb1 = ε1 and bb2 = ε2
φ
. (18)

Sensitivity of bb2 to perturbation in y is proportional to 1/φ (and K
¡
X>X

¢
).
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A comparison of Examples 1 and 2 shows that multicollinearity and poor
scaling magnify the impact of perturbations on the OLS solution. Each itera-
tion of a stochastic simulation algorithm produces changes in simulated data
(perturbations). In the presence of ill-conditioning, these changes together
with numerical errors may induce large and erratic jumps in the regression
coefficients and failures to converge.

4 Enhancing numerical stability

We need to make choices of approximation methods that ensure numerical
stability of GSSA. We face two challenges: first, we must solve the approxi-
mation step for any given set of simulation data, and second, we must attain
the convergence of the iterations over b. The stability of the iterations over
b depends on the sensitivity of the regression coefficients to the data (each
iteration of GSSA produces different time series and result in large changes
in successive values of b and non-convergence). In this section, we present ap-
proximation methods that can handle collinear data, namely, a LS method
using a singular value decomposition (SVD) and least-absolute deviations
(LAD) method. Furthermore, we describe regularization methods that not
only can deal with ill-conditioned data but can also dampen movements in
b by effectively penalizing large values of the regression coefficients. Such
methods are a LS method using Tikhonov regularization, LAD regulariza-
tion methods and principal component regression method. We finally analyze
other factors that can affect numerical stability of GSSA, namely, data nor-
malization, the choice of a family of basis functions and the choice of policy
functions to parameterize.

4.1 Normalizing the variables

Data normalization addresses the scaling issues highlighted in Example 2.
Also, our regularization methods require to use normalized data. We center
and scale both the response variable y and the explanatory variables of X to
have a zero mean and unit standard deviation. We then estimate a regression
model without an intercept to obtain the vector of coefficients

³bb+1 , ...,bb+n´.
We finally restore the coefficients bb1, ...,bbn and the intercept bb0 in the original
(unnormalized) regression model according to bbi = (σy/σxi)bb+i , i = 1, ..., n,
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and bb0 = y −
nP
i=1

bb+i xi, where y and xi are the sample means, and σy and σxi

are the sample standard deviations of the original unnormalized variables y
and xi, respectively.15

4.2 LS approaches

In this section, we present two LS approaches that are more numerically
stable than the standard OLS approach. The first approach, called LS
using SVD (LS-SVD) uses a singular value decomposition (SVD) of X.
The second approach, called regularized LS using Tikhonov regularization
(RLS-Tikhonov) imposes penalties based on the size of the regression coef-
ficients. In essence, the LS-SVD approach finds a solution to the original
ill-conditioned LS problem, while the RLS-Tikhonov approach modifies (reg-
ularizes) the original ill-conditioned LS problem into a less ill-conditioned
problem.

4.2.1 LS-SVD

We can use the SVD ofX to re-write the OLS solution (16) in a way that does
not require an explicit computation of

¡
X>X

¢−1
. For a matrix X ∈ RT×n

with T > n, an SVD decomposition is

X = USV >, (19)

where U ∈ RT×n and V ∈ Rn×n are orthogonal matrices, and S ∈ Rn×n is
a diagonal matrix with diagonal entries s1 ≥ s2 ≥ ... ≥ sn ≥ 0, known as
singular values ofX.16 The condition number ofX is its largest singular value
divided by its smallest singular value, K (X) = s1/sn. The singular values of
X are related to the eigenvalues of X>X by si =

√
λi; see, e.g., Golub and

Van Loan (1996), pp. 448. This implies that K (X) = K (S) =
p
K (X>X).

15To maintain a simple system of notation, we shall not introduce separate notation
for normalized and unnormalized variables. Instead, we shall remember that when the
regression model is estimated with normalized variables, we have b ∈ Rn, and when it is
estimated with unnormalized variables, we have b ∈ Rn+1.
16For a description of methods for computing the SVD of a matrix, see, e.g., Golub and

Van Loan (1996), pp. 448-460. Routines that compute the SVD are readily available in
modern programming languages.
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The OLS estimator bb = ¡X>X
¢−1

X>y in terms of the SVD (19) is

bb = V S−1U>y. (20)

With an infinite-precision computer, the OLS formula (16) and the LS-SVD
formula (20) give identical estimates of b. With a finite-precision computer,
the standard OLS estimator cannot be computed reliably if X>X is ill-
conditioned. However, it is still possible that X and S are sufficiently well-
conditioned so that the LS-SVD estimator can be computed successfully.17

4.2.2 RLS-Tikhonov

A regularization method replaces an ill-conditioned problem with a well-
conditioned problem that gives a similar answer. Tikhonov regularization
is commonly used for solving ill-conditioned problems. In statistics, this
method is known as ridge regression and is classified as a shrinkage method
because it shrinks the norm of estimated coefficient vector relative to the
non-regularized solution. Formally, Tikhonov regularization imposes an L2
penalty on the magnitude of the regression-coefficient vector; i.e. for a regu-
larization parameter η ≥ 0, the vector b (η) solves

min
b
ky −Xbk22 + η kbk22 = min

b
(y −Xb)> (y −Xb) + ηb>b, (21)

where y ∈ RT and X ∈ RT×n are centered and scaled, and b ∈ Rn. The
parameter η controls the amount by which the regression coefficients are
shrunk, with larger values of η leading to greater shrinkage.
Note that the scale of an explanatory variable affects the size of the

regression coefficient on this variable and hence, it affects how much this
coefficient is penalized. Normalizing all explanatory variables xi to zero mean
and unit standard deviation allows us to use the same penalty η for all
coefficients. Furthermore, centering the response variable y leads to a no-
intercept regression model and thus, allows us to impose a penalty on the
coefficients b1, ..., bn without distorting the intercept b0 (the latter is recovered
after all other coefficients are computed; see Section 4.1).

17Another decomposition of X that leads to a numerically stable LS approach is a QR
factorization; see, e.g., Davidson and MacKinnon (1993), pp. 30-31, and Golub and Van
Loan (1996), pp. 239.
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Finding the first-order condition of (21) with respect to b gives us the
following estimator

bb (η) = ¡X>X + ηIn
¢−1

X>y, (22)

where In is an identity matrix of order n. Note that Tikhonov regularization
adds a positive constant multiple of the identity matrix to X>X prior to
inversion. Thus, if X>X is nearly singular, the matrix X>X + ηIn is less
singular, reducing problems in computing bb (η). Note that bb (η) is a biased
estimator of b. As η increases, the bias of bb (η) increases, and its variance
decreases. Hoerl and Kennard (1970) show that there exists a value of η such
that

E

∙³bb (η)− b
´> ³bb (η)− b

´¸
< E

∙³bb− b
´> ³bb− b

´¸
,

i.e. the mean squared error (equal to the sum of the variance and the squared
bias) of the Tikhonov-regularization estimator, bb (η), is smaller than that
of the OLS estimator, bb. Two main approaches to finding an appropriate
value of the regularization parameter in statistics are ridge trace and cross
validation. The ridge-trace approach relies on a stability criterion: we observe
a plot showing how bb (η) changes with η (ridge trace) and select the smallest
value of η for which bb (η) is stable. The cross-validation approach focuses
on a statistical-fit criterion. We split the data into two parts, fix some η,
compute an estimate bb (η) using one part of the data, and evaluate the fit of
the regression (i.e. validate the regression model) using the other part of the
data. We then iterate on η to maximize the fit. For a detailed discussion of
the ridge-trace and cross-validation approaches used in statistics, see, e.g.,
Brown (1993), pp. 62-71.
The problem of finding an appropriate value of η for GSSA differs from

that in statistics in two respects: First, in Stage 1, our data are not fixed
and not exogenous to the regularization process: on each iteration, simulated
series are re-computed using a policy function that was obtained in the pre-
vious iteration under some value of the regularization parameter. Second,
our criteria of stability and accuracy differ from those in statistics. Namely,
our criterion of stability is the convergence of fixed-point iteration in Stage
1, and our criterion of fit is the accuracy of the converged solution measured
by the size of the Euler equation errors in Stage 2. In Section 6.1, we discuss
how we choose the regularization parameter for the RLS-Tikhonov method
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(as well as for other regularization methods presented below) in the context
of GSSA.

4.3 LAD approaches

LAD, or L1, regression methods use linear programming to minimize the
sum of absolute deviations. LAD methods do not depend on

¡
X>X

¢−1
and

avoid the ill-conditioning problems of LS methods. Section 4.3.1 develops
primal and dual formulations of the LAD problem, and Section 4.3.2 pro-
poses regularized versions of both. Section 4.3.3 discusses the advantages
and drawbacks of the LAD approaches.

4.3.1 LAD

The basic LAD method solves the optimization problem

min
b
ky −Xbk1 = min

b
1>T |y −Xb| . (23)

where k·k1 denotes the L1 vector norm, and |·| denotes the absolute value.18
Without a loss of generality, we assume thatX and y are centered and scaled.
There is no explicit solution to the LAD problem (23), but the LAD

problem (23) is equivalent to the linear programming problem:

min
g,b

1>T g (24)

s.t. − g ≤ y −Xb ≤ g, (25)

where g ∈ RT . The problem has n+T unknowns. Although this formulation
of the LAD problem is intuitive, it is not the most suitable for a numerical
analysis.

18LAD regression is a particular case of quantile regressions introduced by Koenker and
Bassett (1978). The central idea behind quantile regressions is the assignation of differing
weights to positive versus negative residuals, y−Xb. A ς-th regression quantile, ς ∈ (0, 1),
is defined as a solution to the problem of minimizing a weighted sum of residuals, where
ς is a weight on positive residuals. The LAD estimator is the regression median, i.e. the
regression quantile for ς = 1/2.
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LAD: primal problem (LAD-PP) Charnes, Cooper and Ferguson (1955)
show that a linear LAD problem can be transformed into the canonical lin-
ear programming form. They express the deviation for each observation as
a difference between two non-negative variables υ+t and υ−t , as in

yt −
nX
i=0

bixti = υ+t − υ−t , (26)

where xti is the t-th element of the vector xi. The variables υ+t and υ−t
represent the magnitude of the deviations above and below the fitted line,byt = Xt

bb, respectively. The difference υ+t + υ−t is the absolute deviation
between the fit byt and the observation yt. Thus, the LAD problem is to min-
imize the total sum of absolute deviations subject to the system of equations
(26). In vector notation, this problem is

min
υ+,υ−,b

1>T υ
+ + 1>T υ

− (27)

s.t. υ+ − υ− +Xb = y, (28)

υ+ ≥ 0, υ− ≥ 0, (29)

where υ+, υ− ∈ RT . This is called the primal problem. A noteworthy
property of its solution is that υ+t or υ

−
t cannot be both strictly positive

at a solution; if so, we could reduce both υ+t and υ−t by the same quantity
and reduce the value of the objective function without affecting the constraint
(28). The advantage of (27) − (29) compared to (24) and (25) is that the
only inequality constraints in the former problem are variable bounds (29), a
feature that often helps make linear programming algorithms more efficient.

LAD: dual problem (LAD-DP) Linear programming tells us that every
primal problem can be converted into a dual problem.19 The dual problem
corresponding to (27)− (29) is

max
q

y>q (30)

s.t. X>q = 0, (31)

−1T ≤ q ≤ 1T , (32)

19See Ferris, Mangasarian, Wright (2007) for duality theory and examples.
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where q ∈ RT is a vector of unknowns. Wagner (1959) argues that if the
number of observations, T , is sizable (i.e. T À n), the dual problem (30)−
(32) is computationally less cumbersome than the primal problem (27)−(29).
Indeed, the dual problem contains only n equality restrictions, and the primal
problem has contained T equality restrictions, while the number of lower and
upper bounds on unknowns is equal to 2T in both problems. The elements
of the vector b, which is what we want to compute, are equal to the Lagrange
multipliers associated with the equality restrictions given in (31).

4.3.2 Regularized LAD (RLAD)

We next modify the original LAD problem (23) to incorporate an L1 penalty
on the coefficient vector b. We refer to the resulting problem as a regularized
LAD (RLAD). Like Tikhonov regularization, our RLAD problem shrinks the
values of the coefficients toward zero. Introducing an L1 penalty in place of
the L2 penalty from Tikhonov regularization allows us to have the benefits of
biasing coefficients to zero but to do so with linear programming. Formally,
for a given regularization parameter η ≥ 0, the RLAD problem attempts to
find the vector b (η) that solves

min
b
ky −Xbk1 + η kbk1 = min

b
1>T |y −Xb|+ η1>n |b| , (33)

where y ∈ RT and X ∈ RT×n are centered and scaled, and b ∈ Rn. As
in the case of Tikhonov regularization, centering and scaling of X and y
in the RLAD problem (33) allows us to use the same penalty parameter
for all explanatory variables and to avoid penalizing an intercept. Below, we
develop a linear programming formulation of the RLAD problem in which an
absolute value term |bi| is replaced with a difference between two non-negative
variables. Our approach is parallel to the one we used to construct the primal
problem (27)− (29) and differs from the approach used in statistics.20

RLAD: primal problem (RLAD-PP) To cast the RLAD problem (33)
into a canonical linear programming form, we represent the coefficients of
the vector b as bi = ϕ+i − ϕ−i , with ϕ+i ≥ 0, ϕ−i ≥ 0 for i = 1, ..., n. The
regularization is done by adding to the objective a penalty linear in each ϕ+i
20Wang, Gordon and Zhu (2006) construct a RLAD problem in which |bi| is represented

as sign (bi) bi.
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and ϕ−i . The resulting regularized version of the primal problem (27)− (29)
is

min
υ+,υ−,ϕ+,ϕ−

1>T υ
+ + 1>T υ

− + η1>nϕ
+ + η1>nϕ

− (34)

s.t. υ+ − υ− +Xϕ+ −Xϕ− = y, (35)

υ+ ≥ 0, υ− ≥ 0, (36)

ϕ+ ≥ 0, ϕ− ≥ 0, (37)

where ϕ+, ϕ− ∈ Rn are vectors that define b (η). The above problem has
2T +2n unknowns, as well as T equality restrictions (35) and 2T +2n lower
bounds (36) and (37).

RLAD: dual problem (RLAD-DP) The dual problem corresponding
to the RLAD-PP (34)− (37) is

max
q

y>q (38)

s.t. X>q 6 η · 1n, (39)

−X>q 6 η · 1n, (40)

−1T ≤ q ≤ 1T , (41)

where q ∈ RT is a vector of unknowns. Here, 2n linear inequality restrictions
are imposed by (39) and (40), and 2T lower and upper bounds on T unknown
components of q are given in (41). By solving the dual problem, we obtain the
coefficients of the vectors ϕ+ and ϕ− as the Lagrange multipliers associated
with (39) and (40), respectively; we can then restore the RLAD estimator
using b (η) = ϕ+ − ϕ−.

4.3.3 Advantages and drawbacks of LAD approaches

LAD approaches are more robust to outliers than LS approaches because
they minimize errors without squaring them and thus, place comparatively
less weight on distant observations than LS approaches do. LAD approaches
have two advantages compared to LS approaches. First, the statistical liter-
ature suggests that LAD estimators are preferable if regression disturbances
are non-normal, asymmetric, or heavy-tailed; see Narula and Wellington
(1982), and Dielman (2005) for surveys. Second, LAD methods can eas-
ily accommodate additional linear restrictions on the regression coefficients,
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e.g., restrictions that impose monotonicity of policy functions. In contrast,
adding such constraints for LS methods changes an unconstrained convex
minimization problem into a linearly constrained convex minimization prob-
lem, and substantially increases the computational difficulty.
LAD approaches have two drawbacks compared to the LS approaches.

First, an LAD estimator does not depend smoothly on the data; since it
corresponds to the median, the minimal sum of absolute deviations is not
differentiable in the data. Moreover, an LAD regression line may not even
be continuous in the data: a change in the data could cause the solution
switch from one vertex of the feasible set of coefficients to another vertex.
This jump will cause a discontinuous change in the regression line, which in
turn will produce a discontinuous change in the simulated path. These jumps
would create problems in solving for a fixed point. Second, LAD approaches
require solving linear programming problems whereas LS approaches use only
linear algebra operations. Therefore, LAD approaches tend to be more costly
than LS approaches.

4.4 Principal component (truncated SVD) method

In this section, we describe a principal component method that reduces the
multicollinearity in the data to a target level. Let X ∈ RT×n be a matrix
of centered and scaled explanatory variables and consider the SVD of X
defined in (19). Let us make a linear transformation of X using Z ≡ XV ,
where Z ∈ RT×n and V ∈ Rn×n is the matrix of singular vectors of X
defined by (19). The vectors z1, ..., zn are called principal components of X.
They are orthogonal, z>i0 zi = 0 for any i0 6= i, and their norms are related
to the singular values si by z>i zi = s2i . Principal components have two
noteworthy properties. First, the sample mean of each principal component
zi is equal to zero, since it is given by a linear combination of centered
variables X1, ..., Xn, each of which has a zero mean; second, the variance of
each principal component is equal to s2i /T , because we have z

>
i zi = s2i .

Since the SVD method orders the singular values from the largest, the
first principal component z1 has the largest sample variance among all the
principal components, while the last principal component zn has the smallest
sample variance. In particular, if zi has a zero variance (equivalently, a zero
singular value, si = 0), then all entries of zi are equal to zero, zi = (0, ..., 0)

>,
which implies that the variables x1, ..., xn constituting this particular princi-
pal component are linearly dependent. Therefore, we can reduce the degrees
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of ill-conditioning of X to some target level by excluding low-variance prin-
ciple components corresponding to small singular values.
To formalize the above idea, let κ represent the largest condition number

of X that we are willing to tolerate. Let us compute the ratios of the largest
singular value to all other singular values, s1

s2
, ..., s1

sn
. (Recall that the last

ratio is the actual condition number of the matrix X; K (X) = K (S) = s1
sn
).

Let Zr ≡ (z1, ..., zr) ∈ RT×r be the first r principal components for which
s1
si
≤ κ, and let us remove the last n − r principal components for which

s1
si

> κ. By construction, the matrix Zr has a condition number which is
smaller than or equal to κ.
Let us consider the regression equation (14) and let us approximate Xb

using Zr such that Xb = XV V −1b ≈ XV r (V r)−1 b (κ) = Zrϑr, where V r =
(v1, ..., vr) ∈ Rn×r contains the first r right singular vectors of X and ϑr ≡
(V r)−1 b (κ) ∈ Rr. The resulting regression equation is

y = Zrϑr + ε, (42)

where y is centered and scaled. The coefficients ϑr can be estimated by any of
the methods described in Sections 4.2 and 4.3. For example, we can compute
the OLS estimator (16). Once we compute bϑr, we can recover the coefficientsbb (κ) = V rbϑr ∈ Rn.
We can remove collinear components of the data using a truncated SVD

method instead of the principal component method. Let the matrix Xr ∈
RT×n be defined by a truncated SVD of X, such that Xr ≡ U rSr (V r)>

where U r ∈ RT×r and V r ∈ Rn×r are the first r columns of U and V ,
respectively, and Sr ∈ Rr×r is a diagonal matrix whose entries are the r
largest singular values of X. As follows from the theorem of Eckart and
Young (1936), Xr is the closest rank r approximation of X ∈ RT×n. In
terms of Xr, the regression equation is y = Xrb (r) + ε. Using the definition
of Xr, we can write Xrb (r) = XrV r (V r)−1 b (r) = XrV rϑr = U rSrϑr, where
ϑr ≡ (V r)−1 b (r) ∈ Rr. Again, we can estimate the resulting regression
model y = U rSrϑr+ε with any of the methods described in Sections 4.2 and
4.3 and recover bb (r) = V rbϑr ∈ Rn. In particular, we can find bϑr using the
OLS method and arrive atbb (r) = V r (Sr)−1 (U r)> y. (43)

We call the estimator (43) regularized LS using truncated SVD (RLS-TSVD).
If r = n, then RLS-TSVD coincides with LS-SVD described in Section
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4.2.1.21 The principal component and truncated SVD methods are related
through Zr = XrV r.
We shall make two remarks. First, the principal component regression

(42) is well suited to the shrinkage type of regularization methods without
additional scaling: the lower is the variance of a principal component, the
larger is the corresponding regression coefficient and the more heavily such
a coefficient is penalized by a regularization method. Second, we should be
careful with removing low variance principal components since they may con-
tain important pieces of information.22 To rule out only the case of extremely
collinear variables, a safe strategy would be to set κ to a very large number,
e.g., to 1014 on a machine with 16 digits of precision.

4.5 Other factors affecting numerical stability

We complement our discussion by analyzing two other factors that can affect
numerical stability of GSSA, the choice of a family of basis functions and the
choice of policy functions to parameterize.

4.5.1 Choosing a family of basis functions

We restrict attention to polynomial families of basis functions in (13). Let us
first consider an ordinary polynomial family, Om (x) = xm, m = 0, 1, .... The
basis functions of this family look very similar (namely, O2 (x) = x2 looks
similar to O4 (x) = x4, and O3 (x) = x3 looks similar to O5 (x) = x5); see
Figure 2a. As a result, the explanatory variables in the regression equation
are likely to be strongly correlated (i.e. the LS problem is ill-conditioned)
and estimation methods (e.g., OLS) may fail because they cannot distinguish

21A possible alternative to the truncated SVD is a truncated QR factorization method
with pivoting of columns; see Eldén (2007), pp. 72-74. The latter method is used in MAT-
LAB to construct a powerful back-slash operator for solving linear systems of equations.
22Hadi and Ling (1998) construct an artificial regression example with four principal

components, for which the removal of the lowest variance principal component reduces the
explanatory power of the regression dramatically: R2 drops from 1.00 to 0.00.
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between similarly shaped polynomial terms.

In contrast, for families of orthogonal polynomials (e.g., Hermite, Cheby-
shev, Legendre), basis functions have very different shapes and hence, the
multicollinearity problem is likely to manifest to a smaller degree, if at all.23

In the paper, we consider the case of Hermite polynomials. Such polynomi-
als can be defined with a simple recursive formula: H0 (x) = 1, H1 (x) = x
and Hm (x) = xHm (x) − mHm−1 (x). For example, for m = 1, ..., 5, this
formula yields H0 (x) = 1, H1 (x) = x, H2 (x) = x2 − 1, H3 (x) = x3 − 3x,
H4 (x) = x4 − 6x2 + 3, and H5 (x) = x5 − 10x3 + 15x. These basis functions
look different; see Figure 2b.
Two points are in order. First, Hermite polynomials are orthogonal under

the Gaussian density function, but not orthogonal under the ergodic measure
of our simulations. Still, Hermite polynomials are far less correlated than
ordinary polynomials which may suffice to avoid ill-conditioning. Second,
even though using Hermite polynomials helps us avoid ill-conditioning in one
variable, it will not help to deal with multicollinearity across variables. For
example, if kt and at happen to be perfectly correlated, certain Hermite-
polynomial terms for kt and at, like H2 (kt) = k2t −1 and H2 (at) = a2t −1, are
also perfectly correlated and hence, X is singular. Thus, we may still need
regression methods that are able to treat ill-conditioned problems.24

23This useful feature of orthogonal polynomials is emphasized by Judd (1992) in the
context of projection methods.
24Christiano and Fisher (2000) found that multicollinearity can plague the regression

step even with orthogonal (Chebyshev) polynomials as basis functions.
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4.5.2 Choosing policy functions to approximate

The numerical stability of the approximation step is a necessary but not
sufficient condition for the numerical stability of GSSA. It might happen
that fixed-point iteration in (11) does not converge along iterations even
if the policy function is successfully approximated on each iteration. The
fixed-point iteration procedure (even with damping) is sensitive to the na-
ture of non-linearity of solutions. There exist many logically-equivalent ways
to parameterize solutions, with some parameterizations working better than
others. A slight change in the non-linearity of solutions due to variations in
the model’s parameters might shift the balance between different parame-
terizations; see Judd (1998), pp. 557, for an example. Switching to a dif-
ferent policy function to approximate can possibly help stabilize fixed-point
iteration. Instead of capital policy function (6), we can approximate the pol-
icy function for marginal utility in the left side of the Euler equation (5),
u0 (ct) = Ψu (kt, at; b

u). This parameterization is common for the literature
using Marcet’s (1988) simulation-based PEA (although the parameterization
of capital policy functions is also used to solve models with multiple Euler
equations; see, e.g., Den Haan, 1990).

5 Increasing accuracy of integration

In Sections 5.1 and 5.2, we describe the Monte Carlo and deterministic inte-
gration methods, respectively. We argue that accuracy of integration plays
a determinant role in the accuracy of GSSA solutions.

5.1 Monte Carlo integration

A one-node Monte Carlo integration method approximates an integral with
the next-period’s realization of the integrand; we call it MC (1). Setting
t+1,1 ≡ t+1 and ωt,1 = 1 transforms (8) into

yt = β
u0 (ct+1)

u0 (ct)
[1− δ + at+1f

0 (kt+1)] kt+1. (44)

This integration method is used in Marcet’s (1988) simulation-based version
of PEA.
A J-node Monte Carlo integration method, denoted by MC (J), draws

J shocks, { t+1,j}j=1,...,J (which are unrelated to t+1, the shock along the
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simulated path) and computes yt in (8) by assigning equal weights to all
draws, i.e. ωt,j = 1/J for all j and t.
An integration error is given by εIt ≡ yt − Et [·], where Et [·] denotes

the exact value of conditional expectation in (7).25 The OLS estimator (16)

yields bb = b+
h
(X)>X

i−1
(X)> εI , where εI ≡

¡
εI1, ..., ε

I
T

¢> ∈ RT . Assuming

that εIt , is i.i.d. with zero mean and constant variance, σ2ε, we have the
standard version of the central limit theorem. For the conventional one-
node Monte Carlo integration method, MC (1), the asymptotic distribution

of the OLS estimator is given by
√
T
³bb− b

´
∼ N

³
0,
£
X>X

¤−1
σ2ε

´
, and

the convergence rate of the OLS estimator is
√
T . Similarly, the convergence

rate for MC(J) is
√
TJ . To decrease errors by an order of magnitude, we

must increase either the simulation length, T , or the number of draws, J , by
two orders of magnitude, or do some combination of the two.
Since the convergence of Monte Carlo integration is slow, high accuracy

is theoretically possible but impractical. In a typical real business cycle
model, variables fluctuate by several percents and so does the variable yt

given by (44). If a unit-free integration error
¯̄̄
yt−Et[·]
Et[·]

¯̄̄
is on average 10−2 (i.e.

1%), then a regression model with T = 10, 000 observations has errors of
order 10−2/

√
T = 10−4. To reduce errors to order 10−5, we would need to

increase the simulation length to T = 1, 000, 000. Thus, the cost of accuracy
improvements is prohibitive.26

5.2 One-dimensional quadrature integration

Deterministic integration methods are unrelated to simulations. In our model
with one normally distributed exogenous random variable, we can approxi-
mate a one-dimensional integral using Gauss-Hermite quadrature. A J-node
Gauss-Hermite quadrature method, denoted by Q (J), computes yt in (8) us-
ing J deterministic integration nodes and weights. For example, a two-node
Gauss-Hermite quadrature method, Q (2), uses nodes t+1,1 = −σ, t+1,2 = σ
and weights ωt,1 = ωt,2 =

1
2
, and a three-node Gauss-Hermite quadra-

ture method, Q (3), uses nodes t+1,1 = 0, t+1,2 = σ
q

3
2
, t+1,3 = −σ

q
3
2

25Other types of approximation errors are discussed in Judd et al. (2011a).
26In a working-paper version of the present paper, Judd, Maliar, Maliar (2009) develop

a variant of GSSA based on the one-node Monte Carlo integration method. This variant
of GSSA is included in the comparison analysis of Kollmann et al. (2011b).
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and weights ωt,1 =
2
√
π
3
, ωt,2 = ωt,3 =

√
π
6
. A special case of the Gauss-

Hermite quadrature method is a one-node rule, Q (1), which uses a zero
node, t+1,1 = 0, and a unit weight, ωt,1 = 1. Integration errors under Gauss-
Hermite quadrature integration can be assessed using the Gauss-Hermite
quadrature formula, see, e.g., Judd (1998), pp. 261. For a function that is
smooth and has little curvature, the integration error decreases rapidly with
the number of integration nodes, J . In particular, Gauss-Hermite quadra-
ture integration is exact for functions that are linear in the exogenous random
variable.

5.3 Multi-dimensional quadrature and monomial inte-
gration

We now discuss deterministic integration methods suitable for models with
multiple exogenous random variables (in Section 6.6, we extend our baseline
model to include multiple countries hit by idiosyncratic shocks). In this
section, we just provide illustrative examples, and a detailed description of
such methods is given in Appendix B.
With a small number of normally distributed exogenous random variables,

we can approximate multi-dimensional integrals with a Gauss-Hermite prod-
uct rule which constructs multi-dimensional nodes as a tensor product of
one-dimensional nodes. Below, we illustrate an extension of the two-node
quadrature rule to the multi-dimensional case by way of example.

Example 3 Let h
t+1 ∼ N (0, σ2), h = 1, 2, 3 be uncorrelated random vari-

ables. A two-node Gauss-Hermite product rule, Q (2), (obtained from the
two-node Gauss-Hermite rule) has 23 nodes, which are as follows:

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8
1
t+1,j σ σ σ σ −σ −σ −σ −σ
2
t+1,j σ σ −σ −σ σ σ −σ −σ
3
t+1,j σ −σ σ −σ σ −σ σ −σ

where weights of all nodes are equal, ωt,j = 1/8 for all j.

Under a J-node Gauss-Hermite product rule, the number of nodes grows
exponentially with the number of exogenous random variables, N . Even if
there are just two nodes for each random variable, the total number of nodes
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is prohibitively large for large N ; for example, if N = 100, we have 2N ≈ 1030
nodes. This makes product rules impractical.
With a large number of exogenous random variables, a feasible alterna-

tive to product rules is monomial rules. Monomial rules construct multi-
dimensional integration nodes directly in a multi-dimensional space. Typi-
cally, the number of nodes under monomial rules grows polynomially with
the number of exogenous random variables. In Appendix B, we present a
description of two monomial rules, denoted by M1, and M2, which have
2N and 2N2 + 1 nodes, respectively. In particular, M1 constructs nodes
by considering consecutive deviations of each random variable holding the
other random variables fixed to their expected values. We illustrate this
construction using the setup of Example 3.

Example 4 Let h
t+1 ∼ N (0, σ2), h = 1, 2, 3 be uncorrelated random vari-

ables. A monomial non-product ruleM1 has 2 ·3 nodes, which are as follows:
j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

1
t+1,j σ

√
3 −σ

√
3 0 0 0 0

2
t+1,j 0 0 σ

√
3 −σ

√
3 0 0

3
t+1,j 0 0 0 0 σ

√
3 −σ

√
3

where weights of all nodes are equal, ωt,j = 1/6 for all j.

Since the cost of M1 increases with N only linearly, this rule is feasible
for approximation of integrals with very large dimensionality. For example,
with N = 100, the total number of nodes is only 2N = 200.
The one-node Gauss-Hermite quadrature rule, Q (1), will play a special

role in our analysis. This is the cheapest deterministic integration method
since there is just one node for any number of exogenous random variables.
Typically, there is a trade off between accuracy and cost of integration meth-
ods: having more nodes leads to a more accurate approximation of integrals
but is also more costly. In our numerical experiments, the Gauss-Hermite
quadrature rule and monomial rules lead to virtually the same accuracy with
an exception of the one-node Gauss-Hermite rule producing slightly less ac-
curate solutions. Overall, the accuracy levels attained by GSSA under de-
terministic integration methods are orders of magnitude higher than those
attained under the Monte Carlo method.27

27Quasi Monte Carlo integration methods based on low-discrepency sequences of shocks
may also give more accurate solutions than Monte Carlo integration methods; see Geweke
(1996) for a review.
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6 Numerical experiments

In this section, we discuss the implementation details of GSSA and describe
the results of our numerical experiments. We first solve the representative-
agent model of Section 2.1, and we then solve two more challenging applica-
tions, a model with rare disasters and a model with multiple countries.

6.1 Implementation details

Model’s parameters We assume a constant relative risk aversion util-
ity function, u (ct) =

c1−γt −1
1−γ , with a risk-aversion coefficient γ ∈ (0,∞)

and a Cobb-Douglas production function, f (kt) = kαt , with a capital share
α = 0.36. The discount factor is β = 0.99, and the parameters in (4) are
ρ = 0.95 and σ = 0.01. The parameters δ and γ vary across experiments.

Algorithm’s parameters The convergence parameter in the con-
vergence criterion (10) must be chosen by taking into account a trade off
between accuracy and speed in a given application (a too strict criterion
wastes computer time, while a too loose criterion reduces accuracy). In our
experiments, we find it convenient to adjust to a degree of the approximat-
ing polynomial m and to the damping parameter ξ in (11) by = 10−4−mξ.
The former adjustment allows us to roughly match accuracy levels attainable
under different polynomial degrees in our examples. The latter adjustment
ensures that different values of ξ imply roughly the same degree of conver-
gence in the time-series solution (note that the smaller is ξ, the smaller is
the difference between the series k(p)t+1 and k

(p+1)
t+1 ; and in particular, if ξ = 0,

the series do not change from one iteration to another). In most experi-
ments, we use ξ = 0.1, which means that decreases from 10−6 to 10−10

when m increases from 1 to 5. To start iterations, we use an arbitrary guess
kt+1 = 0.95kt + 0.05kat, where k is the steady-state capital. To compute
a polynomial solution of degree m = 1, we start iterations from a fixed
low-accuracy solution; to compute a solution of a degree m ≥ 2, we start
from the solution of degree m− 1. The initial condition is the steady state,
(k0, a0) =

¡
k, 1
¢
.

Regularization parameters For RLS-Tikhonov, RLAD-PP and RLAD-
DP, it is convenient to normalize the regularization parameter by the sim-
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ulation length, T , and the number of the regression coefficients, n. For
RLS-Tikhonov, this implies an equivalent representation of the LS problem
(21): min

b

1
T
(y −Xb)> (y −Xb) + η

n
b>b, where η reflects a trade-off between

the average squared error 1
T
(y −Xb)> (y −Xb) and the average squared co-

efficient 1
n
b>b. Since η is constructed to be invariant to changes in T and n,

the same numerical value of η often works well for experiments with different
T and n (and thus, different polynomial degrees m). For the RLAD problem
(33), we have min

b

1
T
1>T |y −Xb|+ η

n
1>n |b|.

To select appropriate values of the regularization parameters for our regu-
larization methods, we use the approach that combines the ideas of ridge trace
and cross validation, as described in Section 4.2.2. We specifically search for
a value of the regularization parameter that ensures both the numerical sta-
bility (convergence) of fixed-point iteration in Stage 1 and high accuracy of
solutions in Stage 2. In our experiments, we typically use the smallest degree
of regularization that ensures numerical stability of fixed-point iteration; we
find that this choice also leads to accurate solutions.28

Results reported, hardware and software For each experiment,
we report the value of a regularization parameter (if applicable), time nec-
essary for computing a solution, as well as unit-free Euler equation errors
(12) on a stochastic simulation of T test = 10, 200 observations (we discard
the first 200 observations to eliminate the effect of initial conditions); see
Juillard and Villemot (2011) for a discussion of other accuracy measures.
To compute conditional expectations in the test, we use a highly accurate
integration method Q (10). We run the experiments on a desktop computer
ASUS with Intel(R) Core(TM)2 Quad CPU Q9400 (2.66 GHz). Our pro-
grams are written in MATLAB, version 7.6.0.324 (R2008a). To solve the
linear programming problems, we use a routine "linprog" under the option
of an interior-point method.29 To increase the speed of computations in

28We tried to automate a search of the regularization parameter by targeting some
accuracy criterion in Stage 2. The outcome of the search was sensitive to a realization of
shocks and an accuracy criterion (e.g, mean squared error, mean absolute error, maximum
error). In the studied models, accuracy improvements were small, while costs increased
substantially. We did not pursue this approach.
29A possible alternative to the interior-point method is a simplex method. Our experi-

ments indicated that the simplex method, incorporated in MATLAB, was slower than the
interior-point method; occasionally, it was also unable to find an initial guess. See Portnoy
and Koenker (1997) for a comparison of interior-point and simplex-based algorithms.
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MATLAB, we use vectorization (e.g., we approximate conditional expecta-
tion in all simulated points at once rather than point by point, compute all
policy functions at once rather than one by one).

6.2 Testing numerical stability

We consider a version of the representative-agent model under δ = 1 and
γ = 1. This model admits a closed-form solution, kt+1 = αβatk

α
t . To com-

pute conditional expectations, we use the one-node Monte Carlo integration
method (44). A peculiar feature of this model is that the integrand of con-
ditional expectation in the Euler equation (7) is equal to kt+1 for all possible
realizations of at+1. Since the integrand does not have a forward-looking
component, the choice of integration method has little impact on accuracy.
We can therefore concentrate on the issue of numerical stability of GSSA.
We consider four non-regularization methods (OLS, LS-SVD, LAD-PP,

and LAD-DP) and four corresponding regularization methods (RLS-Tikhonov,
RLS-TSVD, RLAD-PP, and RLAD-DP). The RLS-TSVD method is also a
representative of the principal component approach. We use both unnor-
malized and normalized data, and we consider both ordinary and Hermite
polynomials. We use a relatively short simulation length of T = 3, 000 be-
cause the primal-problem formulations LAD-PP and RLAD-PP proved to be
costly in terms of time and memory. In particular, when T exceeded 3, 000,
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our computer ran out of memory. The results are shown in Table 1.

Our stabilization techniques proved to be remarkably successful in the ex-
amples considered. When the OLS method is used with unnormalized data
and ordinary polynomials, we cannot go beyond the second-degree polyno-
mial approximation. Normalization of variables alone allows us to compute
degree three polynomial solutions. LS-SVD and LAD with unnormalized
data deliver the fourth-degree polynomial solutions. All regularization meth-
ods successfully computed degree five polynomial approximations. Hermite
polynomials ensure numerical stability under any approximation method (all
methods considered lead to nearly identical results). The solutions are very
accurate with mean errors of order 10−9.
For the regularization methods, we compare the results under two degrees

of regularization. When a degree of regularization is low, the regularization
methods deliver accuracy levels that are comparable or superior to those
of the corresponding non-regularization methods. However, an excessively
large degree of regularization reduces accuracy because the regression coef-
ficients are excessively biased. Finally, under any degree of regularization,
RLS-Tikhonov leads to visibly less accurate solutions than the other LS reg-
ularization method, RLS-TSVD. This happens because RLS-Tikhonov and
RLS-TSVD work with different objects: the former works with a very ill-
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conditioned matrix X>X, while the latter works with a better conditioned
matrix S.30

6.3 Testing accuracy

We study a version of the model with γ = 1 and δ = 0.02. With partial
depreciation of capital, the integrand of conditional expectation in the Euler
equation (7) does depend on at+1, and the choice of integration method
plays a critical role in the accuracy of solutions. In all the experiments, we
use ordinary polynomials and RLS-TSVD with κ = 107. This choice ensures
numerical stability, allowing us to concentrate on the accuracy of integration.
We first assess the performance of GSSA based on the Monte Carlo

method, MC (J), with J = 1 and J = 2, 000. (Recall that MC (1) uses
one random draw, and MC (2000) uses a simple average of 2, 000 random
draws for approximating an integral in each simulated point). We consider
four different simulation lengths, T ∈ {100, 1000, 10000, 100000}. The results
are provided in Table 2.

30Alternatively, we can apply a Tikhonov-type of regularization directly to S by adding
ηIn, i.e. bb (η) = V (S + ηIn)

−1
U 0y. This version of Tikhonov regularization will produce

solutions that are at least as accurate as those produced by LS-SVD. However, in some
applications, such as large-scale economies, computing the SVD can be costly or infeasible,
and the standard Tikhnonov regularization based on X 0X can be still useful.
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The performance of the Monte Carlo method is poor. Under MC (1), GSSA
can deliver high-degree polynomial approximations only if T is sufficiently
large (if T is small, Monte Carlo integration is so inaccurate that simulated
series either explode or implode). A ten-times increase in the simulation
length (e.g., from T = 10, 000 to T = 100, 000) decreases errors by about a
factor of three. This is consistent with a

√
T -rate of convergence of MC(1);

see Section 5.1. Increasing the number of nodes J from 1 to 2, 000 aug-
ments accuracy by about

√
J and helps restore numerical stability. The

most accurate solution is obtained under the polynomial of degree three and
corresponds to a combination of T and J with the largest number of random
draws (i.e. T = 10, 000 and J = 2, 000). Overall, high-degree polynomials do
not necessarily lead to more accurate solutions than low-degree polynomials
because accuracy is dominated by large errors produced by Monte Carlo inte-
gration. Thus, even though our stabilization techniques enable us to compute
polynomial approximations of five degrees, there is no gain in going beyond
the third-degree polynomial if Monte Carlo integration is used.
We next consider the Gauss-Hermite quadrature method Q (J) with J =

1, 2, 10. The results change dramatically: all the studied cases become
numerically stable, and the accuracy of solutions increases by orders of mag-
nitude. Q (J) is very accurate even with just two nodes: increasing the
number of nodes from J = 2 to J = 10 does not visibly reduce the ap-
proximation errors in the table. The highest accuracy is attained with the
degree five polynomials, T = 100, 000, and the most accurate integration
method Q (10). The mean absolute error is around 10−9 and is nearly three
orders of magnitude lower than that attained under Monte Carlo integration.
Thus, high-degree polynomials do help increase the accuracy of solutions if
integration is accurate.
Note that even the least accurate solution obtained under the Gauss-

Hermite quadrature method with T = 100 and J = 1 is still more accurate
than the most accurate solution obtained under the Monte Carlo method
with T = 10, 000 and J = 2, 000. The simulation length T plays a less
important role in accuracy and numerical stability of GSSA underQ (J) than
underMC (J) because Q (J) uses simulated points only for constructing the
domain, whileMC (J) uses such points for both constructing the domain and
evaluating integrals. To decrease errors from 10−5 to 10−9 under the Monte
Carlo methodMC (1), we would need to increase the simulation length from
T = 104 to T = 1012.
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6.4 Sensitivity of GSSA to the risk-aversion coefficient

We test GSSA in the model with very low and very high degrees of risk
aversion, γ = 0.1 and γ = 10. We restrict attention to three regulariza-
tion methods RLS-Tikhonov, RLS-TSVD and RLAD-DP (in the limit, these
methods include non-regularization methods OLS, LS-SVD and LAD-DP, re-
spectively). We omit RLAD-PP because of its high cost. In all experiments,
we use T = 10, 000 and an accurate integration method Q (10) (however,
we found that Q (2) leads to virtually the same accuracy). The results are
presented in Table 3.

Under γ = 0.1, GSSA is stable even under large values of the damping para-
meter such as ξ = 0.5. In contrast, under γ = 10, GSSA becomes unstable
because fixed-point iteration is fragile. One way to enhance numerical sta-
bility is to set the damping parameter ξ to a very small value; for example,
ξ = 0.01 ensures stability under both ordinary and Hermite polynomials.
Another way to do so is to choose a different policy function to approximate;
see the discussion in Section 4.5.2. We find that using a marginal-utility
policy function (instead of the capital policy function) ensures the stability
of GSSA under large values of ξ such as ξ = 0.5.
Overall, the accuracy of solutions is higher under γ = 0.1 than under

γ = 10. However, even in the latter case, our solutions are very accurate:
we attain the mean errors of order 10−8. The accuracy levels attained under
the capital and marginal-utility policy functions are similar. RLAD-DP and
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RLS-TSVD deliver more accurate solutions than RLS-Tikhonov. As for the
cost, RLAD-DP is more expensive than the other methods. Finally, the
convergence to a fixed point is considerably faster under the capital policy
function than under the marginal-utility policy function.

6.5 Model with rare disasters

We investigate how the performance of GSSA depends on specific assump-
tions about uncertainty. We assume that, in addition to standard nor-
mally distributed shocks, the productivity level is subject to large negative
low-probability shocks (rare disasters). We modify (4) as follows: ln at =
ρ ln at−1 + ( t + ζt), where t+1 ∼ N (0, σ2), ζt takes values −ζσ and 0 with
probabilities p and 1 − p, respectively, and ζ > 0. We assume that ζ = 10
and p = 0.02, i.e. a 10% drop in the productivity level occurs with the prob-
ability of 2%. These values are in line with the estimates obtained in recent
literature on rare disasters; see Barro (2009).
We solve the model with γ = 1 using three regularization methods (RLS-

Tikhonov, RLS-TSVD and RLAD-DP). We consider both ordinary and Her-
mite polynomials. We implement a quadrature integration method with 2J
nodes and weights. The first J nodes are the usual Gauss-Hermite nodes
{ t+1,j}j=1,...,J , and the remaining J nodes correspond to a rare disaster
{ t+1,j − ζσ}j=1,...,J ; the weights assigned to the former J nodes and latter J
nodes are adjusted to the probability of a rare disaster by {(1− p)ωt,j}j=1,...,J
and {pωt,j}j=1,...,J , respectively. We use J = 10 and T = 10, 000.
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In all cases, GSSA is successful in finding solutions; see Table 4. Overall,
the errors are larger than in the case of the standard shocks because the
ergodic set is larger and solutions must be approximated and tested on a
larger domain; compare Tables 2 and 4. The accuracy levels are still high:
the mean absolute errors are of order 10−8. We perform further sensitivity
experiments and find that GSSA is numerically stable and delivers accurate
solutions for a wide range of the parameters σ, ρ, ζ and p.

6.6 Multi-country model

We demonstrate the tractability of GSSA in high-dimensional problems. For
this, we extend the representative-agent model (2)− (4) to include multiple
countries. Each country h ∈ {1, ..., N} is characterized by capital, kht , and
productivity level, aht (i.e. the state space contains 2N state variables). The
productivity level of a country is affected by both country-specific and world-
wide shocks. The world economy is governed by a planner who maximizes a
weighted sum of utility functions of the countries’ representative consumers.
We represent the planner’s solution with N capital policy functions and com-
pute their approximations,

kht+1 = Kh
³©

kht , a
h
t

ªh=1,...,N´ ≈ Ψh
³©

kht , a
h
t

ªh=1,...,N
; bh
´
, h = 1, ..., N,

(45)
where Ψh and bh are, respectively, an approximating function and a vector
of the approximation parameters of country h. A formal description of the
multi-country model and implementation details of GSSA are provided in
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Appendix C. The results are shown in Table 5.

We first compute solutions using GSSA with the one-node Monte Carlo
method,MC (1). We use RLS-Tikhonov with η = 10−5 and T = 10, 000. The
performance of Monte Carlo integration is again poor. The highest accuracy
is achieved under the first-degree polynomials. This is because polynomials
of higher degrees have too many regression coefficients to identify for a given
sample size T . Moreover, when N increases, so does the number of the co-
efficients, and the accuracy decreases even further. For example, going from
N = 2 to N = 20 increases the size of the approximation errors by about a
factor of 10 under the second-degree polynomial. Longer simulations increase
the accuracy but at a high cost.
We next compute solutions using GSSA with the deterministic integration

methods. Since such methods do not require long simulations for accurate
integration, we use a relatively short simulation length of T = 1, 000 (except
for the case of N = 200 in which we use T = 2, 000 for enhancing numer-
ical stability). We start with accurate but expensive integration methods
(namely, we use the monomial rule M2 with 2N2+ 1 nodes for 2 ≤ N ≤ 10,
and we use the monomial rule M1 with 2N nodes for N > 10). The approx-
imation method was RLS-TSVD (with κ = 107). For small-scale economies,
N = 2, 4, 6, GSSA computes the polynomial approximations up to degrees
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five, four and three, respectively, with the maximum absolute errors of 10−5.5,
10−5.2 and 10−4.9, respectively. For medium-scale economies, N ≤ 20, GSSA
computes the second-degree polynomial approximations with the maximum
absolute error of 10−4. Finally, for large-scale economies with up to N = 200,
GSSA computes the first-degree polynomial approximations with the maxi-
mum absolute error of 10−2.9.
We then compute solutions using RLAD-DP (with η = 10−5) combined

with M1. We obtain accuracy levels that are similar to those delivered by
our previous combination of RLS-TSVD and M2. We observe that RLAD-
DP is more costly than the LS methods but is still practical in medium-scale
applications. It is possible to increase the efficiency of LADmethods by using
techniques developed in the recent literature.31

We finally compute solutions using GSSA with a cheap one-node quadra-
ture method, Q(1), and RLS-Tikhonov (with η = 10−5). For polynomials of
degrees larger than two, the accuracy of solutions is limited. For the first-
and second-degree polynomials, the accuracy is similar to that under more
expensive integration methods but the cost is reduced by an order of magni-
tude or more. In particular, when N increase from 2 to 20, the running time
increases only from 3 to 18 minutes. Overall, RLS-Tikhonov is more stable
in large-scale problems than RLS-TSVD (because SVD becomes costly and
numerically unstable).
The accuracy of GSSA solutions is comparable to the highest accuracy

attained in the comparison analysis of Kollmann et al. (2011b). GSSA fits a
polynomial on a relevant domain (the ergodic set) and as a result, can get a
better fit on the relevant domain than methods fitting polynomials on other
domains.32 A choice of domain is especially important for accuracy under rel-
atively rigid low-degree polynomials. In particular, linear solutions produced
by GSSA are far more accurate than first- and second-order perturbation
methods of Kollmann, Kim and Kim (2011a) that produce approximation er-
rors of 6.3% and 1.35%, respectively, in the comparison analysis of Kollmann
(2011b).33 The cost of GSSA depends on the integration and approximation

31Tits, Absil and Woessner (2006) propose a constraint-reduction scheme that can dras-
tically reduce computational cost per iteration of linear programming methods.
32An advantage of focusing on the ergodic set is illustrated by Judd, Maliar and Maliar

(2010) in the context of a cluster grid algorithm. In a model with only two state variables,
solutions computed on the ergodic set are up to ten times more accurate than those
computed on the rectangular grid containing the ergodic set.
33Maliar, Maliar and Villemot (2011) implement a perturbation-based method which
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methods, the degree of the approximating polynomial, as well as the simu-
lation length. There is a trade off between accuracy and speed, and cheap
versions of GSSA are tractable in problems with very high dimensionality.
Finally, GSSA is highly parallelizable.34

7 Conclusion

Methods operating on an ergodic set have two potential advantages com-
pared to methods operating on domains that are exogenous to the models.
The first advantage is in terms of cost: ergodic-set methods compute solu-
tions only in a relevant domain - the ergodic set realized in equilibrium -
while exogenous-domain methods compute solutions both inside and outside
the relevant domain and spend time on computing solutions in unnecessary
points. The second advantage is in terms of accuracy: ergodic-set methods
fit a polynomial in a relevant domain, while exogenous-domain methods fit
the polynomial in generally larger domains and face a trade-off between the
fit (accuracy) inside and outside the relevant domain.
Stochastic simulation algorithms in previous literature (based on standard

LS approximation methods and Monte Carlo integration methods) did not
benefit from the above advantages. Their performance was severely hand-
icapped by two problems: numerical instability (because of multicollinear-
ity) and large integration errors (because of low accuracy of Monte Carlo
integration). GSSA fixes both of these problems: First, GSSA relies on ap-
proximation methods that can handle ill-conditioned problems; this allows
us to stabilize stochastic simulation and to compute high-degree polynomial
approximations. Second, GSSA uses a generalized notion of integration that
includes both Monte Carlo and deterministic (quadrature and monomial) in-
tegration methods; this allows us to compute integrals very accurately. GSSA
has shown a great performance in the examples considered. It extends the
speed-accuracy frontier attained in the related literature, it is tractable for
problems with high dimensionality, and it is very simple to program. GSSA

is comparable in accuracy to global solution methods. This is a hybrid method that
computes some policy functions locally (using perturbation) and computes the remaining
policy functions globally (using analytical formulas and numerical solvers).
34For example, Creel (2008) develops a parallel computing toolbox which reduces the

cost of a simulation-based PEA, studied in Maliar and Maliar (2003b), by running simu-
lations on a cluster of computers.
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appears to be a promising method for many economic applications.
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Supplement to "Numerically Stable and
Accurate Stochastic Simulation Approaches
for Solving Dynamic Economic Models":

Appendices

Kenneth L. Judd
Lilia Maliar
Serguei Maliar

Appendix A: Non-linear regression model and
non-linear approximation methods

In this section, we extend the approximation approaches that we devel-
oped in Sections 4.2 and 4.3 to the case of the non-linear regression model,

y = Ψ (k, a; b) + ε, (A.1)

where b ∈ Rn+1, k ≡ (k0, ..., kT−1) ∈ RT , a ≡ (a0, ..., aT−1) ∈ RT , and
Ψ (k, a; β) ≡ (Ψ (k0, a0;β) , ...,Ψ (kT−1, aT−1;β))> ∈ RT .1 We first consider a
non-linear LS (NLLS) problem and then formulate the corresponding LAD
problem.
The NLLS problem is

min
b
ky −Ψ (k, a; b)k22 = min

b
[y −Ψ (k, a; b)]> [y −Ψ (k, a; b)] . (A.2)

The typical NLLS estimation method linearizes (A.2) around a given initial
guess b by using a first-order Taylor expansion of Ψ (k, a; b) and makes a step
∆b toward a solution, bb, bb ' b+∆b. (A.3)

Using the linearity of the differential operator, we can derive an explicit
expression for the step ∆b. This step is given by a solution to the system of
normal equations,

J >J∆b = J >∆y, (A.4)

1The regression model with the exponentiated polynomial, Ψ (kt, at; b) =
exp (b0 + b1 ln kt + b2 ln at + ...), used in Marcet’s (1988) simulation-based PEA, is a par-
ticular case of (A.1).
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where J is a Jacobian matrix of Ψ,

J ≡

⎛⎜⎝ ∂Ψ(k0,a0;b)
∂b0

... ∂Ψ(k0,a0;b)
∂bn

... ... ...
∂Ψ(kT−1,aT−1;b)

∂b0
... ∂Ψ(kT−1,aT−1;b)

∂bn

⎞⎟⎠ ,

and
∆y ≡ (y0 −Ψ (k0, a0; b) , ..., yT−1 −Ψ (kT−1, aT−1; b))

> .

Typically, the NLLS estimation method does not give an accurate solution bb
in a single step ∆b, and must instead iterate on the step (A.3) until conver-
gence.2

A direct way to compute the step ∆b from (A.4) is to invert the matrix
J >J , which yields the well-known Gauss-Newton method,

∆b =
¡
J >J

¢−1J >∆y. (A.5)

This formula (A.5) has a striking resemblance to the OLS formula bb =¡
X>X

¢−1
X>y, namely, X, y and b in the OLS formula are replaced in (A.5)

by J , ∆y and ∆b, respectively. If J >J is ill-conditioned, as is often the
case in applications, the Gauss-Newton method experiences the same diffi-
culties in computing

¡
J >J

¢−1
and∆b as the OLS method does in computing¡

X>X
¢−1

and b.
To deal with the ill-conditionedmatrixJ >J in the Gauss-Newtonmethod

(A.5), we can employ the LS approaches similar to those developed for the lin-
ear regression model in Sections 4.2.1 and 4.2.2 of the paper. Specifically, we
can compute an inverse of the ill-conditioned matrix J >J by using LS meth-
ods based on SVD or QR factorization of J . We can also use the Tikhonov
type of regularization, which leads to the Levenberg-Marquart method,

∆b =
¡
J >J + ηIn+1

¢−1J >∆y, (A.6)

where η ≥ 0 is a regularization parameter.3

2Instead of the first-order Taylor expansion of Ψ (k, θ; b), we can consider a second-
order Taylor expansion, which leads to Newton’s class of non-linear optimization methods
in which the step ∆b depends on a Hessian matrix; see Judd (1992), pp. 103-117, for a
review.

3This method was proposed independently by Levenberg (1944) and Marquart (1963).
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Furthermore, we can replace the ill-conditioned NLLS problem (A.2) with
a non-linear LAD (NLLAD) problem,

min
b
ky −Ψ (k, a; b)k1 = min

b
1>T |y −Ψ (k, a; b)| . (A.7)

As in the NLLS case, we can proceed by linearizing the non-linear problem
(A.7) around a given initial guess b. The linearized version of the NLLAD
problem (A.7) is

min
∆b

1>T |∆y − J∆b| . (A.8)

The problem (A.8) can be formulated as a linear programming problem:
specifically, we can set up the primal and dual problems, as well as regularized
primal and dual problems, analogous to those considered in Sections 4.3.1
and 4.3.2 of the paper.

Example Let us formulate a regularized primal problem for (A.8) that is
parallel to (34)− (37) in the paper. Fix some initial ϕ+ and ϕ− (which de-
termine initial b = ϕ+−ϕ−) and solve for ∆ϕ+ and ∆ϕ− from the following
linear programming problem:

min
υ+,υ−,∆ϕ+,∆ϕ−

1>T υ
+ + 1>T υ

− + η1>n∆ϕ+ + η1>n∆ϕ− (A.9)

s.t. υ+ − υ− + J∆ϕ+ − J∆ϕ+ = ∆y, (A.10)

υ+ ≥ 0, υ− ≥ 0, (A.11)

∆ϕ+ ≥ 0, ∆ϕ− ≥ 0. (A.12)

Compute bϕ+ ' ϕ+ + ∆ϕ+ and bϕ− ' ϕ− + ∆ϕ−, and restore the regular-
ized NLLAD estimator bb ' (ϕ+ +∆ϕ+) − (ϕ− +∆ϕ−). As in the case of
NLLS methods, we will not typically obtain an accurate solution bb in a sin-
gle step, but must instead solve the problem (A.9) − (A.12) iteratively until
convergence.
To set up a regularized dual problem for (A.8), which is analogous to

(38)− (41) in the paper, we must replace X and y with J and ∆y, respec-
tively.
We should finally notice that the NLLS and NLLAD regularization meth-

ods described in this section penalize all coefficients equally, including an
intercept. Prior to applying these methods, we need to appropriately nor-
malize the explanatory variables and to set the penalty on the intercept to
zero.
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Appendix B: Multi-dimensional deterministic
integration methods

In this section, we describe deterministic integration methods suitable for
evaluating multi-dimesional integrals of the form

R
RN G ( )w ( ) d , where ≡¡

1, ..., N
¢> ∈ RN follows a multivariate Normal distribution, ∼ N (μ,Σ),

with μ ≡
¡
μ1, ..., μN

¢> ∈ RN being a vector of means and Σ ∈ RN×N being a
variance-covariance matrix, and w ( ) is a density function of the multivariate
Normal distribution,

w ( ) = (2π)−N/2 det (Σ)−1/2 exp

∙
−1
2
( − μ)>Σ−1 ( − μ)

¸
, (B.1)

with det (Σ) denoting the determinant of Σ.4

Appendix B.1: Cholesky decomposition

The existing deterministic integration formulas are constructed under the
assumption of uncorrelated random variables with zero mean and unit vari-
ance. If the random variables 1, ..., N are correlated, we must re-write the
integral in (B.4) in terms of uncorrelated variables prior to numerical inte-
gration. Given that Σ is symmetric and positive-definite, it has a Cholesky
decomposition, Σ = ΩΩ>, where Ω is a lower triangular matrix with strictly
positive diagonal entries. The Cholesky decomposition of Σ allows us to
transform correlated variables into uncorrelated ν with the following linear
change of variables:

ν =
Ω−1 ( − μ)√

2
. (B.2)

Note that d =
¡√
2
¢N
det (Ω) dν. Using (B.2) and taking into account that

Σ−1 = (Ω−1)
>
Ω−1 and that det (Σ) = [det (Ω)]2, we obtainZ

RN
G ( )w ( ) d = π−N/2

Z
RN

G
³√
2Ωe+ μ

´
exp

¡
−ν>ν

¢
dν. (B.3)

4Such integration methods are used in Step 2 of GSSA to compute conditional ex-
pectation of the form Et {Gt ( t+1)} =

R
RN Gt ( )w ( ) d in each simulated point t, in

particular, for the representative-agent model (2)− (4), Gt ( t+1) is the integrand in (7).
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Deterministic integration methods approximate the integral (B.3) by a
weighted sum of the integrand G evaluated in a finite set of nodesZ

RN
G ( )w ( ) d ≈ π−N/2

JX
j=1

ωjG
³√
2Ωνj + μ

´
. (B.4)

where {νj}j=1,...,J and {ωj}j=1,...,J are integration nodes and integration weights,
respectively. In the remaining section, we assume μ = 0N , where 0N is aN×1
vector whose entries are equal to 0.

Appendix B.2: Gauss-Hermite quadrature

In a one-dimensional integration case, N = 1, the integral (B.4) can be
computed using the Gauss-Hermite quadrature method. To be specific, we
have Z

R
G ( )w ( ) d = π−1/2

JX
j=1

ωjG
³√
2Ωνj

´
. (B.5)

where {νj}j=1,...,J and {ωj}j=1,...,J can be found using a table of Gauss-
Hermite quadrature nodes and weights; see, e.g., Judd (1998), pp. 262.
We can extend the one-dimensional Gauss-Hermite quadrature rule to the

multi-dimensional case by way of a tensor-product rule:Z
RN

G ( )w ( ) d ≈

π−N/2
J1X

j1=1

...

JNX
jN=1

ω1j1 · · · ω
N
jN
·G
³√
2Ω ·

¡
ν1j1 , ..., ν

N
jN

¢>´
, (B.6)

where
©
ωh
jh

ª
jh=1,...,Jh

and
©
νhjh
ª
jh=1,...,Jh

are, respectively, weights and nodes
in a dimension h derived from the one-dimensional Gauss-Hermite quadrature
rule (note that in general, the number of nodes in one dimension, Jh, can
differ across dimensions). The total number of nodes is given by the product
J1J2 · · · JN . Assuming that Jh = J for all dimensions, the total number of
nodes, JN , grows exponentially with the dimensionality N .

Appendix B.3: Monomial rules
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Monomial integration rules are non-product: they construct a relatively
small set of nodes distributed in some way within a multi-dimensional hyper-
cube. The computational expense of monomial rules grows only polynomially
with the dimensionality of the problem, which makes them feasible for prob-
lems with large dimensionality.
We describe twomonomial formulas for approximating the multi-dimensional

integral (B.3). Monomial formulas are provided for the case of uncorrelated
variables, e.g., in Stroud (1971), pp. 315-329, and Judd (1998), pp. 275.
Here, we adapted them to the case of correlated random variables using the
change of variables (B.2).
The first formula, denoted by M1, has 2N nodes:Z

RN
G ( )w ( ) d =

1

2N

NX
h=1

G
¡
±Rιh

¢
, (B.7)

where R ≡
√
NΩ, and ιh ∈ RN is a vector whose h-th element is equal to

one and the remaining elements are equal to zero, i.e. ιh ≡ (0, ..., 1, ..., 0)>.
The second formula, denoted by M2, has 2N2 + 1 nodes:Z
RN

G ( )w ( ) d =
2

2 +N
G (0, ..., 0)

+
4−N

2 (2 +N)2

NX
h=1

£
G
¡
Rιh

¢
+G

¡
−Rιh

¢¤
+

1

(N + 2)2

N−1X
h=1

NX
s=h+1

G
¡
±Rιh ±Rιs

¢
,

(B.8)

where R ≡
√
2 +NΩ and R ≡

q
2+N
2

Ω.

Appendix B.4: An example of integration formulas for N = 2

In this section, we illustrate the integration formulas described above
using a two-dimensional example, N = 2. We assume that the variables 1

and 2 are uncorrelated, have zero mean and unit variance. The integral
(B.3) is then given by

E {G ( )} = 1

π

Z
R2
G
³√
2ν1,
√
2ν2
´
exp

h
−
¡
ν1
¢2 − ¡ν2¢2i dν1dν2. (B.9)
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(a) The Gauss-Hermite product rule (B.6) with 3 nodes in each di-
mension, Q (3), uses one-dimensional nodes and weights given by νh1 = 0,

νh2 =
q

3
2
, νh3 = −

q
3
2
and ωh

1 =
2
√
π
3
, ωh

2 = ωh
3 =

√
π
6
for each h = 1, 2:

E {G ( )} = 1

π

3X
j1=1

3X
j2=1

ω1j1ω
2
j2
G
³√
2ν1j1 ,

√
2ν2j2

´
=

4

9
G (0, 0) +

1

9
G
³
0,
√
3
´
+
1

9
G
³
0,−
√
3
´
+

1

9
G
³√
3, 0
´
+
1

36
G
³√
3,−
√
3
´
+
1

36
G
³√
3,−
√
3
´
+

1

9
G
³
−
√
3, 0
´
+
1

36
G
³
−
√
3,
√
3
´
+
1

36
G
³
−
√
3,−
√
3
´¸

.

(b) The Gauss-Hermite product rule (B.6) with 1 node in each dimension,
Q (1), uses a node νh1 = 0 and a weight ω

h
1 =
√
π for each h = 1, 2:

E {G ( )} = 1

π

1X
j1=1

1X
j2=1

ω1j1ω
2
j2
G
³√
2ν1j1 ,

√
2ν2j2

´
= G (0, 0) .

(c) The monomial formula M1, given by (B.7), has 4 nodes,

E {G ( )} = 1

4

h
G
³√
2, 0
´
+G

³
−
√
2, 0
´
+G

³
0,
√
2
´
+G

³
0,−
√
2
´i

.

(d) The monomial formula M2, given by (B.8), has 9 nodes,

E {G ( )} = 1

2
G (0, 0) +

1

16
[G (2, 0) +G (−2, 0) +G (0, 2) +G (0,−2)]+

+
1

16

h
G
³√
2,
√
2
´
+G

³√
2,−
√
2
´
+G

³
−
√
2,
√
2
´
+G

³
−
√
2,
√
2
´i

.

Appendix C: Multi-country model
In this section, we provide a formal description of the multi-country model

studied in Section 6.6 of the paper. A world economy consists of a finite
number of countries N . Each country h ∈ {1, ..., N} is populated by a
representative consumer. A social planner solves the following maximization
problem:

max
{cht ,kht+1}h=1,...,Nt=0,...,∞

E0

NX
h=1

λh

" ∞X
t=0

βtuh
¡
cht
¢#

(C.1)
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subject to the aggregate resource constraint,

NX
h=1

cht +
NX
h=1

kht+1 =
NX
h=1

kht (1− δ) +
NX
h=1

ahtAf
h
¡
kht
¢
, (C.2)

and to the process for the countries’ productivity levels,

ln aht+1 = ρ ln aht +
h
t+1, h = 1, ..., N, (C.3)

where initial condition
©
kh0 , a

h
0

ªh=1,...,N
is given exogenously, and the pro-

ductivity shocks follow a multivariate Normal distribution
¡
1
t+1, ...,

N
t+1

¢> ∼
N (0N ,Σ) with 0N ∈ RN being a vector of zero means and Σ ∈ RN×N being
a variance-covariance matrix. We assume that shocks of different countries
are given by h

t+1 = ςht + ς t, h = 1, ..., N , where ςht ∼ N (0, σ2) is a coun-
try specific component, and ς t ∼ N (0, σ2) is a worldwide component. The

resulting variance covariance matrix is Σ =

⎛⎝ 2σ2 ... σ2

... ... ...
σ2 ... 2σ2

⎞⎠.
In the problem (C.1)− (C.3), Et denotes conditional expectation; cht , k

h
t ,

aht and λh are a country’s h consumption, capital, productivity level and
welfare weight, respectively; β ∈ (0, 1) is the discount factor; δ ∈ (0, 1] is the
depreciation rate; A is a normalizing constant in the production function;
ρ ∈ (−1, 1) is the autocorrelation coefficient. The utility and production
functions, uh and fh, respectively, are strictly increasing, continuously differ-
entiable and concave. We assume that all countries have identical preferences
and technology, i.e. uh = u and fh = f for all h. Under these assumptions,
the planner assigns equal weights, λh = 1, and therefore, equal consumption
to all countries, cht = ct for all h = 1, .., N .
The solution to the model (C.1)− (C.3) satisfies N Euler equations:

kht+1 = Et

½
β
u0 (ct+1)

u0 (ct)

£
1− δ + aht+1Af

0 ¡kht+1¢¤ kht+1¾ , h = 1, ..., N, (C.4)

where u0 and f 0 are the first derivatives of u and f , respectively.
We approximate the planner’s solution in the form of N capital policy

functions (45). Note that our approximating functionsΨh
³©

kht , a
h
t

ªh=1,...,N
; bh
´
,

h = 1, ..., N , are country-specific. Therefore, we treat countries as completely
heterogeneous even if they are identical in fundamentals and have identical
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optimal policy functions. This allows us to assess costs associated with com-
puting solutions to models with heterogeneous preferences and technology.
GSSA, described in Section 2 for the representative-agent model, can be

readily adapted to the case of the multi-country model. In the initializa-
tion step of Stage 1, we choose an initial guess for the matrix of the coeffi-
cients B ≡

£
b1, ..., bN

¤
∈ R(n+1)×N in the assumed approximating functions

Ψh
³©

kht , a
h
t

ªh=1,...,N
; bh
´
, h = 1, ..., N . In Step 1, at iteration p, we use a

matrix B(p) to simulate the model T periods forward to obtain
©
kht+1

ªh=1,...,N
t=0,...,T

and calculate the average consumption {ct}Tt=0 using the resource constraint
(C.2). In Step 2, we calculate the conditional expectation in (C.4) using
a selected integration method to obtain

©
yht
ªh=1,...,N
t=0,...,T−1. In Step 4, we run

N regressions yht = Ψh
³©

kht , a
h
t

ªh=1,...,N
; bh
´
+ εht to obtain a new matrix

of the coefficients bB =
hbb1, ...,bbNi; as in the representative-agent case, we

assume that Ψh is linear in bh, which leads to a linear regression model
yh = Xbh + εh, where yh ≡

¡
yh0 , ..., y

h
T−1
¢> ∈ RT , εh ≡

¡
εh0 , ..., ε

h
T−1
¢> ∈ RT ,

and X ∈ RT×(n+1) is a matrix of explanatory variables constructed with the
basis functions of the state variables. Finally, in Step 4, we update the co-
efficients B using fixed-point iteration, B(p+1) = (1− ξ)B(p) + ξ bB. In Stage
2, we evaluate the Euler equation errors on a simulation of T test = 10, 000
observations using a high-quality integration method: for N ≤ 20, we use the
monomial rule M2 and for N > 20, we use the monomial rule M1. To solve
the model, we assume u (ct) = ln ct, f (kt) = kαt with α = 0.36, β = 0.99,
δ = 0.025, ρ = 0.95 and σ = 0.01.
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