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SINGLE FACTOR STOCHASTIC MODELS WITH SEASONALITY

APPLIED TO UNDERLYING WEATHER DERIVATIVES VARIABLES

Hipòlit Torró, Vicente Meneu and Enric Valor

A B S T R A C T

This paper estimates single factor stochastic models describing daily air temperature

behaviour. We modify classical financial models to reflect temperature seasonality and fit

them to a time series representing temperatures in Spain. The estimated models are used in

Montecarlo simulations to obtain heating and cooling degree-days, which are used as an

underlying reference in weather derivatives. The final goal of this work is to obtain an insight

into weather derivative valuation, and so making it easier  to manage economic activity risks

closely related to temperature (i.e. oil, gas and electricity prices and volumes).

Keywords: Cooling Degree-days, Energy, Heating Degree-days, Seasonality, Stochastic

Models, Weather Derivatives.

JEL Classification: G10-G12

R E S U M E N

En este trabajo se estiman modelos estocásticos unifactoriales que describen el

comportamiento de la temperatura del aire de un índice representativo de la España

peninsular. Los modelos más utilizados en finanzas se adaptan para incorporar el

comportamiento estacional de la variable temperatura. El objetivo de este trabajo es obtener

resultados que permitan avanzar en la valoración de activos derivados sobre climatología.

Este tipo de derivados permiten gestionar riesgos de la actividad económica estrechamente

relacionados con la temperatura (por ejemplo, los riesgos de precio y volumen del gas y la

electricidad). Con los modelos estimados se realiza un ejercicio de simulación de Montecarlo

para obtener los grados día frío y los grados día calor que son las referencias subyacentes en

los contratos de meteorología.

Palabras clave: Grados Día Frío, Energía, Grados Día Calor, Estacionalidad, Modelos

estocásticos y Derivados de la meteorología.

JEL Classification: G10-G12
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1.   Introduction

In recent years, there has been a huge increase in the traded volume of derivatives with

non-tradable underlying assets. These products, including catastrophic damage and weather

derivatives, are different in some respects to traditional commodities. The study of the latter is

the object of this paper.

Weather derivatives (forward, futures and option contracts) depend on the evolution of

a meteorological variable: temperature, wind speed, rainfall, etc. These contracts are attractive

in many economic activities whose outcomes depend on these phenomena. Some examples

include the power production of windmill park depending on wind speed, and power

production in Norway depending on rainfall and snowfall, since 98 per cent of power is

produced by water resources. These kind of derivatives can be used to manage both price and

volume risks.

The relationship between weather variables and electricity load and price has been

studied in the literature by many authors. Weather variables considered in these studies are

temperature, wind speed, humidity and precipitation. Li and Sailor (1995), and Sailor and

Muñoz (1998), find in a sample of US states that temperature is the most significant weather

factor explaining electricity and gas demand. The influence of air temperature in electricity

demand and price has been considered by other authors, who obtained a significant

explicative power in their modelling see, for example, Peirson and Henley (1994), Henley and

Peirson (1998), Engle et al. (1992), and Pardo et al. (2000). Figure 1 shows the relationship

between electricity load and air temperature observed in Spain. The dependence of power

demand on temperature is significant, and the relation is non-linear, showing an increasing

electricity demand both for decreasing and increasing temperatures, corresponding to winter

(use of heating appliances) and summer (use of air conditioning), respectively.

Traders and financial entity analyst departments that offer weather derivatives over-

the-counter, or in organised markets1, try to price these contracts using their experience in

other commodities. As a result, they apply their financial background to describe commodity

price behaviour. However, weather variables have not been practically modelled in the

literature2.

                                                
1 The Chicago Mercantile Exchange lists derivatives on the monthly accumulated heating and cooling degree-
days above or below a critical level. This is calculated with data from a set of American cities. See CME Web
site for more details on these futures and option contracts (http://www.cme.com). In Europe, Eurex has wheather
derivatives into its planned products (http://www.eurexchange.com) .
2 Dischel (1998) presents a bifactorial stochastic model with mean reversion.
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Figure 1: Relationship between electricity load and temperature in Spain for year 1997.

Weather variables are not tradable, and that is why the classical Black-Scholes

methodology cannot be applied directly as it cannot hedge derivative contracts, and the

temperature market price of risk is unknown. Alternatively, a Montecarlo simulation can be

used to find stochastic models that better replicate the underlying weather variable behaviour

and derivative payoffs. This is the only course of action possible with these variables because

risk-neutral valuation cannot be applied until some asset depending on weather (bonds,

forwards, futures, options) begins to be traded in significant volumes.

In this paper, we develop a daily air temperature index for Spain (Spanish

Temperature Index, STI henceforth) as a population-weighted average of the air temperatures

observed in four weather stations located in Bilbao (northern Spain), Madrid (central Spain),

Seville (southern Spain) and Valencia (eastern Spain). The data was reported by the Instituto

Nacional de Meteorología for the period January 1970 to April 1999. The objective of the

paper is to model the behaviour of STI by using a single factor stochastic model that should

capture the basic characteristics of this variable.

Power in Spain is traded in a mandatory pool with a single hourly price for the whole

continental territory (islands are not included). This is why we compute the STI within the

same geographical zone. The explicative capability of STI over electricity load (see Figure 1)

is an important reason for studying STI behaviour as a clear candidate for underlying

reference in derivatives contracts. A similar situation is expected for the gas market in the

near future.
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This paper is organised as follows. In the second section, we study the statistical

patterns defining temperature behaviour in an attempt to discover which financial assets share

the most similarities. Then it will be possible to apply a financial asset modelling background.

We conclude that interest rate models are quite suitable but seasonal adjustments must be

incorporated.

In section 3, we propose a general model containing the basic features of temperature

behaviour. This model can be restricted to obtain the classical continuous single factor interest

rate models. In section 4, we estimate a set of ten models to find which best describes

temperature behaviour and test nesting restrictions. In section 5, estimated models are used to

simulate derivative payoffs. Finally, the main conclusions are collected in section 6.

Results are interesting for two reasons. Firstly, for the wide range of estimated models

allowing the identification of seasonal patterns, mean reversion, autoregressive structures in

conditional volatilities; as well as relationships between volatility and temperature levels.

Secondly, for its inner interest for the economical agents involved with the consequences of

unexpected weather behaviour.

2.  Preliminary Analysis

The purpose of this section is to study the basic statistical features of the daily STI

series, in order to discover if temperature behaves in a similar way to a well-known financial

variable; and if it is sensible to use the same models and how to adapt them. Which statistical

features are important in financial modelling? Basically, asset prices, interest rates, foreign

currencies exchange rates, are not usually allowed to take negative values and they have a

high autocorrelation, mean reversion and autocorrelated heteroskedasticity.

Firstly, it is quite remarkable that STI shows a significant seasonal behaviour that is

not shown by financial variables and this can be easily seen in Figure 2. This figure shows the

evolution of the STI within the sample data corresponding to the period [1-1-1970; 30-4-

1999] with 10712 daily observations. A strong seasonal behaviour with an annual period can

be seen, and this should be taken into account in any model. Figure 3 exhibits the histogram

for the data series, where a bimodal distribution can be observed corresponding to the

different year seasons (the histograms with the year split into two seasons: winter and

summer, are also plotted in Figure 3). We will use this basic feature extending the classical

financial modelling to capture weather seasonality in the following section.
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Figure 2: Daily evolution of the Spanish Temperature Index for the period [1-1-1970; 30-4-1999]

Figure 3: Histogram for the sample data for the period [1-1-1970; 30-4-1999]
with 10712 daily observations
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The STI series does not show negative values (see Table I), as we are analysing the

temperature of a warm country. In a general sense, it can be said that the variable temperature

is constrained within two physical limits, which depend on the temperature scale used. In this

work, we are using the Celsius scale, and in our sample, the STI does not take negative

values, so it will not be a strong restriction if the model we obtain does not allow the variable

to take negative values.

Table I: Data Description and Statistics

STI Source: Instituto Nacional de Meteorología (Spain)
Population-weighted average of mean daily temperatures measured at four weather
stations

Sample From January 1st, 1970 to April 30th, 1999

Series 10712 observations

Units Celsius degrees

Mean Max Min Std. Dev. Skewness Kurtosis Bera-Jarque

STIt 16.27 30.20 0.59 5.87 0.14* 1.95* 525.65*

log STIt 2.72 3.41 -0.53 0.40 -0.68* 3.84* 820.83*

Log STIt/STIt-1 8.50·10-5 1.50 -1.43 0.11 0.28* 15.31* 67735*

*Tested hypothesis is rejected with a 1% significance level.

Skewness means the skewness coefficient and has the asymptotic distribution N(0;6/T),
where T is the sample size. The null hypothesis tested is the skewness coefficient is
equal to zero. Kurtosis means the kurtosis coefficient and it has an asymptotic
distribution of N(3,24/T). The hypothesis tested is kurtosis coefficient is equal to zero.
The Bera-Jarque statistic tests the normal distribution hypothesis. The Bera-Jarque
statistic is calculated as Bera-Jarque=T[Skewness2/6+(Kurtosis-3)2/24]. The Bera-

Jarque statistic has an asymptotic 2
2χ  distribution under the normal distribution

hypothesis.

The STI series has a strong autocorrelation, as can be deduced from Table II, which

shows the first ten autocorrelation coefficients. It is quite clear that changes in temperature

have a long memory. The autocorrelation coefficients are very close to one and significantly

different from zero.

Mean reversion is another feature that the STI series clearly displays. This means that

changes never allow STI levels to go too far from a long run equilibrium value. Table III

displays the first ten autocorrelation coefficients for the differenced STI series, where nine out

of ten have negative value, all of which are significantly different from zero and decline

dramatically. This behaviour can be understood because deviations from the seasonal trend

tend to disappear in a few days.
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Table II:  Autocorrelation Coefficients for the STI Series

Autocorrelation coefficients of order j are represented by ρj for the Spanish Temperature
Index (STI), It. p-value means the critical significance level for the Ljung-Box statistic Q
testing the null hypothesis of zero autocorrelation coefficients until order j.

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10

Coefficient 0.975 0.945 0.923 0.908 0.896 0.886 0.878 0.871 0.864 0.859

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table III:   Autocorrelation Coefficients for ∆∆STI Series

Autocorrelation coefficients of order j are represented by ρj for the differenced Spanish
Temperature Index (STI), It. p-value means the critical significance level for the Ljung-Box
statistic Q testing the null hypothesis of zero autocorrelation coefficients until order j.

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10

Coefficient 0.119 -0.168 -0.138 -0.068 -0.041 -0.026 -0.030 -0.009 -0.017 -0.011

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

It is very common in asset modelling to find that underlying variable levels help

explain their own volatility. In Table IV we present the linear regression between the STI

conditioned volatility and the STI level. It is interesting to stress that the coefficient we obtain

for the lagged temperature is quite small but statistically significant. A possible meaning of

this small coefficient is that the temperature level will not greatly help explain its volatility.

Another way to explain volatility is by using Generalised Autoregressive Conditional

Heteroskedastic models (see Engle (1982) and Bollerslev (1986)). From Table V we deduce

that conditioned volatility (squared differenced STI series) behaviour fits very well in

GARCH models. The general behaviour model we use in the next section simultaneously

reflects both effects.

From the results obtained in this preliminary analysis, it is admissible to fit stochastic

models to the STI, in the same way as financial doctrine does with other variables. However,

we also include the observed seasonal pattern. We will pay special attention to some interest

rate stochastic models incorporating mean reversion, heteroskedasticity and high

autocorrelation. In the next section, a collection of stochastic models is fitted to daily air

temperature data.
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Table IV:  Linear Regression between STI Conditioned

Volatility and STI Level

The squared standardised temperature is used as a proxy for measuring volatility.
The coefficients are estimated by ordinary least squares in the linear relationship

t1t

2

STI

t STI
STISTI

ε+β+α=










σ
−

−

R2 is the regression determination coefficient, No. Obs. is the number of
observations into the period [1-1-1970; 30-4-1999].

α β R2 Nº Obs.

Coefficient 0.5684 0.0264 0.02576 10712
t-Student 20.70 16.64

Table V:  Heteroskedasticity Tests

Q2 represents the Ljung-Box statistic testing the null hypothesis of zero
autocorrelation coefficients in squared differenced STI series, (∆STI)2. Under the
null hypothesis, the statistic has an asymptotic distribution χ2

 with degrees of
freedom equal to the number of lags in the test. The Engle (1982) test for
heteroskedasticity is also displayed.

No. of lags Ljung-Box  Q2 Engle Test χχ 2
(0.01)

10 221.19 169.30 23.2
20 238.36 181.26 37.6
36 269.79 201.46 58.6

3.  Methodology

This work follows the approach pioneered by Chan, Karoly, Longstaff and Sanders

(1992) (referred to as CKLS). CKLS estimate and compare a set of classical continuous time

single factor equilibrium stochastic models describing short term interest rates behaviour,

including Vasicek (1977), Cox, Ingersoll and Ross (1985) (CIR (85) from now on) and

Brennan and Schwartz (1982) (referred to as BS). These models use a constant mean

reversion structure, and some consider the influence of the variable level on volatility.
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Bali (1999) proposes a more general model than CKLS. He adds a GARCH behaviour

in the volatility parameters allowing simultaneous volatility to depend on interest rate levels.

In the model proposed by Bali, all the other models are nested and can be obtained under

certain parameter restrictions. The model we propose captures volatility through the GARCH

structure and through the variable level.

A seasonal trend term has been introduced to account for the strong seasonality shown

by temperature. Seasonal patterns have been observed by other authors in modelling energy

prices (Pilipovic (1998, p. 67)), and valuing power demand and derivatives (Pirrong and

Jermakyan (1999, p. 61)). Following these authors, we introduce a similar seasonal trend.

Taking into account these considerations, the model that we propose for temperature

modelling is displayed in the following stochastic differential equation3

dIt = [α0 + α1It + α2cos(α3θ(t)+α4)] dt + ΨtItγdWt (1)

where It is STI, θ(t)=2πt/365 (t given in days) considering an annual period; dWt is a standard

Brownian motion; Ψt is the scale factor changing over time and represents structural changes

in the volatility, and depends on unexpected shocks in temperature.

It is important to note that the trend is specified by α0 + α1It + α2cos(α3θ(t)+α4). In this

way, the model introduces reversion to a time-dependent value varying seasonally, instead of

reverting to a constant value. The time-dependent function represents the seasonal trend

shown by temperature, which resembles a harmonic function – and this is the reason why the

cosine function is introduced into the model. The coefficients of this function are related to its

amplitude (α2), its time frequency (α3), and the phase (α4), respectively.

The discrete time approximation to (1) is

∆It = [α0+α1It+ α2 cos(α3θ(t)+α4)]∆t + Ψt+∆t  It
γ∆Wt

2
t2

2
t10

2
ttttt ,tW Ψβ+εβ+β=Ψ∆ ε= ∆ ∆+∆+                                  (2)

                                                
3 In Bali (1999) the coefficients are defined to be time-varying in a rolling regression procedure, which is very
useful when the objective is to compare models in a dynamic environment. This is quite suitable for interest rate
analysis, although it is unnecessary to model temperature because structural changes would mean the implausible
hypothesis of often-dramatic climatic changes.
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where ∆t is the time interval length; ∆It = It+∆t  − It is the variation in the STI; tt ∆+ε  represents

unexpected shocks in temperature, which is a random drawing from a standardised normal

distribution with zero mean and unitary variance. ∆Wt has a normal distribution with ∆t

variance. Ψt+∆t is an autoregressive function of tε  in a GARCH(1,1) structure. Nine

parameters are estimated: α0, α1, α2, α3, α4, β0, β1, β2 and γ.

The conditional variance term in equation (1) is given by Ψt
2It2γ. This term has the

property of collecting a GARCH structure (see equation (2)) and the temperature level as a set

in the same model describing the conditional volatility behaviour.

From the general equation (1), many models can be obtained by imposing different

restrictions on the parameters. However, we have only focused on those models that include a

mean reversion structure, adding in all cases the harmonic term to account for seasonality4.

These models are nested in the general model, so constraining restrictions can be tested. The

general process, and all other processes, are derived from the restrictions collected in Table

VI. Models VASICEK, CIR(85), and BS are widely used as stochastic processes for interest

rates. In addition, they have the advantage of providing closed formulae for the valuation of

derivatives. Models SVASICEK, SCIR(85), and SBS are each one of these models,

respectively, with an added seasonal term.

Table VI:  Parameter Restrictions Imposed by Alternative Models

It+∆t - It  = α0 + α1It  + α2 cos(α3θ(t)+α4) + εt
2
t2

2
t10

2
tt

2
t

2
tt

2
tt ,I Ψβ+εβ+β=ΨΨ=σ ∆+

γ
∆+∆+

The specifications displayed are: (1) and (6) see equation (1); (2) and (7) see Chan et al.
(1992); (3) and (8) see Vasicek (1977); (4) and (9) see Cox et al. (1985); (5) and (10) see
Brennan and Schwartz (1982).

MODEL α0 α1 α2 α3 α4 β0 β1 β2 γ

Seasonality (1) SGENERAL
(2) SCKLS 0 0
(3) SVASICEK 0 0 0
(4) SCIR(85) 0 0 0.5
(5) SBS 0 0 1

No seasonality (6) GENERAL 0 0 0
(7) CKLS 0 0 0 0 0
(8) VASICEK 0 0 0 0 0 0
(9) CIR(85) 0 0 0 0 0 0.5
(10)  BS 0 0 0 0 0 1

                                                
4 We have also estimated other models that do not use mean reversion, but the obtained results are not
meaningful despite the fact that the seasonal term has been considered.
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4. The Empirical Results

The general model and its nested models have been estimated maximising the log-

likelihood function using the Berndt et al. (1974) algorithm5. The advantage of using a normal

probability distribution in the estimation methodology is that this allows an easy application

of binomial tree approximation from discrete time to continuous time probability distribution.

Table VII presents the estimation results. The most significant models are (in

decreasing order): (1) SGENERAL, (2) SCKLS and (3) SVASICEK. The others, SCIR(85)

and SBS, show quite poor results. For comparison purposes, the last five rows in Table VII

show the results for these models but without seasonality. If a seasonal trend is not included,

the ranking through the models remains the same.

Models with free γ or γ=0 are clearly the best. When γ is free its value is always close

to zero and negative. This can be understood as temperature level and its volatility have an

opposite relationship. That is, temperature is more volatile when it is low, and is less volatile

in warm seasons. This fact can be appreciated in Figure 4. The conditional volatilities in the

SGENERAL model achieve their highest values in cool seasons and the lowest values in

warm seasons.6

The mean reversion is present in the models when α1 is below zero. This feature is

clear in all the models. The likelihood of the seasonal effect becomes clear, since the

parameters α2, α3 and α4 have significant values in seasonal models (1) to (5). The null

hypothesis of no seasonal effect is clearly rejected.

                                                
5 Similar models applied to interest rates are estimated using maximum likelihood (Brenner et al. 1996, Bali
1999).
6 Some empirical works on interest rates have shown that models with estimated γ above 1.5 have more
explicative power when monthly data is used (Chan et al. (1992)). Moreno and Peña (1996) show that models
with γ close to, but below 1.0, fit better with daily data. Therefore, in the empirical application to interest rates, it
seems that γ decreases when data frequency increases. We use daily temperature data in our application, but it
would be interesting to compare parameters values with different data frequency.
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Table VII:  In-Sample Estimates and Comparisons with the Nested Models in the General Model

This table displays the parameter estimates with asymptotic t-statistics in parentheses for each model. The maximised log-likelihood for the general model and
for each nested models is shown. The likelihood ratio (LR) test statistics with associated degrees of freedom (df) and the associated Chi-Squared critical values
χ2

(0.01) at a 1% level of significance are reported. The parameters are estimated from the discrete time system of equations in expression (2) in the text.

MODELS α0 α1 α2 α3 α4 β0 β1 β2 γ Log-likelihood LR χ2
(0.01) df

Seasonality (1) SGENERAL 3.4082
(17.00)

-0.4287
(-9.64)

1.0427
(25.24)

0.9999
(3466.75)

2.7273
(86.88)

1.2643
(5.52)

0.2345
(6.92)

0.6016
(12.73)

-0.1818
(-10.69)

-7508.77 - - -

(2) SCKLS 2.2252
(26.82)

-0.1365
(-27.64)

1.0543
(26.25)

0.9997
(3375.79

2.7421
(86.87)

5.6138
(11.81)

0.0 0.0 -0.2405
(-15.44)

-7598.09 178.64 9.21 2

(3) SVASICEK 2.2443
(28.18)

-0.1375
(-28.32)

1.0401
(26.07)

0.9998
(3262.93)

2.7486
(85.41)

1.5471
(86.14)

0.0 0.0 0.0 -7692.76 367.98 11.34 3

(4) SCIR(85) 2.2837
(40.65)

-0.1399
(-39.21)

1.0128
(27.98)

0.9998
(3053.84)

2.7700
(83.71)

0.1208
(110.19)

0.0 0.0 0.5 -8580.77 2144 11.34 3

(5) SBS 2.2913
(54.23)

-0.1412
(-64.54)

0.9747
(24.81)

0.9997
(3077.00)

2.7996
(97.06)

0.0121
(268.10)

0.0 0.0 1 -10815.88 6614.22 11.34 3

No seasonality (6) GENERAL 0.3470
(9.39)

-0.0213
(-10.38)

0.0 0.0 0.0 1.0161
(5.63)

0.2083
(7.28)

0.6582
(16.62)

-0.1643
(-10.03)

-7871.40 725.56 11.34 3

(7) CKLS 0.0346
(8.83)

-0.0215
(-9.86)

0.0 0.0 0.0 5.6523
(11.85)

0.0 0.0 -0.2297
(-14.81)

-7988.80 960.06 15.09 5

(8) VASICEK 0.3980
(11.04)

-0.0244
(-10.89)

0.0 0.0 0.0 1.6492
(86.09)

0.0 0.0 0.0 -8034.84 1052.14 16.81 6

(9) CIR(85) 0.5751
(22.46)

-0.0353
(-16.03)

0.0 0.0 0.0 0.1217
(106.79)

0.0 0.0 0.5 -8898.46 2779.38 16.81 6

(10) BS 0.9088
(98.25)

-0.0594
(36.19)

0.0 0.0 0.0 0.0127
(246.13)

0.0 0.0 1.0 -11094.47 7171.40 16.81 6
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Figure 4: Temperature changes and estimated general model with seasonality conditional
standard deviation within the first thousand observations

(observation 1 corresponds to January 1st).
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To further measure the relative performance of the nested models against the general

model, we tested their predictive power for temperature change and conditional volatility.

This is achieved by first computing the time series of conditional mean and conditional

variance of the daily temperature changes for each model using the fitted values. Temperature

change and variance ex post measures are obtained from the temperature series calculating

(It-It-1) and (It-It-1)2.

Then we compute the Mean Square Error, MSE henceforth, for the forecasted

conditional temperature changes, MSEC, and for the forecasted conditional volatility, MSEV .

The lower the MSE of a model, the better its forecasting permormance. So, the MSE is a

performance measure of how estimated models are able to forecast unexpected temperature

change and conditional volatility. MSE is defined as follows

∑
=

−=
N

1i

2
ii )ŷy(

N

1
MSE                                                     (3)

where yi denotes the actual values of (It –  It-1) or (It – It-1)2 and iŷ the forecasted conditional

temperature changes or the forecasted conditional variance in each model. From MSE values,
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see Table VIII, we obtain the same model preference than comparing loglikelihood function

value in Table VII. But in order to obtain some more insight about the significance of MSE

differences we have computed the Diebold and Mariano (1995) statistic S1. Using square

errors as loss function the Diebold and Mariano test for the equivalence of forecast errors will

be

[ ]
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)0(2

)e()e(
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1

S
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2
jt

2
it

1
fπ

−

=
∑
=                                                (4)

where iii ŷ-  y e = and jjj ŷ-  y e =  are the forecast error for observation t in two alternative

models i and j, T is the sample size and  f(0) is the spectral density of the difference of the

square prediction errors at frequency zero. Diebold and Mariano show that S1 is

asymptotically distributed7 as a N(0,1). As forecasts are done only one step ahead it is not

introduced autocorrelation across errors. In this case a consistent estimate of 2πf(0) will be the

sample variance of square errors difference (see Campbell et al (1997), page 535). Table IX

displays the Diebold and Mariano test results. The rank ordering of the models based MSEC

values and the S1 statistic for the significance of its differences is the following

SVASICEK = SCKLS = SGENERAL= SCIR < SBS < VASICEK = CKLS = GENERAL ≤ CIR < BS

where ‘=’ means that MSEC difference is not statistically significant and ‘<’ means than left

models MSEC is significantly lower than right models MSEC at 95% confidence level. The

symbol ‘≤’ means that at 90% confidence level there is a ‘<’ but at 95% confidence there is a

‘=’. Now we can make more precise the intuitive lecture of Table VIII: seasonal models set

improve forecast precision compared with not seasonal models set. That is, including a

seasonal trend is important as seasonal models overperform all not seasonal models.

Furthermore, into each of these sets there are no differences across models except for the BS

model which is clearly the worst one. The rank ordering of the models when comparing

MSEV is

GENERAL = SGENERAL < CKLS ≤ SCKLS < VASICEK ≤ SVASICEK < SCIR < CIR < SBS < BS

                                                
7 When S1 < −1.96 model “i” has a MSE significantly lower than model “j” at 95% confidence level.

  When S1 >  1.96 model “j” has a MSE significantly lower than model “i” at 95% confidence level.
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where symbols have the same meaning than above. From this statistical relationship we find:

(1) that the introduction of a seasonal trend does not improve the volatility forecasting

performance except for CIR and BS models, (2) models with more structure in modeling

conditional volatility, SGENERAL and GENERAL with the GARCH structure followed by

SCLS and CKLS with free γ, are the best ones. But SCIR, CIR, SBS and BS which have

constrained values for γ are worse than SVASICEK and VASICEK which have a constant

volatility,  (3) the MSEV values allows an identical ranking across models to the one obtained

from log-likelihood function values into the sets of seasonal and not seasonal models. As a

conclusion we can say that the election of volatility structure determines eventually the model

selection. Furthermore, by intersection between MSEC and MSEV rankings the SGENERAL

model is the best performing model.

Table VIII:  Performance Measures

This table exhibits the Mean Square Error for the forecasted conditional mean change

(MSEC) and the forecasted conditional variance (MSEV). Unexpected changes are measured

by (It-It-1) and conditional volatility by (It-It-1)2. MSE is defined as follows

∑
=

−=
N

1i

2
ii )ŷy(

N

1
MSE

where yi and iŷ denote the actual and forecasted values of (It –  It-1) for MSEC and (It –  It-1)2

for MSEV.

MODELS MSEC MSEV

Seasonality (1) SGENERAL 1.5475 8.3753

(2) SCKLS 1.5475 8.4371

(3) SVASICEK 1.5472 8.5398

(4) SCIR(85) 1.5486 9.5669

(5) SBS 1.5592 19.6233

No seasonality (6) GENERAL 1.6495 8.3624

(7) CKLS 1.6495 8.4227

(8) VASICEK 1.6492 8.5252

(9) CIR(85) 1.6533 9.7431

(10) BS 1.6949 21.1335
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Table  IX: Test of equal accuracy of two competing forecasts

This table displays Diebold and Mariano (1995) statistic S1 comparing the forecasting ability of two competing models (see equation (4) in

text). Diebold and Mariano show that S1 is asymptotically distributed N(0,1). In these case we adapte Diebold and Mariano statistic to

compare the Mean Square Error of two alternative models. When S1 < −1.96 the heading column model has a MSE significantly lower than

the heading row model and vice versa. The critical values are +/-1.64 and +/-1.96 for a confidence level of  90% and 95% respectively. (*)

and (**) means S1 significant at 5% and 10% significance level, respectively.

TEST OF EQUAL ACCURACY FORECASTING CHANGES IN TEMPERATURE
MODELS SGENERAL SCKLS SVASICEK SCIR(85) SBS GENERAL CKLS VASICEK CIR(85) BS

SGENERAL
SCKLS 0.12

SVASICEK 0.64 0.55
SCIR(85) -0.79 -0.82 -1.49

SBS -4.37* -4.51* -5.02* -5.34*
GENERAL -13.23* -12.98* -13.14* -13.04* -11.33*

CKLS -13.24* -12.99* -13.15* -13.05* -11.38* 0.04
VASICEK -13.19* -12.93* -13.13* -13.10* -11.41* 0.56 0.53

CIR(85) -13.38* -13.10* -13.41* -13.65* -12.08* -1.84** -1.85** -2.54*
BS -16.03* -15.77* -16.25* -17.01* -16.49* -8.39* -8.44* -9.16* -11.76*

TEST OF EQUAL ACCURACY FORECASTING TEMPERATURE VOLATILITY
SGENERAL

SCKLS -2.57*
SVASICEK -4.71* -3.91*

SCIR(85) -18.11* -18.14* -24.56*
SBS -51.91* -51.65* -53.44* -57.00*

GENERAL 1.10 2.60 4.55* 17.77* 52.17*
CKLS -2.01* 1.74** 4.08* 18.25* 52.07* -2.23*

VASICEK -4.51* -3.51* 1.75** 25.41* 54.09* -4.45* -3.89*
CIR(85) -20.05* -20.01* -26.07* -19.16* 57.73* -19.82* -20.27* -27.28*

BS -53.74* -53.45* -55.00* -58.19* -63.79* -54.00* -53.87* -55.61* -58.87*
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5. Simulation

In this section, we will use the estimated models to simulate derivatives payoffs and

obtain some evidence for price derivatives on temperature. As we have already discussed,

temperature is non-tradable, and there is no currently available derivative for Spanish

temperature so the temperature market price of risk is impossible to obtain. This fact is very

important because the traditional arbitrage-free methodology cannot be directly applied.

However, we can simulate real probability results of variable temperature and this could be

useful for agents when they are taking positions in assets, or economic activities, that are

closely related to temperature. These agents could obtain expected values either with real

probabilities coming from sample data, or pseudo-real probabilities obtained through

simulation with previously estimated stochastic models. With this information, investors can

bet on those assets that are expected to show better behaviour, although this is quite far from

being an asset valuation.

We have generated two kinds of simulated data. Both are useful when dealing with

temperature risk, but they have a different meaning. Firstly, we will calculate the simulated

probabilities of temperature. We have simulated a series with 10712 daily values in the

SGENERAL and SCKLS models (corresponding to 29 years). Figure 5 shows the histograms

of the sample and the simulated models. The simulated probabilities and the sample

probabilities are notably close, the models being able to reproduce the two modes shown by

the original sample. These results give us confidence in our estimated models.

Figure 5: Histogram for the STI, Simulated SGENERAL Model and
Simulated SCKLS (10712 observations and simulated data series).
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The second kind of simulations refer to a very common underlying variable on

weather derivatives: the heating degree-days (HDD), defined as max (18º - STI, 0), and the

cooling degree-days (CDD), defined as max(STI - 18º, 0). These functions determine the

intensity and duration of coldness and heat, respectively, by measuring the departure of air

temperature from a reference value at which electricity is consumed neither for heating nor

cooling the environment. As can be deduced from figure 1, a good reference for Spain is

around 18ºC, where the minimum consumption is observed (Valor et al., 2000). Table X

displays simulated results for all the models estimated in Table VII. We have generated 10000

times the temperatures for a whole year (365 days). In every simulated year we sum the total

HDD and CDD. Then we compute the average and its standard deviation for the 10000 years

generated. We can apply the central limit theorem under the hypothesis that the yearly

generated CDD, or HDD, sums are random variables identically and independently distributed

by using normal distribution to calculate mean standard deviation values and so confidence

intervals can be computed. We also report results for sample data for comparison purposes.

Table X: Simulating Average Heating and Cooling Degree-days

This table displays simulated results for all the models shown in Table VII. Average values for

Heating Degree-Days (HDD), defined as max(18º - STI, 0), and Cooling Degree-Days (CDD),

defined as max(STI - 18º, 0), are displayed after simulating 10000 times the temperatures for a

whole year (365 days) in each model. In each simulated year, we sum the total HDD and CDD.

Then we compute the average and its standard deviation for the 10000 years generated.

AVERAGE STAND. DEV. AVERAGE STAND. DEV.

HDD CDD

Seasonality (1) SGENERAL 1201.60 1.05 647.38 1.11

(2) SCKLS 1126.69 2.65 596.03 2.02

(3) SVASICEK 1193.74 1.21 640.42 1.04

(4) SCIR(85) 1183.95 1.16 629.73 1.31

(5) SBS 1241.68 1.28 649.72 1.92

No seasonality (6) GENERAL 1115.22 6.56 546.52 3.79

(7) CKLS 1197.01 7.31 563.80 3.85

(8) VASICEK 1119.46 5.83 585.03 4.06

(9) CIR(85) 1120.87 4.17 550.09 3.84

(10) BS 1375.76 3.18 428.06 3.16

SAMPLE VALUES  (29  years) 1289.32 169.83 687.02 213.09
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From Table X we can argue that for any considered model we obtain reasonable

results, as they provide simulated average HDD and CDD similar to the sample average. So,

we can trust on these estimated models. Furthermore, the standard deviations show that the

computed average has little dispersion. Comparing models with, and without seasonality,

gives an interesting result. Models with seasonality obtain smaller standard dispersion values,

and so it seems that the introduction of a seasonal trend increases the stability of the variables

used as reference in weather derivatives.

6. Conclusions

The aim of this paper has been to model air temperature behaviour using the

techniques applied when modelling short-term interest rates. The variable temperature is a

population-weighted average of the temperatures measured at four Spanish weather stations.

A preliminary analysis of the temperature series reveals that financial models could be

adapted to explain the behaviour of this weather variable.

The starting point of the study has been the different models described in the works of

Bali (1999) and Chan et al. (1992). We have added a new term to account for the strong

seasonal pattern shown by the temperature variable, following Pilipovic (1998). The use of

mean reversion (including seasonality), GARCH structures, and relationships between

volatility and temperature levels for modelling, has been stressed. We have proposed a

general model that incorporates all these features, and which has been estimated together with

other models previously proposed (BS, CIR(85), VASICEK, and CKLS), both with and

without the seasonality term (10 models in total). The performance of the models is

significantly improved by the presence of a structure including mean reversion to a seasonal

trend and conditional volatility. The model we propose overperforms in explicative power and

forecasting ability to the most common single factor stochastic models existing in the

literature.

Best performing models have been used to obtain the average and standard deviation

values for the HDD and CDD. The average values coincide with the sample means, and the

models including seasonality are more stable (since they show less standard deviation values

in the HDD and CDD simulations).
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Three facts are remarkable in the overall analysis. Firstly, a reliable model must

contain a mean reversion to the seasonal trend. Secondly, there is an autoregressive behaviour

in temperature conditional volatility. And lastly, volatility has low sensitivity to the

temperature level, and both are inversely related. These characteristics should be considered

in selecting a model to value weather derivatives.
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