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ABSTRACT 
 

To investigate the trends in wages in Spain in 1994-1999, we propose a flexible 
estimator of conditional distributions. The estimator, based on a piecewise-linear 
specification of the conditional hazard function, allows us to capture almost any 
underlying relationship and is unaffected by the curse of dimensionality. Our results 
reveal that the main changes in the labor market involved graduate workers entering the 
labor market: the “overeducation” phenomenon intensified in Spain between 1994 and 
1999, provoking a decrease in returns to schooling at higher levels of education. 
  
J.E.L. Classification Numbers: C14, J31. 
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RESUMEN 
 

En este trabajo proponemos analizar la evolución de los salarios en España entre 
1994 y 1999 utilizando un estimador flexible de las distribuciones condicionales. Este 
estimador, basado en una especificación lineal a tramos de la función de razón de fallo 
condicional, permite captar casi cualquier relación subyacente, y no se ve afectado por 
la maldición de la dimensionalidad. Los resultados que obtenemos muestran que los 
cambios más importantes en el mercado laboral se han producido en el grupo de los 
trabajadores con estudios superiores que entran al mercado laboral. En concreto, se 
observa que el fenómeno de “sobreeducación” se intensificó en España entre 1994 y 
1999, provocando un descenso de los rendimientos de la educación en los niveles de 
educación superiores. 
 
Palabras clave: Estimación basada en la función de fallo; Distribución salarial.  
 
 
 



1. INTRODUCTION

The analysis of wage distributions has always played a major role in Economics.

Thanks to the availability of large data sets, the use of nonparametric statistical

techniques to perform such analysis is now widespread. However, to understand

better the sources of differences in wages, much recent research has focused on

the estimation of the conditional distribution of wages given certain explanatory

variables, also referred to as “covariates”, which may be continuous or discrete.

For this kind of analysis, nonparametric methods are not entirely appropriate

because they suffer from what has been referred to as “curse of dimensionality”:

when a large number of covariates is included, the nonparametric estimation of

the conditional distribution is extremely inefficient. To overcome this problem,

various semiparametric procedures have been proposed, see e.g. Buchinsky (1994),

Fortin and Lemieux (1995) or DiNardo, Fortin and Lemieux (1996). More recently,

Donald, Green and Paarsch (2000), hereafter DGP, devised an estimation method

which provides very flexible estimators of conditional wage distributions, in the

sense that only a minimal number of restrictions on the shape of the conditional

densities are imposed. In this paper we propose to use a generalization of the

DGP estimation method which shares its advantages and yields better fits.

The DGP procedure is based on a semiparametric specification of the condi-

tional hazard function. Hazard functions were first used as a device to specify

models in the previously developed literature on spell duration (see e.g. Meyer

1990). The reason why the hazard function is used as a starting point is that it

makes it easy to introduce flexible functions of the covariates with no great com-

putational complexity, and it allows the covariates to affect not only the mean
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or variance of the conditional density, but also its shape. The estimation method

described in DGP assumes a step conditional hazard function. This assumption

leads to easy-to-compute estimates which can capture the underlying shape of

the true conditional hazard function, as long as a sufficiently large number of dis-

continuities are allowed. However, a step fitted hazard function leads to a step

fitted density function, which is not an appropriate estimate in many cases. To

circumvent this problem, DGP suggest smoothing the estimated densities after

they are calculated. In this paper we propose a different solution: assuming a

piecewise-linear conditional hazard function. This does not introduce any greater

computational complexity since there is no increase in the number of parameters

to be estimated. When the true underlying hazard function is continuous, as is

the case when the dependent variable is wages, a continuous piecewise-linear haz-

ard function will yield a better approximation than a step hazard function and,

therefore, more accurate estimates should be obtained.

When modeling income-related variables, interest is often focused on the anal-

ysis of how equally the variable is distributed among the population. The most

widespread statistical tools used to perform this kind of analysis are the Lorenz

curve and the Gini index. The traditional approach for estimating them in the

presence of covariates is to group the observations according to covariate values,

and then construct a nonparametric Lorenz curve and a Gini index for each group.

However, the methodology which we propose here allows us to obtain one esti-

mated Lorenz curve and one estimated Gini index for each covariate value, with no

need to group observations; thus, if the set of covariates includes any continuous

variable, a much more precise analysis of inequality can be performed.

The methodology which we propose is applied here to analyze the conditional
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distribution of wages in Spain between 1994 and 1999, a period in which sev-

eral labor market reforms were approved, using data from the European House-

hold Panel Data Survey (PHOGUE). With our procedure we obtain estimates of

the entire conditional distribution or density functions, together with confidence

bands. These flexible estimates reveal certain characteristics of these curves that

would have remained hidden if a different methodology had been used, and allow

us to analyze changes over time in returns to schooling, returns to experience and

inequality. As we discuss below, the main changes in the labor market in the

nineties involved graduate workers entering the labor market: our results provide

evidence that the phenomenon labelled as “overeducation” (hiring of graduates

for jobs that do not require a university degree) intensified in this period, result-

ing in a decrease in returns to moving from the middle level of education to the

highest.

The rest of the paper is organized as follows. In Section 2 we describe the

model, derive the conditional Lorenz curve and Gini index which stem from it,

explain how to obtain estimators of the conditional distribution or density func-

tions and their standard errors, and discuss the advantages and disadvantages

of the methodology. In Section 3 we use Spanish data to estimate wage density

and distribution functions conditional on education and experience, compute mea-

sures of returns to schooling, returns to experience and inequality and discuss the

empirical results. Section 4 concludes.

2. METHODOLOGY

Although our interest is focused on estimating the conditional distribution of

wages Y given certain covariates X, we describe our estimation procedure in a
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general context. We first present the statistical features of the methodology and

leave the discussion of its relationship with other procedures and its performance

to the last two subsections.

2.1. Specification of the model

Let (X �, Y )� be a random variable in RK+1 such that Y is absolutely contin-

uous with support [y1,+∞), where y1 ≥ 0. For the reasons pointed out in the
introduction, our starting point is the assumption that the conditional hazard

function of Y given X = x is piecewise-linear. Specifically, we assume that it can

be expressed as

h(y | x) =

 θj + (θj+1 − θj)
y−yj

yj+1−yj if y ∈ [yj, yj+1), for j = 1, ..., J,
θJ+1 if y ≥ yJ+1,

 (1)

where [y1, y2), ..., [yJ , y+1), [yJ+1,+∞) are known intervals which are not allowed
to depend on x, and θ1, ..., θJ+1 are positive values which may depend on x, though,

for simplicity this dependence is not made explicit in the notation (this convention

will also be followed with all quantities defined from θj hereafter). The J + 1

intervals [y1, y2), ..., [yJ , y+1), [yJ+1,+∞) will be referred to as “baseline intervals”.
Following the literature on hazard functions, covariates are now introduced using

a proportional-hazards model. However, to gain flexibility, the proportionality

property is only assumed to hold within baseline intervals. Therefore, we assume

that the coefficients θj can be expressed as

θj = exp(αj + β
(j)
1 x1 + ...+ β

(j)
K xK), for j = 1, ..., J + 1, (2)

where x = (x1, ..., xK)� is the observed vector of the covariates and α1, ..., αJ+1,

β(1) ≡ (β
(1)
1 , ...,β

(1)
K )

�, ..., β(J+1) ≡ (β
(J+1)
1 , ...,β

(J+1)
K )� are unknown parameters.
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Note that the exponential function in (2) ensures that θj is positive. To prevent

the total number of parameters from becoming too large, we include an additional

restriction in the specification. As we discuss below, the number of baseline in-

tervals might be very large. Hence, parameters β(1), ..., β(J+1) will not always be

allowed to be all different. Instead, we assume that there exist integers J1, ..., JP ,

with 1 = J1 < J2 < ... < JP ≤ J + 1, such that

β(1) = ... = β(J2−1), β(J2) = ... = β(J3−1), ..., β(JP ) = ... = β(J+1). (3)

The P intervals I1 ≡ [y1, y2)∪...∪[yJ2−1, yJ2), ..., IP ≡ [yJP , yJP+1)∪...∪[yJ+1,+∞)
will be referred to as “covariate intervals”. Note that the restrictions in (3) imply

that the beta coefficients must be the same within each covariate interval, though

they can vary across covariate intervals. To sum up, our specification is determined

by equations (1), (2) and (3), that is, we assume a continuous piecewise-linear

baseline hazard function, and introduce covariates at each covariate interval with

a proportional-hazards model. Thus, the total number of parameters in the spec-

ification is J+1+KP , and the parameter vector is (α1, ...,αJ+1,β
(J1)�, ...,β(JP )�)�,

which is hereafter denoted as ϕ.

All statistical properties of the conditional distribution of Y given X = x can

be derived from (1). Using the relationship h(y | x) = f(y | x)/{1− F (y | x)}, it
follows that F (y | x) = 1− exp{− U y

y1
h(t | x)dt}, for y ≥ y1. Hence, if we denote

yJ+2 ≡ +∞, the conditional distribution function at y, when y ∈ [yj, yj+1), is

F (y | x) = 1− exp{−δj − θj(y − yj)− λj(y − yj)2}, (4)

where δ1 ≡ 0, δj ≡
Sj−1

l=1 (θl+1 + θl)(yl+1 − yl)/2, for j = 2, ..., J + 1, λj ≡
(θj+1 − θj)/{2(yj+1 − yj)} for j = 1, ..., J, and λJ+1 ≡ 0. Thus, the conditional
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density function at y ∈ [yj, yj+1) is

f(y | x) = {θj + 2λj(y − yj)} exp{−δj − θj(y − yj)− λj(y − yj)2}. (5)

Finally, to facilitate inequality analysis, we derive the expression for the condi-

tional Lorenz curve and Gini index that stem from our specification. The Lorenz

curve of a non-negative random variable with finite expectation, strictly increas-

ing distribution function F (·) and density function f(·) is defined as L(u) =U F−1(u)
0

tf(t)dt/
U∞
0
tf(t)dt, for u ∈ (0, 1). In our context, observe that for any

b in [yj, yj+1),
U b
0
tf(t | x)dt = Sj−1

l=1

U yl+1
yl

tf(t | x)dt + U b
yj
tf(t | x)dt, where the

first term in the right-hand member only appears if j > 1. These integrals can be

computed using (5); thus we derive that] b

0

tf(t | x)dt = y1 − b exp{−δj − θj(b− yj)− λj(b− yj)2}+Hj(b | x) + ψj,

where Hj(z | x) ≡
U z
yj
exp{−δj − θj(y − yj) − λj(y − yj)2}dy, ψ1 ≡ 0 and ψj ≡Sj−1

l=1 Hl(yl+1), for j = 2, ..., J + 1. Similarly,] ∞

0

tf(t | x)dt = y1 +
[J+1

l=1
Hl(yl+1 | x).

Finally, observe that F−1(u | x) ∈ [yj, yj+1) is equivalent to u ∈ [uj, uj+1), where
uj ≡ 1 − exp(−δj), for j = 1, ..., J + 1, and uJ+2 ≡ 1. Moreover, from (4) we

derive that, for u ∈ [uj, uj+1),

F−1(u | x) =

 yj +
1
2λj
(−θj + [θ2j − 4λj{δj + ln(1− u)}]1/2) if λj 9= 0,

yj − {δj + ln(1− u)}/θj if λj = 0.

Putting together these results, it follows that the conditional Lorenz curve at a

point u ∈ [uj, uj+1) is

L(u | x) = y1 − (1− u)F−1(u | x) +Hj{F−1(u | x) | x}+ ψj

y1 +
SJ+1

l=1 Hl(yl+1 | x)
. (6)
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The Gini index G corresponding to a Lorenz curve L(·) is G = 1− 2 U 1
0
L(u)du.

In our case, after some algebraic manipulations, it follows from (6) that the con-

ditional Gini index is

G(x) = 1− y1 +
SJ+1

j=1 H
(2)
j (yj+1 | x)

y1 +
SJ+1

j=1 Hj(yj+1 | x)
, (7)

whereH(2)
j (z | x) ≡

U z
yj
exp{−2δj−2θj(y−yj)−2λj(y−yj)2}dy. For computational

purposes, note that, if λj ≥ 0, the integrals which appear in Hj(· | x) and H(2)
j (· |

x) can easily be computed using the exponential function or the standard normal

distribution function; otherwise, these integrals can be approximated numerically.

2.2. Inference

Given a sample {(X �
i , Yi)

�}ni=1 of independent and identically distributed obser-
vations, the parameters of the model can be estimated by maximum likelihood.

From (5) it follows that the log-likelihood function can be expressed as

lnL(ϕ) =
[n

i=1

[J+1

j=1
{I(yj ≤ Yi < yj+1)[ln {θi,j + 2λi,j(Yi − yj)}

−δi,j − θi,j(Yi − yj)− λi,j(Yi − yj)2]
�
,

where I(·) is the indicator function, and θi,j, δi,j, λi,j are defined as θj, δj, λj, but

replacing x by Xi. Note that we add the subscript i in these values to emphasize

that not only do they depend on the vector parameter, but also on the regressors.

Maximization of lnL(ϕ) yields a root-n-consistent estimate of ϕ, denoted as eϕ.
Thus, given any covariate vector x, we can define eθj ≡ exp(eαj+x�eβ(j)), and eδj, eλj
in the same way as δj, λj, replacing θj by eθj. From here it is straightforward to

obtain root-n-consistent estimates of F (y | x) and f(y | x), simply replacing θj,

δj and λj by eθ  j , eδ j and eλj in (4) and (5), resp ectively. By maximum-likeliho o d
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techniques we can also compute a consistent estimate eV of the variance-covariance
matrix of eϕ, so that the asymptotic distribution of eϕ is normalN(ϕ, eV ). Therefore,
consistent standard errors of the estimates of F (y | x) and f(y | x) can be obtained
with the delta method as follows: first note that

∂θj
∂ϕs

=

 θjI(s = j) if s ≤ J + 1,
θjxr(s)+1I{q(s) = p(j)− 1} if s > J + 1,

 (8)

where q(s) and r(s) are defined as the quotient and remainder after dividing

s− (J +1)− 1 by K and, for a given j, p(j) denotes the integer in {1, .., P} such
that [yj, yj+1) ⊂ Ip. Using (8), ∂δj/∂ϕs and ∂λj/∂ϕs are readily derived and then,

given y ∈ [yj, yj+1), we can also obtain

∂F (y | x)
∂ϕs

=

�
∂δj
∂ϕs

+ (y − yj) ∂θj
∂ϕs

+ (y − yj)2 ∂λj
∂ϕs

�
{1− F (y | x)};

finally, if eΓ denotes the 1 × (J + 1 + KP ) matrix whose s-th element is ∂F (y |
x)/∂ϕs, but replacing F (y | x), θj, δj and λj by their estimates, then the asymp-

totic distribution of eF (y | x) is normal N(F (y | x), eΓeV eΓ�). Similar reasoning also
applies for f(y | x). However, the delta method does not apply for L(u | x)
and G(x), because these quantities are not differentiable functions of ϕ, since the

values uj depend on δj.

An alternative method for computing consistent standard errors is bootstrap

resampling. From the expression for F−1(· | x) derived in the previous subsection,
it is concluded that a bootstrap sample can be obtained as follows: define eθi,j ≡
exp(eαj + X �

i
eβ(j)); define eδi,j, eλi,j in the same way as δj, λj but replacing θj

by eθi,j; define eui,j in the same way as uj but replacing δj by eδi,j; generate a
random number from a uniform distribution in (0, 1), say U∗i , and let j

∗ be the

number in {1, ..., J + 1} such that U∗i ∈ [eui,j∗, eui,j∗+1); finally, define X∗
i = Xi
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and Y ∗i = yj∗ + ([eθ2i,j − 4eλi,j{eδi,j + ln(1 − U∗i )}]1/2 − eθi,j)/(2eλi,j) if eλi,j 9= 0, or

yj∗−{eδi,j+ln(1−U∗i )}/eθi,j if eλi,j = 0. Given this bootstrap sample {(X∗�
i , Y

∗
i )
�}ni=1,

a consistent standard error of F (y | x) can then be computed as follows: i)
generate a bootstrap sample, obtain the maximum-likelihood estimate for that

bootstrap sample eϕ∗, and compute with it eθ∗j ≡ exp(eα∗j + x�eβ(j)∗), eδ∗j , eλ∗j and the
corresponding bootstrap estimate eF (y | x)∗; ii) repeat the previous stepB times to
obtain B bootstrap estimates; the sample standard deviation of the B bootstrap

estimates provides a bootstrap approximation of the standard error of eF (y | x).
This bootstrap procedure also applies for obtaining bootstrap approximations of

the standard errors of f(y | x), L(u | x) and G(x).

2.3. Discussion of the methodology

In principle, our methodology should be considered as purely parametric, be-

cause if the number of baseline intervals is treated as fixed, our specification leads

to a conditional distribution function which is completely known except for a finite

set of parameters. However, if the number of baseline intervals is large enough, the

assumption that the hazard function is piecewise-linear is, in essence, a nonpara-

metric assumption, since any underlying hazard function can be approximated

in this way. On the other hand, covariates are introduced parametrically, but

the parameters which determine their influence are partly allowed to vary along

the support of the dependent variable, so that the parametric component of the

model gains flexibility. Thus, our specification as a whole can be considered as

semiparametric, but flexible enough to capture almost any possible underlying re-

lationship. One should keep in mind, however, that the good asymptotic behavior

of the maximum-likelihood estimators that are proposed here is ensured only for
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a fixed number of baseline intervals; this means that, in practice, n must be large

in relation to J .

This discussion also shows that the key point of the methodology is the choice

of baseline and covariate intervals. Baseline intervals play the same role here as

bins in a histogram: too many will lead to a very wiggly estimate, whereas too few

may lead to an excessively flat estimate that masks the underlying shape. DGP

describe a rule-of-thumb for choosing the number of baseline intervals, though

they suggest that a simple graphical inspection of the results may well be of great

help in this choice. The importance of the number of covariate intervals depends

on how sensitive conditional distributions are to changes in the covariates.

As our methodology yields a fully parameterized conditional distribution func-

tion, we can check the specification of the model using any of the recently devel-

oped nonparametric specification tests that are consistent versus any alternative,

see e.g. Andrews (1997), Zheng (2000) or Bai (2003). Additionally, the p-values

obtained with any of these tests for different values of J and P can help us to de-

cide how many baseline and covariate intervals must be used. From a theoretical

point of view, this may well be a much more satisfactory way to choose J and

P than the rule-of-thumb proposed in DGP or the simple graphical inspection of

the estimates, but the computational burden of the aforementioned specification

tests makes their use much less appealing in practice.

2.4. Comparison with other procedures

Let us analyze first the differences between our methodology and the one consid-

ered in DGP. With our notation, their estimation procedure amounts to assuming

that: i) h(y | x) = θj when y ∈ [yj, yj+1); and ii) equation (2) holds with the
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reparameterization αj = γj − ln(yj+1 − yj). Additionally, DGP discretize the
dependent variable, considering all observations within the same baseline inter-

val as equivalent. Hence, to derive their likelihood function, which is equation

(2.5) in their paper, they only have to compute the probability that the depen-

dent variable falls within each baseline interval, say P (yj | x). Note that their
approach does not allow their parameter γJ+1 to be estimated. Finally, given

y ∈ [yj, yj+1) for j = 1, ..., J, DGP propose estimating the conditional density

f(y | x) with the histogram-like estimator hf(y | x) ≡ hP (yj | x)/(yj+1 − yj),
where hP (yj | x) is defined as P (yj | x), but replacing unknown parameters by
maximum-likelihood estimates. Thus, we can summarize the main advantages of

our methodology with respect to the DGP procedure as follows: i) a continuous

conditional hazard function is assumed, which should lead to a better fit when

the true hazard function is continuous, as is the case in most applications; ii)

no discretization is performed and, thus, there is no loss of information when

constructing the likelihood function; iii) our methodology provides a continuous

estimate of the conditional density function, whereas the DGP procedure only

provides a histogram-like estimate, which may be less appealing in most contexts;

and iv) in the DGP procedure, the discontinuities of the step hazard function

lead to excessively spiky density estimates, even after smoothing; this undesir-

able property is lessened when a continuous piecewise-linear hazard function is

assumed, as is proven by the graphs that we report in the next subsection.

Many other methods have been developed to estimate entire conditional distri-

bution or density functions. In comparison with purely parametric methods, the

main advantage of hazard-based estimators is their flexibility, since they do not

impose any prior functional form. In comparison with nonparametric methods,
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observe that the latter are extremely inefficient if many covariates are included,

and this is not the case with hazard-based estimators since they are derived by

maximizing a likelihood function. On the other hand, an alternative widespread

procedure that is close in spirit to the one we propose here is quantile regression,

see e.g. Koenker and Hallock (2001). This procedure also yields flexible esti-

mators of conditional distributions under relatively mild assumptions. However,

the following characteristics of our methodology might make it more appealing

than quantile regression for a practitioner: i) our procedure eventually leads to

a fully parameterized conditional distribution function; this allows us to derive

a conditional Lorenz curve and a conditional Gini index for any covariate vector

with no loss of information; and this also allows us to check the appropriateness

of the procedure using nonparametric specification tests; ii) in our procedure, the

number of beta parameters may be large if the number of observations is large

enough; thus, as the sample size grows our procedure provides greater flexibility

in the parametric component than quantile regression; iii) from a computational

point of view, our procedure is much easier to implement since it only requires

us to solve one optimization problem, with no restrictions, to obtain continuous

estimates of the conditional distribution and density functions; with quantile re-

gression, one has to estimate a large number of quantiles to derive an accurate

estimate of the conditional distribution and density functions, and many restric-

tions have to be imposed to ensure that, for any covariate vector, the p1-th quantile

is not larger than the p2-th quantile if p2 > p1 (if these restrictions were not im-

posed, the resulting estimate of the conditional distribution function might not

be a distribution function).
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2.5. Monte Carlo evidence on the performance of the estimator

To provide evidence on how well the estimator behaves in practice, and also

to shed light on the extent to which our methodology is an improvement on the

DGP procedure, we perform a Monte Carlo experiment, similar in spirit to the

one described in Section 2.4 of DGP1. We generate n = 3000 observations from

a standard normal distribution, say {Ui}ni=1; n observations from a uniform (0, 1)
distribution, say {Xi}ni=1; and n observations from a Bernouilli distribution with

p = 0.5, say {Zi}ni=1. All observations are independent from one another. Define

Yi =

 exp(0.5 + 0.1Ui) if Zi = 1,

exp(0.5 + 0.5Xi + 0.1Ui) if Zi = 0.

Then, the conditional distribution Y | X = x is a mixture between two lognormal

distributions. The conditional density is unimodal if x is close to 0, but bimodal

if x is close to 1. With these artificial data, we can check the ability of the

estimates to detect meaningful changes in the conditional densities induced by

changes in the covariates. We generate 50 samples of data {(X �
i , Yi)

�}ni=1 and, with
each sample, we estimate the conditional densities at x = 0.7 and x = 0.2 using

both the estimate based on a step hazard-function and the estimate based on a

piecewise-linear hazard-function, for various J and P . To compute the estimates,

at the tails we choose baseline intervals with left endpoints y1 = 1, y2 = q0.01,

y3 = q0.02, y4 = q0.03, yJ−1 = q0.97, yJ = q0.98 and yJ+1 = q0.99, where qp denotes

the p-th percentile of the unconditional distribution of Y ; the remaining J − 6
1We do not replicate their experiment exactly because their description of the artificial data

contains several mistakes; e.g., the 99-th percentile of the unconditional distribution of Y is

much greater than 2.80. Also observe that the curves in their Figures 1-3 are not densities, since

they do not integrate to one.
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left endpoints of baseline intervals are equally spaced between y4 and yJ−1. On

the other hand, covariate intervals are chosen uniformly among baseline intervals,

approximately; e.g., when J = 20 and P = 5, covariate intervals are defined taking

Ji = 1 + 4(i − 1), for i = 1, ..., 5. We always take K = 2 and consider as vector

of covariates (Xi,X2
i )
�. To evaluate the goodness of the fit, for each sample we

compute the difference between the fitted and true conditional densities at 156

equally-spaced points running from 1.35 to 2.90, and then the root-mean-squared-

error of the sample. Finally, we average the 50 root-mean-squared-errors to obtain

an overall measure of the goodness of the fit obtained with each procedure, for

given J and P . The results are reported in Table 1.

The results in Table 1 indicate that our methodology leads to a substantial

improvement in terms of mean-squared-error. It is also observed that, as expected,

increasing the number of baseline or covariate intervals improves the fit of the

estimates only up to a point; in this case the J = 15, P = 5 specification seems

to be the preferred one. Also observe that J plays a more crucial role than P ,

as long as enough covariate intervals are included -note that specifications with

P = 1 do not yield satisfactory results, but very similar results are obtained with

P = 5 and P = 10. For a visual depiction of how the procedure performs and

the effect of J on the estimates, in Figures 1 and 2 we plot the true conditional

densities at x = 0.7 and x = 0.2, respectively, with “typical” estimates obtained

with the specifications J = 15, P = 5 and J = 25, P = 5.

3. WAGE DISTRIBUTION IN SPAIN BETWEEN 1994 AND 1999

In this section we apply our methodology to analyze the conditional distribu-

tion of wages in Spain between 1994 and 1999, a period in which several labor
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TABLE 1:

Average Root-Mean-Squared-Error of Conditional Density Estimates

Based on the Hazard Function (HF)

Conditional Density Function at x=0.7

Estimate with step HF Estimate with piecewise-linear HF

P=1 P=5 P=10 P=1 P=5 P=10

J=10 0.2471 0.1812 0.1792 0.2347 0.1743 0.1324

J=15 0.1895 0.1318 0.1345 0.2141 0.0883 0.0976

J=20 0.1990 0.1378 0.1456 0.1723 0.0902 0.0971

J=25 0.1934 0.1390 0.1435 0.1711 0.1087 0.1124

J=30 0.1908 0.1394 0.1561 0.1798 0.1203 0.1298

Conditional Density Function at x=0.2

Estimate with step HF Estimate with piecewise-linear HF

P=1 P=5 P=10 P=1 P=5 P=10

J=10 0.3245 0.2797 0.2561 0.2457 0.1829 0.1672

J=15 0.2456 0.1992 0.1980 0.1934 0.0842 0.0994

J=20 0.2109 0.1765 0.1789 0.1852 0.1443 0.1268

J=25 0.2054 0.1716 0.1731 0.1843 0.1499 0.1354

J=30 0.2087 0.1704 0.1728 0.1803 0.1458 0.1562
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FIGURE 1:

Conditional Density Function at x = 0.7 with Estimates Based on a

Piecewise-Linear Hazard Function
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FIGURE 2:

Conditional Density Function at x = 0.2 with Estimates Based on a

Piecewise-Linear Hazard Function
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market reforms were approved. In the early eighties, the Spanish labor market

was characterized by strong rigidities, which were partly alleviated with the 1984

reform. In the nineties, two major reforms took place in 1994 and 1997. The

main changes introduced with these reforms were focused on: i) increasing the

topics under control in collective bargaining; ii) decreasing the possibilities of

short-term hiring and introducing another kind of unlimited contract with lower

dismissal costs; iii) extending the possibilities of individual or collective dismissals

for objective causes; iv) introducing more flexibility on part-time contracts; v) in-

troducing incentives for permanent contracts; and vi) creating firms for temporary

work.

The main objective of our empirical analysis is to examine how these reforms af-

fected wage distribution, paying especial attention to changes over time in returns

to schooling, returns to experience and inequality. Previous empirical analyses on

the influence of these reforms in Spanish labor market were limited by the lack

of availability of representative samples for the whole period. Abadie (1997) ana-

lyzed how the distribution of labor income in Spain was affected by the process of

liberalization that took place during the eighties, when Spain became a member

of the European Community; using quantile regression and data from the Span-

ish Expenditure Survey for 1980/81 and 1990/91, he concluded that returns to

schooling declined sharply in Spain during the eighties, in contrast to what had

been detected in the USA. He also observed that income dispersion decreased

remarkably within each education level. Alba-Ramírez and San Segundo (1995)

analyzed returns to education using least-squares and data from the second quar-

ter of the 1990 Spanish labor force survey, and obtained that an additional year of

education yields approximately an 8.5% increase in earnings, though this average
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figure varies substantially when distinguishing by class of worker (men/women,

private sector/public sector, and so on). More recently, Del Río and Ruiz-Castillo

(2001) analyze the evolution of labor income in Spain with an innovative method-

ology. They conclude that income inequality has dropped continuously since 1973,

and that returns to schooling showed a decreasing trend in the eighties and early

nineties.

In this section our aim is to determine how all these observed characteristics

changed in the second half of the nineties, using the methodology described in

the previous section and data from the European Household Panel Data Survey

(PHOGUE), which compiles information on wages and demographic characteris-

tics for a wide range of individuals and households from 1994 to 1999. This sample

contains a large set of individuals (over 17000 in Spain), with information about

income sources and demographic variables (for a description of the database see

e.g. Andrés and Mercader-Prats, 2001). To avoid problems with sample selection,

here we use an extract that contains all males who were employed in the private

or the public sector. Since we want to examine what the Spanish labor market

paid for education and experience, with these data we estimate the conditional

distribution and density functions of gross wages, with the level of education

and the years of experience as covariates. As a dependent variable we consider

“real gross hourly wage”, obtained by dividing nominal-net-monthly-wage by four

times weekly-hours-worked, and deflating the result by the 1992-based Spanish

Consumer Price Index. We consider three covariates: a variable for years of ex-

perience (defined as the difference between current age and the age at which the

individual started his working life) and two dummy variables to pick up the level

of education (one for individuals who finished high-school and another for individ-
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uals who completed a university degree). To simplify the presentation of results,

we report only estimations corresponding to 1994 and 1999. Mean wages for the

whole samples and for various subsamples are presented in Table 2.

We estimate the conditional distribution of wages given these three covariates

using the methodology described in Section 2. Taking into account the formula

given by Scott (1979) to select the number of bins in histogram estimation, the

graphical depiction of some preliminary estimates, and the results of our Monte

Carlo experiments, we opt for J + 1 = 24 baseline intervals with left endpoints

y1 = 1, y2 = q0.025, yj = q0.05(j−2) for j = 3, ..., 19, y20 = q0.88, y21 = q0.91,

y22 = q0.94, y23 = q0.96 and y24 = q0.98, where qp denotes the p-th sample percentile

of the dependent variable. Note that we choose comparatively more baseline in-

tervals for the highest wages; in this way, we try to prevent an excess of smoothing

from masking relevant characteristics of the conditional distributions at the upper

tail, where important information is contained, especially when conditioning on

individuals with a university degree. Finally, we consider P = 4 covariate inter-

vals, constructed using Ji = 1 + 6(i− 1), for i = 1, ..., 4. All the results reported
below are based on these specifications.

Before proceeding to discuss the results of our estimations, it is worth empha-

sizing that the problem of endogeneity, which typically arises when estimating

functional relationships between wages and education in parametric models, does

not appear with our approach. In a parametric context, the problem of endo-

geneity may lead to inconsistent estimates of the regression coefficients and, thus,

the subsequent estimates of the conditional distributions are invalid. In our pro-

cedure, however, the beta parameters are introduced simply to obtain a flexible

enough specification; thus, as long as baseline and covariate intervals are appro-
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TABLE 2:

Sample Mean Wages for Spanish Male Workers

1994 1999

Sample size Mean wage Sample size Mean wage

Whole sample 3461 4.797 2702 5.140

Education Less than high school 2247 3.931 1662 4.292

High school 686 5.056 589 5.274

University 528 8.144 451 8.087

Experience ≤1 year 117 2.767 179 3.326

>1≤10 years 774 3.916 614 4.167

>10≤20 years 856 4.943 728 5.106

>20≤40 years 1360 5.375 997 6.067

>40 years 354 4.824 184 5.260
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priately chosen, the beta parameters lead to accurate estimates of the underlying

conditional distributions, irrespective of whether there is endogeneity or not.

3.1. Conditional Wage Densities and Distributions

In Figures 3, 4 and 5 we plot the estimated probability density functions (pdf)

conditional on the three levels of education (university/high school/less-than-high

school) and three possible situations for years of experience (1, 20 and 40 years of

experience). With these levels of experience, we try to summarize the beginning,

the middle and the end of the working lives of individuals. In each case we report

estimates for both 1994 and 1999.

Figures 3-5 show that important differences arise between university-educated

workers and workers with a lower level of education. The pdf for workers with a

university degree who enter the labor market (1 year of experience) has a shape

with no clear main mode. Instead, we observe a flat shape for a wide range of real

wages. As expected, the pdf’s for the other two levels of education display a shape

with a clear mode and a long right tail. Comparing the plots in Figures 4 and

5 with those in Figure 3, we observe that as experience increases the differences

between the shapes of all pdf’s decrease though, as expected, mean and variance

grow with experience. Thus, the covariate “years of experience” seems to have an

important effect on the shape of the pdf only in the first years of working life.

Comparing the fitted densities for 1994 and 1999, at first sight we only observe

meaningful differences for workers with 1 year of experience. To further explore

this issue, in Figures 6, 7 and 8 we plot the estimated conditional cumulative

distribution functions (cdf) for workers with 1 year of experience, with 95 percent

confidence bands.
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FIGURE 3:

Fitted Densities Conditional on Experience = 1 year and Education;

1994 (left) and 1999 (right)
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FIGURE 4:

Fitted Densities Conditional on Experience = 20 years and

Education; 1994 (left) and 1999 (right)
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Fitted pdf, Experience=20, 1999
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FIGURE 5:

Fitted Densities Conditional on Experience = 40 years and

Education; 1994 (left) and 1999 (right)
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Fitted pdf, Experience=40, 1999
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FIGURE 6:

Fitted Distributions Conditional on Experience = 1 year, and Level of

Education = Less-than-High School

Fitted cdf, Experience=1, Less-Than-High-School-Educated 
Workers
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FIGURE 7:

Fitted Distributions Conditional on Experience = 1 year, and Level of

Education = High School

Fitted cdf, Experience=1, High-School-Educated Workers
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FIGURE 8:

Fitted Distributions Conditional on Experience = 1 year, and Level of

Education = University

Fitted cdf, Experience=1, University-Educated Workers
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In these figures we observe that workers with the lowest level of education

(less-than-high school) improve their real wages from 1994 to 1999, and this im-

provement affects all wages proportionally. However, for workers who completed

high school the improvement only proves to be significant for low wages (note

that the 1999 cdf falls below the confidence band for the 1994 cdf for workers in

the lower three deciles). Finally, for workers with a university degree there is no

improvement at all; in fact, there is a significant worsening for workers with high

wages (now the 1999 cdf falls above the confidence band for the 1994 for workers

in the upper four deciles). We have also estimated the cdf’s for workers with 20

and 40 years of experience, but we do not report the results here, since in these

cases no significant differences are detected between 1994 and 1999.

3.2. Returns to Schooling

With the method we propose in this paper we can estimate the whole distribu-

tion function of wages conditional on education and experience. In this way, using

the inverse of this CDF, we can define a measure of the returns to education that

does not impose linearity on schooling and can vary across the wage distribution.

Observe that, for p ∈ (0, 1), F−1(p|educ.= i, exp.= x) − F−1(p|educ.= i − 1,
exp.= x) represents the wage increase which the p-th worker with x years of ex-

perience would obtain if his/her level of education changed from i− 1 to i, where
the “p-th worker” is defined in terms of the ordering induced by wages. Hence,

the relative wage increase which this worker would obtain is

F−1(p|educ. = i, exp. = x)− F−1(p|educ. = i− 1, exp. = x)
F−1(p|educ. = i− 1, exp. = x) .
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This quantity provides a measure of the wage incentive to higher schooling for

the p-th worker, and can be readily estimated from an estimate of the conditional

distribution function. Observe that with this definition the term “returns to

schooling” simply refers to the effect of education on the conditional distribution

of real wages. We do not address identification issues here; of course, this does

not mean that we ignore the causal effect interpretation introduced in Heckman

and Robb (1985), but this question lies outside the scope of this study. In Figures

9, 10 and 11 we plot the estimates of these quantities for x = 1, 20 and 40

years of experience. Each figure contains four curves: two corresponding to the

relative increase for changing from the less-than-high school level (LTH) to the

high school level (H) in 1994 and 1999, and two corresponding to the relative

increase for changing from the high school level (H) to the university level (U).

From Figures 9, 10 and 11 we deduce that moving from high-school to university

gives more profits than moving from less-than-high-school to high-school for any

value of years of experience, in both 1994 and 1999. Since the number of years of

schooling for both movements is the same, we can conclude that the labor market

values university time investment more highly than that spent in high school.

Since most people invest in human capital before entering the labor market,

Figure 9 (entrants to the labor market) is the most important one. In this figure

we also observe dissimilarities among the percentiles of the distribution: returns

to education are higher at the upper quantiles. As experience grows, the returns

to education become more stable through the entire distribution, but major im-

portant differences between moving from LTH to H and from H to U still arise.

When comparing 1994 and 1999, we observe that there is a strong decrease in

the returns to education, especially for workers with 1 year of experience, i.e.,
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FIGURE 9:

Relative Increase in Wage of the p-th Worker with Changes in

Education Level (Workers with Experience = 1 year)

Returns to Education, Experience=1, 1994
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FIGURE 10:

Relative Increase in Wage of the p-th Worker with Changes in

Education Level (Workers with Experience = 20 years)

Returns to Education, Experience=20, 1994
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FIGURE 11:

Relative Increase in Wage of the p-th Worker with Changes in

Education Level (Workers with Experience = 40 years)
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FIGURE 12:

Relative Increase in Wage of the p-th Worker with Changes in Years

of Experience (Workers with Education = Less-Than-High School)

Returns to Experience, Less-than-High-School-Educated 
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incentives to higher education decrease substantially in 1999 with respect to 1994;

a possible explanation for this is that the hiring of graduates for jobs that do not

require a university degree (“overeducation”) intensified in this period. Finally,

comparing returns to education by years of experience, we observe that moving

from LTH to H yields very similar returns at all levels of experience; moving from

H to U at low levels of experience yields greater returns in 1994 than in 1999. In

general, as experience increases less differences in the returns to schooling in 1994

and 1999 are observed.

3.3 Returns to Experience

As in the previous subsection, we can define a measure of the returns to moving

from x1 to x2 years of experience for the p−th worker at the i-th level of education
as follows:

F−1(p|educ. = i, exp. = x2)− F−1(p|educ. = i, exp. = x1)
F−1(p|educ. = i, exp. = x1) .

In Figures 12, 13 and 14 we plot the returns when moving from 1 to 20 years of

experience and from 20 to 40 years of experience, at all three levels of education.

As expected, these figures show that there are huge differences between the

returns to moving from 1 to 20 years of experience and the returns to moving from

20 to 40 years: the former are much larger and less homogeneous. The returns

to moving from 20 to 40 years show an increasing pattern with the percentiles of

the distribution; they are very similar for all levels of education and no significant

changes are detected between 1994 and 1999. The returns to moving from 1

to 20 years of experience show similar patterns for workers at the two levels of

education; when comparing them between 1994 and 1999 we observe that these
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FIGURE 13:

Relative Increase in Wage of the p-th Worker with Changes in Years

of Experience (Workers with Education = High School)

Returns to Experience, High-School-Educated Workers, 1994
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FIGURE 14:

Relative Increase in Wage of the p-th Worker with Changes in Years

of Experience (Workers with Education = University)

Returns to Experience, University-Educated Workers, 1994
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returns decrease for almost all workers at these levels. Finally, the returns to

moving from 1 to 20 years of experience are less homogeneous: the better-paid

the worker is, the less important role his years of experience plays, though this

feature lessens in 1999.

3.4. Inequality Analysis

As discussed in Section 2.2, our methodology also allows us to obtain a con-

ditional Gini index for each value of the covariates. Hence, in our case we can

construct and plot G(x, i), the conditional Gini index for real wages when workers

have x years of experience and their level of education is i. In Figure 15 we plot

these Gini indices as a function of x for each education level, in order to analyze

how inequality changes with experience.

It is well-known that income inequality in Spain followed a decreasing trend

from 1973 to the early nineties (see e.g. del Río and Ruiz-Castillo, 2001). Com-

paring the plots that we obtain for 1994 and 1999 we can conclude that, in general,

this trend continues, but we observe that this decrease does not affect all workers

equally, since there is a major decrease in inequality at low levels of experience,

whereas similar indices are obtained for workers with more than 30 years of expe-

rience. The former fact might be explained by the introduction of labor market

reforms, which may have affected entrants into the labor market particularly. On

the other hand, the curves in Figure 15 show that both in 1994 and 1999 wage

inequality in Spain grows with education level and, in almost all cases, also with

years of experience.
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FIGURE 15:

Gini Indices for Wages, Conditional on Education and Experience;

1994 (left) and 1999 (right)
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4. CONCLUDING REMARKS

In this paper we describe a flexible estimator of conditional distributions which

stems from a parametric specification of the conditional hazard function. The

estimator is similar in spirit to that proposed in DGP, but whereas their starting

point is a step hazard function, we propose a piecewise-linear specification. We

derive how to estimate the conditional distribution and density functions with

this specification. The resulting estimates continue to share the good properties

of the DGP procedure: they are flexible, easy to compute and unaffected by

the curse of dimensionality. The Monte Carlo experiments that we report show

that our estimation procedure outperforms the one proposed in DGP: it produces

smooth estimates and yields better fits in terms of mean-squared-error. Another

contribution of this paper is that we obtain the conditional Lorenz curve and Gini

index which are derived from the model, thus providing a valuable additional tool

for analyzing inequality issues.

The application of our methodology to the analysis of wages in Spain in 1994

and 1999 also reveals some important characteristics of Spanish labor market.

We find that the conditional densities of wages have very different shapes for

workers with different levels of education, especially for workers with low levels

of experience. The density for unexperienced workers with a university degree

displays a flat shape in 1994, but in 1999 it is closer to the shape of the densities

for less-skilled workers. A possible explanation for this is that the phenomenon

labelled as “overeducation” (workers with a university degree who are hired for

jobs which do not require such a qualification) intensified in this period; this

might also explain the relative worsening of the situation of these workers that is
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observed in Figure 8.

We also propose a measure of the returns to schooling based on the inverse of

the conditional distribution function, and find that these returns decreased sub-

stantially between 1994 and 1999, especially for entrants into the labor market. A

similar measure is used to analyze the returns to experience, and again a different

pattern for workers with a university degree is observed. Finally, the inequality

curves which we derive show that for workers with less-than-high school or high

school level of education inequality decreased between 1994 and 1999 for entrants

into the labor market, but no significant changes are detected for high-experienced

workers; for workers with a university degree, inequality also decreased for entrants

into the labor market, but increased for highly-experienced workers.

To further explore these results, we report in Table 3 the relative changes in

employed and unemployed workers and active population in Spain at the three

levels of education that we consider (data extracted from the Active Population

Survey2).

Our results, together with the data in Table 3, point out that the economic

structure pattern has generated shifts to the right for both the labor demand and

the labor supply of university workers; but eventually labor supply has shifted

further to the right than labor demand, motivating an increase in the amount

of university degree holders working for lower real wages in 1999. This interpre-

tation is also supported by the detailed descriptive figures reported in Grañeras

et al. (2000), which show that individuals with a high level of education hugely

increased their representation in the total active population during the nineties.

As a consequence, the Spanish labor market reflects the overeducation effect men-

2EPA 1994 and 1999, Instituto Nacional de Estadística, Spain.
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TABLE 3:

Active Population in Spain: Relative Changes from 1994 to 1999

Relative changes from 1994 to 1999

Active Population Employed Unemployed

Less-than-high-school -22.22% -15.45% -45.64%

High-school 22.16% 40.56% -25.93%

University 41.23% 47.34% 9.73%

37



tioned above. Whether overeducation is a long-term phenomenon at population

level but only a short-term one at individual level, as pointed out by Rubb (2003),

is an issue yet to be explored.
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