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STRATEGIC PIGOUVIAN TAXATION, STOCK
EXTERNALITIES
AND POLLUTING NON-RENEWABLE RESOURCES

Santiago J. Rubio and Luisa Escriche
RESUMEN

Este trabajo propone una extensién del modelo de Wirl y Dockner (1995)
disenado para analizar la interdependencia bilateral a largo plazo entre un
cartel exportador de un recurso y una coalicién de gobiernos de paises impor-
tadores. En primer lugar, se incorporan los efectos agotamiento al andlisis
de las propiedades intertemporales de un impuesto pigouviano. En segundo
lugar, se calculan los equilibrios feedback’ de Stackelberg. TLos resultados
muestran que la dindmica del impuesto depende criticamente del nivel del
dano medioambiental marginal. Ademads, también demuestran que el im-
puesto definido por el equilibrio de Nash perfecto de Markov es un impuesto
pigouviano neutral en el sentido que sélo corrige la ineficiencia causada por
la externalidad de stock. Sin embargo, para el equilibrio feedback’ de Stack-
elberg el impuesto es ventajoso para los paises importadores ya que la im-
posicién pigouviana estratégica reduce el poder de mercado del cartel.

Palabras Clave: Externalidad de stock, imposicién pigouviana, impuesto
sobre las emisiones de CO2

Clasificacién JEL: D62, F02, 1123, Q28, Q48.
ABSTRACT

This paper extends Wirl and Dockner’s (1995) model designed to analyze
the long-term bilateral interdependence between a resource exporting cartel
and a coalition of resource importing country governments. Firstly, depletion
effects are introduced into the analysis of the intertemporal properties of a
pigouvian tax. Secondly, the feedback Stackelberg equilibria are computed.
The results show that the dynamics of the tax depends critically on the level
of the marginal environmental damage. Moreover, they also show that the
tax defined by the Markov- perfect Nash equilibrium is a neutral pigouvian
tax in the sense that it only corrects the market inefficiency caused by the
stock externality. However, for the feedback Stackelberg equilibrium the tax
is advantageous for the importing countries since the strategic pigouvian
taxation reduces the market power of the cartel.

Keywords: Stock externality, pigouvian taxation, carbon tax
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1 Introduction

Recently, several papers have been published on the intertemporal proper-
ties of a carbon tax. Among them we can quote Hoel (1992, 1993), Sinclair
(1992, 1994), Ulph and Ulph (1994), Wirl (1994), Wirl and Dockner (1995),
Tahvonen (1995, 1996), Farzin (1996), Farzin and Tahvonen (1996) and Hoel
and Kverndokk (1996). These papers can be classified in two groups depend-
ing on the approach followed by the authors. A first group formed by Hoel,
Sinclair, Ulph and Ulph, Farzin, Farzin and Tahvonen, and Hoel and Kvern-
dokk have focused on the optimal pricing of a non-renewable resource with
environmental stock externalities'. These papers show that the optimal time
path of the carbon tax depends critically on the specification of carbon ac-
cumulation process, and in particular on the irreversibility of CO, emissions.
Thus, if the emissions are partially irreversible, as in Farzin and Tahvonen
(1996), or if reversibility is costly, as in Farzin (1996), the optimal carbon tax
may increase monotonically or have a U-shaped form. However, if reversibil-
ity is costless, i.e. if a constant rate of decay of the cumulative emissions is
assumed, as Ulph and Ulph (1994) and Hoel and Kverndokk (1996) propose,
the dynamics of the optimal tax differs: the tax should initially increase,
when the initial stock of cumulative emissions is small, but fall later on when
the stock of oil nears exhaustion. This is quite evident when the Farzin and
Tahvonen and Hoel and Kverndokk papers are compared, since these two
papers only differ essentially in the specification of the cumulative emission
dynamics and give different temporal paths for the carbon tax.

The second group of authors follows a somewhat different approach. They
have tried to capture the strategic features of the global warming problem,
developing a model of long-term bilateral strategic interaction between a
resource exporting cartel and a coalition of resource importing governments?.
In this framework, they have studied the strategic taxation of COy emissions
by the governments of the importing countries. Their model is a global
warming differential game with irreversible emissions where the coalition of

'Within this group we could differentiate Hoel’s approach from the one followed by the
rest of the authors. Hoel uses a dynamic pollution game with N countries and defines the
optimal carbon tax as the pigouvian tax that reproduces the social optimum. We can also
include Forster’s (1980) paper in this group, although he does not draw out consequences
of his model for the temporal path of a pollution tax.

In fact, their model considers a simple stock externality, of which carbon dioxide is
just the most discussed example.



governments choose the carbon tax and the cartel the price*. Wirl (1994)
and Wirl and Dockner (1995) have shown, for the case of zero extraction
cost, that the tax increases monotonically up to the choke price, whereas the
price declines monotonically to zero when a Markov-perfect Nash equilibrium
in linear strategies is computed. In Tahvonen (1995, 1996) the monopolistic
extraction is computed as a feedback Stackelberg equilibrium assuming that
extraction costs are independent of the resource level. When his results are
compared with those of Wirl (1994) and Wirl and Dockner (1995), it turns
out that the intertemporal properties of the carbon tax and price are the
same irrespective of whether we have a Nash or Stackelberg equilibrium.

In this paper we propose an extension of this approach in two directions.
First, we introduce depletion effects into the analysis. We assume that the
extraction costs depend positively on the extraction rate and cumulative ex-
tractions. Second, we compute not only the Markov-perfect Nash equilibrium
with depletion effects but also the two possible feedback Stackelberg equilibria
of the game. These two equilibria appear when one of the players enjoys a
strategic advantage that in the model means that he moves first. In this
way, we extend and complete the analysis of the strategic taxation of COy
emissions.

Our results show how the depletion effects affect the temporal path of the
carbon tax and what the distributive effects of strategic taxation are, making
more precise the results obtained by the previous authors. We find that the
tax can be decreasing and the price increasing if the environmental damage
is not very high, or that the tax and producer price can both be increasing.
With depletion effects the dynamics of the tax depends critically on the effect
a variation in cumulative extractions has on marginal environmental damage.
Nevertheless, if the marginal damage is high enough, the producer price
should be decreasing, whereas the tax should be increasing. Furthermore, we
find that the tax defined by the Nash equilibrium is a neutral pigouvian tax
in the sense that the tax only corrects the market inefficiency caused by the
stock externality, and not the inefficiency associated with the market power
of the resource cartel. However, if the importing country governments have a
strategic advantage, we find that the tax is advantageous for the consumers,
since the strategic pigouvian taxation allows importing countries to capture
a part of the cartel’s profits; although if we look at the aggregate welfare
we obtain that there exists a deadweight welfare loss in terms of the present
value of the Marshallian aggregate surplus. This transfer is the result of an

31n Section 4 of Tahvonen’s (1996) paper, the case of reversible pollution with depletion
effects is studied. But the difficulty of deriving an analytical solution leads the author to
compute numerical examples.



initially higher tax and a lower producer price in comparison with the values
corresponding to the Nash equilibrium. We also clarify the result obtained
by Tahvonen showing that when the resource cartel acts as the leader of the
game, the feedback Stackelberg equilibrium is identical to the Markov-perfect
Nash equilibrium. This property is explained because the optimal tax for the
governments is independent of the producer price.

Finally, we want to point out that the subject of this study is closely
related to the literature that analyzes import tariffs as an instrument for
gaining from monopsonistic demand or a dominant importer position, and
for capturing parts of the resource rent for the importing country. This issue
was opened by Bergstrom (1982) and continued, among others, by Brander
and Djajic (1983), Karp (1984), Maskin and Newbery (1990) and Karp and
Newbery (1991, 1992). Among these papers we want to emphasize Karp’s
(1984) contribution, where this issue is studied using a differential game be-
tween the buyers and the sellers of a non-renewable resource. The buyers
control the tariff and the sellers the rate of extraction. In this framework the
monopsonistic equilibrium has been computed as a Stackelberg equilibrium.
This paper is a clear antecedent of Tahvonen’s (1995, 1996) papers and of our
paper. Nevertheless, our contribution differs not only in the subject, where
environmental damage is introduced, but also in the nature of the game,
since it 1s assumed that the buyers are price-taker, and the interaction in the
market occurs between a resource exporting cartel and a coalition of resource
importing country governments. In fact, our model is closer to Lewis, Lind-
sey and Ware’s (1986) approach than to Karp’s approach. In Lewis, Lindsey
and Ware’s (1986) paper the interaction between a resource monopolist and
a coalition of consumers in a simple multiperiod model is analyzed. The sup-
plier chooses extraction whereas price-taker consumers act collectively and
use the rate of adoption of a substitute to affect strategically the extraction
behavior of the supplier and the price of the resource. They compute the
Markov-perfect Nash equilibrium and the two open-loop Stackelberg equilib-
ria of the game, and show the effects of commitment on the rate of extraction
and the rate of adoption of the substitute.

Our paper is organized as follows: we present the global warming dif-
ferential game with depletion effects in Section 2; in Section 3 we compute
the Markov-perfect Nash equilibrium, and in Section 4 the feedback Stack-
elberg equilibrium when the governments of the importing countries act as
the leader of the game. In Section 5 we develop a comparative analysis of
the two equilibria computed in the previous sections. Section 6 summarizes
the conclusions and suggests directions for additional research.



2 The model

In this paper we extend Wirl and Dockner’s (1995) model*. We begin by
describing the demand side of the market, assuming that the consumers of
the importing countries act as price-taker agents. Under this assumption,
we can write the discounted present value of the consumers” net welfare
asi [ e ag(t) — (1/2)a(t)? — [plt) + v()]a(t) + R(t) — d=(t)?}dt, where
aq(t) — (1/2)q(t ) is the consumers’ gross surplus, ¢(t) is the amount of the
resource bought by the importing countries, p(t) is the producer price, ¥(t)
is the tax fixed by the importing country governments, R(t) is an income
transfer that the consumers receive from the government, and dz(t)? is the
environmental or pollution damage function where z(t) is the cumulative
emissions and d is a positive parameter. If we consider that global warming
is a clear example of a stock externalily we have to establish that consumers
take as given not only the price of the resource but also the evolution of
the accumulated emissions and, moreover, the income transfer, since this is
controlled by the governments; so that, finally, the resource demand only
depends on consumer price: ¢q(t) = a — p(t) — ¥(t). On the other hand, as
¥(t) represents the tax fixed by the importing country governments, we are
implicitly assuming that there exists a coalition or some kind of coopera-
tion among the importing country governments which allows us to represent
the resource market as a model of long-term bilateral strategic interaction
between a resource exporting cartel (OPEC) and a coalition of resource im-
porting country governments (the West).

The governments are supposed to tax emissions in order to maximize the
discounted present value of the net consumers’ surplus. We also assume that
tax receipts, ¥ (t)q(t), are completely refunded to the consumers through the
transfer R(t). As a result the optimal time path for the tax is given by the
solution of the following problem?®:

max /OO e % {a(a —p(t) — (1)) — %(a —p(t) — (1))

£} Jo
—p(t)(a = p(t) — ¥(t)) — d=(t)*} dt, (1)

where 6 is the discount factor.

4See that paper for more details. Our version of the game is also closely related to the
one developed in section 3 of Tahvonen’s (1996) paper. The novelty of our approach in
the specification of the model, with respect to these two papers, is that we suppose that
average extraction costs depend on cumulative extractions.

’In Wirl and Dockner (1995) a study is made of how the Leviathan motive of the
governments modifies the temporal path of the tax in a global warming differential game
without extraction costs.



The dynamics of cumulative resource consumption determines simultane-
ously the dynamics of the COy concentration in the atmosphere:

2(t) =a—p(t) —(t), 2(0)=2>0. (2)

Following Wirl, Dockner and Tahvonen’s approach we suppose that the
identity between resource consumption and COy emissions is not crucial as
long as we can measure oil in terms of that unit that releases one ton of
carbon to the atmosphere. This simplified version of the cumulative emission
dynamics has also been used by Hoel (1992, 1993)°.

Let us turn to the other side of the market. We assume that extrac-
tion costs depend linearly on the rate of extraction and on the cumulative
extractions, C(q(t),2(t)) = [cz(t)]q(t), and that the objective of cartelized
producers is to define a price strategy that maximizes the discounted present
value of profits’:

max [ {pl) - 2O)a—pl0) -0} & (3)
{p®)} Jo

Although we incorporate depletion effects into the analysis, we consider that
the stock externality is largely irrelevant to the welfare of exporting countries,
and that the cumulative extractions are not constrained by the resource in
the ground but by its negative impact on extraction costs and climate. More-
over, following Karp (1984), we assume that the producers get no utility from
consuming the resource. This assumption is not too great a departure from
reality since most major resource exporters consume a negligible portion of
their production. Thus, we represent the strategic interactions in the resource
market as a differential game between a coalition of importing country gov-
ernments and cartelized exporters of oil, where the coalition of governments
choose the tax and the cartel the price.

3 A neutral pigouvian tax

In this section we obtain the solution to the game through the computation of
a Markov-perfect Nash equilibrium. We use Markov strategies because these
kinds of strategies capture essential strategic interactions, are analytically

5Given this linear relationship between resource consumption and emissions, ¥ could
be interpreted as well as a resource import tarifl, and the paper as a study on import
tariffs and non-renewable resources with stock externalities.

TAs in our model there is no uncertainty, we can establish that in the equilibrium
market resource consumption is equal to extraction rate and, consequently, cumulative
emissions equal to cumulative extractions.



tractable and provide a subgame perfect equilibrium which is dynamically
consistent.
Markov strategies have to satisfy the following system of Bellman equa-

tions®:

Wi = max {a(a—p—w)—l(a—p—i/))2

{y} 2
—pla—p—9) —dz* + Wi(a—p— )}, (4)
Wy = H{lg}x{(p—%)(a—p—w)+W£(a—p—¢)}- (5)

From the first order conditions for the maximization of the r.h.s. of the
Bellman equations we get the reaction functions of the governments and
producers:

,L/}N = _Wl/u (6>
= Slate— Wyt (7

These results establish that the optimal tax is independent of the price fixed
by the producers, and that the price and tax are strategic substitutes for
the producers’. Thus, for the governments of the importing countries the
optimal policy consists, as we show below, of defining a neutral pigouvian tax
equal to the user cost or shadow price of cumulative emissions. This means
that when there is no strategic advantage, i.e. when the two players move
simultaneously, the importing countries cannot use the tax for reducing the
market power of the cartel, since the optimal tax only corrects the market
inefficiency caused by the stock externality. For this reason we define this tax
as a neulral pigouvian tax that does not correct the inefficiency associated
with the market structure. Notice also that the tax is positive. This dif-
fers from the well known proposition, see Buchanan (1969), that establishes
that the pigouvian instrument under a monopoly should be a subsidy. The
explanation of this divergence is, as Wirl and Dockner (1995) have already
pointed out, that the resource market is divided into exporting and import-
ing countries, and the latter do not take into account the producers’ surplus
in their objective function.
Applying standard techniques of optimal control we get:'?

:/ e 0094 dT—/ ef‘s(Tft)p@ dr.

. . 0z

Wi

8Time arguments will be eliminated when no confusion arises.
9Superscript N stands for the Markov-perfect Nash equilibrium.
19See Kamien and Schwartz (1991, Section 23).
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This expression allows us to present an economic interpretation of the user
cost or shadow price for the importing countries of an increment in one unit
of the cumulative emissions at any time t. The first component appears in
different papers on the optimal pricing of a non-renewable resource with en-
vironmental stock externalities; see, for instance, Farzin (1996) and Farzin
and Tahvonen (1996); and it is equal to the discounted present value of the
increment in future and present environmental damage caused by an incre-
ment at time ¢ of the cumulative emissions. However, the second component
only appears when the interdependence between the exporting and import-
ing countries is taken into account; see in this case Tahvonen (1996); and it
is equal to the discounted present value of the effect on future and present
consumers’ welfare caused by the reaction of the exporting countries to a
variation of cumulative emissions at time {. Notice that the sign of this ef-
fect can be positive or negative, depending on the optimal policy or strategy
adopted by the cartel.

By substitution of (6) in (7) we get the solution of the price as a function
of the first derivatives of the value functions: pV = %(a—l—cz + W, —W,). Next,
incorporating the optimal strategies into the Bellman equations (4) and (5)
we eliminate the maximization and obtain, after some calculations, a pair of
nonlinear differential equations:

1 ! !

W, = g(a—cz—l—Wl +W,)? —d2?, (8)
1 ! !

Wy = Z(a —cz + W, +W,)% (9)

Notice, that both value functions depend on Wl/ + WQ/, and so does the con-
sumer price, T = p + 1, and the rate of extraction:

1 ! !
1 ! !
¢ = E(a—cz—l—Wl—l—WQ). (11)

This regular occurrence of the term W, + W, simplifies the solution of the
differential equation system (8) and (9) and allows, as happens in Wirl and
Dockner’s model, a complete analysis of the asymmetric game defined in
section 2.

Before presenting the Markov-perfect Nash equilibrium we want to estab-
lish and demonstrate the result we have mentioned above:

Proposition 1 The Markov-perfect Nash equilibrium of the game defines a
neutral pigouvian tax.



Proof. This proof is quite obvious if one realizes, firstly, that in the market
there exist two kinds of inefficiencies, one caused by the stock externality
and the other by the market power of the producers, and, secondly, that the
optimal tax is equal to the user cost of the cumulative emissions. The strategy
of the proof is simple: we compute the monopolistic equilibrium without
intervention of importing countries’ governments, assuming that consumers
take into account the damage caused by the cumulative COs emissions, and
then we check that this equilibrium is identical to the Nash equilibrium.
The monopolistic equilibrium is calculated in two stages. In the first stage,
price-taker consumers determine the demand function, and, in the second,
the cartel decides the price. Then the extraction rate is determined by the
demand function.

The Bellman equation for the consumers, if they internalize external costs
is:

1 '
bWy = max {ag — 3¢ —pg—dz" + Wigh. (12)
q
The maximization of the right-hand side gives us the resource demand func-
tion, ¢ = a — p — Wl/, and substitution in the producers’ profit function
yields:
6Ws = max {(p— ez)(a—p = W) + Wyla—p - W)}k (13)

From the maximization of the right-hand side we obtain the same optimal
strategy as in the Nash equilibrium, p* = p"V = %(a—l—cz—l—W{—WQ/), where the
superscript M stands for the monopolistic equilibrium without the inefficiency
caused by the stock externality. Then by substitution of the control variables
into the Bellman equations, we get the same system of differential equations
(8) and (9) and, consequently, the same solution. Therefore, the monopolistic
equilibrium, without stock externality, is identical to the Nash equilibrium
and we can conclude that the optimal tax defined by the Nash equilibrium
is a neutral pigouvian tax in the sense that it only corrects the inefficiency
caused by the stock externality and leaves the cartel with its monopolistic
profits.[]

Another possible solution for the game, that we will develop extensively
in the next section, can be calculated applying the feedback Stackelberg
equilibrium concept. This kind of equilibrium is computed substituting the
reaction function of the follower into the Bellman equation of the leader, and
then maximizing the right-hand side of the Bellman equation to obtain the
optimal strategy. If we now assume that the resource cartel acts as the leader
of the game, it is easy to derive the following result:

10



Proposition 2 The feedback Stackelberg equilibrium, when the resource car-
tel acts as leader, is identical to the Markov-perfect Nash equilibrium.

Proof. The proof is quite immediate. By substitution of the reaction
function of the governments into the Bellman equation of the cartel we get
(13) and then by maximization p® = pV = %(a + cz + Wl/ — WQ/), where
the superscript S stands for the feedback Stackelberg equilibrium, so that
by substitution of control variables into the Bellman equations we have the
same system of differential equations (8) and (9) and, consequently, the same
solution as for the Markov-perfect Nash equilibrium.]

The reason explaining this result is pretty obvious. As the reaction func-
tion of the governments is independent of the producer price, the cartel can-
not achieve any profit from its strategic advantage. This also explains why the
feedback Stackelberg equilibrium computed by Tahvonen in his 1996 paper
presents the same kind of properties as the Markov-perfect Nash equilibrium
solved by Wirl and Dockner (1995), and shares some of the results we find
in this section!!.

The solution to the differential equation system (8) and (9) allows us to

calculate the linear Markov-perfect Nash equilibrium strategies:

Proposition 3 Let

0, N <z
¢ (z) = (14)
sla+y™ —(c—a2V)z],  2<28
where
1 4 16 52 1/
No—= Z{02%+4=6—|=(c6+—=+2d 15
* 2{ ¢ty s\t 3 T ’ (15)
3a(c —x)
- <0 N>0 and c— 2" > 0. 16
Y B 13c_ay ety e (16)
and
2N = (20— 2N)exp {-1/2(c — ™)t} + 2L, (17)
where 5
N a
= . 1
Foo co +2d ( 8>

See Tahvonen (1996, p.7) and page 16 of this paper for a comparison between our
findings and the ones derived by Wirl and Dockner (1995) and Tahvonen (1996).

11



Then g™ (z) constitutes a global asymptotically stable Markov-perfect Nash
equilibrium (MPNE) for the infinite horizon differential game under consid-
eration, where zY is the cumulative emission long-run equilibrium and z(t)
s the optimal dynamics of the state variable.

Proof. See Appendix A.

As we have just seen in Appendix A, Prop. 3 permits us to calculate
the optimal dynamics of the rate of extraction, the producer price, the tax
and the consumer price and the discounted present value of welfare for the
two players, providing a complete analytical characterization of the solution
of the game. The long-run equilibrium value for cumulative emissions has
been computed as a particular solution of the differential equation that de-
fines the dynamic restriction of the problem. However, this value can be
derived directly using more straightforward economic arguments. The pro-
ducers exploit the resource until the value function is zero. This implies
from (5) that p — cz = —W,. On the other hand, the first order condi-
tion which gives the reaction function of the producers can also be written as
p—cz—(a—p—1) = —WQ/, so it follows immediately that a —p—1 = ¢, =0

and a — p = —Wl/, using the reaction function of the governments. With
¢oo = 0 the consumers’ value function is W, = —dz2% and —Wl/ = 2dz,. /6

and by equalization we get p = a — (2dz,/6). Finally, if we assume that
extraction of the resource continues until the marginal profit is zero we get
p = ¢z, and then we obtain z,, = ad/(cd+ 2d). This means that the exploita-
tion of the resource must end for a zero marginal profit and value function.

The solution includes the pay-offs of the players, which are given by the
value function for the initial value of the state variable, zy. For the consumers,

we have
1
W (20) = 2ald + B0 + (19
where
141
ol = 5 lz(c —zV)? — Qd] : (20)
N a(c— )
— 21
& 46 + 3(c — zN)’ (21)
1
mo= glaty™) (22)
For the producers, we have:
1
W3 (20) = 505 2 + B3 20 + 113, (23)

12



where

of = (e (24)
B 2a(c — z)

gy = 46+ 3(c— 2N’ (25)

py = %(aerN)Q- (26)

From these expressions it is evident that:

Corollary 1 If the initial cumulative emissions are zero, the discounted
present values of the netl consumers’ welfare and profils are positive and equal

to (22) and (26).

Proof. Straight from (19) and (23). If we make zp = 0 in the value
functions we have W1 (0) = 5= (a + y™)? and Wy = & (a+¢")20

However, we cannot extrapolate this result for zg in the interval (0, z2)
because, as we have shown above, the value function for the consumers is
strictly negative for zY. This means that the extraction of the resource will
be profitable only if the initial value for the cumulative extractions is not
very high. In particular, the exploitation of the resource will take place if
the initial value is in the interval [0, Z], where Z is defined by the positive
root of the equation Wi(z) = 0. For the producers, the extraction gives a
positive pay-off provided that the initial value of the state variable is in the
interval [0, zY). However, as long as the consumers only demand a positive
quantity of the resource when the cumulative emissions are below the upper
bound, Z, the exploitation of the resource will occur only when the initial
value of cumulative emissions is below this critical value. From now on, we
will assume that zg = 0. This simplifies the analysis enormously and helps us
to reduce the length of the paper. Nevertheless, we want to point out that
the results obtained in the rest of the paper can be generalized for zg in the
interval (0, z).12

Finally, we compute the dynamics of the rate of extraction, the producer
price, the emission tax and the consumer price. To get the temporal paths
of these variables we substitute Wl/ and WQ/ in the linear strategies for q,
p, Y and 7 by the coefficients of the value functions we have calculated in
Appendix A, and then we rearrange the terms and eliminate z, using (62):

¢ = 1/2(a+y")exp{—1/2(c — 2V)t}, (27)

12The generalization of the results for 29 € (0, 2) is available from the authors.

13



N acd 1

PV g T slet ot —ed)anexp{=1/2(c =2}, (28)
2ad

PN = S i 57 + ol 2N exp{—1/2(c — 2V)t}, (29)

™ = a—1/2(a+y")exp{—1/2(c — z™)t}. (30)

We can now summarize the dynamics of the variables and the long-run equi-
librium of the game as follows:

Proposition 4 Along the equilibrium path the rate of extraction decreases
while the consumer price increases. The producer price is increasing (de-
creasing) if ¢ + off — alf is positive (negative) and the emission tax is in-
creasing (decreasing) if o is negative (positive). Moreover, the market equi-
Librium approaches a long-run equilibrium characterized by: ¢ =0, T = a,

_ _ach _ _%ad_
Poo = o5yaa @nd Yoo = 555

If we focus on the tax dynamics, we have just seen that this depends on
the sign of coefficient o, which is given by (20). This expression allows us
to study the relationship between this coefficient and the damage parameter,
d, and hence the relationship between the pollution damage and the optimal
temporal path of the tax. We know that o is positive when d = 0, see (20).
Now, using (15) it is easy to establish that ol is decreasing with respect to
d and that there exists a positive value, that we name as dg , for which the
coefficient of the value function Wj is zero. Thus, we get that when d is lower
than dg the emission tax is decreasing, and when d is higher than dg it is
increasing. Or, in other words, if the pollution damage is high with respect
to extraction costs the optimal tax would have to be increasing.

The interpretation of this result is quite intuitive if one realizes that the
differential game under consideration integrates characteristics of two models
with different properties. Making ¢ = 0 we have Wirl and Dockner "s (1995)
model, and for d = 0 we have a version of Karp’s (1984) model where 1
must be interpreted as an import tariff and the issue addressed is whether it is
advantageous for the importing countries to fix a tariff on the resource. In the
first case, we can check that ="V and af’ are negative for any positive value of
parameter d and that the tax is always increasing'®. For ¢ = 0, (29) is written
as Y = a + oV 2N exp{xNt/2} and then d¢y™ /dt > 0. This means that if
there are no depletion effects, the optimal tax for the importing countries
must rise. In the second case, it is evident that ol is positive and the tax
is decreasing. For d = 0,(29) is written as " = o 2N exp{—1/2(c — 2V)t}

B3In fact, the tax is also increasing when the extraction costs are quadratic but inde-
pendent of the cumulative extractions, as has been shown by Tahvonen (1996).
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and then dd)N/dt < 0, since the sign of ¢ — %V does not change't. We
obtain, in this case, that, when the environmental damage is zero and the
depletion effects are positive, the optimal policy for the importing countries
is a decreasing import tariff. Thus, we have two trends of opposite sign acting
in our game, and we find that when the pollution damage is high with respect
to extraction costs, the increasing trend dominates, and the tax is increasing.
However, if on the contrary the pollution damage is low, the decreasing trend
dominates and the tax is decreasing.

If we focus now on the temporal path of the producer price we get the
same kind of results. The dynamics of the variable depends on the sign of
the following expression:

1 2d
N N N2
cta) —ay =c— c—x" )" — —. 31
It is easy to show that for d equal to zero this expression is positive. As

c+al —alf can be written as ¢ — z¥ 4+ 2al¥ | we can use this last expression

for determining the sign of the former. For d = 0 we have found that o

is positive; then ¢ + o — o is positive if ¢ — 2" is positive for d = 0. To

N

calculate ¢ — " we use (15), yielding:

1( 4 16 52\ 1"
—aN =S5 |2 es+ 2 .
c—x 2{ 3+[3<c +3>]

N is negative or zero, the following must be satisfied:

1 9 1/2
—6 cd + 6— < éé.
3 3 3

Taking the square of this inequality we get 16/3(c6) < 0, which is a contra-
N

If we suppose that ¢ —x

diction. As a result we have to accept that ¢ — 2V is positive and conclude
that ¢ + o — aff is positive as well. Now, applying calculus to (31) and
using (15) we can establish that ¢ + o — af’ is decreasing with respect to
d and that there exists a positive value, that we represent by dév , for which
the producer price is constant. Thus, we get that when d is lower that dév

the price is increasing, whereas it is decreasing if d is higher than dév . Or, in
other words, if the pollution damage is high with respect to extraction costs
the optimal producer price must be decreasing. This result is also justified
by the two opposite trends we have found in our model. For ¢ = 0 we know
that the producer price is decreasing, but for d = 0 it is increasing. Conse-
quently, when these two parameters are positive we can obtain both types

14This is shown in the next paragraph.
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of dynamics depending on the values of the parameters. On the other hand,
the compatibility between a decreasing quantity and price can be explained
by resorting to the reaction function (7). According to this function the pro-
ducer price and the tax are strategic substitutes since the tax reduces the
marginal revenue of the cartel. Moreover, the reaction function establishes
that the price increases, ceteris paribus, with the complete marginal cost
of the resource, defined by the marginal extraction cost plus the user cost,
cz— WQ/ Then as the tax increases and the complete marginal cost decreases
along the equilibrium path, when the pollution damage is high enough, we
find that the dynamics of the producer price have to be decreasing. Obvi-
ously, as the extraction rate is decreasing, the negative effect of an increase of
the tax on the quantity must be higher than the positive effect of a reduction
of the complete marginal cost on the extraction rate.

Finally, we can describe the different temporal paths that the tax and
producer price can follow, depending on the environmental damage. First,
we define the existing relationship between dg and dév Asc+af — ol is

equal to ¢ — 2V + 2al¥, we get that when d :dg, c+al¥ —alf =c—al,
which is positive for any positive value of d, as is established in (16). Thus,

¢+ o — alf is zero for a higher value than d/, and then we can conclude

that QJJ is lower than dév . Now, we are able to present the different temporal
trajectories depending on the value of parameter d. Given ¢ and 6, if d is
lower than dg the price is increasing and the tax is decreasing; if d is in
the interval (dg ,dév ) the price and tax are increasing; and, finally, if d is
higher than dév the price is decreasing but the tax is increasing. This last
relationship can also be presented as follows:

Corollary 2 If an increase in cumulative emissions has an effect on marginal
damage higher than QQ]]DV , the optimal producer price is decreasing whereas the
optimal tax is increasing.

Notice that the effect of an increase in cumulative emissions on marginal
damage is given by 92D /8z? which is equal to 2d, so that it is sufficient with
92D /02? higher than QQ]]DV to have an increasing tax with a decreasing price.

This result already appears in Wirl and Dockner (1995) and Tahvonen’s
(1996) papers, but as long as they do not take into account the depletion
effects on the extraction of the resource, the pollution tax is increasing and
the producer price is decreasing for all d. In this paper we complete their
analysis showing that the tax can be decreasing and the price increasing if
the pollution damage is not very high, or that the tax and producer price
can both be increasing.
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4 A feedback Stackelberg equilibrium

In this section we turn to considering the resource market as a Stackelberg
game where the governments of the importing countries act as the leader of
the game. In this way, we make a second extension of the differential game
designed by Wirl and Dockner (1995) to analyze the long-term bilateral in-
terdependence between a resource exporting cartel and a coalition of resource
importing country governments. We are now interested in studying how the
solution of the game changes when the coalition of importing countries has
a strategic advantage.

To study this case we assume that we have a repeated two stage game
where the leader moves first. To find the leader “s optimal policy we proceed
by backward induction substituting the reaction function of the follower in
the Bellman equation of the leader, and computing the optimal strategy by
maximization of the right-hand side of this equation. This procedure selects
only the time-consistent strategies. The resulting outcome is a feedback
Stackelberg solution which is a Markov-perfect equilibrium.

The substitution of the reaction function (7) in Bellman equation (4)
yields:

1 ! !
oW, = max{Z(a+1/)—cz+W2)(a—1/)—cz+W2)

{¥}
1 ! !
—I—E(a — 1 —cz+ W,y W,
1 '
—g(a—d)—cz—l—WQ)Q—sz}. (32)

Maximizing the r.h.s. we obtain the optimal policy or strategy for the tax,
and using again the reaction function of the resource cartel the optimal policy
for the producer price:

1 ! !

VP o= Sle—ez =2 + W), (33)
1 ! !

P’ = g(a + 2cz + W, — 2W,,). (34)

By substitution of the optimal tax into the Bellman equation of the im-
porting country governments (32) and of the tax and producer price into
the Bellman equation of the resource cartel (5) we eliminate the maximiza-
tion and obtain, after some manipulations, the following pair of nonlinear
differential equations:

1 ! !
SWy = g(a —cz + W, +W,)? —d2?, (35)
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1 ! !
Wy = §(a —cz+ W, +W,)2% (36)

Notice, that again both value functions depend on Wl/ + WQ/ and so do the
consumer price and the rate of extraction:

1 ! !

= §[2a +ez— (W + W), (37)
1 ! !

¢ = g(a—cz—l—Wl—l—WQ). (38)

The solution to the differential equation system we have just defined allows
us to obtain the linear feedback Stackelberg equilibrium strategies:

Proposition 5 Let

0, 25 <z
¢°(2) = 3)
Hoty'—(e—a®)) 2<%
where 1/2
1
xS=§{2c+§5— E <4c5+§52+8d>] } (40)
5a(c — %)
S _ _ o de—x° 41
y 96+5(c—a¢5)’a+y >0and c—x” > 0, (41)
and
2* = (a0 — #5) exp {~1/3(c — a1} + 25, (42)
where 5
g a
pu— . 4
oo cd + 2d ( 3>

Then q°(z) constitutes a global asymptotically stable feedback Stackelberg
equilibrium (FSE) for the infinite differential game under consideration, where

25 is the cumulative emissions long-run equilibrium.

Proof. The proof follows step by step the one of Prop. 3. For this reason
we omit it.

This proposition establishes that the long-run equilibrium for the cumu-
lative emissions is the same as in the MPNE of the game. In fact, it is easy to
check that the long-run equilibrium values are the same for all the variables.
The explanation of this result is pretty obvious, if one remembers how the
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cumulative emission long-run equilibrium value has been derived in Section
3 from the Bellman equations and the first order conditions associated with
these equations. The point is that the way of solving the game does not
change the conditions that define the long-run equilibrium of the game. To
obtain z,, in Section 3 we have used the Bellman equation and the reaction
function of the producers and the Bellman equation of the governments. Now,
as we use the same reaction function of the producers to solve the feedback
Stackelberg equilibrium, we derive the long-run equilibrium resorting to the
same equations and the same conditions: the producers exploit the resource
until the value function and the marginal profit are zero, and, consequently,
we get the same value and the same long-run equilibrium. This does not
mean that the game has an identical solution in both cases, since the way of
solving the game affects the approach paths to the long-run equilibrium.

The solution includes, as for the MPNE, the pay-offs for the players, which
are given for the value function for the initial value of the state variable,
20 = 0,

WH0) = 4= lat ) (44)
WHO0) = 5 = ola by (15)

We find again that if the initial cumulative emissions are zero, the discounted
present values of the net consumers’ welfare and profits are positive.

Following the same procedure than we used to compute the MPNE, we
can derive the dynamics of the rate of extraction, the producer price, the
emission tax and the consumer price.

¢° = 1/3(a+y”)exp{~1/3(c - 2")t}, (46)
P = (e af) +ad)ewep(~1/3e 2}, (47
S = C;ide + %(c + 208 — a5) 200 exp{—1/3(c — )t} (48)
7 = a—1/3(a+y°)exp{—1/3(c — 2°)t}. (49)

We can now summarize the dynamics of the variables and the long-run equi-
librium of the game as follows:

Proposition 6 Along the equilibrium path the rate of extraction decreases
while the consumer price increases. The producer price is increasing (decreas-
ing) if 2(c—aj ) +af is positive (negative), and the emission tax is increasing
(decreasing) if c+ 2§ —af is negative (positive). Moreover, the market equi-
Librium approaches a long-run equilibrium characterized by: ¢ =0, T = a,

__acd _ 2ad
Poo = oyaa @l Yoo = 555

19



By comparison of the two solutions we can check that the determinants
of the tax and producer price dynamics and the justification of the results
obtained are the same as in the MPNE. For the FSE, there are only changes
in the critical value of the parameter d, which determines whether the tax
and producer price are increasing or decreasing.

In order to not be repetitive we only present here the expressions which
explain the dynamics of the tax and producer price:

4 4d

c+2a5 —ay = c—l—%(c—aﬁS)Q—?, (50)
1 2d

20c—ajy) +a) = 26—%<C—$S)2—?. (51)

From these expressions, using (40), we obtain the critical values di and dg ,
defined as the values for which the tax and the producer price are constant,
i.e. the values for which ¢ + 2a5 — of and 2(c — a5) + of are zero.

Finally, we can describe the different temporal paths that the tax and
producer price can follow, depending on the pollution damage. First, we
obtain the relationship existing between di and dg . As ¢+ 2af — af is equal
to c—z% +3a7, and 2(c — a3) + af is equal to 2(c — %) + 3, we know that
when d = di, c—x% +3af = 0 and, consequently, 2(c — ) + 3a5 is positive,
so that this last expression is zero for a value higher than dJ, and we can
conclude that di is lower than dg . Established the comparison between di
and di;we can characterize the temporal trajectories of the tax and producer
price, depending on the value of parameter d. Given ¢ and 6, if d is lower
than Qi the price is increasing and the tax is decreasing, if d is in the interval
(di ,dg ) the price and tax are increasing and, finally, if d is higher than dg
the price is decreasing and the tax is increasing. This last relationship can
also be presented as follows:

Corollary 3 If an increase in cumulative emissions has an effect on marginal
damage higher than 2@5 , the optimal producer price is decreasing whereas the
optimal tax is increasing.

Remember that the effect of an increase in cumulative emissions on marginal
damage is given by 8D /9z% which is equal to 2d, and therefore it is a suf-
ficient condition that 82D /9z% to be higher than 2@5 to have an increasing

tax with a decreasing price.

5 An advantageous pigouvian tax

In this section we develop the comparison between the two equilibria com-
puted in the previous sections. First, we focus on the players’ pay-offs. From
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this comparison we obtain that when the governments can fix the tax be-
fore the producers fix the price, the tax allows them to increase the welfare
of the consumers. In this sense, we say that the tax is advantageous for
the consumers of resource importing countries, since the strategic pigouvian
taxation of COs emissions supposes a transfer from the cartel to the con-
sumers. However, if we look at the aggregate welfare, we find that there is a
deadweight welfare loss in terms of discounted present value of Marshallian
aggregate surplus. Hence, although the tax is advantageous for the import-
ing countries when the governments move first, the efficiency of the market
decreases. The following proposition summarizes these results:

Proposition 7 When the importing country governments have a strategic
advantage the consumers’ welfare increases, and the producers’ profits and
aggregate welfare decrease with respect to Markov-perfect Nash equilibrium.

Proof. See Appendix B.

In this framework, the resource cartel could be interested in negotiating
with the coalition of importing country governments a collateral payment in
order to reduce the negative effect of the governments’ strategic advantage
on its profits. As long as the aggregate pay-offs are higher for the MPNE,
the resource cartel could transfer to the importing countries a part of its
profits in exchange for a Nash taxing strategy. Ewven in such a situation the
cartel could still get a pay-off higher than in the FSE. This opens up the
analysis of the strategic interaction between a resource cartel and a coalition
of resource importing country governments to the application of cooperative
game theory.

In the second place, we compare the optimal strategies and the initial
values of the tax and producer price. We can summarize the findings as
follows:

Proposition 8 The FSE is more conservative than the MPNE, i.e., given
any resource stock level, the Nash extraction rate exceeds the Stackelberg ex-
traction rate. Moreover, the initial value for the tax in the MPNE is lower
than in the FSFE, whereas this relationship reverses for the producer price.

Proof. See Appendix C.

Notice that these results are independent of the parameter values. The
strategic advantage of the importing country governments translates into a
higher initial value for the emission tax and a lower value for the producer
price, thus causing a transfer of rents from producers to consumers. In this
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framework, the application of a tax in the importing countries is advanta-
geous for the consumers, who pay a lower producer price. Observe that for
the consumers’ welfare this is the relevant variable, as can be seen in expres-
sion (1), since we have assumed that the government completely reimburses
through an income transfer the tax collected from the consumers'®.

It can be also established that if the environmental damage is low enough,
the MPNE tax is always lower than the FSE tax. However, if the contrary
occurs, i.e., if the environmental damage is not low enough, the emission
tax for the MPNE is first below but later above the emission tax for the
FSE. Something similar happens to the producer price. If the environmental
damage is low enough, the MPNE producer price is always higher than the
FSE producer price. If this is not the case the temporal paths intersect
once. Nevertheless, even in this case, the net effect on consumers’ welfare is
positive, as we have already shown in Prop. 7. This is better understood if
it is remembered that the discount effect gives greater weight to the pay-offs
closer to the present. And to conclude, we compare the approach paths in
more detail:

Proposition 9 The cumulative extractions for the MPNE are higher than
for the FSE for allt € (0, 00). However, this variable converges asymptotically
to the same value in both cases. The rate of extraction for the MPNE is first
above but later below the FSE rate of extraction. This relationship reverses for
the consumer price. Moreover, if the environmental damage is high enough,
the emission tax for the MPNE is first below but later above the FSE emission
tax. This relationship reverses for the producer price.

Proof. See Appendix D.

6 Conclusions

We have examined the strategic pigouvian taxation of COs emissions in the
framework of a global warming differential game with depletion effects be-
tween a resource exporting cartel and a coalition of resource importing coun-
try governments. We have determined the intertemporal properties of the
carbon tax showing that these depend on the importance of environmental
damage in comparison with depletion effects. Nevertheless, we have found
that if environmental damage is high enough the tax should be increasing

15See Wirl and Dockner (1995) for a study of how the Leviathan motive of the govern-
ments affects the MPNE of a global warming differential game without extraction costs.
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and the producer price decreasing. Besides, we have shown that if the govern-
ments do not have any strategic advantage, the pigouvian tax only corrects
the market inefficiency caused by the stock externality and that, in that case,
the strategic taxation of emissions does not affect the monopolistic power of
the cartel. If the governments act as the leader of the game, the consumers
get a higher welfare, but, the market efficiency decreases with respect to the
Markov-perfect Nash equilibrium. In this case the tax is advantageous for the
importing countries but it causes a welfare loss in terms of the Marshallian
aggregate surplus present value in comparison with the Markov-perfect Nash
equilibrium. Moreover, although the FSFE strategy is more conservationist,
its effect is only transient because the long-run equilibrium is the same, since
the market approaches the same stock of cumulative emissions in both cases.
The result is that neither from an environmental point of view nor from an
economic perspective is it advantageous that a country or region moves first.
However, if this does occur, we have shown that the resource importing coun-
try can use an emission tax to increase the welfare that consumers obtain
from consumption of the resource.

The scope of our results is limited by the specification of the game and the
irreversibility assumption for the emissions. However, this approach seems to
us, for the moment, inevitable to make the analysis tractable!®. Obviously,
these limitations point out directions for additional research, although in the
framework of the model developed in this paper some additional extensions
could be considered. We have supposed that the stock externality is largely
irrelevant to the welfare of exporting countries. However, this reduces the
global character of the greenhouse effect. For this reason it would be interest-
ing to introduce into the analysis environmental damage along with domestic
energy consumption in the exporting countries, and to study the issue of the
unilateral taxation of COy emissions. Another extension could be to increase
the number of the importing countries to analyze the issue of cooperation
among the importing countries to control the global warming problem. Fi-
nally, cooperative game theory could be applied when the importing country
governments have some strategic advantage, since in this case cooperation
could increase the pay-offs of the two players.

16Notice that the irreversibility of emissions allows us to work with a unique state
variable. See Tahvonen (1996), Section 4 to get an idea of the difficulties that appear
when two state variables are considered.
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A Derivation of linear Markov-perfect Nash
equilibrium strategies

The linear strategies can be determined by proposing quadratic solutions for
the value functions:

1

Wi(z) = s’ + iz +ul,
1

Wy(z) = §aévz2+ﬂévz+u]2\f.

Substituting the value functions and their first derivatives into the Bellman
equations and equating coefficients yields the following system of equations'”

gozl = %(c —ay —ay)? —d, (52)
5 = ~lat Bt e o - a) (53)
opy = %(a + By + 85)7, (54)
gOAQ = i(c — o — ap)?, (55)
8 = —3lat i+ f)(e— o - an) (56)
by = 7oty ) (57)

Even though this system of equations presents a recursive structure its solu-
tion is quite long and complex. However, a simple transformation enormously
simplifies its solution. We define x = oy + a9 and y = 3, + 3, and add equa-
tions (52) and (55) and equations (53) and (56), obtaining a simplified system
of equations in the new variables:

br = z(c—x)Q—Qd, (58)
by = —2(a+y)c—a) (59)

In the light of these two equations and the differential equations (8) and
(9), it appears that the solution corresponds to an aggregate value function
V=W4+W,= %a:zQ + yz + w whose coefficients must satisfy equation:
8V =3/8(a—cz+ V/)2 — dz%. Equation (58) has two real roots. We choose

1"The superscript N will be omitted when no confusion arises.
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the one which satisfies the stability condition: dz/dz < 0. To apply this
condition, we write the rate of extraction (11) in terms of coeflicients x and
y, resulting in ¢ = 1/2[a + y — (¢ — x)z], and then as Z = ¢ we have that
di/dz = —1/2(c — x) < 0, which requires that ¢ — x > 0. Expression (15)
is the root that satisfies this condition. Given the value of z, (59) yields
the value of the coefficient y; see (16). Knowledge of these two coefficients
is sufficient for the computation of the rate of extraction, as can be seen
above, and the consumer price m. To obtain the producer price and the tax
strategies, we need to solve (52), (53), (55) and (56), using (58) and (59), to
obtain oy, B, as and 3,.

Finally, we solve the first order differential equation 2 =1/2[a +y — (¢ —
x)z] to obtain the long-run cumulative extraction equilibrium. The solution
to this equation is:

a—+vy
c—2x’

z=Cexp{—1/2(c — z)t} +

(60)

where (a+y)/(c—z) is the particular solution 2 = 0 and C' is an integration
constant. Then, as c—x is positive, the long-run equilibrium is the particular
solution. If we substitute a 4+ ¥ in the long-run equilibrium value we get:

4aé
4eb — 46z + 3(c — x)?’

oo =

which can be rewritten as:

B 4aé B ad
"o T Ues+8d b+ 2d

(61)

taking into account that —48x + 3(c — x)? = 8d, according to (58). Then
using the initial condition, zy, to eliminate the integration constant we get
the optimal dynamics of the state variable of the game:

2= (20 — 200) exp{—1/2(c — 2)t} + 200, (62)
and by substitution in the linear strategies the dynamics of the rest of the
variables of the model, achieving a complete analytical characterization of
the Markov-perfect Nash equilibrium.

B Proof of Proposition 7

First, we compare the players’ pay-offs. For the consumers the effect of
the importing country governments’ strategic advantage on the discounted
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present value they get from consumption of the resource, is given by the
difference between W (0) and W;¥(0). If we look at these two expressions, it
is easy to check that the relationship existing between the pay-offs depends on
the relationship between y¥ and y°. To establish the sign of this relationship,
let’s suppose that ¥ < y. This implies that:

__ba(e—2%) - _ 3a(c — z)
964+ 5(c—2%) = 46+ 3(c—aN)

Multiplying the numerators by the denominators and the resulting expression
by -1, we obtain:

27(c — zV) < 20(c — 2%), (63)
where
1{ 4. T[16 & 2
) 52 1/2
et = 5{‘2‘”[% (s esa)] o

Substituting these two expressions in (63) we get:

16 52 12 9 952 1/2
27 |2 (6 + < +2d <20 |2 (4es + 2 484
7[3<c—|—3+ >] _0l5<c—|—5+8>] ,

and raising to square and simplifying we get a contradiction: 1008cd +
2016d < 0, and we must admit that yV < 3% and hence that W}V (0) <
W5 (0). As one would expect, the strategic advantage of importing country
governments has a positive effect on the consumers’ welfare.

For the exporting countries the pay-off difference is given by the difference
between WV (0) and Wy (0). We have just obtained that y™ < ¢°, but as
1/96 < 1/46 we cannot directly establish the comparison. Let’s suppose that
W (0) < Wy (0). This inequality implies that:

3a+y™) < 26a+y”),

where
4aé
N
ety = 46+ 3(c — zN)’ (66)
O9ab
S _
“ary = 96 4+ 5(c — %)’ (67)
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Multiplying the numerators by the denominators and rearranging terms we
obtain:

66 4 10(c — 2°) < 9(c — z™), (68)
and substituting (64) and (65) yields:

62 1/2
o102 (15 2 1)

16 82 12
< — ecb+—+2d .
< 9[3 <c + 3 + >]

Finally, raising to square we get:

, 9 96” 12
21687 4 288c + 5764 + 1206 | = (4e6 +—+8d )| <0,

which is a contradiction, and we conclude that the producers obtain a lower
pay-off when the importing country governments move first.

To complete the analysis we compute the variation in the aggregate pay-
offs, which is given by the difference between:

VE(0) = W(0) 4 W (0) = (o + oYY, (69)
and 5
V() = WE(0) + WE(0) = —(a +5°)" (70)

Let’s suppose that V¥ (0) < V5(0); then
27(a+y")" < 20(a+y°)",
substituting (66) and (67) for a + ¥ and a + y° we obtain:
4(96 +5(c— a:s))2 <15 (46 + 3(c — a:N))Q.
Developing the squares yields:

8467 4 3606(c — 2°) 4 100(c — z°)?
< 3608(c — 2™) 4+ 135(c — 2™)2.
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Now substituting (64) and (65) for ¢ — 2" and ¢ — z° we get:

9 1/2
426 4+ 90 l% <4C(5 + % + 8d>1

16 8§ 12
< 902 (es+ < 424 .

Finally, raising to square and simplifying terms, we obtain the following
contradiction:

0 > 1512068 + 1360882 + 30240d

9 962 12
175606 lg <4c5 et 8d>1 .

The sign of this inequality leads us to conclude that the aggregate pay-offs
decrease when the governments enjoy a strategic advantage'®.

C Proof of Proposition 8

In this proof we compare the optimal linear strategies and the initial values
of the tax and the producer price. If we take into account that the strategies
are linear and defines the same rate of extraction for the same long-run
equilibrium value of the cumulative emissions, it is sufficient to know the
relative position of the independent terms to make the comparison. From the
comparison between the producer pay-offs, we know that W, (0) = 1/96(a +
y*)? < W (0) = 1/46(a+ yV)?, which implies that 1/3(a +3°) < 1/2(a +
y"™), and that the independent term for the MPNE strategy is higher than
the one for the FSE strategy. Thus, given any resource stock level, the Nash
extraction rate exceeds the Stackelberg extraction rate. Furthermore, taking
into account the relation between the independent terms, the comparison
between the slope of the strategies is immediate. As long as ¢& = ¢5 and

2N =25 = 2, we have that

1 1 1 1

E(a—l—yN) — §<C — M)z = g(a—l—ys) — §<C — %) 200,
that can be rewritten as

1 1 1 1

Sla+y™) - g(a+ys) = |gle—a") - e 2%)| Zoo-

¥ These results can also be obtained for zg # 0, provided the exploitation of the resource
is profitable. However, as we indicated in Section 3, we will not develop here the complete
analysis of this issue. Details are available from the authors.
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Then, as the difference in the L.h.s. is positive, we have that
1/3(c —2%) < 1/2(c — 2™).

Now, we focus on the comparison between the initial values of the tax and
producer price. For t = 0, we know from (29) and (48) that ¢™ (0) — 4" (0) =
[ad —1/3(c+ 205 — a3)] 200, where af — 1/3(c+ 205 — ) = o —1/3(c—
aof —a5 +3af) = ol —af —1/3(c—z°) and as ¢ — ¥ is positive, the sign of
the difference between the initial values of the tax depends on the sign of the

difference between the parameters:ald — of, where o} is given by (20) and

af is obtained in the same way as a} and is equal to 1/8[1/3(c — z%)? — 2d).
So we can write:

1 1
of —af = orle— ") — or(e =)

where we can observe that the sign of this difference depends on the rela-
tionship between zV and z°. Let’s suppose that "V < z°. Using (15) from
Prop. 3 and (40) from Prop. 5 yields:

9 9 V2716 8§ 12
Z4e6+ 262+ 8d < —|=(ec6+—1+2
3 (o getes)| <[P (g em)]

and raising to square, we get:
1 16 8 i
562+2c6+4d§6[§<c6+§+2d>1 ,

and raising to square again we have the following contradiction: (c§)? +
4edS + 4d < 0. This contradiction allows us to establish that ¥ < 2V which
implies that ¢ —z" < ¢— 2% and that o —af < 0, with the final result that
1/}N(0) < 1/)5(0). For the comparison of the initial producer price we obtain
that pV(0) — p(0) = [1/3(2(c — a5) + af) — 1/2(c + off — a))] 20, using
(28) and (47) for t = 0, where 1/3(2(c — af) + af) —1/2(c+ ol — o) =
of —al +2/3(c—2%)—1/2(c— ") is positive, since we have just concluded
that ¢ — 2" is less than ¢ — 2% and ol is less than of. Thus, we can conclude
that p°(0) < p™(0).

D Proof of Proposition 9

We begin comparing the temporal paths of cumulative extractions. For the
MPNE the dynamics of this variable is given by (62) that, for zp = 0, can
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be written as 2 = 2 (1 —exp{—1/2(c — a:N)t}> . For the FSE, following
the same steps as we have presented in Appendix A for the computation of
the MPNE, we get 2° = 2., (1 —exp{—1/3(c — a:s)t}> , so that the difference

between the temporal paths is:
2N — 25 = 2 [exp{—1/3(c — %)t} — exp{—1/2(c — z™)t}],

which is positive for all ¢ € (0,00) since 1/3(c — %) < 1/2(c — zV), as we
have shown in the proof of Prop. 8. For the comparison of the extraction
rate temporal paths we use (27) and (46). In this case the difference between
the two temporal paths is given by the following expression:

¢ —q° = 1/2(a+y")exp{-1/2(c - 2™t}
—1/3(a +y°) exp{—1/3{c — z°)t}.

For t = 0 we know that the difference ¢" (0) — ¢°(0) is positive, since 1/2(a +
y™) > 1/3(a+y°), as we established in the comparison of the linear strategies
of the two equilibria; see also previous proof. For ¢t # 0 we can find the
number of intersection points from the equation ¢° — ¢ = 0. This equation
can be written as:

1/3(a+y®)

Tatas ™) ~ P13 =)t = 1/2(e = ™)), (1)

where the L.h.s. is a positive constant less than one and the r.h.s. is a
decreasing and convex function which takes the value one for ¢ = 0, and
tends to zero when ¢ tends to infinity. This shows us that the temporal
paths cut each other once in the interval [0, 00), and, consequently, we can
establish that for 0 < t < ¢, where t’ is the solution to equation (71), the
MPNE extraction rate is higher than the FSE extraction rate, whereas for
t' < t the relationship between the two temporal trajectories is the contrary.
If we now compare the temporal trajectories for the consumer price defined
by (30) and (49), it is evident that the relationship between the prices is the
inverse of the one we have just established for the quantities, and that the
intersection point is the same for the prices as for the quantities.

The comparison between the emission tax and producer price requires
the analysis of the five possible combinations of the different trajectories the
variables can take, according to what the values of the parameters are. How-
ever, in order to avoid an excessively long comparative analysis, we restrict
ourselves in this appendix to the case of an increasing tax and a decreasing
price, which corresponds with the case of a damage parameter above the
critical values, dg , dév , di and dg , defined in sections 3 and 4. Nevertheless,
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we present below, in a summarized form, a complete comparison for these
two variables.
We begin with the tax. Using (29) and (48) we obtain the difference

between the two equilibria for the temporal path of the tax:

N —t = 2 [o/lv exp{—1/2(c — 2™t}
—1/3(c + 207 — o3 ) exp{—1/3(c — 2°)t}] .

We have already established in Prop. 8 that 1/}N(0) < 1/)5(0). Now we study
if there exists a point of intersection of the trajectories. If this is the case,
the equation ¥ — 1/° = 0 must have a solution given by

1/3(c+ 208 — o5

N
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) = exp{1/3(c — z°)t — 1/2(c — 2™)t}. (72)

From the proof of Prop. 8 we know that o < 1/3(c + 2af — «f) and if
we assume that the two trajectories are increasing we have moreover that
o < 1/3(c + 20 — af) < 0. For this reason the Lh.s of (72) is a positive
constant less than unity, whereas the r.h.s is the same expression as appears
on the r.h.s of (71), so that equation (72) also has a unique solution and
we can conclude that the MPNE tax is first below the FSE tax but that
later this relationship reverses and the FSE tax is above the MPNE tax.
For the other possible cases, that are defined on the basis of the following
inequalities: o < 1/3(c+2af —a5) =0 (1/)N increasing and 1° constant ),
ol <0< 1/3(c+ 2af — af) (1/)N increasing and ° decreasing), af =
0 < 1/3(c+ 20 — af) (1/)N constant and ° decreasing), and 0 < af <
1/3(c + 205 — o) (1/)N and ¢° decreasing), it is easy to show that the FSE
tax is higher than the MPNE tax for all ¢ € [0,00). In all these cases the
strategic advantage of the importing country governments implies that the
emission tax for the FSE would always be above the tax for the MNPE!®,

Finally, we compare the producer price. From (28) and (47) we find that
the difference between the producer prices is:

PV —p% = 2 [-1/3(2(c — 205) + of) exp{—1/3(c — 2%t}
—1/2(c+ of — o) exp{—1/2(c — 2™)t}] .
We have already established in Prop. & that p(0) < p"(0). Now we define

the equation for ¢, p" — p® = 0, and show that this equation has an unique
intersection point, defined by the solution to:

1/3(2(c — a3) + af)
2e ol —af)

= exp{1/3(c — 2°)t — 1/2(c — ™)t }. (73)

9Notice also that wN cannot be decreasing if ws is increasing.
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The r.h.s. is the same as in equations (71) and (72) and has, therefore,
the same properties. Moreover, we know from the proof of Prop. & that
1/2(c + o — o) < 1/3(2(¢ — 205) + of). If we now assume that the
two temporal paths are decreasing we also have that 1/2(c + o — ofY) <
1/3(2(c—a3)+af) < 0 and, consequently, that the Lh.s is a positive constant
lower than unity, resulting in the same kind of equation as we obtained for the
rate of extraction and tax, and as in these cases we find a unique solution for
the equation. This result allows us to conclude that the FSE producer price
is initially lower than the MPNE producer price and that this relationship
persists until ¢, defined by equation (73), and from that moment changes
such that the FSE producer price is above the MPNE.

For the other possible profiles of the price trajectories, which are deter-
mined by the following inequalities: 1/2(c+al —ad) < 1/3(2(c—af)+af) =
0 (p" decreasing and p® constant), 1/2(c+af —ad) < 0 < 1/3(2(c—a3)+a7)
(p" decreasing and p® increasing), 1/2(c+alf —a) =0 < 1/3(2(c—af )+af)
(p" constant and p® increasing) and 0 < 1/2(c + o — o) < 1/3(2(c —
o) +af) (both prices increasing), the FSE price is found to be less than the
MNPE price for all ¢ € [0, 00)?.
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