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Abstract 
This is the first paper to discuss the spark spread risk management using electricity and natural gas futures. We 
focus on three European markets in which the natural gas share in the fuel mix varies considerably: Germany, 
the United Kingdom, and the Netherlands. We find that spark spread returns are partially predictable, and 
consequently, the Ederington and Salas (2008) minimum variance hedging approach should be applied. 
Hedging the spark spread is more difficult than hedging electricity and natural gas price risks with individual 
futures contracts. Whereas spark spread risk reduction for monthly periods produces values of between 20.05 
and 48.90 per cent, electricity and natural gas individual hedges attain reductions ranging from 31.22 to 69.06 
per cent. Results should be of interest for agents in those markets in which natural gas is part of the fuel mix in 
the power generation system. 
 
Keywords: natural gas market, electricity market, futures contracts, forward contracts, spark spread, hedging 
ratio, seasonal effects.   
JEL Classification: G11, G13, L94, L95.     

Resumen 
En este documento se aborda por primera vez en la doctrina la gestión del riesgo del spark spread utilizando 
futuros sobre la electricidad y el gas natural. Se ha focalizado la atención en tres mercados europeos en los que 
la participación del gas natural en el mix de generación es muy diferente: Alemania, Reino Unido y Holanda. 
Un primer resultado es que las rentabilidades del spark spread son parcialmente predecibles y, en consecuencia, 
el enfoque de cobertura mínima varianza propuesto en Ederington y Salas (2008) debe ser aplicado. La 
cobertura del riesgo del spark spread resulta ser mucho más difícil que la cobertura individualizada del riesgo de 
precio de la electricidad y el gas natural con sus respectivos contratos de futuros. Mientras que la reducción del 
riesgo alcanzada para el spark spread para coberturas mensuales obtiene reducciones de riesgo de entre el 
21,22% y el 48,90%, las coberturas individualizadas de ambas commodities alcanzan reducciones de entre el 
31,22% y el 69,06%. Estos resultados son de interés para aquellos agentes en cuyos mercados en el gas natural 
forma parte del mix de generación eléctrico.   

Palabras clave: mercado del gas natural, mercado de la electricidad, contratos de futuro, contratos forward, 
spark spread, ratio de cobertura, efectos estacionales. 
Clasificación JEL: G11, G13, L94, L95.     
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1. Introduction 

The deregulation of energy markets initiated in the 1990s has led to competition and price 

uncertainty in many countries. In the case of a gas power plant this uncertainty is double because it 

sells electricity produced with the burning of gas. The spark spread can be defined as the gross 

profit margin earned by buying and burning natural gas to produce electricity. The size of this profit 

depends on energy prices and generator efficiency. The clean spark spread reduces the spark spread 

with the cost of emitting CO2 to the atmosphere. Further to the spark and clean spark spreads, the 

range of the energy and commodities spreads family is quite wide: quark (nuclear to electricity); 

dark (coal to electricity); clean dark (coal to electricity and CO2); crack (oil to gasoline and heating 

oil); and crunch (soy bean to soy oil and soy meal). In many cases, these spreads can be traded in a 

closed combination of futures contracts bought and sold in the market. Following Emery and Liu 

(2002), the spark spread became available when the NYMEX initiated trading in electricity futures 

in March 1996 and remained possible until 2002. However, in May 2002 electricity contracts on 

Nymex became over-the-counter (OTC), and so spark spreads had to also become OTC on 

NYMEX. Spark spreads have also started OTC trading in Europe. The spark spread forward curve 

is very important to energy industry planners as it provides a method for electricity producers to 

lock in generation profits. The forward curve of the spark spread and its average values can indicate 

to gas-fired generation companies how to maximise profits in their forward trading by choosing 

maturities with higher spreads. The spark spread can also help regulators monitor if electricity 

forward prices are directly influenced by gas prices, and in case of remarkable divergences, help 

reveal if a market anomaly has occurred (Capitan and Rodriguez, 2013).  

 

As Borovkova and Geman (2006) remarked, in the energy industry, inter-commodity spreads are as 

important as prices. In this paper, we deal with several important issues related to the joint risk 

management of electricity and natural gas prices. This is the first-time that spark spread risk hedge 

is discussed in the doctrine using financial futures. There are several papers on electricity and 



 5

natural gas price risk management, but no paper has attempted to simultaneously determine the 

optimal position in futures on electricity and natural gas to hedge spark spread risk (see for example 

Torró, 2011, and Martinez and Torró, 2016). We show that clean spark spread risk and spark spread 

risk are two indistinguishable variables for futures hedging purposes. Therefore, this paper looks for 

the simultaneous optimal futures hedging positions on electricity and natural gas that minimise the 

profit risk that CCGT plant managers face. Before this decision is made, a manager must be sure 

that the clean spark spread ensures a profit for the company. Hedging negative spark spreads with 

futures makes no sense. In fact, the spot price in the electricity market is determined by the 

intersection of the supply and demand curves at an auction in which the price for the 24 hours of the 

following day is settled. Power producers make their electricity offers according to their short-term 

marginal costs, principally fuel costs and CO2–costs. Offers are then sorted from lowest to highest, 

obtaining the merit order curve, that is, the electricity offer curve. As power producers from 

renewable sources offer electricity at nearly zero marginal costs, they are the first to enter the merit 

order, followed by nuclear energy, coal or gas (depending on the country, coal before gas for UK 

and Germany and gas for the Netherlands) and fuel oil plants.1 When electricity demand is low, the 

price setting units are coal power plants and in hours of high demand the price is set by gas units. 

CCGT plants would only make an offer and enter the merit order curve if the clean spark spread is 

positive and consequently profitable, otherwise they will remain mothballed. The CCGT plant profit 

would then depend on the days entering the merit order and the volume of electricity allocated in 

the auction. 

 

A common feature of natural gas and electricity prices is that spot price changes are partially 

predictable due to weather, demand, and storage level seasonalities.2 Our paper is also innovative in 

uncovering and considering the seasonal effects detected in the spark spread that makes its changes 

partially predictable. Ederington and Salas (2008) showed that in these cases the linear regression 

                                                            
1 See Sensfuß et al. (2008) and Cludius et al. (2014). 
2 See, for example, Koopman et al. (2007) and Martínez and Torró (2015) for electricity and natural gas prices, 
respectively.  
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hedging ratio estimate is inefficient, the riskiness of the spot position is overestimated, and the 

achievable risk reduction underestimated. We apply to the spark spread the methodology proposed 

by Ederington and Salas (2008) that overcomes these problems. In the Ederington and Salas (2008) 

framework the expected spot price changes are approximated using the information contained in the 

basis (futures price minus spot price). If futures prices are unbiased predictors of futures spot price, 

the basis will be a measure of the expected change in the spot price until maturity (Fama and 

French, 1987). 

 

In the last few decades the demand for natural gas in Europe has continuously increased, reducing 

the use of coal and oil products in the space heating and industrial sectors. From the 1990s onwards, 

the proliferation of combined-cycle gas turbine (CCGT) plants in Europe has reinforced the 

importance of gas as an energy source, especially in power generation. Nevertheless, the demand 

for natural gas in Europe has stopped growing since 2008 because of several simultaneous factors: 

(i) stagnant power demand after the economic crisis of 2008; (ii) the rising share of renewables in 

the energy mix as part of the transition to a low carbon economy; (iii) the arrival of cheap coal after 

the US shale gas production boom in 2009 put gas-fired plants at a disadvantage in the merit order; 

and (iv) the fall of CO2 allowance prices that exacerbated competition between natural gas and 

coal. Because of all these factors, CCGT plants have been operating mostly in peak periods (except 

in the UK and Italy where gas plants still run on base load). The future of natural gas in the long-run 

European power generation mix will improve as it provides backup for the intermittency of 

renewables, and the effects of emissions legislation, and the retirement of coal and nuclear capacity 

in the coming decades (see Honoré, 2014, for more details). In the International Energy Outlook for 

2016, an average increase of the 3.6% per year in natural gas consumption for power generation for 

the period 2020-2040 is projected for OECD Europe – this being the largest increase in the sector 

for any energy source (EIA, 2016). 
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Our empirical application has been applied to three European markets: the UK, the Netherlands, and 

Germany. These three markets have several important differences, especially notable because of the 

fuel mix in the power generation system and the shares of natural gas. Electricity generation in 

Germany had the following fuel mix in 2014: 10% natural gas; 45% coal; 15% nuclear; 21% 

renewables; 7% biofuels; and 2% other fuels (see IEA, 2014). The sharp increase in renewable 

capacity in Germany has lowered electricity prices and gas-fired plants must face negative spark 

spread. Furthermore, backup for the intermittency of renewables is mostly provided by flexible 

lignite plants. This situation has prompted several gas-fired plants to apply for closure. Electricity 

generation in UK had the following fuel mix in 2015: 30% natural gas; 22% coal; 21% nuclear; 

25% renewables; and 2% other fuels. Coal and gas-fired shares change each year, with some of the 

switching between the two reflecting fuel prices (see UK Government, 2016a). Gas power plants 

have a long-term role in the UK energy system by providing both flexibility and critical capacity, 

although utilisation is reducing over time (UK Government, 2016b). Electricity generation in the 

Netherlands had the following fuel mix in 2014: 50% natural gas; 31% coal; 4% nuclear; 10% 

renewables; and 5% other fuels (see IEA, 2014). The Dutch gas transfer facility has grown 

enormously in the past years, and is now the biggest on mainland Europe. The Title Transfer 

Facility is its virtual hub and whose price has become an important benchmark for gas transactions 

across continental Europe (see Honoré (2014)). Recently, an induced earthquake caused by the 

extraction of natural gas from the Groningen field has forced the Dutch government to reduce 

extraction volumes (since 2014) to avoid more severe quakes. Nevertheless, Dutch market prices 

continue to be the most important reference across continental Europe.  

 

The most insightful results obtained in the empirical experiment with the above three markets are: 

(i) the spark basis has an important predictive power explaining spot price changes (between 

19.83% and 54.14% for the base load spark spread and between 3.67% and 44.43% for the peak 

load spark spread).; (ii) we analyse five possible futures hedging strategies and find that no hedging 
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strategy clearly dominates the remaining strategies in all cases; (iii) results for Germany and the 

Netherlands are much better than results for the UK; (iv) the best performing monthly hedging 

strategies can produce risk reductions of between 20.05 and 48.90 for the spark spread; (v) 

individual monthly hedges of natural gas and electricity (base and peak load) produce higher risk 

reductions with values of between 31.22 and 69.06 per cent. 

 

Hedging the spark spread with futures implies a simultaneous hedge on electricity and natural gas 

prices using futures contracts in both assets. The existing literature on hedging natural gas price risk 

with futures shows that risk reductions above 80% are possible for hedging periods equal or longer 

than a month (see Ederington and Salas (2008) and Martínez and Torró (2015)). Nevertheless, 

hedging electricity price risk using futures is more difficult because it is a non-storable commodity. 

The lack of a cash-and-carry arbitrage mechanism produces a looser relationship between spot and 

futures prices, especially as futures maturity becomes more distant. In addition, electricity spot price 

behaviour has some well-known characteristics: jumps, positive skewness, very high volatility, 

mean-reversion, seasonalities, and heteroscedasticity (see, for example, Koopman et al. (2007) for 

daily frequency data in European markets). Both effects combined produce a lower than usual 

correlation between spot and futures prices, and might generate a poor performance when hedging 

spot price risk with futures contracts.3  Alexander et al. (2013) obtain a 70% of risk reduction when 

hedging the crack spread using NYMEX futures contracts on crude oil, gasoline and heating oil.  

Achieving such a high risk reduction seems much more difficult with the spark spread because it is 

much more unstable due to the lower correlation existing between natural gas and electricity 

compared to the correlations between oil, gasoline and heating oil.   

 

                                                            
3 For the California-Oregon-Border and Palo Verde futures traded at NYMEX Moulton (2005) obtains a risk reduction  
varying between -2% and 20% for daily hedges using monthly electricity futures. At the Nord Pool, Bystrom (2003) 
obtains risk reductions that range between 7% and 29% for weekly hedges. In Torró (2011), weekly spot price risk is 
hedged with weekly futures in the Nord Pool electricity market. It is shown that increasing the hedging period and 
closing futures positions near to its maturity may produce risk reductions over to 80%.  
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We structure the remainder of this article as follows. In Section 2, we present the minimum variance 

framework. In Section 3, we describe our data and some preliminary descriptive statistics. In 

Section 4 we carry out an empirical exercise. We offer conclusions in Section 5. 

 

2. The minimum variance hedge ratio  

 

Alexander et al. (2013) argue that the minimum variance (MV henceforth) framework has several 

advantages over optimal hedging (OH henceforth). OH is based on normality or mean-variance 

utility functions. These are unrealistic hypotheses. Furthermore, assuming futures prices are 

martingale, the high volatility in energy prices points to MV as the essential problem (see 

Alexander et al. 2013, page 699). Furthermore, Cotter and Hanly (2013) conclude that in the oil 

market the OH approach is not sufficiently different to warrant using a more complicated utility-

based approach as compared with the simpler MV. Cotter and Hanly (2010) estimate the time-

varying coefficient of relative risk aversion in energy markets by obtaining values between 0 and 

1.25 (quite low values compared to financial markets). Ex-ante and using a mean variance utility 

function with the average value of lambda (risk aversion parameter) makes MV the best performing 

strategy for weekly and monthly hedges and for long and short hedgers. Similarly, for the oil market 

and its refined products, Wang and Wu (2012) compare the effectiveness of several hedge ratio 

computation methodologies using the variance reduction and the utility obtained in a mean-variance 

utility function (using a degree of risk aversion of four). In both cases, the performance ranking of 

the hedge ratio computation methodologies is the same. Based on this evidence from the energy 

markets we use the MV framework. Below we describe the MV framework and the extension 

proposed in Ederington and Salas (2008).4   

  

                                                            
4 For an excellent revision on futures hedging see Lien and Tse (2002). 
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Let’s suppose a company buying natural gas and selling electricity produced in a CCGT plant. The 

spark spread, ܵ௧, of this company is defined as:  

 

ܵ௧ ൌ ܵ௧
௘ െ ܽܵ௧

௚ 

 

where ܵ௧
௘ is the spot price of the electricity, ܵ௧

௚, the spot price of the natural gas, and ܽ the 

conversion factor, considering the efficiency factor of the plant and homogenising energy and 

monetary units. This company is long in natural gas and short in electricity and will probably need 

to take short positions in natural gas futures/forward contracts and long positions in electricity 

futures/forward contracts to hedge the position in futures markets. The spark spread in the 

futures/forward markets is defined as:  

 

௧ܨ ൌ ௧ܨ
௘ െ ௧ܨܽ

௚ 

 

The spark spread in the futures/forwards markets can be explicitly traded as an individual contract 

or a specific position to take in each individual contract. In the most general case, let’s suppose that 

this company is committed to a given position in the spot market and wishes to reduce its price risk 

exposure taking at the same time ‘t’ positions in both forward/futures markets. The hedged 

company result per unit of spot at the end of the period, say, ‘t+1’, is calculated as follows: 

 

௧ାଵݔ ൌ Δܵ௧ െ ሺߚ௧
௘Δܨ௧

௘ െ ௧ߚܽ
௚Δܨ௧

௚ሻ                                                   (1) 

 

where xt+1 is the value variation between t and t+1, Δܵ௧ ൌ ܵ௧ାଵ െ ܵ௧ is the spark spread value 

variation; Δܨ௧
௘ ൌ ௧ାଵܨ

௘ െ ௧ܨ
௘ and Δܨ௧

௚ ൌ ௧ାଵܨ
௚ െ ௧ܨ

௚	are the futures value variations for electricity 

and natural gas, respectively; and ߚ௧
௘ and

 
௧ߚ
௚ are the corresponding hedging ratios. If ߚ௧

௘ is positive 

(negative), short (long) positions are taken in electricity futures market. If ߚ௧
௚ is positive (negative), 
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long (short) positions are taken in natural gas futures markets. The hedger will choose ߚ௧
௘ and

 
௧ߚ
௚ to 

minimise the risk associated with the random result xt+1. We use realized returns instead log returns 

because we agree with the Alexander et al. (2013) methodology on several points. These authors 

argue that "...for assets with prices that can jump, log returns can be highly inaccurate proxies for 

percentage returns even when measured at the daily frequency. Additionally, since the hedged 

portfolio can have zero value, even its percentage return may be undefined. Thus, our hedging 

analysis is based on profit and loss (P&L) rather than on log or percentage returns". A standard way 

to measure risk in economics is by the variance conditional on the available information, ߰௧. The 

risk of a hedge strategy is calculated as the variance of xt+1,  

 

௧ାଵ|߰௧ሿݔሾܴܣܸ ൌ Δܵ௧ൣܴܣܸ െ ሺߚ௧
௘Δܨ௧

௘ െ ௧ߚܽ
௚Δܨ௧

௚ሻ|߰௧൧																																					(2) 

 

A direct mathematical solution of this problem will lead us to minimize the function with respect to 

௧ߚ
௘ and ߚ௧

௚. The measure of obtained risk reduction will finish the experiment. Nevertheless, we will 

contemplate various options to obtain ߚ௧
௘ and ߚ௧

௚ and we will compare the risk reduction obtained in 

each case and obtain optimal option.  

 

To estimate these hedge ratios, a realistic methodology is to consider a conditional estimation using 

several econometric specifications modelling conditional second moments. The number of 

published papers modelling conditional covariance in energy markets has increased significantly in 

the last few years.5 The most widely used models are: (1) the VECH model proposed by Bollerslev 

et al. (1988); (2) the constant correlation model, CCORR, proposed by Bollerslev (1990); (3) the 

BEKK model of Engle and Kroner (1995) and (4) the dynamic conditional correlation or DCC of 

Engle (2002). Each model imposes different restrictions on the conditional covariance and can lead 

to substantially different conclusions in any application that involves forecasting conditional 

                                                            
5 See Behmiri et al. (2016), Efimova and Serletis (2014), Chang et al. (2011), Ji and Fan (2011), Wang and Wu (2012) 
and Alexander et al. (2013) 
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covariance matrices. Many studies introduce asymmetries in the second moments using the Glosten 

et al. (1993) approach. These specifications have also been used in multivariate variance modelling 

in energy prices. Chang et al. (2011) found that the diagonal version of the BEKK model beats the 

DCC model and other specifications in hedging effectiveness. Ji and Fan (2011) found that the DCC 

specification beats the remaining hedging alternatives. Wang and Wu (2012) obtain that simplified 

versions of the BEKK model (diagonal and scalar) had a better performance than the full BEKK, 

DCC, and CCORR. We have tested the above mentioned conditional variance models and many of 

its variants, but we decided to skip these results as the conclusions of the paper will remain 

unchanged. Estimated hedging ratios based on bivariate and tri-variate conditional covariance 

specifications obtained worse risk reductions to those hedging ratios estimated using simple linear 

regressions. These results agree with Alexander et al. (2013), Martinez and Torró (2015), and Torró 

(2011) for energy markets.  

 

Therefore, the methodology we propose to estimate the hedging ratios will be based on 

unconditional second moments based on the methodology proposed by Ederington (1979) and 

extended in Ederington and Salas (2008) to the case where spot price changes are partially 

predictable and futures prices are unbiased estimators of future spot prices. In this context, it is 

shown that the riskiness of the spot position is overestimated and the achievable risk reduction 

underestimated. Furthermore, as two commodities with respective futures contracts are considered 

there are several possibilities for estimating the hedging ratios in this framework. Specifically, the 

following cases are contemplated: 

௧ߚ .1
௘ and ߚ௧

௚ are jointly obtained. 

௧ߚ .2
௘ and ߚ௧

௚ are separately obtained in each market as independent problems. 

௧ߚ .3
௘ ൌ ௧ߚ

௚ ൌ  .௧, jointly obtained but restricted to be equalߚ

௧ߚ .4
௘ ൌ ௧ߚ

௚ ൌ 1, the naïve framework. 

௧ߚ .5
௘ ൌ ௧ߚ

௚ ൌ 0, the natural hedge. 
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Case 1. ߚ௧
௘ and ߚ௧

௚ are jointly obtained. 

The hedge ratios that minimise the variance in equation (2) can be obtained by solving the first 

order conditions. When an unconditional probability distribution is used, the hedging ratios in 

equation (2) can be estimated by ordinary least squares (OLS henceforth) from a linear relationship 

between spot and futures returns  

 

Δܵ௧ ൌ ߙ െ ௧ܨ௘Δߚ
௘ ൅ ௧ܨ௚Δߚܽ

௚ ൅ ݁௧                                           (3)  

 

This is the extension to the one future contract framework originally proposed in Ederington (1979). 

Correlation between natural gas and electricity may produce collinearity and hedge estimates with 

biased standard errors. 

 

Here, we present the Ederington and Salas (2008) framework adapted to this case by reformulating 

equations (1) and (2) to introduce the partial predictability of the spark spread return. Under this 

new approach, the unexpected result of the hedge in equation (1) can be reformulated as  

 

௧ାଵݔ ൌ ሺΔܵ௧ െ ሾΔܵ௧|߰௧ሿሻܧ െ ሺߚ௧
௘ᇱΔܨ௧

௘ െ ௧ߚܽ
௚ᇱΔܨ௧

௚ሻ                                             (4) 

 

The risk of the hedge strategy in equation (2) is reformulated as  

 

௧ାଵ|߰௧ሿݔሾܴܣܸ ൌ ሺΔܵ௧ൣܴܣܸ െ ሾΔܵ௧|߰௧ሿሻܧ െ ሺߚ௧
௘ᇱΔܨ௧

௘ െ ௧ߚܽ
௚ᇱΔܨ௧

௚ሻ|߰௧൧                                (5) 

 

Ederington and Salas (2008) propose using the basis (futures price minus spot price) at the 

beginning of the hedge as the information variable to approximate the expected spot price change. If 

futures prices are unbiased predictors of futures spot price, the basis will be a measure of the 

expected change in the spot price until maturity (Fama and French, 1987). An unconditional 



 14

estimate of the hedge ratio in equation (5) can be obtained by estimating the following linear 

regression using OLS 

 

Δܵ௧ ൌ ߙ െ ௧ܨ௘ᇱΔߚ
௘ ൅ ௧ܨ௚ᇱΔߚܽ

௚ ൅ ௧ܨሺߣ െ ܵ௧ሻ ൅ ݁௧                                   (6)  

 

where ߣሺܨ௧ െ ܵ௧ሻ is used to estimate ܧሾ∆ܵ௧ାଵ|߰௧ሿ. Ederington and Salas (2008) show that OLS 

estimation of equation (6) produces an unbiased and more efficient estimation of the unconditional 

minimum variance hedge ratio than that obtained by using equation (3). This is true providing the 

expected change in the spot price is perfectly approximated with the product between the basis at 

the beginning of the hedge and its estimated coefficient (namely	ߣመሺܨ௧ െ ܵ௧ሻ ൌ   .(ሾ∆ܵ௧ାଵ|߰௧ሿܧ

 

Case 2. ߚ௧
௘ and ߚ௧

௚ are separately obtained. 

It is interesting to investigate four more cases in which the above framework is simplified or 

restricted. A second possibility is to view the hedging problem as a double and independent hedging 

problem. That is, managing the two spot price risk separately, while measuring the hedging 

effectiveness jointly in the same performance measure. In this way, the unconditional hedging ratio 

estimation in the conventional framework will be obtained after separately estimating the following 

two linear regressions, 

 

Δܵ௧
௘ ൌ ଵߙ ൅ ௧ܨ௘Δߚ

௘ ൅ ݁ଵ,௧;         Δܵ௧
௚ ൌ ଶߙ ൅ ௧ܨ௚Δߚܽ

௚ ൅ ݁ଶ,௧                          (7) 

 

and in the Ederington and Salas (2008) framework, we will use the following specification to obtain 

the unconditional hedging ratio estimation 

 

Δܵ௧
௘ ൌ ଵߙ ൅ ௧ܨ௘Δߚ

௘ ൅ ௧ܨሺߣ
௘ െ ܵ௧

௘ሻ ൅ ݁ଵ,௧;      Δܵ௧
௚ ൌ ଶߙ ൅ ௧ܨ௚Δߚܽ

௚ ൅ ௧ܨሺߣ
௚ െ ܵ௧

௚ሻ ൅ ݁ଵ,௧     (8) 
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Case 3. ߚ௧
௘ ൌ ௧ߚ

௚ ൌ  ௧, jointly obtained but restricted to be equalߚ

A third option consists in reducing the dimensionality of the problem by using the same hedging 

ratio in both futures markets, or equivalently, trading on a futures/forward contract on the spark 

spread. That is, imposing the restriction ߚ௘ ൌ ௚ߚ ൌ  in the unconditional estimation. This	ߚ

imposition will increase the estimation error. In this case, the conventional and the Ederington and 

Salas (2008) frameworks using unconditional estimation will be obtained, respectively, with the 

following expressions: 

 

Δܵ௧ ൌ ߙ ൅ ௧ܨΔߚ ൅ ݁௧                                                         (9)  

 

Δܵ௧ ൌ ߙ ൅ ௧ܨΔߚ ൅ ௧ܨሺߣ െ ܵ௧ሻ ൅ ݁௧                                            (10) 

 

Case 4. ߚ௧
௘ ൌ ௧ߚ

௚ ൌ 1, the naïve framework. 

Hedging analysis is completed with the ‘naïve’ hedging ratios, that is, a hedge where futures 

positions have the same size but the opposite sign to the position held in the spot market. It is 

interesting to note that a perfect hedge is possible when futures positions are held until maturity and 

a naive hedge is adopted. Explicitly, if the maturity of the futures contracts matches with the final 

time of the hedge and ߚ௧
௘ ൌ ௧ߚ

௚ ൌ 1, then the basis will be equal to zero in ݐ ൅ ௧ାଵܨ ,1 െ ܵ௧ାଵ ൌ 0, 

with ܵ௧ ൌ ܵ௧
௘ െ ܽܵ௧

௚ and 	ܨ௧ ൌ ௧ܨ
௘ െ ௧ܨܽ

௚. In this very specific case, the variance of the result in 

Equation (2) will be zero. Naïve hedges in the Ederington and Salas (2008) approach will also 

eliminate the risk if in Equation (5) the expected changes in spot returns are substituted by ߣሺܨ௧ െ

ܵ௧ሻ and ߣ ൌ 1, as the basis convergence on futures maturity requires. Nevertheless, when futures 

positions are closed before maturity, the naïve framework may perform poorly. Following the 

results of Torró (2011) for electricity and Martínez and Torró (2015) for natural gas, the naive 

strategy can produce a good performance, and even represent the best hedging strategy in some 
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cases (for long period hedges especially when futures positions are closed near to the futures 

maturity). That is, when the premises of this approach are close to being true.  

 

Case 5. ߚ௧
௘ ൌ ௧ߚ

௚ ൌ 0, the natural hedge 

If the electricity market is not very competitive and there is no a diversified energy source 

generation mix, it is possible that main fuel price shocks would be transferred to the electricity 

prices. That is, the unhedged position may be optimal in some energy markets in which natural gas 

has a significant share in the power source energy mix, and there is no fully competitive behaviour 

by electricity producers and marketers. This is known as the natural hedge (ߚ௧
௘ ൌ ௧ߚ

௚ ൌ ௘ߚ ൌ ௚ߚ ൌ

0ሻ. When electricity and natural gas prices are highly and positively correlated, gas-fired plants are 

said to enjoy a ‘natural hedge’. Guo et al. (2016) found that a typical gas-fired power plant enjoyed 

a natural hedge in the UK in the period 2006 to 2011 using its daily aggregated dispatch decisions. 

That is, it was better off facing uncertain spot prices rather than locking in its generating costs. 

However, these authors argue that the natural hedge is not a perfect hedge, i.e., even modest risk 

aversion makes using some further hedging strategy optimal. 

 

Measuring hedging effectiveness 

In the empirical application in Section 4, the effectiveness of the hedging strategies are compared. 

The hedging ratios obtained following the conventional framework are labelled ‘without basis’ – 

and those hedging ratios estimated by following the Ederington and Salas (2008) framework are 

labelled ‘with basis’. The hedging effectiveness of each strategy is obtained by using Equations (2) 

and (5) to compute the risk in each framework and then comparisons are made with respect to the 

spot position: that is ܸܴܣሾΔܵ௧|߰௧ሿ and ܸܴܣሾΔܵ௧ െ  ሾΔܵ௧|߰௧ሿ|߰௧ሿ, respectively. Furthermore, exܧ

post and ex-ante results are distinguished by splitting the data sample into two parts. In the first 

part, the hedging strategies are compared ex post, whereas in the second part, an ex-ante approach is 
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used. That is, in the ex-ante study, strategies are compared using forecasted hedge ratios, and 

models are estimated when a new observation is considered.6   

 

To test if the difference in hedging reductions are statistically significant we performed White’s 

reality check as described in Lee and Yoder (2007) – but using equation (5) as a risk measure 

instead equation (2) because we were applying the Ederington and Salas (2008) approach. For 

technical details, we referred to Lee and Yoder (2007a), Lee and Yoder (2007b), and White (2000). 

Specifically, the variance of the estimated optimal hedged portfolio in the ex-ante study under the 

Ederington and Salas (2008) approach was computed as:  

 

ሺΔܵ௧ൣܴܣܸ െ ௧ܨመ௧ሺߣ െ ܵ௧ሻሻ െ ሺߚመ௧
௘ᇱΔܨ௧

௘ െ መ௧ߚܽ
௚ᇱΔܨ௧

௚ሻ൧                                           (11) 

 

where ߣመ௧, ߚመ௧
௘ᇱ and ߚመ௧

௚ᇱ are predicted parameter estimations conditioned for the information available 

on t as previously described. For each pair of hedging strategies, and for each observation included 

in the out of sample period, the following performance measure is computed: 

 

መ݂
௞,௧ାଵ ൌ െ ቂቀΔܵ௧ െ ௧ܨመ௧ሺߣ െ ܵ௧ሻቁ െ ቀߚመ௞,௧

௘ᇲ Δܨ௧
௘ െ መ௞,௧ߚܽ

௚ᇲΔܨ௧
௚ቁቃ

ଶ
 

		൅ ቂቀΔܵ௧ െ ௧ܨመ௧ሺߣ െ ܵ௧ሻቁ െ ቀߚመ஻ெ,௧
௘ᇲ Δܨ௧

௘ െ መ஻ெ,௧ߚܽ
௚ᇲ Δܨ௧

௚ቁቃ
ଶ
                      (12) 

                          

where ߚመ஻ெ,௧
௘ᇲ  and ߚመ஻ெ,௧

௚ᇲ  are the hedging ratios estimate of the strategy used as a benchmark; that is, 

the hedging strategy with the lowest risk reduction in each pair of strategies compared. And each 

pair ߚመ௞,௧
௘ᇲ  and ߚመ௞,௧

௚ᇲ
t,kb̂  correspond to the set of all possible hedging strategies with better risk 

                                                            
6 In the Ederington and Salas (2008) framework, the ߣ coefficient in equations (6), (8) and (10) is estimated each time a 
new observation is introduced in the ex-ante study. To enable a comparison between the obtained risk reductions across 
the five studied cases, we have measured the unexpected shocks in the spot position using the λ value estimated from 
equation (10). The results are almost identical when equation (5) is used instead. 
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reductions than the compared benchmark strategy. White’s reality check is based on the following 

performance statistic: 

݂̅ ൌ ଵ

௡
∑ ݂௧̅ାଵ்
௧ୀோ                                                              (13) 

 

where n is the number of observations in the out of sample experiment, that is	݊ ൌ ܶ െ ܴ. The null 

hypothesis that the best performing hedging strategy from each pair of possible strategies 

considered has no predictive superiority over the worst performing in each pair is given by: 

 

:଴ܪ ሾܧ ௞݂
∗ሿ ൑ 0                                                                 (14) 

 

where ௞݂
∗	is the true performance value for each model applied to the data. Following White (2000), 

White’s reality check is implemented with the stationary bootstrap resampling method of Politis and 

Romano (1994) in which pseudo-time series are generated by resampling blocks of random length 

drawn from a geometric distribution. This procedure is repeated to generate an approximate 

sampling distribution of the f  performance measure. To apply the stationary bootstrap method of 

Politis and Romano (1994), the smoothing parameter q and the resamplings are set to 0.5 and 

10000, respectively.  

 

3. Data and preliminary analysis 

 

We examine three representative European markets: the United Kingdom, the Netherlands, and 

Germany. Table 1 summarises data sources used for the three markets. For both electricity and gas, 

we use futures prices (except for UK electricity where we employ forward prices because of the 

lack of liquidity in futures negotiation in this market). The electricity market has a different demand 

pattern depending on the hours. Hours in which demand is high and capacity is tight are known as 

peak load hours. Contracts supplying electricity 24 hours a day are known as base load. We analyse 
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short time hedges of weekly and monthly frequency with the front futures contract for the UK and 

the Netherlands and with weekly and monthly electricity futures for Germany. Weekly time series 

are built by taking the closing prices on Wednesday (or the day before if non-tradable) and monthly 

time series are constructed by picking the last negotiated Wednesday of the month (or to avoid the 

instabilities of the last trading day we take the previous day if the last Wednesday is the last 

negotiated day). 

 

In the winter of 2014, the British electricity market switched from trading based in the EFA 

(electricity forward agreement) calendar to Gregorian calendar months, to match the NBP gas 

market and the main power and gas markets in Europe. The EFA calendar runs on a rolling 4/4/5 

week, that is, under the EFA system the months of March, June, September, and December have 

five weeks, the rest of the months are four weeks and the year begins on 1 April (week 14 of the 

calendar year). Despite the ending of the EFA agreement there are still many products traded on an 

EFA basis. We switch the series on September 2014, a little before the end of the system because of 

liquidity issues concerning the forward price series. The spot price is the average price of the 

volume-weighted reference price for each half hour settlement period, from 07:00 until 19:00 

Monday to Friday if peak hours and from 23:00 until 23:00 of the next day for every single day of 

the week if base hours. The base and peak forward prices are a composite of Reuters broker 

contributors. It is assessed by considering the Latest Trade/Tick of the Thomson Reuters Power 

Composite (TRPC) instruments received from different brokers. All end of day values received 

from the different brokers are manually checked, validated, and then compared against benchmark 

sources such as Argus, Platts, and McCloskey. Monthly contracts expire at the end of the month 

prior to delivery month.7 Regarding natural gas markets we take the national balancing point as the 

benchmark for the British natural gas market. We use as a spot price, the system average price 

(SAP) provided by the National Grid (the average price of all gas traded via the on-the-day 

                                                            
7 Thomson-Reuters power TRPC methodology guide. 
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commodity market (OCM) mechanism for the gas day). The future prices are from Intercontinental 

Exchange (ICE) and we take the front month contract as the most liquid of all futures contracts.  

 

The electricity data for the Netherlands is from APX (spot prices) and Reuters (futures prices). The 

day ahead market is based on a two-sided auction model comparing demands and supplies for every 

hour for next day delivery. Based on these results, APX publishes the APX Index, for base load 

(average of hourly prices all hours) and for peak load (average of hourly prices from 8:00 until 

20:00), on a daily basis. The APX Index can be used as a reference price for spot electricity. The 

electricity futures are negotiated in ICE ENDEX, the futures contracts are for physical delivery of 

power to the Dutch high voltage grid. Delivery is made equally each hour throughout the delivery 

period from 00:00 (CET) on the first day of the month until 24:00 (CET) on the last day of the 

month if futures base contracts; or from 08:00 (CET) until 20:00 (CET) if peak contracts. Delivery 

takes place in kilowatt per quarter hour. The end of the day settlement price (EDSP) at which the 

electricity is delivered will be the end of day Reference Price on the day the contract expires, that is, 

the last settlement price of the contract period on the expiration day. The reference natural gas 

market for the Netherlands is the Title Transfer Facility (TTF) hub. As spot price, we take the day 

ahead price from Platts, since ICE only has data for the day ahead market from 2015. The TTF 

futures prices are from ICE, and we take the front month contract as the most liquid of all futures 

contracts. 

 

The electricity data for Germany is from EEX. We use the Phelix Day Base and Phelix Day Peak 

Indexes as spot references. The index is calculated as the mean value of all auction prices of the 

hourly contracts traded from 00:00 until 24:00 for all days of the week, if Phelix Day Base Index; 

and from 08:00 until 20:00, Monday through Friday, for the Phelix Day Peak Index. For futures 

prices, we take the Phelix month and week future (available also for base and peak load). The 

Phelix Future is a financial derivative contract whose underlying is the above index, fulfilment is by 
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cash settlement based on the final settlement price on the European commodity clearing business 

day following the last trading day. Trading participants have the option of arranging the physical 

delivery of power on the spot market, a constant output of 1 MW into the maximum voltage grid. 

The natural gas market used as a benchmark for Germany is the TTF because even although 

Germany has its own natural gas hubs, they are insufficiently liquid to be significant. 

 

Summarising, we have three markets: the UK, the Netherlands, and Germany; with two electricity 

futures prices, base and peak and one spot price for each, and two natural gas markets (NBP for UK 

and TTF for the Netherlands and Germany) with one futures and spot price. 

 

Table 1. Data description 

Market Variable Unit Source (Spot/Futures) Period 

UK Electricity base load GBP/MWh Reuters/APX November 2007-February 2016  

 Electricity peak load GBP/MWh Reuters/APX November 2004-February 2016  

Gas 
pence/therm 

Platts/Intercontinental Exchange 
(ICE) November 2004-February 2016 

Exchange rate EUR/GBP Bank of England November 2004-February 2016  

Netherlands Electricity base load EUR/MWh Datastream/APX January 2004-April 2016 

Electricity peak load EUR/MWh Datastream/APX May 2009-April 2016 

Gas EUR/MWh 
Platts/Intercontinental Exchange 
(ICE) January 2004-April 2016 

Germany Electricity EUR/MWh EEX 
January 2004-December 2015 (monthly electricity 
futures) 
March 2010-December 2015 (weekly electricity 
futures) 

  CO2-EUAs 
EUR/ tonne  

EEX/Intercontinental Exchange 
(ICE) March 2008-December 2015 

 
 

 

The spark spread is computed as electricity prices minus natural gas corrected with some technical 

adjustments. Following Borovkova (2004) and Borovkova and Geman (2006) the spark spread in 

the UK (£/MWh) can be computed as the difference between the electricity price (£/MWh) and 0.68 

times natural gas futures price (pence/therm).8 In the Dutch and German markets, the natural gas 

                                                            
8 The factor 0.68 is obtained by transforming therms to MWh dividing by 0.0293071 (MWh per therm), then dividing 
by 0.5 (assumed generator efficiency ratio) and transforming pence to pounds by dividing by 100. The full number is 
0.6824284. Note that with a contract unit in the NBP natural gas futures represents 1000 therms per day or its 
equivalent 29,3071 MW per day. For each MWh sold in the electricity market, it is necessary to burn 
(1/e)×(1/0.0293071) therms of gas – that is 68.24285 therms using e = 0.5 as efficiency ratio. For base load 24 hour 
electricity contracts it is necessary to burn 25,000 therms to obtain 15 MW each hour if an efficiency ratio of 0.4913 is 
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price is measured in €/MWh. The underlying asset in the futures contracts correspond to 1 MWh for 

each hour contained in the delivery period of the contract. In these markets the spark spread is 

obtained as the electricity price minus two times the natural gas price, supposing an efficiency ratio 

of 0.5. The efficiency ratio measures how many units of electricity are produced with 1 unit of 

natural gas in a CCGT plant. When clean spark spread is computed, the spark spread is reduced 

with the CO2 allowance price corrected with a gas emissions intensity factor. In the three markets, 

we use the value of 0.38 for the gas emissions intensity factor.9 Additionally, for the case of the UK, 

the EU emissions allowance prices are transformed from euros to pounds using the exchange rate 

obtained from the Bank of England. Furthermore, in the UK the carbon price support is added to the 

EU emissions allowance price expressed in pounds sterling to obtain the clean spark spread.10 

 

Figure 1 shows that spark spreads have become negative in many cases after 2009 because rising 

renewables, reduced coal and CO2 prices, and low power demand forced down electricity prices 

and left little room for gas-fired generation in Europe. In this context, it is important to optimise the 

hedging performance not to incur losses. Charalampous and Madlener (2015) state that natural gas-

fired plants are suffering from severe losses since wholesale peak-load electricity prices have 

plummeted while renewable electricity generation has surged, making hedging in today’s energy 

markets essential for power plant operators (given that many energy companies experience large 

problems in maintaining profitability). 

  

                                                                                                                                                                                                     
used (25,000/(24×(1/e)×(1/0.0293071)) = 15.031). This calculation enables trading the spark spread for contracts 
containing the same underlying period by taking three positions in electricity contracts for each pack of five natural gas 
contracts. In the UK, this computation is the way in which agents trade the spark spread in the market. For peak load 
electricity contracts, the number of contracts must be taken in the proportion of peak hours contained in the whole 
delivery period – but the spark spread computation procedure will not change.  
9 In Abadie and Chamorro (2008) the efficiency ratio for CCGT plants is approximated with values ranging between 
50% and 60%. Capitán and Rodríguez (2013) use an efficiency ratio 0.55 and a gas emissions intensity factor of 0.37. 
We use the same values as Reuters for the efficiency ratio (0.5) and the gas emissions intensity factor (0.38). 
10The Carbon Price Support (CPS) is a tax that businesses using fossil fuels to generate electricity must pay on those 
fuels. The cost of the British Government CPS levy in GBP per mega tone of CO2 is 9.55 from 1 April 2014 to 31 
March 2015, 18.08 from 1 April 2015 to 31 March 2016 and 18.00 from 1 April 2016 to 31 March 2017. 
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Figure 1. Futures (—) and spot (----) spark spreads. 

   

     a)  UK peak spark spread                                     b) UK base spark spread 

 

  

         c)  Netherlands peak spark spread                          d) Netherlands base spark spread 

 

 

e)  Germany peak spark spread                            f) Germany base spark spread 
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Table 2. Standard deviation of the bases 
The variables appearing in the heading of each row correspond, respectively, to the basis, that is the 
futures price minus the spot price, of the following variables: electricity base load; electricity peak 
load; natural gas; CO2; clean spark spread for the base load; clean spark spread for the peak load; 
spark spread for the base load and spark spread of the peak load. Data is taken at weekly frequency 
for the period March 2008 to December 2015. 

 
Basis UK Netherlands Germany 

௧ܨ
௘,௕௔௦௘ െ ௧ܵ

௘,௕௔௦௘ 8.49 5.82 6.67 

௧ܨ
௘,௣௘௔௞ െ ௧ܵ

௘,௣௘௔௞ 15.28 4.56 7.93 

௧ܨ
௚ െ ௧ܵ

௚ 3.38 1.33 1.19 
௧ܨ
௖௢ଶ െ ௧ܵ

௖௢ଶ 0.19 0.19 0.19 
௧ܨ
௖௦,௕௔௦௘ െ ௧ܵ

௖௦,௕௔௦௘ 7.51 5.46 6.91 

௧ܨ
௖௦,௣௘௔௞ െ ௧ܵ

௖௦,௣௘௔௞ 14.14 4.67 10.48 

௧ܨ
௦,௕௔௦௘ െ ௧ܵ

௦,௕௔௦௘ 7.51 5.47 6.91 

௧ܨ
௦,௣௘௔௞ െ ௧ܵ

௦,௣௘௔௞ 14.14 4.66 10.46 

 
 

Table 3. Summary statistics of price returns and basis returns of the CO2 
Variables appearing in the heading of each column correspond, respectively, to the realised returns of the spot, 
futures, and basis for CO2. Note that basis is defined as futures price minus spot price. The heading of the last 
rows symbolises the correlation coefficient between futures and spot returns. Futures returns are obtained 
considering that rollover in the next front annual contract is done at the end of the year. Data is taken at weekly 
frequency for the period March 2008 to December 2015. 

 
௧ܵ߂ 

௖௢ଶ ܨ߂௧
௖௢ଶ ሺܨ௧

௖௢ଶെܵ௧
௖௢ଶሻ െ ሺܨ௧ିଵ

௖௢ଶെܵ௧ିଵ
௖௢ଶሻ

Mean -0.18 -0.15 -0.01 

S.D. 1.50 1.47 0.21 

Skewness -1.30 -1.24 0.04 

Excess Kurtosis 0.28 0.29 -1.03 

௧ܨ߂ሺߩ
௖௢ଶ, ߂ ௧ܵ

௖௢ଶሻ 0.99   

 
 
Is common in the literature to read that when a futures contracts hedge is taken, the spot price risk is 

exchanged for the basis risk.11 In Table 2, the basis risk of each commodity is reported. The most 

important comment on this table comes when volatilities of the bases of the spark spread and clean 

spark spread are compared. Both variables have almost the same basis risk since up to the second 

decimal place, volatility values are equal. This is because the introduction of CO2 prices has no 

effect on the spark spread bases because CO2 futures and spot prices are virtually indistinguishable 

variables. We also observe in Table 3 that correlation between CO2 spot and futures returns is 0.99 

as in Trück and Weron (2016), and that both variables have almost the same statistical properties. 

From Tables 2 and 3, it can be concluded that the spark basis and the clean spark basis have 

                                                            
11 The result of a simple naïve hedge can be seen as the subtraction of futures returns to spot returns, ሺܵ௧ାଵ െ ܵ௧ሻ െ
ሺܨ௧ାଵ െ ௧ାଵܨ௧ሻ, or equivalently, as the basis return, ሺܨ െ ܵ௧ାଵሻ െ ሺܨ௧ െ ܵ௧ሻ ൌ  ௧. The uncertainty of the hedgeݏ݅ݏܽܤ∆
result then depends on the uncertainty of the basis at the end of the hedge. That is, the basis risk. See Hull (1997) pages 
32 to 35. 
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virtually the same risk properties. Therefore, the dimensionality of the problem of hedging risk 

under the minimum variance framework for the clean spark spread can be reduced to hedging the 

risk of the spark spread. Nevertheless, it must be said that in the minimum variance framework, the 

return of a hedged strategy is not considered. Consequently, before engaging in a hedging risk 

strategy, the electricity producer must decide if burning fuel in a CCGT plant is profitable or not. 

This decision depends on the level of the clean spark spread, and consequently the plant manager 

needs to buy CO2 futures or spot contracts to ensure the profitability of turning on the plant. A 

subsequent decision is to reduce the spark spread risk for a specific period by taking positions in the 

electricity and natural gas futures markets.   

 

Summary statistics for electricity, natural gas, and sparks spreads are reported in Table 4. One 

common result of all the return time series is the positive excess kurtosis. The skewness sign varies 

across time series and markets, consequently, no conclusive feature is observed. It is interesting to 

note that electricity and the spark returns have a similar volatility. This result may imply that the 

main source of uncertainty in the spark spread seems to come from electricity price spikes. Finally, 

from the comparison between each pair of spot and futures return volatility, it can be observed that 

in 28 out of 30 cases, spot return volatility is larger than futures return volatility.  

 

Correlations are reported in Table 5. The highest values of the correlation between spot and futures 

pairs correspond to natural gas, with correlation values ranging between 0.55 and 0.62. For 

electricity and spark spreads spot-futures pairs, we have lower values: between 0.10 and 0.30 for 

weekly frequency and between 0.26 and 0.55 for monthly frequency. It is then crucial for hedging 

purposes to increase the hedging period, especially for electricity and spark spread risk 

management. Another interesting result comes when correlations between futures returns of natural 

gas and electricity base load are observed. In monthly frequency (Panels E, F, and G) this 

correlation  has  values  of between 0.57 and 0.78; and in weekly frequency (Panels A, B, and C) it  
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Table 4. Summary statistics of price returns 
 

The ten variables appearing in the heading of each column correspond, respectively, to the realised returns of 
the following prices: electricity peak load spot; electricity peak load futures; electricity base load spot; 
electricity base load futures; natural gas spot; natural gas futures; spot peak load spark spread; futures peak load 
spark spread; spot base load spark spread and futures base load spark spread.  

 
Panel A. One week variations. UK. 

 Electricity Natural Gas Spark Spread 

௧ܵ߂ 
௘,௣௘௔௞ ܨ߂௧

௘,௣௘௔௞ ܵ߂௧
௘,௕௔௦௘ ܨ߂௧

௘,௕௔௦௘ ௧ܵ߂
௚ ܨ߂௧

௚ ܵ߂௧
௦,௣௘௔௞ ܨ߂௧

௦,௣௘௔௞ ܵ߂௧
௦,௕௔௦௘ ܨ߂௧

௦,௕௔௦௘ 
Mean -0.0820 -0.1773 -0.0434 -0.2004 -0.0600 -0.4446 -0.0412 0.1250 -0.0026 0.1019 

S.D. 8.4190 4.2775 5.7225 2.8098 4.5461 2.3161 8.3674 4.1064 5.8468 2.5858 

Skewness -0.7086 -2.7216 -0.7326 -2.1702 -0.5316 -0.3422 -0.3386 -0.9092 -0.1354 0.3972 

Excess Kurtosis 8.6899 42.9220 10.4136 29.1232 8.2866 2.6373 6.2070 42.9726 5.6145 36.8345 

Panel B. One week variations. Netherlands. 
Mean -0.0329 -0.4253 -0.0152 -0.3264 0.0043 -0.1588 -0.0483 -0.2573 -0.0238 -0.0089 

S.D. 5.0101 3.0810 9.3041 2.5254 1.9548 0.9382 5.2070 2.8538 9.3158 2.3000 

Skewness 1.0351 -0.5919 0.6853 0.1451 -0.3385 -0.2941 0.7815 -1.0190 0.6732 0.9433 

Excess Kurtosis 14.4183 14.2115 13.0742 4.9142 25.8294 2.6949 11.4026 16.916 10.9578 6.8641 

Panel C. One week variations. Germany. 

Mean -0.0517 -0.2258 -0.0428 -0.3177 0.0065 -0.0728 -0.0630 -0.0806 -0.0558 -0.1722 

S.D. 6.1352 4.8144 5.9784 3.6037 1.0827 0.7120 6.4357 4.3023 6.2325 3.1490 

Skewness -0.1823 -0.0534 -1.3282 -0.6636 0.0639 0.1324 -0.1185 -0.1093 -1.0178 -0.8061 

Excess Kurtosis 4.6578 3.4092 11.4195 4.6611 5.5599 1.9377 4.6963 3.4761 8.7927 4.9237 

Panel D. One month variations. UK. 
Mean -0.3048 -0.6911 -0.1641 -0.8849 -0.1806 -1.7869 -0.1820 0.5240 -0.0413 0.3301 

S.D. 7.0149 7.6105 5.4680 5.0392 6.0925 4.9154 5.7031 6.5098 4.3768 3.6865 

Skewness 0.0601 -2.8583 0.3746 -2.3622 -0.4388 -0.5398 0.3232 -1.6235 0.5855 -0.5912 

Excess Kurtosis 3.3801 21.9359 3.8945 16.543 7.0572 1.6742 3.3137 17.8530 2.9788 14.7833 

Panel E. One month variations. Netherlands. 
Mean -0.1062 -1.9034 0.8798 -2.1526 0.2321 -0.7288 -0.1434 -1.1351 -0.0601 -0.0393 

S.D. 5.8143 5.5026 12.0543 8.3805 3.0897 2.5794 6.2940 4.7429 9.2318 5.0642 

Skewness 0.1646 -0.7869 -0.1496 -0.0379 -0.4187 -0.7642 0.5746 -0.3462 0.0725 0.4477 

Excess Kurtosis 1.2588 3.3061 0.2204 0.0684 0.6843 0.9798 2.9214 3.8289 3.4044 3.0555 

Panel F. One month variations. Germany. 
Mean 0.011 -1.8905 0.004 -1.0206 0.0178 -0.7052 -0.0246 -0.4801 -0.0317 0.3899 

S.D. 10.2835 8.4325 7.6476 5.1254 2.9268 2.2479 10.7682 7.4066 8.7126 4.6006 

Skewness 0.6787 -0.1181 0.4249 -0.0846 -0.513 -1.1008 0.2441 0.2506 0.1339 0.0522 

Excess Kurtosis 2.3577 2.6059 1.4149 1.6097 3.6752 2.7173 1.8969 3.0198 1.3354 1.5544 
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Table 5. Correlation matrix of the spot, futures and spark spread realised returns 
For a sample size of T observations, the asymptotic distribution of the T times the correlation coefficient is a 
zero-one normal distribution. Those coefficients not significantly different to zero at 5% of significance level 
are marked with an asterisk (*). The variables appearing in the heading of each row and columns are described 
in Table 4. 

Panel (A). One-week variations. UK. 
௧ܵ߂ 

௘,௣௘௔௞ ܨ߂௧
௘,௣௘௔௞ ܵ߂௧

௘,௕௔௦௘ ܨ߂௧
௘,௕௔௦௘ ௧ܵ߂

௚ ܨ߂௧
௚ ܵ߂௧

௦,௣௘௔௞ ܨ߂௧
௦,௣௘௔௞ ܵ߂௧

௦,௕௔௦௘ ܨ߂௧
௦,௕௔௦௘ 

߂ ௧ܵ
௘,௣௘௔௞ 1,00                   

௧ܨ߂
௘,௣௘௔௞ 0.29 1.00         

߂ ௧ܵ
௘,௕௔௦௘ 0.97 0.32 1.00        

௧ܨ߂
௘,௕௔௦௘ 0.26 0.92 0.30 1.00       

߂ ௧ܵ
௚ 0.20 (*)0.08 0.23 0.17 1.00      

௧ܨ߂
௚ 0.25 0.29 0.26 0.42 0.53 1.00     

߂ ௧ܵ
௦,௣௘௔௞ 0.93 0.26 0.90 0.20 -0.17 0.06 1.00    

௧ܨ߂
௦,௣௘௔௞ 0.20 0.93 0.23 0.79 -0.13 (*)-0.09 0.25 1.00   

߂ ௧ܵ
௦,௕௔௦௘ 0.85 0.27 0.86 0.20 -0.30 (*)-0.02 0.96 0.29 1.00  

௧ܨ߂
௦,௕௔௦௘ 0.12 0.82 0.16 0.83 -0.14 -0.16 0.18 0.91 0.23 1.00 

Panel (B). One-week variations. Netherlands. 
߂ ௧ܵ

௘,௣௘௔௞ 
1.00          

௧ܨ߂
௘,௣௘௔௞ 0.10 1.00         

߂ ௧ܵ
௘,௕௔௦௘ 0.98 0.08 1.00        

௧ܨ߂
௘,௕௔௦௘ 0.21 0.22 0.22 1.00       

߂ ௧ܵ
௚ 0.19 0.11 0.21 0.24 1.00      

௧ܨ߂
௚ 0.06 0.19 0.08 0.50 0.55 1.00     

߂ ௧ܵ
௦,௣௘௔௞ 0.95 (*) 0.07 0.93 0.14 -0.11 -0.11 1.00    

௧ܨ߂
௦,௣௘௔௞ (*) 0.05 0.81 0.03 (*)-0.10 -0.23 -0.43 0.13 1.00   

߂ ௧ܵ
௦,௕௔௦௘ 0.90 (*) 0.03 0.91 0.12 -0.21 -0.16 0.98 0.13 1.00  

௧ܨ߂
௦,௕௔௦௘ 0.18 (*) 0.08 0.18 0.70 -0.20 -0.28 0.25 0.24 0.26 1.00 

Panel (C). One-week variations. Germany 
߂ ௧ܵ

௘,௣௘௔௞ 
1.00          

௧ܨ߂
௘,௣௘௔௞ 0.28 1.00         

߂ ௧ܵ
௘,௕௔௦௘ 0.94 0.27 1.00        

௧ܨ߂
௘,௕௔௦௘ 0.27 0.95 0.30 1.00       

߂ ௧ܵ
௚ (*) 0.08 0.34 (*) 0.06 0.34 1.00      

௧ܨ߂
௚ 0.14 0.49 0.12 0.50 0.62 1.00     

߂ ௧ܵ
௦,௣௘௔௞ 0.93 0.16 0.88 0.15 -0.27 (*)-0.07 1.00    

௧ܨ߂
௦,௣௘௔௞ 0.27 0.96 0.26 0.90 0.18 0.22 0.21 1.00   

߂ ௧ܵ
௦,௕௔௦௘ 0.88 0.14 0.94 0.17 -0.29 (*)-0.10 0.94 0.19 1.00  

௧ܨ߂
௦,௕௔௦௘ 0.25 0.87 0.29 0.92 (*) 0.10 0.12 0.21 0.93 0.24 1.00 
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Table 5. Correlation matrix of the spot, futures and spark spread realised returns (cont.) 
For a sample size of T observations, the asymptotic distribution of the T times the correlation coefficient is a 
zero-one normal distribution. Those coefficients not significantly different to zero at 5% of significance level 
are marked with an asterisk (*). The variables appearing in the heading of each row and columns are described 
in Table 4. 

 
 

Panel (E). One-month variations. UK. 
௧ܵ߂ 

௘,௣௘௔௞ ܨ߂௧
௘,௣௘௔௞ ܵ߂௧

௘,௕௔௦௘ ܨ߂௧
௘,௕௔௦௘ ௧ܵ߂

௚ ܨ߂௧
௚ ܵ߂௧

௦,௣௘௔௞ ܨ߂௧
௦,௣௘௔௞ ܵ߂௧

௦,௕௔௦௘ ܨ߂௧
௦,௕௔௦௘ 

߂ ௧ܵ
௘,௣௘௔௞ 1.00          

௧ܨ߂
௘,௣௘௔௞ 0.39 1.00         

߂ ௧ܵ
௘,௕௔௦௘ 0.96 0.45 1.00        

௧ܨ߂
௘,௕௔௦௘ 0.47 0.93 0.55 1.00       

߂ ௧ܵ
௚ 0.58 0.22 0.62 0.40 1.00      

௧ܨ߂
௚ 0.50 0.52 0.53 0.69 0.57 1.00     

߂ ௧ܵ
௦,௣௘௔௞ 0.81 0.32 0.74 0.29 (*)-0.01 0.20 1.00    

௧ܨ߂
௦,௣௘௔௞ (*) 0.18 0.89 0.24 0.72 (*)-0.05 (*) 0.07 0.26 1.00   

߂ ௧ܵ
௦,௕௔௦௘ 0.65 0.36 0.67 0.32 (*)-0.18 (*) 0.13 0.93 0.35 1.00  

௧ܨ߂
௦,௕௔௦௘ (*) 0.17 0.79 0.25 0.72 (*) 0.00 (*)-0.01 0.21 0.93 0.31 1.00 

Panel (F). One-month variations. Netherlands. 
߂ ௧ܵ

௘,௣௘௔௞ 1.00          

௧ܨ߂
௘,௣௘௔௞ 0.46 1.00         

߂ ௧ܵ
௘,௕௔௦௘ 0.92 0.38 1.00        

௧ܨ߂
௘,௕௔௦௘ 0.45 0.65 0.50 1.00       

߂ ௧ܵ
௚ 0.34 0.33 0.28 0.43 1.00      

௧ܨ߂
௚ 0.42 0.55 0.43 0.78 0.61 1.00     

߂ ௧ܵ
௦,௣௘௔௞ 0.65 0.16 0.62 0.07 -0.50 (*)-0.11 1.00    

௧ܨ߂
௦,௣௘௔௞ 0.27 0.84 0.17 0.27 (*)-0.01 (*) 0.00 0.26 1.00   

߂ ௧ܵ
௦,௕௔௦௘ 0.41 (*) 0.00 0.52 (*) 0.00 -0.67 -0.21 0.92 (*) 0.13 1.00  

௧ܨ߂
௦,௕௔௦௘ (*) 0.09 0.23 (*) 0.15 0.43 -0.22 -0.23 0.25 0.42 0.31 1.00 

Panel (G). One-month variations. Germany 
߂ ௧ܵ

௘,௣௘௔௞ 
1,00          

௧ܨ߂
௘,௣௘௔௞ 0,49 1,00         

߂ ௧ܵ
௘,௕௔௦௘ 0,97 0,46 1,00        

௧ܨ߂
௘,௕௔௦௘ 0,49 0,96 0,49 1,00       

߂ ௧ܵ
௚ 0,20 0,45 0,19 0,45 1,00      

௧ܨ߂
௚ (*) 0,14 0,51 0,17 0,57 0,55 1,00     

߂ ௧ܵ
௦,௣௘௔௞ 0,85 0,23 0,83 0,23 -0,35 -0,17 1,00    

௧ܨ߂
௦,௣௘௔௞ 0,49 0,84 0,43 0,76 0,17 (*)-0,04 0,37 1,00   

߂ ௧ܵ
௦,௕௔௦௘ 0,72 (*) 0,10 0,75 (*) 0,12 -0,51 -0,22 0,96 0,26 1,00  

௧ܨ߂
௦,௕௔௦௘ 0,42 0,57 0,38 0,55 (*)-0,05 -0,37 0,43 0,90 0,37 1,00 
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takes values between 0.42 and 0.50. Consequently, these commodities are closely related. This fact 

is especially clear for monthly returns in the UK as the natural gas returns and all the electricity 

returns have correlation values between 0.50 and 0.69. Therefore, natural gas prices have an 

important pricing role in the electricity market. This is an expected result, as natural gas is the most 

import fuel source of the generation mix in the UK electricity market. As expected, the correlation 

between natural gas return and the spark spread return is negative in most cases and not significant 

in many cases. Finally, for electricity and spark spread, the correlation between base and peak load 

returns is very high, especially for the pair of futures and for the pair of spot returns, with values of 

about 0.90 in most cases. Nevertheless, each of these futures contracts with its underlying asset has 

a lower correlation. For example, for monthly returns, electricity futures and the underlying assets 

have correlations ranging between 0.39 and 0.50, with the highest values corresponding to base load 

pairs. The spark spreads futures-spot correlation is lower with values ranging between 0.26 and 

0.37. Taking this information into account, one would expect that a successful hedge in the spark 

spread will be much more difficult than hedging risk with futures separately in the electricity or 

natural gas markets. 

 

Weekly returns cross-lagged correlations are displayed in Table 6. In the previous paragraph, we 

have seen that simultaneous correlation between natural gas returns and electricity returns are high 

in many cases, particularly in the case of natural gas futures and base load futures. Now in Table 6, 

we want to examine the dynamics of this relationship computing one-week cross-lagged correlation 

coefficients. The highest and most significant values correspond to the first and second rows of this 

table. That is, an increase (decrease) in natural gas price will probably be followed by an increase 

(decrease) in electricity prices. The wholesale gas price and the wholesale electricity price broadly 

move together, as for much of the year gas-fired generation is the marginal plant and therefore sets 

the wholesale electricity price (UK Government, 2012). The high values of simultaneous and cross-

lagged correlation between electricity and natural gas returns point to a significant degree of price 
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shock transfer from natural gas to electricity. As we have discussed in the previous section, in the 

case of a perfect price shock transfer between both commodities, CCGT plants producing electricity 

would enjoy a natural hedge and not need to take positions in futures markets.  

 

Table 6. Weekly cross-lagged correlations between natural gas and electricity returns 
 

The first-order cross-correlation coefficient between two standardised data series x and y is 

estimated as	ߩሺݔ௧, ௧ିଵሻݕ ൌ ௧ିଵݕ௧ݔ∑ ඥ∑ݔ௧
ଶ ௧ݕ∑

ଶ⁄  of y with respect x. For a sample size of T 
observations, the asymptotic distribution of the T times the cross-correlation coefficient is a zero-
one normal distribution, that is    10,ANy,xT ktt  (see Cheung and Ng (1996) for more details). *, 
** and ***, indicates significance at the 1%, 5% and 10% levels, respectively. The variables 
appearing in the heading of each row are described in Table 4. 

 
 UK Netherlands Germany 

߂ሺߩ ௧ܵ
௘,௕௔௦௘, ߂ ௧ܵିଵ

௚ ሻ *0.31 *0.18 *0.29 

߂ሺߩ ௧ܵ
௘,௣௘௔௞, ߂ ௧ܵିଵ

௚ ሻ *0.25 *0.15 *0.31 

௧ܨ߂ሺߩ
௘,௕௔௦௘, ߂ ௧ܵିଵ

௚ ሻ 0.07 **0.09 0.05 

௧ܨ߂ሺߩ
௘,௣௘௔௞, ߂ ௧ܵିଵ

௚ ሻ 0.04 0.04 0.09 

߂ሺߩ ௧ܵ
௘,௕௔௦௘, ௧ିଵܨ߂

௚ ሻ *0.14 *0.18 **0.12 

߂ሺߩ ௧ܵ
௘,௣௘௔௞, ௧ିଵܨ߂

௚ ሻ ***0.09 *0.17 **0.14 

௧ܨ߂ሺߩ
௘,௕௔௦௘, ௧ିଵܨ߂

௚ ሻ 0.07 0.12 -0.09 

௧ܨ߂ሺߩ
௘,௣௘௔௞, ௧ିଵܨ߂

௚ ሻ 0.06 0.06 -0.06 

߂ሺߩ ௧ܵ
௚, ߂ ௧ܵିଵ

௘,௕௔௦௘, ሻ  *-0.17 -0.01 -0.04 

߂ሺߩ ௧ܵ
௚, ߂ ௧ܵିଵ

௘,௣௘௔௞ሻ  *-0.14 0.00 -0.06 

߂ሺߩ ௧ܵ
௚, ௧ିଵܨ߂

௘,௕௔௦௘ሻ  *-0.14 **0.08 0.03 

߂ሺߩ ௧ܵ
௚, ௧ିଵܨ߂

௘,௣௘௔௞ሻ  **-0.13 -0.01 0.06 

௧ܨ߂ሺߩ
௚, ߂ ௧ܵିଵ

௘,௕௔௦௘, ሻ  -0.02 0.02 0.03 

௧ܨ߂ሺߩ
௚, ߂ ௧ܵିଵ

௘,௣௘௔௞ሻ  -0.03 0.03 -0.01 

௧ܨ߂ሺߩ
௚, ௧ିଵܨ߂

௘,௕௔௦௘ሻ  -0.08 ***0.07 -0.04 

௧ܨ߂ሺߩ
௚, ௧ିଵܨ߂

௘,௣௘௔௞ሻ  **-0.10 -0.05 -0.06 

	
	
 

 
4. Results 
 
 

Ederington and Salas (2008) demonstrated that when spot price returns are partially predictable, the 

standard method of estimating hedging ratios based on Ederington (1979) is inefficient and the risk 

reduction obtained with the hedge is underestimated. To overcome these problems, Ederington and 

Salas (2008) propose approximating the expected spot return using the lagged value of the basis 
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(see Section 2). Before applying this methodology, it is necessary to measure the predictive power 

of the basis on returns, particularly in the spot case. Results are reported in Table 7. For the 

Netherlands and Germany, lagged values of the basis explain between 17 and 60 per cent of 

subsequent spot returns and they have a much lower explicative power for futures returns. 

Moreover, the determination coefficients are higher in spot returns than in forward returns in all 

cases. This result agrees with Borovkova and Geman (2006) and Lucia and Schwartz (2002) when 

they state that seasonal patterns in spot prices and the forward curve should be significantly 

different.   

 

As in most energy commodities, a seasonal feature is expected for the spark spread (see Borovkova 

and Geman (2006)). It is important to highlight that with the exception of the peak spark spread 

return for the UK, in the remaining cases, spark returns can be explained by the lagged values of 

their bases with determination coefficients ranging between 16.18 and 54.14 per cent. If the 

objective of the risk manager is to reduce the uncertainty of unexpected changes in the spark spread 

using futures, the expected changes must be separated from the total changes in the spark spread 

risk measure. This result is new in the literature and is very relevant for the design and performance 

measure of hedging strategies using futures contracts. The reason for the existence of these 

forecastable pattern in the spark spread comes from the existence of seasonal patterns in energy 

commodity demand due to climate oscillation throughout the year. Previous results in Torró (2011) 

and Martinez and Torró (2015) confirm the existence of this feature in European electricity and 

natural gas markets, but this is the first time it is found in spark spreads. 
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Table 7. The basis as a predictor of spot, futures, and spark spread returns. 
This table reports the results for the whole sample period of the regression between energy price changes 
appearing in the first column on the corresponding basis value at the beginning of the time interval appearing 
in the second column. The variables appearing in the first and second columns are described in Table 4. 
Between brackets t-statistic values computed with Newey-West standard errors are reported. Significant 
coefficients at 1%, 5% and 10% of significance level are highlighted with one (*), two (**) and three (***) 
asterisks, respectively.  

Panel A. Netherlands. 
  Weekly returns Monthly returns 

Dependent variable Basis Intercept Basis coefficient Adjusted R2 Intercept Basis coefficient Adjusted R2

∆ ௧ܵ
௘,௣௘௔௞  ܨ௧

௘,௣௘௔௞ െ ௧ܵ
௘,௣௘௔௞ -0.13 (-0.55)  0.55  (6.64)* 29.39%   0.47 (1.29)  0.64 (3.35)* 30.47% 

௧ܨ∆
௘,௣௘௔௞  ܨ௧

௘,௣௘௔௞ െ ௧ܵ
௘,௣௘௔௞ -0.43 (-2.89)*  0.04  (0.68) 0.47%  -1.87 (-3.27)*  0.03 (0.33) 0.08% 

∆ ௧ܵ
௘,௕௔௦௘  ܨ௧

௘,௕௔௦௘ െ ௧ܵ
௘,௕௔௦௘ -0.31 (-1.75)***   0.35  (7.92)* 17.58%  -0.84 (-1.35)  0.62 (5.14)* 24.32% 

௧ܨ∆
௘,௕௔௦௘  ܨ௧

௘,௕௔௦௘ െ ௧ܵ
௘,௕௔௦௘ -0.09 (-1.11)  -0.05 (-2.33)** 2.32%  -1.01 (-1.98)** -0.33 (-3.97)* 12.19% 

∆ ௧ܵ
௚  ܨ௧

௚ െ ௧ܵ
௚ -0.01 (-0.20)  0.23   (2.37)** 5.95%  -0.23 (-0.99)  0.94 (6.42)* 22.96% 

௧ܨ∆
௚  ܨ௧

௚ െ ௧ܵ
௚ -0.07 (-1.93)*** -0.12 (-3.79)* 4.19%  -0.61 (-2.65)* -0.34 (-1.64)*** 5.44% 

∆ ௧ܵ
௦,௣௘௔௞  ܨ௧

௦,௣௘௔௞ െ ௧ܵ
௦,௣௘௔௞ -0.04 (-0.22)  0.66   (8.01)* 35.56%   0.55 (1.61)  0.75 (5.69)* 44.43% 

௧ܨ∆
௦,௣௘௔௞

   ௧ܨ
௦,௣௘௔௞ െ ௧ܵ

௦,௣௘௔௞ -0.26 (-1.99)**  0.07   (1.12) 1.29%  -1.03 (-1.97)**   0.11 (1.61) 1.71% 

∆ ௧ܵ
௦,௕௔௦௘  ܨ௧

௦,௕௔௦௘ െ ௧ܵ
௦,௕௔௦௘ -0.45 (-1.26)  0.52   (6.21)* 24.63%  -0.72 (-1.22)  0.86 (8.19)* 39.21% 

௧ܨ∆
௦,௕௔௦௘   ௧ܨ

௦,௕௔௦௘ െ ௧ܵ
௦,௕௔௦௘  0.02  (0.22) -0.03 (-2.38)* 1.86%   0.07   (0.17) -0.15 (-2.33)** 3.75% 

 
Panel B. Germany. 

∆ ௧ܵ
௘,௣௘௔௞  ܨ௧

௘,௣௘௔௞ െ ௧ܵ
௘,௣௘௔௞ -3.18 (-9.88)* 0.68 (11.78)* 60.68% -4.78 (-5.36)* 0.63  (4.82)* 29.20% 

௧ܨ∆
௘,௣௘௔௞  ܨ௧

௘,௣௘௔௞ െ ௧ܵ
௘,௣௘௔௞ -0.36 (-0.85) 0.03  (0.45) 0.19% -0.34 (-0.41) -0.20 (-1.67)*** 4.53% 

∆ ௧ܵ
௘,௕௔௦௘  ܨ௧

௘,௕௔௦௘ െ ௧ܵ
௘,௕௔௦௘ -0.27 (-1.39)  0.79  (9.58)* 59.78% -1.33 (-3.21)* 0.89  (6.81)* 43.52% 

௧ܨ∆
௘,௕௔௦௘  ܨ௧

௘,௕௔௦௘ െ ௧ܵ
௘,௕௔௦௘ -0.32 (-1.56)  0.01  (0.10) 0.01% -0.86 (-1.87)*** -0.11 (-0.98) 1.42% 

∆ ௧ܵ
௚  ܨ௧

௚ െ ௧ܵ
௚ -0.01 (-0.09) 0.19  (2.19)** 4.98% -0.19 (-0.85) 0.91  (6.12)* 20.45% 

௧ܨ∆
௚  ܨ௧

௚ െ ௧ܵ
௚ -0.06 (-1.60)  -0.14 (-4.41)* 5.45% -0.61 (-2.64)* -0.39 (-1.98)** 6.61% 

∆ ௧ܵ
௦,௣௘௔௞  ܨ௧

௦,௣௘௔௞ െ ௧ܵ
௦,௣௘௔௞ -2.85 (-8.27)* 0.62 (10.64)* 51.31% -5.75 (-7.26)* 0.80  (8.35)* 42.78% 

௧ܨ∆
௦,௣௘௔௞

   ௧ܨ
௦,௣௘௔௞ െ ௧ܵ

௦,௣௘௔௞ -0.23 (-0.65) 0.03  (0.66) 0.36% 0.14   (0.19) -0.09 (-0.97) 1.05% 

∆ ௧ܵ
௦,௕௔௦௘  ܨ௧

௦,௕௔௦௘ െ ௧ܵ
௦,௕௔௦௘ -0.18 (-0.72) 0.73  (9.34)* 52.51% -1.13 (-2.54)** 1.07  (13.07)* 54.14% 

௧ܨ∆
௦,௕௔௦௘   ௧ܨ

௦,௕௔௦௘ െ ௧ܵ
௦,௕௔௦௘ -0.17 (-0.93) 0.01  (0.14) 0.02% 0.43   (1.00) -0.04 (-0.71) 0.32% 

 
Panel B. United Kingdom. 

∆ ௧ܵ
௘,௣௘௔௞  ܨ௧

௘,௣௘௔௞ െ ௧ܵ
௘,௣௘௔௞ -0.79 (-2.19)**  0.17  (1.42)  5.84%  -0.66 (-1.12)  0.09  (0.57) 1.62% 

௧ܨ∆
௘,௣௘௔௞  ܨ௧

௘,௣௘௔௞ െ ௧ܵ
௘,௣௘௔௞  0.16  (0.82) -0.08 (-1.53)  5.17%   0.66  (0.69) -0.33 (-1.99)** 19.48% 

∆ ௧ܵ
௘,௕௔௦௘  ܨ௧

௘,௕௔௦௘ െ ௧ܵ
௘,௕௔௦௘ -0.44 (-2.6)*  0.26  (1.87)*** 8.85%  -0.52 (-1.36)   0.25  (0.96) 5.62% 

௧ܨ∆
௘,௕௔௦௘  ܨ௧

௘,௕௔௦௘ െ ௧ܵ
௘,௕௔௦௘ -0.04 (-0.32) -0.10 (-1.88)*** 5.96%  -0.47 (-0.81) -0.29 (-1.20) 8.75% 

∆ ௧ܵ
௚  ܨ௧

௚ െ ௧ܵ
௚ -0.21 (-1.03)  0.32  (3.59)* 10.46%  -0.32 (-0.57)  0.52  (1.54)  9.48% 

௧ܨ∆
௚  ܨ௧

௚ െ ௧ܵ
௚ -0.39 (-3.49)* -0.10 (-4.69)* 4.29%  -1.66 (-2.71)* -0.44 (-2.69)* 10.29% 

∆ ௧ܵ
௦,௣௘௔௞  ܨ௧

௦,௣௘௔௞ െ ௧ܵ
௦,௣௘௔௞ -0.91 (-2.39)**  0.22  (1.59) 8.17%  -0.65 (-1.66)***  0.12  (0.83) 3.67% 

௧ܨ∆
௦,௣௘௔௞

   ௧ܨ
௦,௣௘௔௞ െ ௧ܵ

௦,௣௘௔௞  0.38  (2.11)** -0.06 (-1.12) 2.86%   1.19  (1.59)   -0.17 (-0.93) 5.62% 

∆ ௧ܵ
௦,௕௔௦௘  ܨ௧

௦,௕௔௦௘ െ ௧ܵ
௦,௕௔௦௘ -0.53 (-3.58)*  0.43  (2.94)* 16.18%  -0.56 (-2.53)**  0.43  (2.24)** 19.83% 

௧ܨ∆
௦,௕௔௦௘   ௧ܨ

௦,௕௔௦௘ െ ௧ܵ
௦,௕௔௦௘  0.20   (1.74)*** -0.08 (-1.61)  2.94%  0.29  (0.90)  0.03  (0.18) 0.12% 
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Tables 8 to 17 show the hedging effectiveness analysis of the strategies presented in Section 2. The 

five assets considered are the spark spread for the base and peak load, electricity for the base and 

peak load, and natural gas. In each of the above cases, weekly (Tables 8, 9, 12, 13 and 14) and 

monthly data frequency results are reported (Tables 10, 11, 15, 16 and 17). We considered 

electricity and natural gas separately because it is important information and it is not obvious that a 

successful separated hedging strategy for electricity and natural gas will produce a successful hedge 

of the spark spread.  

 

We first discuss results corresponding to the spark spreads. Figure 2 reports the hedging ratios 

estimated as described in Section 2 for the spark spreads for a monthly frequency. The sample 

period is divided into ex post and ex-ante sub-periods when the number of observations is 

sufficiently large. With the exception of the natural gas hedging ratio in Figure 2-a (when it is 

jointly estimated), all the hedging ratios are positive. It is also interesting to note hedging ratios in 

electricity futures when estimated jointly (case 1) or restricted (case 3), as both hedge ratios are 

almost equal in all the cases. This fact indicates that the optimal least squares method prioritises the 

electricity hedging ratio to minimise estimation errors because of electricity jumps. Looking at the 

best performing strategies marked with an asterisk in Tables 8 to 11, we cannot point out a hedging 

strategy that dominates the risk reduction achieved. The best performing hedging strategy changes 

across markets, periods, and data frequency. Looking at best performing strategies in each panel, we 

can say that risk reduction is underestimated with the conventional framework. Under the 

Ederington and Salas (2008) framework, risk reduction really attained improvements of between 

1% and 18% in weekly hedges and between 7% and 27% in the monthly hedges. The worst results 

for the spark spread risk reduction correspond to the UK. In the case of the peak load spark spread 

at weekly frequency appearing in Panel A in Table 8, it can be observed that in the out-of-sample 

period no hedging strategy produces a risk reduction. In this case, it is best to leave the spot position 

unhedged. Monthly hedges for the UK case significantly improve the attained risk reduction. In this 
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case, the optimal hedging strategies obtain a risk reduction of 20.05 and 25.05 per cent for the base 

and peak load spark spreads, respectively. Results for the Netherlands and Germany are much 

better. The risk reduction reached for optimal weekly hedges varies between 16.38 and 34.75 per 

cent. In monthly hedges in these two countries, the risk reduction can attain values ranging between 

28.92 and 48.90 per cent. To sum up, the main result for the spark spread are: (i) monthly hedges 

obtain a better hedging performance than weekly hedges; (ii) there is no clear hedging strategy that 

clearly dominates the remaining strategies; (iii) results for Germany and the Netherlands are much 

better than the results for the UK; (iv) the best performing monthly hedging strategies can attain risk 

reductions ranging between 20.05 and 48.90.  

To better understand spark spread hedging results we have extended the hedging analysis to 

individual hedges of electricity (peak and base load) and natural gas prices. Results for electricity 

are similar to spark spread results, see Tables 12 and 13. Weekly hedges for electricity produce poor 

results, and in one case even increase the risk after hedging (see Panel A in Table 13). Nevertheless, 

excellent results are obtained in monthly hedges, especially in the base load case. In this case (see 

Table 15), the risk reduction produces values ranging between 48.69 and 60.35 per cent. For the 

peak load case (see Table 16), these values range between 31.22 and 55.89. Electricity hedges must 

then be made for long periods, otherwise the result can be the opposite of what was expected.   

Finally, hedging results for weekly and monthly periods of the natural gas price are reported in 

Tables 14 and 17, respectively. Risk reduction for weekly and monthly periods are above 41.19 and 

56.44 per cent, respectively. Therefore, compared with spark spread and electricity, natural gas 

price risk is the easiest to hedge.  
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Figure 2. Monthly spark spreads hedging ratios 

Following Ederington and Salas (2008), the estimated hedging ratios for electricity and natural gas futures 

corresponding to the following three cases are shown: (1) ߚ௧
௘ (---) and (···) ߚ௧

௚ are jointly obtained, (2) ߚ௧
௘ 

(---) and ߚ௧
௚ (···) are separately obtained in each market as independent problems, and (3) ߚ௧

௘ ൌ

௧ߚ
௚ ൌ  .௧ (—), jointly obtained but restricted to be equalߚ

 

    a)  UK peak spark spread                                     b)  UK base spark spread 

 

         c)  Netherlands peak spark spread                          d) Netherlands base spark spread 

 

e)  Germany peak spark spread                            f) Germany base spark spread 
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Table 8. Hedging effectiveness in weekly hedges. Peak spark prices. 

This table displays the risk reduction achieved by each hedging strategy described in Section 2. The in-sample results are 
computed for the first five years and then a moving window of five years is used to compute the out-of-sample results. In the 
second row of each panel, the unhedged spot position variance is reported and constitutes the base for calculating the risk 
reduction achieved with each hedging strategy. This variance is computed as ܸܴܣሾΔܵ௧ሿ and ܸൣܴܣΔܵ௧ െ ௧ܨመሺߣ െ ܵ௧ሻ൧ in the 
‘standard’ and Ederington and Salas (2008) approaches, respectively. The variance of each hedging strategy is computed with 
equations (2) and (5) in the standard and ‘E&S(2008)’ approaches, respectively. Ex-ante hedging ratios for the period [t–1,t] 
are estimated using the information available until t–1, and the model is estimated again each time the moving window sample 
moves ahead. Those strategies with the largest risk reduction in each panel are indicated with an asterisk (*). 
 

Hedging strategy  In the sample  Out of the sample  
  Standard 

approach 
E&S (2008) 

approach 
Standard 
approach 

E&S (2008) 
approach 

Panel (A). Hedging one-week spot risk in UK 
 Period Nov. 14th, 2007 – Nov. 7th, 2012 Nov. 14th, 2012 – Feb. 10th, 2016 

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 0 Spot variance 100.58  94.30 24.48  17.87 

  Risk reduction (%) Risk reduction (%) 
௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 1  2.00 8.15 -10.40 -12.02 
 w/o basis 7.69 11.44 -3.85 -2.37* 

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ  ௧ with basis 7.40 11.76 -4.71 -4.46ߚ

 w/o basis 5.19 7.72 -4.61 -3.08 

௧ߚ
௘ and ߚ௧

௘ separately with basis 3.71 7.06 -5.13 -5.36 

 w/o basis 8.67 13.36 -4.16 -2.64 
௧ߚ
௘ and ߚ௧

௘ jointly with basis 8.40 13.70 -12.96 -14.56 

Panel (B). Hedging one-week spot risk in Netherlands 
  May. 6th, 2009 – Apr. 23th, 2014 Apr. 30th, 2014 – Apr. 27th, 2016

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 0  32.19 20.55 14.76 9.76 

  Risk reduction (%) Risk reduction (%) 
௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 1  -10.72 5.47 9.63 12.85 
 w/o basis 9.36 15.39 4.97 8.41 

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ  ௧ with basis 8.18 16.53 6.49 7.98ߚ

 w/o basis 10.40 18.36 11.38 13.03 

௧ߚ
௘ and ߚ௧

௘ separately with basis 8.02 18.22 12.06 10.40 
 w/o basis 19.24 30.73 10.58 16.46* 

௧ߚ
௘ and ߚ௧

௘ jointly with basis 18.44 30.88* 10.85 16.02 

 
 

Panel (C). Hedging one-week spot risk Germany 
 Period Mar. 24th, 2010 – Dec. 28th, 2015  

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 0 Spot variance 41.42 20.17   
  Risk reduction (%)  

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 1  -1.42 -5.40   
 w/o basis -16.59 -45.65   

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ    ௧ with basis 4.42 5.42ߚ
 w/o basis 6.09 10.85   

௧ߚ
௘ and ߚ௧

௘ separately with basis 5.84 11.59   
 w/o basis 16.52 32.45   

௧ߚ
௘ and ߚ௧

௘ jointly with basis 16.23 33.02*   



 37

Table 9 Hedging effectiveness in weekly hedges. Base spark prices. 
This table is similar to Table 8, but uses base load prices for electricity. 

 
  In the sample  Out of the sample  
  Standard 

approach 
E&S (2008) 

approach 
Standard 
approach 

E&S (2008) 
approach 

Panel (A). Hedging one-week spot risk in UK 
Hedging strategy Period Jan. 7th, 2004 – Nov. 7th, 2012 Nov. 14th, 2012 – Feb. 10th, 2016

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 0 Spot variance 46.94 40.86 15.21 9.57 

  Risk reduction (%) Risk reduction (%)
௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 1  1.71 10.78 -1.20 1.09 
 w/o basis 6.71 12.44  0.20 2.08 

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ  ௧ with basis 6.08 13.17 -0.46 1.04ߚ

 w/o basis 4.05 8.55 1.42 2.43 

௧ߚ
௘ and ߚ௧

௘ separately with basis 2.01 7.69 1.20 4.31 
 w/o basis 6.91 12.90 2.73 4.52* 

௧ߚ
௘ and ߚ௧

௘ jointly with basis 6.22 13.68 1.96 3.60 

Panel (B). Hedging one-week spot risk in Netherland 
 Period Jan. 7th, 2004 – Dec. 30th, 2008 Jan. 7th, 2008 – Apr. 27th, 2016 

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 0 Spot variance 187.09 141.14 17.94 13.83 

  Risk reduction (%) Risk reduction (%) 
௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 1  7.31 14.64 3.98 9.71 
 w/o basis 7.44 15.56 3.52 8.59 

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ  ௧ with basis 6.81 16.38* -0.24 7.40ߚ

 w/o basis 7.83 15.23 10.35 23.64* 

௧ߚ
௘ and ߚ௧

௘ separately with basis 7.67 16.37 5.40 20.62 
 w/o basis 7.31 12.56 12.76 22.81 

௧ߚ
௘ and ߚ௧

௘ jointly with basis 6.74 13.25 9.17 18.67 

 
 

Panel (C). Hedging one-week spot risk Germany 
 Period Mar. 24th, 2010 – Dec. 28th, 2015  

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 0 Spot variance 38.84 18.44   
  Risk reduction (%)  

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 1  -1.42 -5.40   
 w/o basis 5.69 10.84   

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ    ௧ with basis 5.68 10.87ߚ

 w/o basis 7.25 16.66   

௧ߚ
௘ and ߚ௧

௘ separately with basis 7.28 17.65   
 w/o basis 16.40 34.47   

௧ߚ
௘ and ߚ௧

௘ jointly with basis 16.27 34.75*   
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Table 10. Hedging effectiveness in monthly hedges. Peak spark Prices. 

This table is similar to Table 8, but uses monthly data frequency. The in-sample results are computed with at least the first 
eight years of each time-series. When more data is available, out-of-sample results are obtained. In these cases, hedging ratios 
are estimated each time a new observation is added– using past information from the beginning of each time series.  
 

Hedging strategy  In the sample  Out of the sample  
  Standard 

approach 
E&S (2008) 

approach 
Standard 
approach 

E&S (2008) 
approach 

Panel (A). Hedging one-month spot risk in UK 
 Period November 2007 – February 2016  

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 0 Spot variance 30.38 29.38   
  Risk reduction (%)  

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 1  -47.54 -35.18%   
 w/o basis 13.65 18.60   

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ    ௧ with basis 13.30 18.95ߚ
 w/o basis 2.18 3.42   

௧ߚ
௘ and ߚ௧

௘ separately with basis -6.19 -3.17   

 w/o basis 16.27 24.40   
௧ߚ
௘ and ߚ௧

௘ jointly with basis 14.16 25.50*   

Panel (B). Hedging one-month spot risk in Netherlands 
 Period May 2009 – April 2016  

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 0 Spot variance 39.61 22.03   

  Risk reduction (%)  
௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 1  -17.61 -54.43   
 w/o basis 6.75 4.29   

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ    ௧ with basis 6.05 5.56ߚ
 w/o basis 10.72 29.46   

௧ߚ
௘ and ߚ௧

௘ separately with basis 11.11 32.15*   
 w/o basis 7.75 5.45   

௧ߚ
௘ and ߚ௧

௘ jointly with basis 7.02 6.78   
Panel (C). Hedging one-month spot risk in Germany 

 Period January 2004 – April 2012 May 2012 – December 2015 
௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 0 Spot variance 146.83 81.41 48.22 27.81 

  Risk reduction (%) Risk reduction (%) 
௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 1  1.39 19.83 23.19 43.38* 
 w/o basis 13.48 33.20 16.94 29.80 

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ  ௧ with basis 13.03 34.02 18.80 34.62ߚ
 w/o basis 14.45 33.06 18.14 36.81 

௧ߚ
௘ and ߚ௧

௘ separately with basis 11.58 29.71 20.53 42.20 
 w/o basis 16.55 25.21 13.82 37.43 

௧ߚ
௘ and ߚ௧

௘ jointly with basis 11.23 34.29* 17.49 33.24 
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Table 11. Hedging effectiveness in monthly hedges. Base spark Prices. 
This table is similar to Tables 8 and 10, but uses monthly frequency for natural gas and base load electricity prices.  

 
Hedging strategy  In-sample  Out-of-sample  

  Standard 
approach 

E&S (2008) 
approach 

Standard 
approach 

E&S (2008) 
approach 

Panel (A). Hedging one-month spot risk in UK 
 Period November 2007 – February 2016  

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 0 Spot variance  18.79 14.39   

  Risk reduction (%)  
௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 1  -11.88 -16.65   
 w/o basis 12.36 15.64   

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ    ௧ with basis 12.35 15.65ߚ
 w/o basis 6.57 6.54   

௧ߚ
௘ and ߚ௧

௘ separately with basis -2.18 -5.68   
 w/o basis 13.88 19.58   

௧ߚ
௘ and ߚ௧

௘ jointly with basis 13.49 20.05*   

Panel (B). Hedging one-month spot risk in Netherlands 
 Period Jan 2004 – May 2012 June 2012–April 2016 

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 0 Spot variance 110.22 69.75 35.43 17.00 

  Risk reduction (%) Risk reduction (%)
௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 1  9.85 37.76 8.43 17.01 
 w/o basis 12.05 35.33 7.16 15.38 

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ  ௧ with basis 9.85 38.81* 8.43 14.74ߚ
 w/o basis 13.05 34.46 9.79 23.09 

௧ߚ
௘ and ߚ௧

௘ separately with basis 7.56 38.77 8.11 17.52 
 w/o basis 14.00 30.16 14.41 28.92* 

௧ߚ
௘ and ߚ௧

௘ jointly with basis 8.07 39.17 7.33 13.61 

Panel (C). Hedging one-month spot risk in Germany 
 Period January 2004 – April 2012 May 2012 – December 2015 

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 0 Spot variance 90.74 38.39 43.83 26.63 

  Risk reduction (%) Risk reduction (%) 
௧ߚ
௘ ൌ ௧ߚ

௚ ൌ 1  9.31 30.39 21.53 48.90* 
 w/o basis 13.01 36.21 17.67 39.69 

௧ߚ
௘ ൌ ௧ߚ

௚ ൌ  ௧ with basis 12.90 36.46 18.49 41.05ߚ
 w/o basis 12.98 36.45 18.11 40.72 

௧ߚ
௘ and ߚ௧

௘ separately with basis 12.41 34.77 12.98 46.61 
 w/o basis 14.75 33.95 15.23 40.68 

௧ߚ
௘ and ߚ௧

௘ jointly with basis 13.61 36.67* 17.14 41.67 
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Table 12. Hedging effectiveness in weekly hedges. Base electricity prices. 
This table is similar to Table 9, but uses only spot and futures prices on base load electricity at weekly frequency. Specifically, 
this table displays the risk reduction achieved by three hedging strategies applied to a single commodity: naïve; OLS without 
the basis; and OLS with the basis. That is, applying equations (9) and (10) to a single commodity. The variance of the 

unhedged position in the ‘standard’ and the Ederington and Salas (2008) approach is computed as ܸൣܴܣ∆ܵ௧
௘,௕௔௦௘൧ and 

௧ܵ∆ൣܴܣܸ
௘,௕௔௦௘ െ ௧ܨመሺߣ

௘,௕௔௦௘ െ ܵ௧
௘,௕௔௦௘ሻ൧, respectively. Variance of each hedging strategy is computed as ܸൣܴܣ∆ܵ௧

௘,௕௔௦௘ െ
௧ܨ∆መ௧ߚ

௘,௕௔௦௘൧ and ܸൣܴܣ∆ܵ௧
௘,௕௔௦௘ െ ௧ܨ∆መ௧ߚ

௘,௕௔௦௘ െ ௧ܨመሺߣ
௘,௕௔௦௘ െ ܵ௧

௘,௕௔௦௘ሻ൧ in the standard and ‘E&S(2008)’ approaches, 
respectively.  

 
 

 In the sample  Out of the sample  
 Standard 

approach 
E&S(2008) 
approach 

Standard 
approach 

E&S(2008) 
approach 

Panel (A). Hedging one-week spot risk in UK 
Period Jan. 7th, 2004 – Nov. 7th, 2012 Nov. 14th, 2012 – Feb. 10th, 2016 

Spot variance (not hedged) 44.95 43.98 12.91 10.40 

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) 5.80 14.66 1.44 6.01 

OLS w/o basis 9.85 15.39 2.33 6.06* 
OLS with basis 9.17 16.09* 2.80 5.75 

Panel (B). Hedging one-week spot risk in Netherlands 
Period Jan. 7th, 2004 – Dec. 30th, 2008 Jan. 7th, 2008 – Apr. 27th, 2016 

Spot variance (not hedged) 192.06 150.27 15.96 12.82 

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) 6.12 11.98 -6.01 0.39 

OLS w/o basis 6.11 12.00 -4.13 0.28 
OLS with basis 5.68 12.56* -10.27 -3.72 

Panel (C). Hedging one-week spot risk in Germany 
Period Mar. 24th, 2010 – Dec. 28th, 2015  

Spot variance (not hedged) 35.74 14.37   

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) -0.24 14.37   

OLS w/o basis 8.96 20.92   
OLS with basis 8.95 20.94*   
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Table 13. Hedging effectiveness in weekly hedges. Peak electricity Prices. 
This table is similar to Table 12, but using only spot and futures prices on peak load electricity at weekly frequency. 

 
 In the sample  Out of the sample  
 Standard 

approach 
E&S (2008) 

approach 
Standard 
approach 

E&S (2008) 
approach 

Panel (A). Hedging one-week spot risk in UK 
Period Nov. 14th, 2007 – Nov. 7th, 2012 Nov. 14th, 2012 – Feb. 10th, 2016

Spot variance (not hedged) 99.07 92.65 22.73 16.29 

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) 2.05 8.20 -12.40 -15.43 

OLS w/o basis 7.60 11.37 -4.46 -3.77* 
OLS with basis 7.30 11.69 -5.76 -5.97 

Panel (B). Hedging one-week spot risk in the Netherlands 
Period May. 6th, 2009 – Apr. 23th, 2014 Apr. 30th, 2014 – Apr. 27th, 2016

Spot variance (not hedged) 29.89 20.91 13.44 10.24 

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) -8.71 11.57 0.16 11.75 

OLS w/o basis 12.65 19.86 3.64 12.09* 
OLS with basis 10.91 21.43 3.55 11.16 

Panel (C). Hedging one-week spot risk in Germany 
Period Mar. 24th, 2010 – Dec. 28th, 2015  

Spot variance (not hedged) 37.64 14.81   

Hedging strategy Risk reduction (%)  
Naïve (b=1) -17.07 -52.62   

OLS w/o basis   8.04  15.67   
OLS with basis   7.93  15.95*   
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Table 14. Hedging effectiveness in weekly hedges. Natural gas prices. 
This table is similar to Table 9, but using only spot and futures prices on base load electricity at weekly frequency. 

 
 In-sample  Out-of-sample  
 Standard approach E&S (2008) 

approach 
Standard approach E&S (2008) 

approach 

Panel (A). Hedging one-week spot risk in UK 
Period Jan. 7th, 2004 – Nov. 7th, 2012 Nov. 14th, 2012 – Feb. 10th, 2016 

Spot variance (not hedged) 27.44 24.90 9.73 9.60 

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) 29.09 43.59 30.37 39.27 

OLS w/o basis 29.18 44.35 30.47 40.00 
OLS with basis 28.13 45.51* 29.98 41.19* 

Panel (B). Hedging one-week spot risk in Netherlands 
Period Jan. 7th, 2004 – Dec. 30th, 2008 Jan. 7th, 2008 – Apr. 27th, 2016 

Spot variance (not hedged) 7.26 6.31 1.52 1.41 

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) 27.36 39.53 42.89 53.01* 

OLS w/o basis 28.92 43.73 40.94 51.98 
OLS with basis 28.21 44.55 36.84 50.43 

Panel (C). Hedging one-week spot risk in Germany 
Period Mar. 24th, 2010 – Dec. 28th, 2015  

Spot variance (not hedged) 1.17 1.15   

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) 38.89 52.01   

OLS w/o basis 39.00 51.50   
OLS with basis 38.17 52.35   
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Table 15. Hedging effectiveness in monthly hedges. Base electricity Prices. 
This table is similar to Table 12, but uses monthly data. 

 
 In the sample  Out of the sample  
 Standard approach E&S (2008) 

approach 
Standard approach E&S (2008) 

approach 

Panel (A). Hedging one-month spot risk in UK 
Period November 2007 – February 2016  

Spot variance (not hedged) 29.71 31.29 

Hedging strategy Risk reduction (%)  

Naïve (b=1) 31.40 44.60   
OLS w/o basis 33.33 46.86   
OLS with basis 21.33 48.69*   

Panel (B). Hedging one-month spot risk in Netherlands 
Period Jan 2004 – May 2012 June 2012–April 2016 

Spot variance (not hedged) 94.50 77.19 11.55 8.81 

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) 9.39 58.42 32.10 64.86 

OLS w/o basis 18.49 50.21 38.37 62.30 
OLS with basis 11.63 58.61* 34.71 69.06* 

Panel (C). Hedging one-month spot risk in Germany 
Period January 2004 – April 2012 May 2012 – December 2015 

Spot variance (not hedged) 72.87 41.68 26.89 14.11 

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) 19.00 58.69 41.84 60.35* 

OLS w/o basis 23.50 58.80 34.32 51.00 
OLS with basis 22.40 60.00* 38.49 55.65 
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Table 16. Hedging effectiveness in monthly hedges. Peak electricity Prices. 
This table is similar to Table 13, but uses monthly data. 

 
 

 In the sample  Out of the sample  
 Standard approach E&S (2008) 

approach 
Standard approach E&S (2008) 

approach 

Panel (A). Hedging one-month spot risk in UK 
Period November 2007 – February 2016  

Spot variance (not hedged) 47.24 47.38 

Hedging strategy Risk reduction (%)  

Naïve (b=1) -26.53 16.63   
OLS w/o basis 18.52 33.70   
OLS with basis 14.49 37.49*   

Panel (B). Hedging one-month spot risk in Netherlands 
Period May 2009 – April 2016  

Spot variance (not hedged) 33.80 23.51   

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) 1.56 -1.95   

OLS w/o basis 23.17 31.19   
OLS with basis 23.15 31.22*   

Panel (C). Hedging one-month spot risk in Germany 
Period January 2004 – April 2012 May 2012 – December 2015 

Spot variance (not hedged) 138.32 102.00 33.88 16.18 

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) 13.44 53.38 43.53 55.89* 

OLS w/o basis 25.05 54.89 33.08 47.58 
OLS with basis 22.68 58.12* 38.94 53.15 
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Table 17. Hedging effectiveness in monthly hedges. Natural gas prices. 
This table is similar to Table 14, but uses monthly data. 

 
 In the sample  Out of the sample  
 Standard approach E&S (2008) 

approach 
Standard approach E&S (2008) 

approach 

Panel (A). Hedging one-month spot risk in UK 
Period November 2007 – February 2016  

Spot variance (not hedged) 37.11 35.86 

Hedging strategy Risk reduction (%)  

Naïve (b=1) 30.38 61.16   
OLS w/o basis 35.01 58.03   
OLS with basis 31.84 61.30*   

Panel (B). Hedging one-month spot risk in Netherlands 
Period Jan 2004 – May 2012 June 2012–April 2016 

Spot variance (not hedged) 9.09 7.76 8.64 6.38 

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) 25.97 68.62 36.27 56.54* 

OLS w/o basis 33.82 65.40 29.30 46.52 
OLS with basis 30.24 69.59* 34.64 52.97 

Panel (C). Hedging one-month spot risk in Germany 
Period January 2004 – April 2012 May 2012 – December 2015 

Spot variance (not hedged) 9.49 8.11   

Hedging strategy Risk reduction (%) Risk reduction (%) 
Naïve (b=1) 27.42 68.61 43.24 61.77* 

OLS w/o basis 33.77 65.00 36.05 51.58 
OLS with basis 30.27 69.10* 42.02 59.15 
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Finally, the White’s test described in Section 2 was applied to test the statistical significance of 

variance risk reduction differences attained for the out-of-sample periods for each pair of hedging 

strategies. In all cases, the null hypothesis of no improvement in the risk reduction is rejected at 5% 

of significance level. Consequently, we can conclude that hedging performance differences are 

statistically significant in all cases. 

 

5. Conclusions 

 

There is extensive literature on price risk management using futures contracts. Nevertheless, this 

paper is the first (to our knowledge) to discuss spark spread within this doctrine. We have focussed 

on three European markets in which the natural gas share in the fuel mix for generating electricity 

varies considerably: Germany (10%); the United Kingdom (30%); and the Netherlands (50%). 

Consequently, we feel our results should be of interest for all agents in those countries and energy 

markets in which natural gas is part of the fuel mix for power generation.  

 

An important preliminary result is obtained when the spark spread risk and the clean spark spread 

risk are compared. It is found that both variables are indistinguishable and the dimensionality of the 

problem can be reduced by considering only electricity and natural gas prices. This is because CO2 

spot and futures prices are almost perfectly correlated and the basis risk of a hedge is the same for 

both spreads. Nevertheless, before burning natural gas in a CCGT plant to produce electricity, the 

manager must be sure that the clean spark spread level ensures a profit for the company. Hedging 

negative spark spreads with futures makes no sense. CCGT plants would only make an offer and 

enter the merit order curve if the clean spark spread is positive and consequently profitable, 

otherwise they will remain mothballed. 
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One generally accepted feature of energy prices is the presence of seasonal behaviour. We 

find that spark spread returns can be partially anticipated and the Ederington and Salas (2008) 

framework should be applied. The application of the Ederington and Salas (2008) approach 

highlights that risk reduction is underestimated in the standard approach (Ederington, 1978) due to 

the existence of a seasonal pattern that can be subtracted from the total returns. The risk 

underestimation varies between markets and commodities. For example, a risk reduction for 

monthly periods produced by optimal strategies is underestimated by between 7.56 and 27.37 per 

cent in the spark spreads. For the constituents of the spark spread these values are somewhat higher 

and more consistent across markets and strategies as it was expected from previous results in the 

area (see Torró, 2011, and Ederington and Salas, 2008). 

 

Results in this paper show that an individualised risk management of electricity and natural gas 

prices is not always the best solution. Hedging the spark spread with futures is more difficult than 

hedging electricity and natural gas price risks with their respective futures contracts. Whereas spark 

spread risk reduction for monthly periods attains values ranging between 20.05 and 48.90 per cent, 

electricity price risk attains reductions ranging between 48.69 and 69.06 per cent for base load 

prices and between 31.22 and 55.89 per cent for peak load prices. Optimal strategies for natural gas 

prices for monthly periods produce risk reductions ranging between 56.54 and 61.77 per cent. 

 

We feel our results should be of interest for electricity producers as the evolution of the spark 

spread is towards narrow values and, in many cases, gas-fired power plants are being mothballed 

while awaiting more profitable scenarios. Reducing the activity risks of these agents is an important 

issue. The paper is important for regulators because gas-fired power plants can back up energy from 

renewable energy sources because of its flexibility and reduced emission of polluting gases 

(compared to other fuels). And the paper is also of interest to academic audiences because of the 

innovative results in the scientific literature. 
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