
1

SKEWNESS IN INDIVIDUAL STOCKS

AT DIFFERENT FREQUENCIES*

Amado Peiró

WP-EC 2001-07

Correspondence to: Amado Peiró, Universitat de València, Facultad de Economía,

Departamento de Análisis Económico, Campus dels Tarongers, s/n, 46022 Valencia, e-mail:

Amado.Peiro@uv.es.

Editor: Instituto Valenciano de Investigaciones Económicas, S.A.

Primera Edición Marzo 2001

Depósito Legal: V-1486-2001

IVIE working papers offer in advance the results of economic research under way in order to

encourage a discussion process before sending them to scientific journals for their final

publication.

                                                
* 

Financial support from the Instituto Valenciano de Investigaciones Económicas is gratefully
acknowledged.



2

SKEWNESS IN INDIVIDUAL STOCKS AT DIFFERENT FREQUENCIES

Amado Peiró

ABSTRACT

This paper examines the (a)symmetry of twenty-four individual stock returns at
different frequencies: daily, weekly and monthly. While some asymmetries are observed in
daily returns, they disappear almost completely at lower frequencies. The explanation for
this fact lies in the convergence to normality that takes place when frequency decreases.
These features allow one to question several financial models; in particular, they question
the preference for positive skewness as a factor for investments in stock markets.

Key words: Diversification, skewness, symmetry.
JEL classification: E32

RESUMEN

Este artículo examina la (a)simetría de las rentabilidades de veinticuatro valores
individuales para diferentes frecuencias: diaria, semanal y mensual. Aunque se observan
algunas asimetrías en las rentabilidades diarias, éstas desaparecen casi completamente en
frecuencias menores. La explicación a este fenómeno reside en la convergencia a la
normalidad que se produce al disminuir la frecuencia. Estos hechos cuestionan varios
modelos financieros; en concreto cuestionan la preferencia por la asimetría positiva como
un factor de inversión en los mercados de acciones.

Palabras clave: Diversificación, simetría.
Clasificación JEL: E32



3

I. Introduction

Traditionally, many financial models have been based on a risk-return framework,

and these two properties have usually been measured by using the first two moments of the

distribution of returns. However, this framework may be somewhat limited. When

restricting the analysis to the first two moments, one is neglecting the importance of higher

order moments, which would be reasonable only in two cases: i) when investors’ utility

functions are quadratic, or ii) when the distribution of returns is normal. But there is ample

evidence that makes these assumptions questionable.

In an attempt to generalize many financial models and to go beyond the mean-

variance framework, several researchers have considered higher order moments. In

particular, the third order moment (skewness) has frequently been taken into account.

Underlying many of the contributions that consider the skewness of returns is the

presumption that many investors may have preference for positive skewness. This

preference would also explain why many rational people take unfair gambles (Garrett and

Sobel, 1999). Brennan (1979) and He and Leland (1993) have shown that if the market's

portfolio rate of return has constant mean and volatility, the average investor has a power

utility function. As this function has a positive third derivative, it implies skewness

preference that is positively valued by investors.

Several researchers have realized the potential importance of skewness, and,

consequently, have incorporated it in different financial models. In this way, Arditti and

Levy (1975) build a three-parameter multi-period model, and Kraus and Litzenberger

(1976) extend the capital asset pricing model to include the effect of skewness on

valuation, and present empirical evidence consistent with their extension. Simkowitz and

Beedles (1978) and Conine and Tamarkin (1981) explain the low diversification of many

investors' portfolios by the preference for positive skewness, and Lai (1991) and

Chunhachinda et al. (1997) have analysed the problem of portfolio selection taking into

account the skewness of returns. Chunhachinda et al. (1997) find that the incorporation of

skewness into the investor's portfolio decision substantially alters the construction of the

optimal portfolio, and that investors trade expected return for skewness.

The issue of skewness in financial returns is also important for option pricing

theories. The widely used Black-Scholes option pricing model frequently misprices deep-

in-the-money and deep-out-the-money options. Hull (1993) has explained this anomaly,

known as volatility skew, as a consequence of non-normality, and Corrado and Su (1996

and 1997) attribute this fact to the skewness and kurtosis of the returns’ distribution. They
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find significant non-normal skewness and kurtosis implied by option prices, and show that

when skewness- and kurtosis-adjustment terms are added to the Black-Scholes formula,

improved accuracy is obtained for pricing options.

Finally, interest in the skewness of returns has recently increased due to several

contributions that point to skewness (as an alternative to risk) as a goal for many

individuals. Golec and Tamarkin (1998), in the context of horse races, and Garrett and

Sobel (1999), in the context of lottery games, show that bettors pursue skewness instead of

risk. Both studies explain the behavior of risk-averse individuals through their preference

for positive skewness.

Parallel with the importance of skewness, lies the issue of its measurement. To

measure the (a)symmetry of the returns, most researchers have used sample skewness,

central third-order moment divided by the cube of standard deviation,
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where tR  denotes the return in date t, R   is the sample mean, T is the sample size, and σ̂

is the sample standard deviation. Its asymptotic distribution, under normality, is given by:

                                                              ( )TN /6  ,0ˆ →α .                                                     (2)

Though (1) may be a proper measure of (a)symmetry, serious problems arise when

using (2) to test for symmetry. Many researchers have used the asymptotic distribution

shown in (2) to test for the symmetry of financial returns, but these are really tests of

normality and not tests of symmetry. As, obviously, the distribution may be symmetric

though not normal, the tests may incorrectly conclude the asymmetry of returns when the

parent distribution is perfectly symmetric but not normal, and there is enormous evidence

since Mandelbrot (1963) of the non-normality of returns at high frequencies. As the

distribution of α̂  may be very different under alternative distributions (see Peiró, 1999),

tests of symmetry with (1) and (2) are greatly misleading.

With this (problematic) measure of skewness, several researchers have examined

interesting topics, like the evolution of skewness over time (persistence), its magnitude at

different frequencies, and its relationship with diversification. This last point is especially

important, as it could help to explain a long-standing puzzle. An intriguing feature in
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financial economics is the low diversification of portfolios held by investors. However,

this behavior could be perfectly rational if investors have preference for positive skewness,

and lower-diversified portfolios present more positive skewness than higher-diversified

ones. Indeed, empirical evidence suggests that this is the case. Simkowitz and Beedles

(1978) observed that skewness in monthly stock returns decreases and becomes negative

with diversification, and Alles and Kling (1994) find that smaller capitalized stock indices

are more negatively skewed than larger stock indices. If investors crave for positive

skewness, and skewness decreases with diversification, then they would rationally hold

low-diversified portfolios, in sharp contrast with common financial orthodoxy.

The purpose of this paper is to examine skewness in individual stocks. To avoid the

problems that involve (1) and (2), distribution-free methods proposed by Peiró (1999) will

be used. These methods have shown that returns on well-diversified portfolios (stock

indexes) are mostly symmetric, or, at least, do not present strong evidence of asymmetry.

However, no evidence is provided on individual stocks. If these robust methods conclude

that individual stocks do present asymmetry, but that it decreases or disappears with

diversification, a possible explanation of the low-diversification puzzle will lie in the

preference for positive skewness. To cast some light on these issues, the rest of the paper is

organized as follows. Section II presents the data used, twenty-four stocks listed in the

New York Stock Exchange. Section III analyses the (a)symmetry of their returns at

different frequencies with several tests. Finally, Section IV summarizes the main results

and conclusions.

II. Returns Series

In what follows, twenty-four Dow-Jones stocks listed in the New York Stock

Exchange have been considered. These companies are shown in Appendix 1. The series of

daily closing prices cover the period from 12/26/1995 to 5/25/2000 and, after excluding

non-trading days, are composed of 1116 observations. Daily returns were obtained by

logarithmic differences; that is by ( )1 ,  log −= tttd PPR , where tdR  ,  is the return for day t

and tP  is the closing price for the same day. Lower frequency returns were also

considered. Five-day (weekly) returns were obtained by ( )5 ,  log −= tttw PPR , and twenty-

day (monthly) returns were obtained by ( )20 ,  log −= tttm PPR . One must notice that weekly

(monthly) returns are equal to the aggregation of five (twenty) daily returns. The series of

daily, weekly and monthly returns are formed by 1115, 223 and 55 observations,

respectively.
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Table 1 shows some basic statistics on the returns of these series. According to (2),

standard deviation of skewness is equal to 0.073, 0.164 and 0.330, for daily, weekly and

monthly returns, respectively. Therefore, many statistics are highly significant. As said

above, this fact must be understood as a rejection of normality, not as a rejection of

symmetry. It is interesting to observe that the number of rejections decrease with

frequency; at the 5% significance level, there are thirteen rejections with daily returns,

twelve with weekly and only five with monthly. This fact suggests convergence to

normality. We shall come back to this point later.

Table 1. Basic statistics

Daily Returns Weekly Returns Monthly Returns

Mean Std. Dev. Skewness Mean Std. Dev. Skewness Mean Std. Dev. Skewness

AA    0.076% 0.021 0.459    0.381% 0.047 0.195    1.673% 0.089 0.106

AX    0.114% 0.023 0.049    0.568% 0.051 -0.279    2.282% 0.094 -1.202

BA   -0.001% 0.022 -0.480   -0.006% 0.045 -0.421   -0.032% 0.086 -0.903

BS   -0.114% 0.030 0.334   -0.569% 0.066 0.664   -1.805% 0.131 -0.301

CA    0.022% 0.023 -0.132    0.111% 0.048 -0.025    0.446% 0.092 0.011

DD    0.031% 0.021 -0.024    0.156% 0.046 -0.196    0.643% 0.090 -0.164

DI    0.061% 0.022 0.023    0.306% 0.047 0.401    1.239% 0.082 0.233

EK   -0.013% 0.019 -0.695   -0.066% 0.045 -0.024   -0.387% 0.074 -0.042

GE    0.129% 0.018 0.054    0.647% 0.041 -0.117    2.637% 0.068 -0.231

GM    0.052% 0.020 -0.001    0.261% 0.043 -0.343    1.389% 0.075 -0.323

GT   -0.053% 0.020 0.165   -0.264% 0.046 -0.243   -0.830% 0.095 -0.606

IB    0.138% 0.024 -0.354    0.688% 0.052 0.431    2.808% 0.093 -0.071

IP   -0.007% 0.022 0.181   -0.034% 0.046 0.044    0.006% 0.089 -0.396

JP    0.043% 0.021 0.018    0.215% 0.043 -0.490    0.770% 0.087 -0.583

KO    0.031% 0.020 0.032    0.154% 0.044 -0.389    0.477% 0.080 -0.736

MC    0.046% 0.019 0.094    0.228% 0.041 0.508    0.847% 0.078 0.145

MO   -0.006% 0.023 -0.186   -0.029% 0.053 -1.132   -0.448% 0.090 -0.753

MR    0.072% 0.020 -0.014    0.361% 0.044 -0.310    1.272% 0.078 -0.677

PG    0.041% 0.023 -4.265    0.205% 0.049 -3.318    0.667% 0.097 -2.858

SE   -0.003% 0.024 0.279   -0.017% 0.051 0.342   -0.085% 0.103 0.237

TX    0.031% 0.018 0.294    0.153% 0.036 -0.260    0.463% 0.054 -0.348

UK    0.030% 0.023 0.697    0.148% 0.047 0.456    0.843% 0.107 0.422

UT    0.082% 0.019 0.017    0.411% 0.041 -0.273    1.740% 0.085 -0.311

XO    0.062% 0.017 0.291    0.310% 0.034 0.023    1.215% 0.049 -0.164
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III. Analysis of symmetry

As the skewness coefficient is of little use in judging the symmetry or asymmetry

of returns, one must follow alternative approaches. First, a graphic approximation will be

considered. If the distribution of returns is symmetric, then the median must necessarily be

the axis of symmetry, and coincides with the mean, if it exists. Then, the symmetry of

returns will be reflected in the symmetry of the histogram about its mean. As there are

twenty-four series, and each of them has its own mean, it is easier to subtract their own

mean from the returns of each series, thus shifting the axis of symmetry to zero for all the

series of excess returns. In this case, symmetry of returns would be reflected in the

symmetry of the histograms of these excess returns about zero.

Figure 1 shows the histograms of daily excess returns. While some histograms

seem symmetric, others present clear asymmetries. Thus, for example, AX and BA are

fairly symmetric, but BS present strong asymmetries. One could judge the (a)symmetry of

returns by examining these histograms, but, though these histograms provide intuitive

insight, the information contained inside each interval (rectangle) is wasted away, and,

most importantly, they are not at all statistical tests of symmetry. Therefore, to test for the

symmetry of returns, the distribution of negative excess returns taken in absolute values

will be compared with the distribution of positive excess returns taken in absolute values.

If returns are symmetric, then both distributions must be equal. These comparisons may be

carried out with conventional tests or with distribution-free tests.

To test for the equality of distributions, the mean and the variance of negative

excess returns (henceforth, always in absolute values) will be compared with the mean

and the variance of positive excess returns through the usual t- and F-tests. Table 2

shows the results of these tests. The equality of means cannot be rejected for any

company at the 1% significance level, and the statistics are significant in only four cases

at the 5% level.1 Nor can the equality of variances be rejected in most companies;

however, the results of the F-tests for eight companies (one third) suggest a different

dispersion between negative and positive excess return. These are the only signs of

asymmetry that can be observed with these tests.

                                                
1 As, by construction, the sum of negative excess returns (in absolute values) is equal to the sum of positive excess
returns, the test for the equality of means can also be regarded as a test for the equal number of negative and positive
excess returns.
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Figure 1. Histograms of daily excess returns.

AA AX BA BS

CA DD DI EK

GE GM GT IB

IP JP KO MC

MO MR PG SE

TX UK UT XO

In all histograms the intervals are the following: (-∞, -0.055), (-0.055, -0.045), (-0.045, -0.035), ...,
 (-0.005, +0.005), ..., (0.035, 0.045), (0.045, 0.055), (0.055, ∞).
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Table 2. Tests of symmetry with daily returns

t P-value F P-value KS P-value W* P-value ST* P-value
AA    2.165* 0.031   1.538** 0.000   0.083* 0.044   1.051 0.293   2.761** 0.006

AX    0.574 0.566   1.096 0.281   0.040 0.764   0.230 0.818   0.758 0.448

BA    1.142 0.254   1.109 0.223   0.083* 0.042   2.291* 0.022   2.516* 0.012

BS    2.251* 0.025   1.537** 0.000   0.304** 0.000   5.140** 0.000   8.237** 0.000

CA    2.229* 0.026   1.019 0.826   0.098** 0.009   2.856** 0.004   0.040 0.968

DD    1.951 0.051   1.035 0.683   0.063 0.215   2.261* 0.024  -0.300 0.764

DI    0.937 0.349   1.054 0.536   0.071 0.119   1.046 0.296   0.854 0.393

EK    0.088 0.930   1.258** 0.007   0.074 0.095   0.094 0.925   2.422* 0.015

GE    0.251 0.802   1.065 0.456   0.047 0.567   0.077 0.939   1.478 0.139

GM    1.621 0.105   1.097 0.275   0.059 0.296   1.382 0.167   0.608 0.543

GT    0.031 0.975   1.118 0.189   0.079 0.062   0.523 0.601   2.228* 0.026

IB    0.697 0.486   1.003 0.970   0.050 0.488   0.296 0.767   1.108 0.268

IP    1.238 0.216   1.211* 0.024   0.097* 0.011   2.491* 0.013   2.947** 0.003

JP    0.958 0.338   1.070 0.425   0.053 0.403   0.918 0.359  -0.429 0.668

KO    1.194 0.233   1.406 0.160   0.070 0.135   1.047 0.592  -0.131 0.896

MC    2.291* 0.022   1.163 0.077   0.099** 0.009   2.532* 0.011  -0.687 0.492

MO    0.452 0.651   1.118 0.190   0.064 0.208   0.200 0.842   0.942 0.346

MR    0.463 0.644   1.022 0.801   0.051 0.452   0.450 0.653  -0.867 0.386

PG    0.132 0.895   2.628** 0.000   0.042 0.702   1.011 0.312  -0.235 0.814

SE    0.346 0.729   1.084 0.341   0.092* 0.019   0.685 0.494   2.893** 0.004

TX    1.386 0.166   1.329** 0.001   0.049 0.528   0.716 0.474   0.680 0.497

UK    1.930 0.054   1.383** 0.000   0.115** 0.001   2.182* 0.029  -1.640 0.101

UT    1.167 0.244   1.037 0.667   0.057 0.322   1.301 0.193   0.388 0.698

XO    0.255 0.799   1.294** 0.002   0.044 0.648   0.528 0.598   0.907 0.364

t  is the usual test statistic for equality of means. F is the usual test statistic for equality of variances. KS,
W* and ST* are respectively the Kolmogorov-Smirnov, the standardized Wilcoxon and the standardized
Siegel-Tukey two-sample test statistics for equality of distributions. * (**) denotes statistics significant at
the 5% (1%) significance level. In all cases, the first sample is formed by negative excess returns, and the
second sample is formed by positive excess returns.

Although t-tests for the equality of means are rather robust to distributional

assumptions, F-tests are rather sensitive to these assumptions (see, for example, Stuart

and Ord, 1987). Therefore, it would be desirable to corroborate all these results,

especially the different dispersion observed in eight companies, with distribution-free

methods. The distribution-free methods are especially suitable in these cases because the

distribution of the test statistic does not depend on the specific distribution function of the

population; these methods only require minimal assumptions about the underlying

distribution, and, besides, do not depend to such an extent on extreme returns.

Three distribution-free methods will be used: the Kolmogorov-Smirnov two

sample test, the Wilcoxon rank-sum test and the Siegel-Tukey test. These are

two-sample tests, which will allow the comparison of the distributions of negative and

positive excess returns. In all of them the null hypothesis establishes the equality of the
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populations underlying the two samples. But, while the Kolmogorov-Smirnov test is

sensitive to any difference in the distribution of the two samples, the Wilcoxon rank-

sum test is especially appropriate for detecting differences in location, and the Siegel-

Tukey test is especially appropriate for detecting differences in dispersion (see Gibbons

and Chakraborti, 1992).

In the Kolmogorov-Smirnov two-sample test, the test statistic, KS, is obtained by

computing the maximum absolute difference between the empirical distributions,
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where −F  and +F  are the empirical distribution functions of negative and positive

excess returns, respectively. The critical values of the asymptotic distribution of KS

under the hypothesis of equal distributions are tabulated in Gibbons and Chakraborti

(1992).

In the Wilcoxon rank-sum test, the absolute values of negative and positive

excess returns are combined. The test statistic, W, is given by the sum of the ranks of

the absolute values of the negative excess returns in the ordered combined sample,
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asymptotic distribution of W is given by
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where T1 is the number of negative excess returns (first sample), T2 is the number of

positive excess returns (second sample) and T1+T2 = T.



11

In the Siegel-Tukey test the absolute values of negative and positive excess

returns are also combined and ordered. The test statistic is

                                                                  ∑
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,                                              (7)

where It is defined as in (5); that is, It has value 1 if the place t in the ordered combined
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If T is odd, then the middle observation is dropped, and these weights are applied to the

resulting number of observations. Thus, the lower weights are assigned to the extremes,

and the higher weights to the middle of the ordered combined sample. Under the null

hypothesis of equal distributions, the asymptotic distribution of ST is the same as that of

W,
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The results of these distribution-free tests with daily returns are shown in Table 2.

While the Kolmogorov-Smirnov tests lead to the rejection of the hypothesis of equal

distributions in eight cases (four of them at the 1% significance level), the Wilcoxon- and

the Siegel-Tukey tests lead to the rejection in seven cases each. There is a sound relation

between these different tests. In the eight cases where symmetry is rejected with the KS

tests, at least one of the W and ST tests also leads to the rejection of symmetry. On the

other hand, the four rejections in the t-tests are also rejected in the KS  test, and three of

them are also rejections in the Wilcoxon tests (especially sensitive in detecting

differences in location). The general conclusions that follow from this table is that daily

returns present clear asymmetries in some cases, but asymmetry does not seem to be a

ubiquitous and common feature of daily returns.
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With weekly returns, the results are rather different. Table 3 shows the results

obtained with returns generated over a period of five trading days (weekly returns). Neither

of the t-statistics, and only one of the seventy-two distribution-free tests, allows the

rejection of symmetry of weekly returns (the P-value in the Siegel-Tukey test for EK is

equal to 2.8%). The F-tests yield several rejections of symmetry, but, as said above, these

tests seem to be of little value, given their sensibility to normality. The results are similar

with monthly returns (generated over a period of twenty trading days). The t-tests never

allow the rejection of symmetry of returns, and the distribution-free tests allow the

rejection only in four out of seventy-two cases (in three out of four only at the 5%

significance level). Two clear messages arise from these tables: i) though there are some

relatively slight asymmetries in daily returns, asymmetry does not seem to be a pervasive

characteristic of daily returns, and ii) the (relatively weak) asymmetries observed in daily

returns disappear at lower frequencies (weekly or monthly returns).

The symmetry observed at low frequencies is not very surprising. As these returns

are continuously compounded, weekly and monthly returns may be generated by

aggregation of 5 or 20 daily returns, respectively. Then, one may invoke a central limit

theorem, which under relatively general conditions implies convergence to normality. Only

in the case that one accepts stable Paretian distributions (see MandelBrot, 1963 or Fama,

1963 and 1965) with a characteristic exponent less than 2 for daily returns, would

convergence to normality not take place. To cast some light on these issues, different tests

of normality were run on all the series of returns. Table 5 shows the number of rejections

of normality at the 5% significance level and, in parenthesis, at the 1% significance level.

For every test, the number of rejections decreases with the frequency. Thus, the main

conclusion of this table is that returns converge to normality as they cover broader

horizons, and, therefore, that they necessarily become symmetric whether they were or not

at higher frequencies. In addition, one may observe in Table 5 that the main source of non-

normality is kurtosis, not asymmetry. The higher number of rejections occur in those tests

that rely on the kurtosis of the distribution: kurtosis, of course, and also Jarque-Bera and

Shapiro-Wilk tests. Conversely, tests with skewness clearly present fewer rejections. The

same occurs with the Kolmogorov-Smirnov normality tests, as these tests have low power

against distributions with high kurtosis.
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Table 3. Tests of symmetry with weekly returns

t P-value F P-value KS P-value W P-value ST P-value
AA 1.461 0.145    1.161 0.440 0.141 0.220 1.880 0.060   -1.135 0.256

AX 1.391 0.166    1.377 0.097 0.099 0.737 1.179 0.238   -0.375 0.708

BA 0.514 0.607    1.217 0.305 0.140 0.226 0.857 0.392    0.789 0.430

BS 0.771 0.441    1.866** 0.001 0.083 0.616 0.242 0.809    0.804 0.421

CA 0.228 0.820    1.128 0.526 0.140 0.222 0.823 0.410   -1.873 0.061

DD 0.721 0.472    1.236 0.270 0.075 0.561 0.564 0.573   -0.145 0.884

DI 0.558 0.577    1.495* 0.035 0.158 0.124 1.582 0.114    0.168 0.866

EK 0.843 0.400    1.020 0.913 0.164 0.100 1.348 0.178    2.201* 0.028

GE 1.513 0.132    1.203 0.339 0.133 0.279 1.457 0.145   -0.979 0.327

GM 0.231 0.818    1.261 0.225 0.067 0.965 0.001 0.999   -0.394 0.693

GT 1.735 0.084    1.394 0.087 0.129 0.316 1.568 0.117   -0.609 0.542

IB 0.074 0.941    1.347 0.119 0.074 0.921 0.445 0.656   -0.509 0.611

IP 0.974 0.331    1.042 0.828 0.131 0.300 1.507 0.132    0.640 0.522

JP 0.078 0.938    1.509* 0.032 0.105 0.576 0.505 0.613    0.338 0.735

KO 0.590 0.556    1.399 0.080 0.094 0.713 0.335 0.737    1.097 0.273

MC 0.687 0.493    1.578* 0.018 0.071 0.942 0.279 0.780    0.089 0.929

MO 1.042 0.300    2.298** 0.000 0.076 0.907 0.072 0.943   -1.176 0.240

MR 1.470 0.143    1.374 0.100 0.170 0.082 1.408 0.159    0.239 0.811

PG 1.249 0.213    5.104** 0.000 0.106 0.567 0.151 0.880   -1.914 0.056

SE 0.672 0.502    1.372 0.100 0.107 0.553 0.425 0.671    1.136 0.256

TX 0.751 0.453    1.352 0.116 0.063 0.978 0.356 0.722   -0.380 0.704

UK 0.074 0.941    1.552* 0.022 0.118 0.420 0.790 0.430    1.351 0.177

UT 0.767 0.444    1.328 0.139 0.084 0.825 0.554 0.580    0.089 0.929

XO 0.605 0.545    1.098 0.625 0.096 0.683 0.605 0.545    0.999 0.318

t  is the usual test statistic for equality of means. F is the usual test statistic for equality of variances. KS,
W* and ST* are respectively the Kolmogorov-Smirnov, the standardized Wilcoxon and the standardized
Siegel-Tukey two-sample test statistics for equality of distributions. * (**) denotes statistics significant at
the 5% (1%) significance level. In all cases, the first sample is formed by negative excess returns, and the
second sample is formed by positive excess returns.
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Table 4. Tests of symmetry with monthly returns

t P-value F P-value KS P-value W P-value ST P-value
AA 0.438 0.663    1.181 0.679 0.212 0.568 0.497 0.619    0.405 0.686

AX 1.725 0.090    4.190** 0.001 0.212 0.593 0.971 0.332   -1.306 0.192

BA 1.147 0.257    2.877* 0.011 0.202 0.641 0.314 0.754    0.882 0.378

BS 0.155 0.877    1.354 0.442 0.148 0.924 0.126 0.900   -0.202 0.840

CA 0.418 0.678    1.018 0.970 0.183 0.748 0.531 0.595    0.506 0.613

DD 0.508 0.614    1.296 0.516 0.139 0.953 0.329 0.742   -0.590 0.555

DI 1.144 0.258    1.139 0.757 0.368 0.051 1.502 0.133   -2.223* 0.026

EK 0.170 0.866    1.099 0.812 0.164 0.853 0.093 0.926   -0.673 0.501

GE 0.555 0.581    1.751 0.152 0.298 0.174 0.885 0.376   -1.602 0.109

GM 0.493 0.624    1.552 0.270 0.117 0.992 0.194 0.846   -0.843 0.399

GT 0.480 0.633    2.678* 0.015     0.393* 0.029 0.649 0.516   -3.355** 0.001

IB 0.615 0.541    1.213 0.618 0.174 0.802 0.750 0.453    0.152 0.879

IP 0.136 0.893    1.535 0.274 0.247 0.370 0.631 0.528   -1.280 0.201

JP 0.704 0.485    1.534 0.288 0.160 0.876 0.685 0.494    0.152 0.879

KO 0.741 0.462    1.999 0.076 0.247 0.378 1.513 0.130   -0.473 0.636

MC 0.901 0.371    1.192 0.666 0.193 0.688 0.955 0.340    0.051 0.960

MO 1.630 0.109    3.102** 0.008 0.242 0.414 1.032 0.302   -1.587 0.113

MR 0.154 0.878    1.600 0.232 0.152 0.908 0.429 0.668    0.589 0.556

PG 1.302 0.199    9.231** 0.000 0.106 0.998 0.266 0.790   -0.052 0.959

SE 0.161 0.873    1.151 0.721 0.209 0.586 0.177 0.860   -0.640 0.522

TX 0.972 0.336    1.806 0.148 0.265 0.299 0.382 0.703   -2.410* 0.016

UK 0.178 0.860    1.393 0.401 0.200 0.643 0.210 0.833   -1.010 0.312

UT 0.448 0.656    1.460 0.342 0.194 0.683 0.261 0.794   -1.585 0.113

XO 0.893 0.376    1.436 0.369 0.253 0.346 0.668 0.504   -2.011 0.044

t  is the usual test statistic for equality of means. F is the usual test statistic for equality of variances. KS, W* and ST*
are respectively the Kolmogorov-Smirnov, the standardized Wilcoxon and the standardized Siegel-Tukey two-sample
test statistics for equality of distributions. * (**) denotes statistics significant at the 5% (1%) significance level. In all
cases, the first sample is formed by negative excess returns, and the second sample is formed by positive excess returns.

Table 5. Normality tests

Daily Weekly Monthly

Skewness         13   (10)        12     (7)          6    (3)
Kurtosis         24   (24)        19   (18)          7    (6)
Stud. Range         24   (24)        16   (11)          7    (3)
JB         24   (24)        19   (17)          8    (7)
KS         17   (13)          2     (0)          0    (0)
SW         24   (24)        18   (16)          9    (4)

Stud. Range denotes the Studentized Range normality test, JB denotes the Jarque-Bera normality test, KS
denotes the Kolmogorov-Smirnov normality test and SW denotes the Shapiro-Wilk normality test. The
figures indicate the number of rejections of the null of normality at the 5% significance level and, in
parenthesis, at the 1% significance level.
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As lower-frequency returns do not seem to be asymmetric, and as asymmetry in

daily returns is not a strong and pervasive feature, these results question several authors'

explanations of the low diversification of many investors' portfolios due to the preference

for positive skewness. On the other hand, if stock returns are not skewed, the phenomenon

known as "volatility skew" in option pricing cannot be a consequence of the skewness in

the distribution of returns. Finally, two limitations of this study must be noticed. Firstly,

the values that have been analyzed are blue chips, with a very high capitalization. It is

possible that lower-capitalized values could present asymmetries. Secondly, as investors

may be specially concerned about extreme movements, an interesting asymmetry would be

the different sizes and shapes of the tails of the distributions. The tests carried out in this

study compare the whole distributions, and, therefore, though they may detect different

tails, their power against asymmetries in extreme movements is limited. In these

circumstances, specific tests should be conducted that take into account the low sample

sizes in each tail.

IV. Conclusions

The (a)symmetry of returns may be very important for different financial issues:

asset pricing, diversification, portfolio selection, option pricing, and, in general, investment

analysis. In spite of this potential importance, in sharp contrast with other characteristics of

stocks as risk, serious problems arise in the measurement of (a)symmetry.

This study examines the (a)symmetry of returns following a new approach. This

approach encompasses both conventional and distribution-free tests, which may be

specially appropriate in these circumstances. The results obtained with daily returns on

twenty-four values detect some asymmetries, although asymmetry does not seem to be a

stylized fact characteristic of daily returns. These asymmetries disappear almost

completely in weekly or monthly returns, as the distributions converge to normality. These

results call several hypotheses into question, like the explanation of low diversification as a

result of preference for positive skewness, or the importance of skewness in option pricing.
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Appendix 1

AA Alcoa
AX American Express
BA Boeing
BS Bethlehem Steel
CA Caterpillar
DD Du Pont
DI Disney
EK Eastman Kodak
GE General Electric
GM General Motors
GT Goodyear
IB International Business Machines
IP International Paper
JP JP Morgan
KO Coca-Cola
MC McDonalds
MO Philips Morris
MR Merk
PG Procter & Gamble
SE Sears Roebuck
TX Texaco
UK Union Carbide
UT United Technologies
XO Exxon
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