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FIRST-BEST, SECOND-BEST AND PRINCIPAL-AGENT PROBLEMS

Javier Lépez Cuiiat and Jose A. Silva Reus

ABSTRACT

In some pure moral hazard situations the principal can implement a
first-best allocation using an incentive contract constructed on the basis of
a first-best payment scheme. Such a contract relies on the possibility of
discriminate actions according to the outcome by imposing a penalty whenever
the observed outcome is lower than the admissible ones. The elimination of
inefficient behavior depends basically on the outcome function, and we find
that the fine is finite in the more interesting cases. The implementation of
the first-best solution does not depend on the principal’s risk neutrality.
Nevertheless, when the principal is risk neutral, the efficient contract is
dichotomous. Moreover, we prove that the efficient allocation can be reached
through such a dichotomous payment scheme if and only if the principal is

risk neutral for a certain range of returns.




1.Introduction

In some pure moral hazard situations, under asymmetric information,
first-best allocations can be achieved. This occurs, for example, when the
principal is able to observe the agent’s action, when the state of the nature
is ex-post verifiable or when the agent is risk neutral (See Harris-Raviv
(1979), Shavell (1979)).In other cases, the agency relationship is efficient
if the principal uses a dichotomous contract. This situation has been
discussed by Mirrlees (1974), Harris-Raviv (1978), Singh (1983), and
Brown-Miller-Thornton (1987). The latter two analyze a principal-agent model
with a risk neutral principal and an agent’s additively separable utility
function. Nevertheless, assumptions on the random variable make differences
in their models. Singh (1983) assumes an exogenous random environment with a
finite number of states, whereas in Brown-Miller-Thornton (1987) an outcome

density function exists which is parameterized by the agent’s action.

The aim of this paper is to identify conditions which guarantee the
achievement of the first-best allocation, in a state-space formulation of the
principal-agent problem, without assuming that this state-space is finite,
that the agent’s utility function is separable and that the principal is risk

neutral.

When the principal’s preferences exhibit risk neutrality the efficient
contract is dichotomous. However a first-best allocation can be achieved by
means of such a dichotomous contract if and only if the principal is risk

neutral for returns in a certain interval.

In Section 2, we describe our model. In Section 3, we obtain some
conditions under which a first-best allocation can be achieved by
constructing an incentive mechanism based on the first best payment rule. The
implementation of a first-best allocation using a dichotomous contract is
analyzed in Section 4. Finally, Section 5 contains our remarks and

conclusions.




2.The model

In this paper we formulate the principal-agent relationshipin a
state-space way. The agent chooses his action in the set A=[0, k], where k €
R. The state of the system 6 is a random variable, with distribution function
F(8) and compact support denoted by @ = [(_3,5] < R. The realization of the
state occurs after the agent makes his choice. We will assume F to be

continuously differentiable almost everywhere.

The action a € A and the system’s state 8 € R jointly determine an
outcome x=X(a,0) which we assume to be verifiable. The function X is assumed
to be C' with Xa> 0' (Therefore a can be interpreted as effort). We will also
assume X to be finitely oscillating, i.e. X has a finite number of maximum

and minimum points.
Since A and © are compact sets, the following values are well defined

x(a) = min X(a,0) , x(a) = max X(a,0) , for all a € A
0 €0 0 € B

x = min X(a,08) , X = max X(a,0)
° (a,0) € Ax® (a,0) € Ax®

Then, for all a € A x(a), x(a) € [XO’XI]

Let W(x-s) denote the principal’s utility function. The agent’s utility
function is represented by U(s,a), s being the payment received by the agent.

We will assume
W e C% with W >0, W’ =<0
Uec’ withU>0, U <0, U <0
s SS a

1
For the functions with several arguments, subscripts denote partial

derivatives as regards respective argument. For functions with only one

argument the derivatives are denoted by




Let s = S(x) denote the part of x received by the agent. The contract S
is agreed before both the agent takes action and 6 is realized. The contracts

are measurable functions for which the following expectations exist:?
EU(S,a)=E{ U( S(X(a,0)) , a) }
EW(S,a)=E{ W( X(a,08) - S(X(a,0))) }

It is assumed that the agent will accept every contract, giving him an

expected utility greater than or equal to U (his reservation utility).

If the agent’s action is verifiable, the principal can impose a penalty
when he observes an undesirable action. In this symmetric information case,

the principal will solve the program FB below.

max EW(S,a)
a,S(x)

(FB) s.t.:

EU(S,a) = U

A solution of such a program will be referred to as a first-best solution.

Let v(FB) denote the optimal value of FB.

If the agent’s action 1is not observable (asymmetric

information case), the principal must solve the program SB below.

max EW(S,a)
a,S(x)
(SB) s.t.:
EU(S,a) =z U [1]

a € Arg max EU(S,e)
[2]
- e€A

E(.} denotes the expectation operator according to the probability
distribution of 6.




Condition [2] is the incentive compatibiliyy constraint.

We will call a solution of SB second-best solution. Let v{(SB) denote the

optimal value of SB.

Obviously, v(FB) = v(SB), and in many cases the equality is not achieved
(see Shavell (1979), Holmstrém (1979) ). However, if the agent is risk
neutral then v(FB) = v(SB) (see, for instance, Harris & Raviv (1979)).
Another situation, where second best contracts are efficient, occurs when the
state of nature is ex-post verifiable (see Harris-Raviv 1978). However, in
some not-so-extreme cases, the first-best is also implementable under
conditions on the production technology and the principal and agent’s utility
functions. Singh (1983) and Brown-Miller-Thornton (1987) are two examples of
such a situation in which the principal is assumed to be risk, neutral and

the agent’s utility function to be additively separable.

The aim of this paper is to determine conditions which guarentee the
existence of a contract such that v(FB)=v(SB), using a more general framework

than the one analyzed in previous literature.

We will assume that a first-best solution (S*,a*) exists such that S* e X,

a* € int A, where X is the following normed linear space :
_ . S I
X—(S.[xo,xll——ﬂR/SlsC m[xo,xl]}

Using the Fréchet derivative of functionals EU and EW and the generalized
Kuhn-Tucker Theorem (see Luenberger (1969)), we obtain the necessary

conditions on (S* a*), such as
(NC1) AM EU(S*a*) -U)Y=0 (a20)
(NC2) W’( X(a*,8)-S*(X(a*,0)) ) = A Us( S*(X(a*,8)) , a*) for B such

that F is discontinuous at @ ( the probability of 6 is positive ) or 3

F’(8)>0 (a positive density function exists at 6 )




Therefore, EU(S*,a*)=U holds. (P1)

When F admits a positive density function in ®, by (NC2) the following

is true
0 =S¥(x) <1, Vx e [x(a*x(a¥)] (P2)

Otherwise S* is not completely characterized in [x(a*), x(a*)]. However, we
will assume (P2) to always be true, because S* is not completely

characterized by the necessary condition (NC2) of program FB.®

By (P2), the following property holds.

o < -3 EU(S*,a%) < 0 (P3)

da

If (P3) holds, any small desviation of the agent’s action regardig to the

first-best action a* will imply that the agent’s expected utility decreases.

We will use (S*,a*) to construct the optimal contract.

Under some conditions on U and w (for instance when  they exhibit the
property of the absolute risk aversion constant (CARA) ) and assuming the
existence of a first-best solution, a continuously differentiable first-best
contract can be obtained. This contract will satisfy (P2). The property (P2)
is used in the proof of Proposition 1.




3. A second-best solution with first-best value.

A way to force the agent to take an action (effort) greater than or
equal to a* is to offer a contract which penalizes any outcome that signals
without error that the effort made is lower than the efficient one. If this
is possible, the outcome x can be interpreted as a signal that allows to
distinguish the agent’s individual actions. As it is assumed that Xa>0, we
can get the former. We are sure that the agent has taken an action less than

a* when we observe an outcome less than x(a*) (See figure 1).

x for a > a*

X(a*,0)

x for a < a¥
x(a*)

Figure 1

We propose the following contract®
[ S* (x(a*))(x-x(a*)) + S*(x(a*)) i X = x(a*).

S(x)= | S*x) s x(a¥)= x = X(a*) [3]

L m s X< x(a*).

4 N ~
If S* is constant, the contract S becomes dichotomous. Therefore S has as a

particular case the payment rule proposed by Singh (1983).
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The nature of the contract S, for outcomes greater than x(a*), makes
good use of the optimal properties of S*, discouraging the agent to take
actions greater than a*. On the other hand, the fine m will avoid actions

lower than a* from being preferred by the agent.

Notice that S is continuously differentiable except at point x = x(a*).

Moreover by Pl and P2, for every m, it follows that
S'(x) € [0,1] V¥V x = x(a¥)
EU(S,a*) = EU(S*,a*) = U
EW(S,a*) = EW(S*,a*) = v(FB)

If we select m such that (S,a*) is a feasible point of program SB ,then
we have EW(S,a*) = v(SB) = v(FB). In the rest of this section we will obtain
and analyze the conditions which guarantee the fact that (S,a*) is a feasible
point of SB. These conditions must imply that, for some contract such as S,
the agent prefers the first-best action a* to both greater and lower actions.
We assume the hypotheses presented in Section 2.

Under contract S, for every m, the agent prefers a* to greater actions.

Lemma 1. For all a > a* EU(S,a) < U = EU (S,ax).

Proof:o Assume that 3 a > a* such that EU(S,a) = U .

Let us consider the following contract

11




[ S* (x(a*))(x-x(a*)) + S*¥x(a*)) ; x = x(a*).

Sx)= | S*(x) ; x(a¥)= x = x(a¥)

- S*¥ (x(a¥))(x-x(a*)) + S*(x(a*)) ; x = x(a*).

By construction S € X and S’(x) € [0,1[ for all x (See P2).
Since a > a* and Xa > 0 it follows that
X(a,0) > X(a*,8) = x(a*) for all 6 € @.
Consequently, EU(S,a) = EU(S,a) = U and then (S,a) is a feasible point of
program FB.
On the other hand we have that
EW(S,a)-EW(S*,a*) = EW(S,a)-EW(S,a*) =

= E{ W(X(a,0)-5(X(a,0))) - W(X(a*,0)-S(X(a*,0)))}

By the mean value Theorem,

vV 8, 3 y(8) between X(a,0)-S(X(a,0)) and X(a*,8)-S(X(a,8)) such that

EW(S,a)-EW(S*,a*)=
=E{ W’ ((0)).[X(a,0)-X(a*0) + S(X(a*,08)) - S(X(a,0))] }

But also, V 68, 3 ¢(8) between X(a*,8) and X(a,8) such that

EW(S,a)-EW(S*,a*)=
=F{ W’(w(e)).[X(é,e)—X(a*,e)].[1—§’(q>(e))] }

Since W’>0, X(a,0) > X(a*,0) V 6 and 1-S(x) > 0 V X, we conclude that

EW(S,a) > EW(S*a*) is impossible because (S*,a*) is a first-best solution.m

12




Therefore, if the principal wishes the agent to take a* under the
contract S, he must select m such that Va<a* EU(S,a)<U. The existence of
such an m is associated with the existence of a value C that we will

interpret as a penalty on utilities.
For every a<a*, we define
A(a)={ 6 € B / X(a,08) = x(a*) }
the set of states generating outcomes greater than x(a*);
p(a)=Pr( X(a,0) < x(a*) )

the probability of observing an outcome lower than x(a*) if the agent’s

effort is a; and

H(a)=J U( é(X(a,G)), a) dF(e) =J U( S*(X(a,0)), a) dF(e)
A(a) A(a)

the agent’s expected utility, conditional to a, over the set of outcomes

above x(a*).

A necessary condition for the existence of m such that the agent prefers
the first-best action a* to lower actions, under the contract S, is that the

supreme

C = sup _____H(a) - U
ael0,ax[ p(a)

. 5
exists.

The result proved in the appendix is the following

Proposition 1. If 3 m € R such that V a < a¥ EU(S,a) < U then C exist.

13




Let us discuss this condition. If the supreme C exists then it follows

that H(a) = U + C.p(a) Va<a*. Therefore

E{U( S*(X(a,0)), a) / x = x(a*)}.(1-p(a))-C.p(a) = U Va<a* [4]

~

Under the contract S, the agent always obtains an expected utility of U
taking the action a*. We can interpret C as a penalty on utilities imposed by
the principal when he observes x < x(a*). The inequality [4] indicates that

the agent will never deceive the principal by taking a < a*.

If the penalty C is represented by a payoff m, then the principal forces
the agent to choose the efficient effort by means of the contract S. The

following result provides a sufficient condition.
Lemma 2. Assume that

JC = sup H_(a.l.:__g [5]

ael0, a*[ p(a)

dmeR/UmO0) =-C
then the contract S in [3] is such that

a* € argmax EU(S,a)
aci

Moreover a* is the unique maximizer of EU(S,a) if the supreme C is not

achieved at a=0.
Proof: See Appendix.
C always exists, at least in non-degenerated cases. We will use the

following results to obtain conditions guaranteeing the existence of C.

Beforehand, we give some definitions.

14




Let R*={ 8 € ® / X(a*,8) = x(a*) } be the set of minimum points of the
function X(a*,8). Since X(a,8) is finitely oscillating, the set R* is a
finite union of isolated points and/or closed intervals. A particular case is

represented in Figure 2.

X(a*,0)

x for a < a*

x(a¥)

Figure 2

We will prove that each one of the following conditions implies the fact

that C exists.
(C1) F is discontinuous at some point of R*
(C2) 36*ecR*/FisC ina neighborhood of 6* with F’(8) > O

Lemma 3. Under (C2),

p(a) - p(a*)
pl(ax) = lim <0
a—-a%¥~ a - a¥

Proof: See Appendix.
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Lemma 4. Let Q={(x,y) e R® / csy =d, a(y)s x = b(y) }where c,d € R and

a and b are real functions ¢t in [c , d] with a’ =0, b’ = 0.

Let f(x,y) be a continuous function in Q such that fy is also continuous in

Q.

Let « be a function of bounded variation such that it is continuous and

dif ferentiable on the left at a( yo), b( yo), where Y€ [c , dl.

b(y)
Let F(y) = F(x,y) do(x). Then
a(y) ‘
F(y) - FCy)  [b(y)
lim - ~ = fy(x,yo) doa(x) +
y— yo- y - yO a(yo)

+ f(b(yo),yo).oc_(b(yo)).b (yo) - f(a(yo),yo).(x_(a(yo)).a (yo)
Lemma 5. Fach one of the conditions (C1) and (C2) implies the existence of C.

Proof:n The function H(a)-U is bounded and continuous in [0 , a*[. The

function p(a) is upper semicontinuous and bounded in [0 , a*[.

Then, the value C exists if and only if

H(a) - U

3  lim e R (1)

a —->a*- p(a)

Let us suppose (Cl). Then it follows that

p(a) = Pr(R*) >0 V a < a*

and (1) is true.

Let us suppose (C2). Assume that F is continuous at every point in R¥.

In this case we cannot assure lim p(a) > O, but we have that
a—->a*-

16




H(a) - U _ H(a) - H(a*) pla) - p(a*)
p(a) a - a* a - a*

Moreover, by Lemma 3 p’(a*) < O. Therefore if we prove that

H(a) - H(a*) € R (2)

3 lim
a——a¥*- a - a¥*

(1) will be true.

Let us prove (2) when F is continuous at every point in R*. For a < a¥*,

being sufficiently close to a*, the set A(a) is a finite union of intervals

with the following forms
e, 6,)l , [6(a), 6(al , [6(a), 6]
where 91 and 62 are continuously differentiable functions such that

e’ <0, 0 >0, lim 6 (a) = 8% € R¥*, lim 6 (a) = 6* € R*
1 2 % 1 1 % 2 2
a —a*- a—->a*-

A particular case is represented in Figure 2.

Then, H(a) will be a finite addition of terms with the following forms

ez(a)
J U( S*(X(a,8)), a) dF(e)
6

ez(a)
J U( S*(X(a,0)), a) dF(e)
el(a)

17




0
J U( S*(X(a,0)), a) dF(8)
el(a)

Notice that , since F is continuous in R*, F is differentiable on the left in
® and F is a function of bounded variation ( F is a distribution function ),

Lemma 4 can be applied.

- *
By Lemma 4, lim H(a) H(a*) is a finite addition of terms with the

a —a*- a - a¥*

following forms

2
J %5 U( S*(X(a*,0)) , a* ) dF(e) + U( S*(X(a*,e’;)) , a*).F:(O;).e’Z(a*)
2]

2
J —gg U( S*(X(a*,0)) , a*) dF(8) + U( S*(X(a*‘,ez)) , a*).F:(e’;].eé(a*)-—
o*
1
-U( S*(X(a*‘,e’l“)) , a*).F:(e’:).e;(a*)
6

J —3—a U( S*(X(a*,8)) , a*) dF(e) - U( S*(X(a*‘,e’;)) , a*).Fi(ef).e;(a*)
9*

1

and then, (2) holds by P3. m

The following theorem summarizes the results in this section.

18




Theorem 1. Under (C1) or (C2), the contract S in [3] with

m € R/ U(m,0)=-C, where C = sup M € R

ael0,ax[ p(a)
is such that

The point (S,a*) is feasible for program SB, with value v(FB), and then
EW(S,a*) = v(SB) = v(FB).

Remarks.
1. In (C2) the assumption F’(6*) > O is indispensable. For instance if the
action set is A=[0 , 2], the outcome function is X(a,8) = a + 92, the agent’s
utility function is U(s,a)=-exp(l-s)-a, U=-2, the principal is risk neutral
and a*=l, for the state density function

f(6)=30> ; 0= 08 =1, f(6)=0 otherwise,
then we have that C=+cw.

2. In the principal-agent literature a usual assumption is that

lim_ U(s,a)=-o V aeA (s may be -w).
s —>s+

Under this assumption it is true that 3 m € R / U(m,0)=-C.

3. The results of this section are independent of the principal risk

aversion.

19




4. Efficiency of the second-best dichotomous contract

When the principal is risk neutral the contract S* of the previous
section becomes constant in [)_g(a*),)-((a*)] and then the contract S is
dichotomous:

s ; x z x(a¥)

S(x)= (6]
m ; x < x(a¥)

It may be asked whether or not a first-best allocation can be achieved
by means of the contract S in [6]; we will prove that it can if and only if .

W(x) is linear for x at a certain interval.

In this section we will consider a slightly more general case in which
Usss O (the agent may be not risk averse). We will obtain conditions under
which the agent will be forced to take the first-best action a* with a
dichotomous contract as [6] and thereafter we will analyze when the value of

such a contract coincides with v(FB).

Let S*(x) , a* € int A a first-best solution. In this case it is not

necessary for S* € X.

By particularizing Lemma 2 and Lemma 5, we obtain the following result.

20




Lemma 6. Under assumptions (C1), or (C2), if the contract

R s ; x =z x(a¥)
S(x)=
m ; x < x(a¥)
is such that
U(s,a®)=U -
U(s,a)-U

U(m,0) =U-d, where d= sup
ae[0,a%[ p(a)

then, a* is the unique maximizer of EU(S,a) with EU(S,a*)=U.

This result is true without assumming the concavity of U in s. The

existence of d is implicated by p’(a*) < O in Lemma 3.

The following result provides a necessary and sufficient condition for
the contract in proposition 4 to be simultaneously a first-best and
second-best solution.

Theorem 2. Under assumptions of Lemma 6.

EW(é,a*) = EW(S¥*¥,a*¥) (i.e. v(FB)=v(SB) ) if and only if

W(x) is linear in x e€[x(a%)-s , x(a%)-s].

Proof.o Since W is concave and smooth we have that
W(x-s )-W(x-S*(x)) = W (x-s ).[ S*(x)-s ]

Then, it follows that
0 z EW(S,a*)-EW(S*,a*)=E{ W(x-s )-W(x-S*(x)) } =

z E{ Wi(x-s ).[ S*(x)-s 1} (1)

21




where x=X(a*,0).
From the concavity of U in y, it follows that
U( E{S*(x)}, a*) = E{ U( S*(x), a*) } = U=U(s,a*)
Then E{ S*¥(x) } =z s (2)

If W is linear in [x(a*)-s , x(a*)-s] then W’(X(a*,8)-s) will be constant for

8 and from (1) and (2) it follows that EW(S*,a*)=EW(S,a*).
In order to prove sufficiency, suppose EW(S* a*)=EW(S,a*).
Let us consider the constant contract S(x)=s. Since
EW(S,a%)=EW(S,a*) and further EU(S,e*)=U(s,a*)=0,
the point (S,a*) is a first-best solution.

Consequently, (S,a*) will satisfy the optimum’s necessary conditions of

program FB, and therefore

-W(x-s )+7\Uy(s ,a*)=0

Al E{U(s ,a*)} - U 1=0, with x=X(a*,0)

Then, one obtains

A>0, U(s ,a*)=0, W’ (x-s )=AUy(s ,a*) Vx = x(a*,0)

This implies that W’(x-s) is constant for x = X(a*,0) and then, W(x) is

linear in [x(a*)-s , x(a*)-s].m

Note that [x(a*)-s , x(a*)-s] is the attainable principal’s return set

under contract S.
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5. Final remarks and conclusions.

In this paper we study the conditions which guarantee the implementation
of the first-best allocation in a principal-agent situation under asymmetric
information. Notice that, in our model, since X > O the outcome x=X(a,08) is a

a

random variable whose support changes with action.

Assuming that the outcome support is constant, any contract which
depends only on x can be dominated by a contract depending on x and a
verifiable independent random variable y whose density function changes with

action (see Holmstrdm (1979), Harris-Raviv (1979)).

In fact, in assuming a constant outcome support, one can use a contract
depending on x and on a random variable z, independent with x, whose support
[g(a),i(a)] is such that 2z’(a)>0, to achieve a first-best allocation. This
assertion can be proved with similar techniques to those used in this paper.

If W is linear the optimal contract S is dichotomous.

In the continuous case, when O is a continuous random variable with a
positive density function at some point in R*,the penalty C always exists.

This due to condition p’(a*) < O in Lemma 3.

This condition can be interpreted in a way which helps to generalize and
clarify the result in Brown-Miller-Thornton (1987). They assume an outcome’s
density function f(x;a), with distribution function F(x;a), such that
x’(a)>0, where x(a) is the support lowest point of F(x;a). They also assume
that the agent’s utility function is additively separable i.e. G(s)-V(a) with
G’>0, G’’<0, V’>0, and the principal is risk neutral. In this case, if -V’(a)
/ Fa()_C(a*);a) is bounded from above then a first-best allocation can be

achieved.

The preceding condition implies p’(a*)<0 if, in our model, we assume
that F(x;a)=Pr( X(a,8) = x ) allows for a density function f(x;a). In fact,
f(x(a*);a*)>0 and x’(a*)>0 both implys the existence of C in the continuous

case.
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Finally, let us summarize the results of this paper.

In some pure moral hazard situations, a first-best allocation can be

achieved.

In our model, the outcome is a function of the agent’s action and the
random state. Because of this, the principal is able to force the agent’s
decision by means of a contract constructed via a first-best solution. By
offering such a contract, actions can be discriminated according to the

outcome.

In practice, the payment rules we analyze are , in terms of utility,
such that the principal always pays the agent his reservation utility, but
imposes a penalty when he observes a less-than-desirable outcome. The
existence of the penalty depends basically on the outcome function. Such a
mechanism provides an efficient outcome even if the principal is risk

adverse.

When the principal is risk neutral, the efficient contract is
dichotomous. However, we prove that a first-best allocation can be achieved
through such a dichotomous contract if and only if the principal is risk

neutral for returns in a specific interval.
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APPENDIX

Proof of Proposition 1.

o V a<a* we have that EU(é,a) = JU(g(X(a,GJ drF(e) + p(a)U(m,a) =
A(a)

= H(a) + p(a)U(m,a) < U. Then

H(a)-U
—— < -U(m,a) ¥ a € [0,a*[ and it follows that C exist.m

p(a)

Proof of Lemma 2.
o From Lemma 1 it follows that Va>a* EU(§,a)< U = EU(%,a*).
For a<a* we have that
EU(S,a) = H(a) + p(a)U(m,a) = H(a) + p(a)U(m,0) = H(a)-p(a)C =

H(a)-U
= H(a) - p(a) —

— = U.m

p(a)
Proof of Lemma 3.

o Let us suppose that (C2) is true: 3 6*eR* such that F is c' in
neighborhood of 6%, with F’(6*) > 0.

Only three cases are possible:

Case 1.3 [6,61 c® / 6% € [6,6] c R¥
1’ 2 12

Case 2. 3IA 0 / Xe(a*‘,e) <0 V6 c]oe*n, 6%
JF) >0 Voeele*n, 6|

Case 3. 3I 0 / Xe(a*,e) >0 VY 6 e]e6*, o [
I F(e) >0 V 8 €] 6%, 0% [
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Assume that Case 1 holds.

Then, V a<a* X(a,8) < X(a*,0) V6 e [91,92]

It follows that p(a) = Pr( 915 6 = 62) = F(Bl)—F(BZ) >0 V a<a*.
Then p’(a*)=-w < O holds.

Assume that Case 2 is true.

Let {an} be a strictly increasing sequence with limit a*. It is true that
In / Yn=n 36€]0*n,6*[: X(a ,8)=x(a*)
For nzn let be 6 =max{ 6 € ]6*n, 6*[ / X(a ,0)=x(a¥) }
Since 9n< 6* v n=n it follows that
Voxn, o if 6 <6 <6* then X(a,6) < x(a¥)
and moreover {en}Te* for nzn .

This situation is represented in Figure 3.

X .
x(a*) X(a*,0)
X(a ,8)
n
(2] o* 6
n
Figure 3 (Case 2)
Then, V nzn pla) zPr(B6<6<8*)=
0 n n

=F(6%)-F(6 ) = F’(én).(e*—en) with én €le, 0%l

26




and we have that

pla ) _ e* -8
T — = F'(6) = V n=n 1)
a - a¥ " a - a*
n n
By Taylor’s Theorem it follows that
Vnzn daela,a*[, 30e€]6, 6%¥[ such that
0 n n n n

0 = X(a ,8 }-X(a*,6%) = X (a ,6 ).(a -a*) + X (a ,8 ).(6 -6%)
n’ n a n n n 6 n’ n n

This implies X(a,0)<O V nzn and
6 n’ n 0
8* - 0 X (a ,0)
n = a n n (2)
a - a* X (a,0)
n 6 n n
Since lim X (4 ,6 )=X (a*,6*) > 0 and lim X _(4 ,8 )=X _(a*,6%) = O
a n n a 6 n n (2]
n n
6* - o
from (2), it follows that lim ———= is a negative real number or is —cw.
n a - a*
n
p(an)
And from (1), it is true that lim —— < 0.
n an - a¥*

Since the sequence {an} is arbitrary , it follows that
p (a¥) < 0.

If Case 3 holds, a similar line of argument proves p’(a*)<0. This situation

is represented in Figure 4.m
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/’/X(a*,GJ
x(a*) 5 T,»-—X(an,e)

o* &)

Figure 4 (Case 3)
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