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ABSTRACT 
 

Hausman, Hall and Griliches (1984) and Hall, Griliches and Hausman 

(1986) investigated whether there was a lag in the patent-R&D relationship for 

the U.S. manufacturing sector using 1970’s data. They found that there was little 

evidence of anything but contemporaneous movement of patents and R&D. We 

reexamine this important issue employing new longitudinal patent data at the 

firm level for the U.S. manufacturing sector from 1982 to 1992. To address 

unique features of the data, we estimate various distributed lag and dynamic 

multiplicative panel count data models. The paper also develops a new class of 

count panel data models based on series expansion of the distribution of 

individual effects. The empirical analyses show that, although results are 

somewhat sensitive to different estimation methods, the contemporaneous 

relationship between patenting and R&D expenditures continues to be rather 

strong, accounting for over 60% of the total R&D elasticity. Regarding the lag 

structure of the patents-R&D relationship, we do find a significant lag in all 

empirical specifications. Moreover, the estimated lag effects are higher than have 

previously been found, suggesting that the contribution of R&D history to 

current patenting has increased from the 1970’s to the 1980’s. 
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1 Introduction

This paper investigates the relationship between patents and research and development

(R&D) expenditures using new longitudinal patent data at the firm level for the U.S. man-

ufacturing sector from 1982-1992. We estimate various distributed lag and dynamic mul-

tiplicative panel count data models, and compare results from the new patent data set to

results from the sample first analyzed by Hall, Griliches and Hausman (1986) that cover

the 1970’s (henceforth, called HGH data). The paper also develops a new class of count

panel data models based on series expansion of the distribution of unobserved heterogeneity.

The model proposed may be thought of as a semiparametric generalization of the negative

binomial and beta mixture model of Hausman et al. (1984).

The patents and R&D relationship has attracted enormous attention in the literature.

The reason is a powerful one: innovative activity at the firm level is important for firms to

improve their performance, and is the main driving force of the growth process in advanced

economies. In the cross-section and time-series dimension, the basic approach is to estimate

a knowledge production function that converts current and past R&D investment into patents

that are taken as an output measure of the inventive process.1 The main goal is to infer from

the lag distribution on past R&D something about gestation lags in knowledge production.

Estimating this knowledge production function is, however, no easy task. Starting with

the seminal work by Hausman et al. (1984), several count data models have been proposed

1 See Griliches (1990) for summary of the literature on the use of patents as economic indicators to
understand the process of innovation and technical change. One of the problems in using patents as an outcome
variable is that not all innovations are patented and patents differ in their economic impacts. However, there
is some evidence that patents provide a fairly reliable, although not perfect, measure of innovative activity
at the industry level (Acs and Audretsch 1989; Griliches 1990). See Stephan et al. (2000) for discussion of
unit of analysis and the spillover process.
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and employed extensively to analyze the relationship between patents and R&D expenditure

employing both cross section and panel data.2 The special features that patent data ex-

hibit is what makes it quite a challenge to develop statistically satisfactory and economically

meaningful models; see, for example, Guo and Trivedi (2002). Patent counts display heavy

upper tails, relatively low median values, relatively high means, and substantial proportion

of zero patents typically coinciding with the mode of the patent distribution. In particular,

the large degree of skewness in patent distribution may be attributed to the presence of

observed factors (such as R&D expenditures and firm size), unobserved heterogeneity (such

as differences in quality of patent innovations), and other random components. These very

peculiar features of the data require modeling strategies that are not adequately handled us-

ing commonly employed methods, including panel data methods, and suggest that modeling

patent data deserves further investigation.

Following Hausman et al. (1984) and Hall et al. (1986), the well-known HGH data, that

is, the patents-R&D panel data of U.S. firms for the 1970-1979 period have been analyzed

extensively in many studies such as Montalvo (1997), Blundell et al. (2002) and Guo and

Trivedi (2002). The relative magnitudes of the estimated contemporaneous and lag effects

vary somewhat across these studies depending on methodology. However, the main conclu-

sion continues to be the one originally found by the first two studies. This being that, once

you properly control for permanent differences in the propensity to patent across firms, there

is very little direct evidence of anything but simultaneity in the year-to-year movements of

patents and R&D.

2 Recent studies include Blundell et al. (1995), Cincera (1997), Crepon and Duguet (1997), Montalvo
(1997), Wang, Cokburn and Peterman (1998), Blundell et al. (2002), and Guo and Trivedi (2002).
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Our dependent variable is the number of patents applied for by a particular firm during

a given year that were eventually granted. As compared to the HGH data, the new sample

for the U.S. manufacturing sector that we construct and analyze in this paper represents a

longer data set over time, which allows us to explore dynamic effects by including more lags

of number of patents. In addition, the new patent data are highly overdispersed, with much

longer upper tails. These features clearly make the application of alternative estimation

techniques even more desirable.

In implementation of the new semiparametric approach that we propose, the paper applies

the methodology using the Jacobi polynomial series expansion. In particular, the proposed

estimator provides flexible specifications for the conditional means, variances and covariances.

In the application to patent activity, we also estimate various multiplicative individual effects

models with predetermined regressors, including dynamic models, that have been developed

recently by Chamberlain (1992), Wooldridge (1997), and Blundell et al. (2002).

Our empirical analyses show that, although results are somewhat sensitive to different

estimation methods, the contemporaneous relationship between patenting and R&D contin-

ues being significant and rather strong, accounting for above 60% of the total R&D elasticity.

For most of the distributed lag specification, the R&D elasticity of patents varies from 0.4

to 0.7, suggesting decreasing returns to scale. But unlike with the HGH data, the first (or

the second) R&D lag appears to be as well significant; the associated coefficient has a value

that is above 50% of the contemporaneous patents-R&D elasticity. In addition, the elasticity

of current year’s patenting with respect to R&D history is estimated to be around 0.17,

irrespective of the lag length. These lag effects are higher than those previously found. The
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results might suggest that gestation lags in knowledge production have increased from the

1970’s to the 1980’s.

The remainder of this paper is organized as follows. Section 2 provides background on

patents-R&D relationship, and describes our new data set. Section 3 presents various models

particularly useful for the analysis of longitudinal patent data. In particular, this section de-

velops a semiparametric generalization of a negative binomial-beta regression model. Section

4 discusses the empirical specifications and results. Section 5 concludes.

2 Background and Data

Hausman et al. (1984) and Hall et al. (1986) investigated, among other things, whether

there is a lag in the patent and R&D relationship. The former study analyzed patenting

activity for 128 U.S. firms during the 1968-1975 period using up to 5 R&D lags. When they

conditioned their estimates on the total number of patents received during the whole period,

no coefficient except for the contemporaneous R&D variable were statistically significant

either in Poisson or negative binomial count models. Hall et al. (1986) extended the sample

in the cross-section and time-series dimensions. In particular, they considered 642 firms with

patent and R&D data from 1972 to 1979. They also studied a subsample of 346 firms with

a slightly larger time span covering 1970 to 1979. Using the same count-model frameworks

as Hausman et al. (1984), the conclusion was again that, once you properly control for

permanent differences in the propensity to patent across firms, there was very little direct

evidence of anything but simultaneity in the year-to-year movements of patents and R&D.3

3 Earlier work by Pakes and Griliches (1984) had already analyzed the data considered by Hausman et al.
(1984) to try to identify the lag structure of the patent and R&D relationship. They did find lag effects, but
with standard distributed-lags fixed-effect models that did not take the discreteness and non-negative nature
of the patent data into account.
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Recent studies have employed new estimation methods to try to deal with especial features

of either the patent data or the patents-R&D relationship. Montalvo (1997), for example,

addressed possible simultaneity problems in the Patent-R&D relationship. In particular,

the consistency of the previously employed count models relied on the strict exogeneity of

the expenditure in R&D with respect to patents. However, once a patent is granted, the

firm may need to invest in R&D to transform the patent into a more commercial innovation

in order to obtain benefits. From this viewpoint, R&D can be seen as a predetermined

variable rather than strictly exogenous. Montalvo (1997) then proposed GMM estimation.4

The main change in the results was that with GMM the HGH data delivered a significant

first R&D-lag but an insignificant contemporaneous effect between patents and R&D. Thus

results were inconclusive, and most likely a consequence of the high correlation among the

R&D regressors. Blundell et al. (2002), in turn, produced quasi-differenced GMM estimators

that allow for dynamic feedback from the history of the count process itself into the current

patenting outcome. They found a contemporaneous relationship that was as strong as in

previous work. In the context of cross section data, Guo and Trivedi (2002) estimated the

patents-R&D relationship using flexible techniques that could better accommodate special

features of the patent counts, especially their heavy upper tails and overdispersion. Results

4 This issue is also addressed by Hall et al. (1986) but in a different manner. They recognize that patents
could be seen as an input to the R&D process rather than an output. To test this hypothesis, they perform
a simple version of the Granger causality test, and conclude that “there may be simultaneous movements in
patents and R&D, but there is little evidence that past success in patenting leads to an increase in a firm’s
future R&D.” We have performed a similar test for our sample, with two to four lags of log R&D used to
predict the current level of log R&D, including contemporaneous and lagged log patents (up to four lags) in
the regression to see if they help to predict R&D in the presence of its past history. The result is that we
neither find a clear effect from past patenting success into current R&D, although in our sample patents as an
input to R&D can not be completely discarded. In particular, the first patent lag is the only lag that has an
impact on R&D and goes in the right direction; but this is the case only when contemporaneous patents are
left out of the regression. Contemporaneous patent activity, on the other hand, always helps to significantly
explain current R&D. These results are available from the authors upon request.
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were again in line with Hall et al.’s (1986).

In this paper, we analyze a new data set using the proposed series estimator as well

existing methods. Next, we describe the new sample and its construction process. As will

become clear, the construction method follows the one used for the construction of the HGH

data, which is described in Bound et al. (1984).

The new firm-level panel data set for the U.S. industrial sector covers the 1982-1992

period. The universe of the sample is the set of corporations and industry groups in the U.S.

and Canadian manufacturing sector which existed in 1997 on Standard and Poor’s Compustat

Annual Industrial Files. From this sample frame, the subsample of 3034 U.S. firms that show

strictly positive R&D expenses at least in one year is obtained. The Compustat files also

provide each firm’s book value of capital for each year, and the firm’s standard industrial

classification (SIC) and CUSIP identifies, where CUSIP (Committee on Uniform Security

Identification Procedure) is the Compustat’s identifying number for the firm. Patent numbers

come from the U.S. Patent and Trademark Office. For the years 1971 to 1995, we obtain

time series of utility patents granted to 8527 firms as distributed by year of application filing.

The matching of the Patent Office file and the Compustat data is no easy task. The

difficulty is that the patenting organizations, although frequently corporations in our sample,

may also be subsidiaries or have slightly different names from those given on the Compustat

files. To do the matching, we proceed as follows. Out of the 3034 firms included in the

R&D subsample, we first matched the organizations in the Patent Office file that have the

same name (or slightly different name) as the ones in the Compustat data. In addition, for

the firms in the Compustat file, we looked for their subsidiaries, and repeat the matching
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procedure.

The selection criterion for our sample is based on the absence of jumps, which coincides

with the selection criterion for the Hausman et al.’s (1984) and Hall et al.’s (1986) data sets.

More precisely, the final sample is chosen from the above universe by requiring that data on

R&D investment, book value of capital, and patent counts are available for all years. We

ended up with a sample composed of 391 U.S. firms with 11 years of data, 1982 to 1992,

giving 4301 observations. Table 1 shows the distributions of net sales for firms in the universe

and our sample. As in Hall et al. (1986), the organizations remaining in the sample show a

size distribution heavily tilted toward the larger firms in the original universe. For example,

out of the 2188 companies for which data on net sales in 1992 are available, our coverage of

the largest firms is 68.0 percent, whereas it is 0.5 percent of the smallest. Regarding R&D

expenditures, Table 2 shows that most of the firms excluded from the final sample were

either smaller or did not report R&D during the 1982-1992 period. The coverage of the

larger R&D corporations is almost complete, and our sample includes 82.1 percent of the

R&D dollars expended by the U.S. manufacturing sector between 1982 and 1992.

Table 3 reports summary statistics and descriptions for the variables included in the

regressions. Figure 1 displays the frequency distribution of the number of patents applied

for by firms. These show some striking features for the distribution of the number of patents.

While the mean number of patents is relatively high (about 40 annual patents per firm during

1986-1992 period), the modal value of the number of patents is zero. The proportion of zero

patents is about 16% during the study period, with proportion of firms with zero patents

ranging from 12% in 1987 to 22% in 1983. The frequency distribution also shows that, on
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Table 1: Frequency Distribution of Net Sales in 1992 (Current Dollars)

2188 R&D-firm Cross Section Sample of 391 Firms Coverage
Net sales Number Percent Number Percent (%)

less than $1M 209 9.6 1 0.2 0.5
$1M - 10M 482 22.0 11 2.8 2.3
$10M - 100M 733 33.5 71 18.2 9.7
$100M - 1B 499 22.8 148 37.9 29.7
$1B - 10B 215 9.8 126 32.2 58.6
more than $10B 50 2.3 34 8.7 68.0
Source: Standard and Poor’s Compustat Annual Industrial Files.

Table 2: R & D Expenditures in 1983 dollars for 1982-1992

Data set
3034 firms

Sample
391 firms

Coverage
(%)

Less than $1M 146.9 0.7 0.5
$1M-10M 3437.6 173.2 5.0
$10M-100M 23108.2 5760.0 24.9
$100M-1B 70144.4 46898.5 66.9
$1B-10B 257896.7 219637.0 85.2
More than $10B 165532.9 154890.2 93.6
total 520266.7 427359.6 82.1
Note: R & D represents all costs incurred during the calendar year that relate to

the development of new products or services; the R & D deflator was provided by

the U.S. Bureau of Economic Analysis.
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Table 3: Summary Statistics

Standard
Variable Mean Deviation Minimum Maximum

1982 - 1992:
R&D Expenditure 98.9 332.8 0.010 4593
Number of patents 36.8 96.0 0 1303
First quartile number of patents 1
Median number of patents 5
Third quartile number of patents 24
Proportion of zero patents 16.5
Proportion with at least 100 patents 0.094
Book value of capital in 1983 1,004.7 2895.5 0.115 29443
Fraction of firms in scientific sector 0.499 0.500 0 1

1986-1992:
R&D Expenditure 109.4 368.0 0.053 4593
Number of patents 39.6 105.0 0 1303
First quartile number of patents 1
Median number of patents 5
Third quartile number of patents 26
Proportion of zero patents 0.146
Proportion with at least 100 patents 0.097
Note: R & D represents all costs incurred during the calendar year that relate to the development of new products

or services in millions of 1983 dollars; Book value of capital (time-constant variable) is the firm’s common equity

liquidation value in millions of current dollars, and is based on calendar year end data ; Patents are utility patents

granted to firms as distributed by year of application filing; The scientific sector (time-constant variable) is defined

as firms in the drug, computer, scientific instrument, chemical and electric component industries). The R&D deflator

was provided by the U.S. Bureau of Economic Analysis.
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Figure 1: Frequency Distribution of Patents
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Note: The height of each bar gives number of firm-years corresponding to a given number of patents. The last 8 bars for the

number of patents [11, 1303] are based on data of unequal intervals with interval widths of 5, 15, 15, 25, 25, 250, 250, and 500.

Thus, the relative heights of the bars should be interpreted accordingly.

Table 4: Correlation Matrix

Patentit log R&Dit log R&Dit−1 log R&Dit−2 log R&Dit−3
log R&Dit 0.561
log R&Dit−1 0.563 0.993
log R&Dit−2 0.563 0.983 0.992
log R&Dit−3 0.561 0.972 0.982 0.991
log R&Dit−4 0.560 0.960 0.971 0.981 0.992
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average, about 15% of the firms who patented during 1982-1992 did so only once per period,

with the corresponding yearly figures ranging from a minimum of 11% in 1989 to a maximum

of 19% in 1982. The distribution of the annual number of patents is highly right-skewed with

range 0 to 1303 and median value of 5 patents. The third quartile and the 90th-percentile

values are approximately 25 and 100 patents, respectively. The variance of the number of

patents is quite large, which is consistent with the highly overdispersed nature of patent data

used in recent studies. In comparison, for the 642-firm sample of the HGH data, the mean

number of patents is 26.3 with standard deviation of 67.8, median of 4, and range of 0 to

906 patents. This means that our sample is more right-skewed and possesses a slightly larger

overdispersion. These unique features of the data require special care in modeling patents,

especially in the tails of the distribution.

3 Unobserved Effects Count Data Models

We examine various count panel data methods that are particularly useful for investigation

of the relationship between the patenting process and R&D. In particular, we develop a series

estimation approach that generalizes the familiar Negative binomial random effects model.

Consider a count panel data model with the conditional mean function

E(yit | xit, νi) = θitνi, i = 1, ... , N ; t = 1, ... , T, (1)

where yit is the observed value of the dependent variable for individual i at time t; θit =

exp(x0itβ); xit is a (p × 1) vector of observed explanatory variables; β is the corresponding

vector of parameters to be estimated; and νi is an unobserved individual effect. To develop

further notation, let yi. =
PT

t=1 yit and θi. =
PT

t=1 θit denote sums over time, and yi =
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(yi1, ..., yiT ).We shall focus on the case where N is large but T may not be.

3.1 Standard Models

For multiplicative panel data model, the strict exogeneity assumption, conditional on νi, is

given by

E(yit | xi1, ..., xiT , νi) = θitνi (2)

When xit are strictly exogenous, the conditional maximum likelihood approach can be used

to estimate β consistently. The conditional maximum likelihood approach, based on con-

ditioning on
PT

t=1 yit - which is the sufficient statistic for νi, allows for dependence between

xi and νi. Using the conditional maximum likelihood approach, Hausman et al. (1984) have

proposed the Poisson and negative binomial fixed effects estimators.

In the application section, we also use the Poisson and negative binomial random effects

models (Hausman et al. (1984). Here we focus on a general mixture model based on the

negative binomial (Negbin) specification. The Negbin distribution with parameters (θit, δ),

where again θit = exp(x
0
itβ), is:

f(yit) =
Γ(yit + θit)

Γ(θit)Γ(yit + 1)

µ
δ

1 + δ

¶θit µ 1

1 + δ

¶yit

(3)

with mean(yit) = θit
δ and var(yit) = θit

δ

¡
1 + 1

δ

¢
. We specify:

δi =
φi
νi
,

where both φi and νi vary across individuals. Because of the presence of two error com-

ponents, we adopt the following assumptions and parameterization. First, assume that φi

and νi are independently distributed of each other so that δi is randomly distributed across
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individuals, independent of the xit’s. Then, consider a new random variable

ξi = δi
1+δi

= φi
φi+νi

with density function g(ξi), 0 < ξi < 1. Then, assuming independence between yit, yis ,

conditional on xi = (xi1, ..., xiT ) and ξi, the joint density of yi, given xi, takes the following

general form:

f(yi | xi) =
R 1
0

h
ΠTt=1

Γ(yit+θit)
Γ(θit)Γ(yit+1)

ξi
θit (1− ξi)

yit
i
g(ξi)dξi

=
h
ΠTt=1

Γ(yit+θit)
Γ(θit)Γ(yit+1)

i
Ξ(θi., yi.),

(4)

where

Ξ(θi., yi.) =
h
Eξ

³
ξi
θi. (1− ξi)

yi.
´i

Here Eξ[.] denotes expectation taken with respect to the distribution of ξ. It can be shown

that, if ξi follows a beta distribution, then (4) reduces to the familiar Negbin random effects

model, more precisely the Negbin-Beta mixture model, proposed by Hausman et al. (1984).

The Negbin-Beta model is based on arbitrary specifications of the density of the un-

observable components. Section 3.3 presents series estimator of the random effects models

given in (4) that does not require knowledge of the distribution of the unobservables.5

Moment-based estimation approaches for mixture models are also available. In the context

of random effects generalized linear models, Liang and Zeger (1986) and Zeger, Liang and

5 In principle, a semiparametric approach based on Poisson-gamma baseline using Laguerre series expan-
sion can be considered. In this paper, we shall focus only on series expansion approach based on Negbin-Beta
baseline density for the counts.
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Albert (1988) have proposed population-averaged mixed models in which serial correlations

are allowed for but the random effects are averaged out. In the empirical section, using gen-

eralized estimating equations(GEE) approach, we estimate population-averaged panel data

model based on the Negbin family.

3.2 Dynamic Models

The models presented above have implicitly assumed strict exogeneity. We consider recently

proposed methods that relax the strict exogeneity assumption (2). This includes methods

that are applicable to estimate dynamic panel data models using generalized method of

moments (GMM) framework.

Instead of (2), assume that

E(yit | xi1, ..., xit, νi) = θitνi, t = 1, ..., T. (5)

Chamberlain (1992) and Wooldridge (1997) have proposed GMM estimators for multiplica-

tive panel data models, including count panel data models, that do not impose strict exogene-

ity assumption. In particular, they provide transformations that eliminate the fixed effects

from model (5) by quasi-differencing and orthogonality conditions that can be employed for

consistent estimation. The approach is applicable to distributed lag models with possible

feedback and to models with lagged dependent variables. In the context of our application,

the transformation that provides the appropriate residual functions is

rit = yit − θit
θit+1

yit+1, t = 1, ..., T − 1. (6)

Let zit be a qt-vector of functions of xi1, ..., xit, t = 1, ..., T − 1. Since the moment condi-

tions E (rit | zit) = 0 hold, zit is uncorrelated with rit. This provides the basis for GMM
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estimation.

In the context of linear feedback model (LFM), Blundell, Griffith, and Windmeijer (2002)

use variants of Chamberlain-Wooldridge moments conditions to estimate dynamic multi-

plicative individual effects models for count data. The mean function for dynamic model

includes lagged dependent variable, which enters linearly, other conditioning variables in the

exponential function, and the individual effects. For the case of one lag of the dependent

variable, the conditional mean function for LFM is

E(yit | xit, νi) = β1yit−1 + exp(x
∗
itβ2)νi, (7)

where x∗it is a vector of other conditioning variables such that xit = (yit−1 x
∗
it).

In the empirical analysis, we estimate two versions of panel count data models using GMM

framework. In the first specification, we use multiplicative distributed lag model, where

contemporaneous and lags of regressors enter the exponential mean regression function. We

also estimate a dynamic model similar to (7), where further lags of the dependent variable

are included. Further details about choice of instruments and regressors will be given in the

empirical section.

3.3 Semiparametric Estimation

We now generalize the commonly used Negbin-beta model of Hausman et al. (1984). We

develop semiparametric estimation methods for panel data models given in (4) that do not

require knowledge of the distributions of νi. As in the Negbin-Beta mixture, the proposed

model maintains the assumptions that the unobserved heterogeneity is independent of xi, and

that yit and yis are independent, conditional on xi and unobserved heterogeneity. Following

the techniques of Gallant and Nychka (1987) and Gurmu et al. (1999), the distribution of
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unobserved individual heterogeneity is estimated using series expansion. In the context of

cross sectional count data models, Gurmu et al. (1999) use the generalized Laguerre series

expansion around a gamma baseline density to model unobserved heterogeneity in Poisson

mixture model. In this paper, we employ the Jacobi series expansion around a beta baseline

density to approximate the distribution of unobserved individual effects in Negbin Mixture

Model. Among other things, the ensuing Negbin-Jacobi mixture panel data model is more

flexible with respect to the conditional mean and conditional variance/covariance.

Consider the mixture model (4). We approximate the density of g(ξi) using series expan-

sion around a beta distribution with parameters (a, b) as in (??). The proposed approximate

density is

gN(ξi) =
1

B(a, b)
PK

j=0 d
2
j

ξa−1i (1− ξi)
b−1

⎡⎣ KX
j=0

djh
−1/2
2j Jj(ξi)

⎤⎦2 (8)

where dj ’s are constant coefficients in the polynomial expansion,

h2j =
j!Γ(a+ j)Γ(a+ b− 1 + j)Γ(b+ j)

(a+ b− 1 + 2j) (Γ(a+ b− 1 + 2j))2 ,

and

Jj(ξi) =
Γ(a+ j)

(a+ b− 1 + 2j)
jX

l=0

µ
j

l

¶
Γ(a+ b− 1 + 2j − l)

Γ(b+ j − l)Γ(j + 1)
(ξi)

j−l

is the so called Jacobi polynomial of order j.6 Similar to the Laguerre polynomials

previously used in count and duration data literature, the Jacobi polynomials are orthogonal,

and each with unit variance so that var(h−1/22j Jj(ξi)) = 1. The polynomials are squared to

ensure that the density, gN (ξi), is positive. Since ξi takes values on the unit interval, the

Jacobi polynomials seem to be the appropriate choice.

6 See Abramowitz and Stegun (1972) for definition of Jacobi Polynomials.
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The next strategy is to determine Ξ(θi., yi.) based on the approximate density gN(ξi).
7

After some algebra, we obtain

Ξ(θi., yi.) =
1PK

j=0 d
2
j

KX
j=0

KX
k=0

jX
l=0

kX
m=0

djdk∆jkΨlm beta(θ.i + a+ j + k − l −m, y.i + b), (9)

where

∆jk = (hj2hk2)
−1/2 Γ(a+ j)Γ(a+ k)

Γ(a+ b− 1 + 2j)Γ(a+ b− 1 + 2k)

and

Ψlm = (−1)l+m
µ
j

l

¶µ
k

m

¶
Γ(a+ b− 1 + 2j − l)Γ(a+ b− 1 + 2k −m)

Γ(a+ j − l)Γ(a+ k −m)
.

Inserting (9) into (4) gives the semiparametric (SPJ) density. For normalization, d0 = 1.

Thus, the log-likelihood function for the SPJ model is:

L(ϕ2) =
PN

i=1

PT
t=1

£
logΓ(θit + yit)− logΓ(yit + 1)− logΓ(θit) + 1

T log(Ξ(θi., yi.))
¤
,

(10)

where ϕ2 = (β
0a b d1 ... dK)0 is the unknown parameter vector and Ξ(θi., yi.) is given in (9).

Since we have employed squared series expansion around beta distribution, the SPJ approach

nests the Negbin-Beta mixture model of Hausman et al. (1984). Thus, if d1, ..., dK = 0 in

(10), we obtain the log-likelihood function for the Negbin-beta panel data regression model.

In the application section, we use the Akaike information Criterion (AIC) to choose K.

As compared to the other models, the SPJ approach provides the most flexible specifications

for the conditional means, variances, and covariances.8 The approach is particularly useful

in cases where explanatory variables satisfy the strict exogeneity assumption.

7 Note that Ξ(θi., yi.) =
R 1
0
ξi
θi. (1− ξi)

yi. gN (ξ)dξi.

8 An appendix showing the first two moments of the standard panel count data and SPJ models is available
from the authors. Consistency results for series estimators are considered by Gallant and Nychka (1987) and
Gurmu et al. (1999)
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4 Empirical Specifications and Results

Using various individual effects count data models presented in the preceding section, we

explore the relationship between R&D investment and patents at the firm level. The de-

pendent variable that we take as an indicator of firms’ technological output is the number of

patents applied for by a particular firm in a given year that were eventually granted. The

main explanatory variables of interest are the logarithms of current and past values of R&D

expenditures in millions of 1983 dollars. Table 4 shows that lagged R&D expenditures are

highly correlated over time.9 The correlation between patent innovation and current or

lagged R&D investments (in logs) is moderately high, on average about 0.56. As a measure

of firm size, we use the logarithm of book value of capital in 1983 in millions of dollars as

a time-constant regressor. Another time-constant explanatory variable is a sector dummy,

which equals 1 for firms in the scientific sector. To control for year effects, estimated models

include year dummies as appropriate.

Starting from the general formulation in (1), the conditional mean in a distributed lag

model is specified as

E(patent it | logR&D it, ..., logR&D it−τ , wi,,w∗t , νi) = (11)

exp
¡
logR&D itβ1 + ...+ logR&D it−τβτ+1 + w iγ1 + w

∗
tγ2
¢
νi,

where wi is a vector of firm specific effects such as book value of capital and w∗t is a vector

of time-specific variables, year dummies. As long as the expected number of patents, con-

9 An additional evidence of the high correlation is given by the autoregressive structure of the log R&D
series. We have performed AR regressions and found that a random walk process can not be rejected. Neither
can an AR(2) process nor an AR(4) process, although estimated coefficients on the second, third and forth
lags are relatively small. Other studies have also noted such high correlation and the associated computational
problems; for instance, see Hall et al. (1986) and Cincera (1997).
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Figure 1: Frequency Distribution of Patents
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Note: The height of each bar gives number of firm-years corresponding to a given number of patents. The last 8 bars for the

number of patents [11, 1303] are based on data of unequal intervals with interval widths of 5, 15, 15, 25, 25, 250, 250, and 500.

Thus, the relative heights of the bars should be interpreted accordingly.

Table 4: Correlation Matrix

Patentit log R&Dit log R&Dit−1 log R&Dit−2 log R&Dit−3
log R&Dit 0.561
log R&Dit−1 0.563 0.993
log R&Dit−2 0.563 0.983 0.992
log R&Dit−3 0.561 0.972 0.982 0.991
log R&Dit−4 0.560 0.960 0.971 0.981 0.992
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ditional on observables, is a scalar-multiple of the exponential mean form, the coefficient

on logR&D it−τ is an elasticity of patent innovation with respect to R&D investment. The

specification in (11) provides the framework for estimation of distributed lag model using

fixed effects or random effects formulations outlined in section 3.

The GMM estimation method described in section 3.2. employ quasi-differencing condi-

tions to eliminate fixed effect problems. Consequently, parameters on time-constant factors,

such as the sectoral dummy and book value of capital in wi, are not identified in LFM

and related models. However, as noted by Wooldridge (1997), parameters on the interac-

tion terms between time-varying and time-invariant regressors can be estimated. In the

implementation of the GMM approach on distributed lag model, the regressors in xit include

logR&D it, ..., logR&D it−τ as well as the year dummies, say wt, that are constant across firms.

The GMM estimator applied to the distributed lag model uses the instruments

zit =
¡
1, logR&D it−(τ+1), ..., logR&D i1, wt

¢
.

Alternatively, following Cincera (1997) and Crépon and Duguet (1997), we include additional

instruments which result in restricted serial correlation. This involves adding past values of

the dependent variable to the set of instruments zit, resulting in

z1it =
³
1, logR&D it−(τ+1), ..., logR&D i1, patent it−(τ+2), ..., patent i1, wt

´
The mean function underlying the estimation of the dynamic model emanating from (7) is

patent it−1ω1 + ...+ patent it−κωκ + exp (logR&D itβ1 + wtγ2) . (12)
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The ensuing GMM estimator10 uses the instruments

z2it =
³
1, patent it−(κ+1), ..., patent i1, logR&D it−1, ..., logR&D i1, wt

´
.

The GEE approach adopts the exponential mean regression form (11) with assumed ser-

ial correlation structure. The results reported below are based on autoregressive correlation

model of order 1, AR(1). The dispersion and correlation parameters in the weighting matrix

are estimated iteratively using Pearson residuals. Finally, the semiparametric approach pro-

posed in subsection 3.3 is implemented based on specification (11), and provides estimates

of the all unknown parameters (β1, ..., βτ+1, γ1, γ2), along the estimates of the dispersion

parameter and parameters in the series expansion.

Next, we estimate the empirical models that have been just described. The main results

from the 8 models are given in Table 5. Although we have estimated patent equations with

varying lags of log R&D and number of patents, only the preferred results with 3 or 4 lags are

reported. If the coefficients on log R&D beyond lag 3 are insignificant at the 10% level, we

simply report results from distributed lag specification of order 3. Comparisons of models are

facilitated using the log-likelihood value, AIC, test statistics for overidentifying restrictions

and serial correlation, and sum of the log R&D coefficients as appropriate.

The first four columns of Table 5 give results from standard Poisson and Negbin individual

effects models. As compared to Poisson estimates, model comparison based on AIC favors

the Negbin versions as expected. The Poisson-based estimate of the elasticity of patenting

with respect R&D expenditure is about 0.65. In contrast, the elasticity estimates from the

10 The Gauss code for the GMM estimator for the LFM model is obtained from Windmeijer (2002).
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Table 5: Estimates of Knowledge Production Function from Various Models
Dependent Variable: Number of Patents Granted

(1) (2) (3) (4)
Variable Conditional Conditional Poisson- Negbin-

Poisson Negbin Gamma Beta
log R&Dt 0.408 (14.96)a 0.257 (4.77) 0.408 (15.21) 0.289 (5.53)
log R&Dt−1 0.157 (4.48) 0.179 (2.46) 0.156 (4.45) 0.181 (2.52)
log R&Dt−2 -0.006 (0.17) -0.022 (0.30) -0.006 (0.18) -0.010 (0.14)
log R&Dt−3 0.022 (0.64) -0.016 (0.31) 0.021 (0.61) 0.001 (0.01)
log R&Dt−4 0.068 (2.67) 0.067 (2.64)

Sum of log R&D - 0.649 0.399 0.645 0.460
Elasticity

Patentt−1
Patentt−2
Patentt−3
Patentt−4

Sum of Patent

- Log-likelihood 8026.9 6198.6 10126.3 8379.0
AIC 16075.8 12423.2 20282.5 16788.0
GMM J-Statistics
and [P-values]
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Table 5 (Continued)

(5) (6) (7) (8)
Variable Semiparametric GEE with Serial GMM GMM

SPJ (K = 2) Correlation Ic IId

log R&Dt 0.289 (5.52) 0.308 (4.12) 0.687 (4.00) 0.542 (13.19)
log R&Dt−1 0.181 (2.51) 0.220 (2.70) -0.215 (0.98)
log R&Dt−2 -0.011 (0.15) 0.066 (0.77) 0.322 (1.76)
log R&Dt−3 -0.001 (0.02) 0.075 (0.97) 0.194 (1.01)
log R&Dt−4 -0.478 (2.54)

Sum of log R&D - 0.459 0.669 0.511 0.542
Elasticity

Patentt−1 0.054 (0.84)
Patentt−2 0.143 (2.17)
Patentt−3 0.051 (0.84)
Patentt−4 0.085 (1.98)

Sum of Patent 0.333

- Log-likelihood 8371.6
AIC 16777.3
GMM J-Statistics 36.1 66.9
and [P-values] [0.278] [0.281]
m1[P-values] -3.63 [0.001] -2.92 [0.004]
m2 [P-values] 0.08 [0.937] -0.59 [0.555]
a Absolute value of t-statistic.
b All models include year dummies and, except for fixed effects models, book value of capital and
scientific sector dummy.
c Two-step quasi-differenced GMM estimator using z1it as instruments.
d Two-step quasi-differenced GMM (LFM) estimator using z2it as instruments.
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conditional Negbin and Negbin-Beta are much smaller, 0.40 and 0.46, respectively, and less

precise, something expected given that the Negbin specification allows for an additional

source of variance. These estimates are, in general, slightly larger than the ones based on

1970’s data. For example, focusing on the fixed-effect models, which Hausman et al. (1984)

find statistically preferred to the random-effects ones, these last authors find an elasticity of

0.43 and 0.38 for the conditional Poisson and conditional Negbin models, respectively. Hall

et al. (1986) estimate the conditional Negbin model, and obtain 0.38 and 0.33 depending on

the sample.

Our results also differ from theirs regarding the lag structure. Hausman et al. (1984)

find a U-shaped lag structure with significant positive coefficients for t and t− 5 for Poisson

and Negbin random (uncorrelated) effects models, but only a contemporaneous relationship

in their conditional fixed-effects version. Hall et al. (1986) also find only a significant

contemporaneous relationship between patents and R&D with the conditional Negbin model.

Quite the contrary, we obtain U-shaped lag structures in both random- and fixed-effects

Poisson-based models with significant positive coefficients for t, t−1 and t−4, and no evidence

of it in the Negbin-based estimates. More important, in all models, the coefficients on

contemporaneous as well as first-lag log R&D are positive and highly significant. In addition,

the contribution of lagged R&D to current patenting activity is larger in our data set. In

particular, focusing again in fixed-effect models, the conditional Poisson and conditional

Negbin provide lagged-R&D contributions of 0.12 and −0.03 in Hausman et al. (1986),

respectively; whereas these numbers in our case become 0.24 and 0.14. Both numbers are
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also bigger than the 0.05 found by Hall et al. (1986) for the conditional Negbin.11

Selected results from the semiparametric and moment-based estimators are given in

columns 5 through 8 of Table 5. In terms of AIC, the semiparametric model dominates

the likelihood-based mixture models, including the Negbin-Beta model which is nested in

SPJ. However, the parameter estimates from the SPJ model are largely consistent with

those obtained from the Negbin-Beta model. These random effects settings rely on the as-

sumption that R&D expenditure variables in the patent equation are strictly exogenous. The

GMM estimators considered in the last two columns of Table 5 relax the strict exogeneity

condition. All GMM results are based on two-step estimation. For GMM results, m1 and m2

are the Arellano and Bond (1991) tests for first and second order serial correlation.12 The

GMM chi-square statistics for overidentifying restrictions and the tests for serial correlation

all show that there is no clear evidence of misspecification.

The results from the three distributed lag models show that elasticity varies from 0.46

for SPJ model to 0.67 for the GEE model, with quasi-differenced GMM estimate of elasticity

lying in-between. For the LFM, the estimated elasticity is about 0.54, ignoring feedback.

Consistent with previous studies, the contemporaneous partial effects of R&D on patenting

are strong in all cases. The lag effects of R&D are smaller and, focusing on SPJ and GMM

I results, the estimated overall lag effect is on the order of 0.17. Significantly positive effects

of R&D occur at lag one for SPJ and at lag two for GMM I, but in the latter case negative

and significant impact is found at lag four.

11 Montalvo (1997) estimates the conditional Poisson model for Hall et al.’s (1986) 346-firm sample. He finds
a U-shaped lag structure with significant positive coefficients for t and t− 3, and a lagged-R&D contribution
of −0.01.
12 The tests are asymptotically normally distributed. See Windmeijer (2002) for discussion of how the

tests apply to the Chamberlain and Wooldridge residuals.
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Given the last somewhat awkward result from GMM I, we feel it necessary to carry out

a more detailed exploration with this technique, which we present in an appendix available

from the authors. While the trade-off between contemporaneous and lag effects vary, the

elasticity of current year’s patenting with regard to R&D history is always estimated to be

about 0.17, irrespective of the lag length. These results provide evidence that the impacts of

R&D on patenting occur at an early stage of the R&D sequence. When we include additional

lags the contribution of past R&D flips its sign and becomes negative. The analysis shows

that, with 3 lags of R&D, significantly positive coefficients for contemporaneous and two-lags

R&D, an elasticity with respect to R&D of 0.55, and a contribution of past R&D of 0.18.

The total effect is similar to the one obtained with the HGH data, but the lag effect is larger.

In particular, Montalvo (1997) applies GMM to the HGH data and obtains an elasticity of

0.56, and a lag effect of 0.15.

Results from the dynamic specification reported in the last column of Table 5 and in

an appendix (not given) show that the feedback effects of past patents on current patents

are positive and significant at higher lags, but the results are sensitive to the number of

lags included in the model. For the specification with four lags of the patent variable,

the estimated overall effect is 0.33. When only one-period lag of patents is included, the

coefficient on lagged dependent variable is insignificant, whereas the coefficient on log R&D

is positive and highly significant.13 In our specification of the LFM with κ = 1, the implied

13 In contrast, using HGH data and LFM esitmated by quasi-differencing approach with just one-period lag
of patent included, Blundell et al. (2002) found puzzling results that the coefficient on lagged patent variable
is negative, while the coefficient on log R&D is positive but insignificant. The authors attribute these results
to a weak instruments problem due to persistence in both patents and R&D series. Our analysis, which uses
data over longer horizon with the implied larger instrument set, shows that results from the dynamic feedback
model are plausible.
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long run elasticity of patents with respect to R&D is about 0.59. Our analysis presented

in appendix also shows that, although the magnitudes decline as more lagged values of the

patent variable are added, the effects of log R&D on current year’s patent generation remains

positive and highly significant, even when we control for higher order lagged values of the

dependent variable. We conclude that the results for LFM are largely consistent with the

estimates obtained from GMM using distributed lag specifications.

5 Conclusions

This paper has investigated the impact of research and development and patent history on

current patent activity using a firm level panel data set for the U.S. manufacturing sector

from 1982 to 1992. The paper has also proposed a series estimator for count panel data

models that generalizes the well-known Negbin-Beta mixture model. In addition, to address

different unique features of patent and R&D data, we have estimated various distributed lag

and dynamic count panel data models.

The empirical analyses show that, although results are somewhat sensitive to different

estimation methods, the contemporaneous relationship between patenting and R&D expen-

ditures continues to be rather strong, accounting for over 60% of the total R&D elasticity.

This conclusion is largely consistent with findings of previous studies. For most of the spec-

ifications, the overall R&D elasticity of patents varies from 0.4 to 0.7 suggesting decreasing

returns to scale. This estimated elasticity is in most cases similar to the one obtained using

the well-known 1970’s HGH data. Our results differ mainly from the ones obtained with the

HGH data regarding the lag structure of the patents-R&D relationship. In particular, unlike

with the HGH data, we find the first or the second R&D lag, along with the contemporaneous
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effect, significant in all distributed lag specifications using flexible methods, with an associ-

ated coefficient whose value is approximately one-half of the contemporaneous patents-R&D

elasticity. Moreover, while the trade-off between contemporaneous and lag effects vary, the

elasticity of current year’s patenting with respect to R&D history is estimated to be about

0.17, irrespective of the lag length. The lag effects are, therefore, moderately higher than

have previously been found. Finally, results from linear feedback model are largely consis-

tent with the estimates obtained from distributed lag specifications, and show that feedback

effects of past patents on current patenting activity are positive and significant. All these

results provide evidence that the impacts of R&D on patenting occur at an early stage of

the R&D sequence.

In sum, comparing patenting activity in the U.S. manufacturing sector during the 1970s

and the 1980s, we find that the overall long-run effect of R&D investment has not decreased

over time, and that R&D history played a more important role during the 1980s than during

the 1970s. The results could be interpreted as giving some additional support to studies,

such as Hall (1993), that point out to a lower return to industrial R&D during the 1980s,

because we find that gestation lags in knowledge production may have increased. On the

other hand, if we take into account the 1980’s R&D tax credit that generated incentives for

firms to classify business costs as R&D expenditures (see also Hall, 1993), it is surprising

that the average number of patents obtained for each dollar of R&D-classified investment

has not declined, and our results are consistent with a more productive R&D activity. In

fact, a larger contribution of R&D lags could certainly be due to a more time consuming

R&D process, as well as a stronger dependence of current patenting on past successful R&D
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investment. Discriminating among these different interpretations is, we believe, an interesting

and challenging task that we leave for future research.
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