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30 to explain the historical risk premium. Benartzi and Thaler (1995) explain MLA by two

features, i) loss aversion and ii) mental accounting. According to loss aversion (Kahneman

and Tversky, 1979), individuals compute gains and losses from a reference point, and tend

to weigh losses more than gains. Mental accounting (Thaler, 1985) refers to the implicit

methods that individuals use to code their �nancial outcomes. Speci�cally, it refers to how

often transactions are evaluated over time, that is, whether they are evaluated as portfolios,

or individually. Benartzi and Thaler (1995) prove that MLA individuals are more willing to

take risks if they evaluate the results of their investments less frequently.

Several authors have tested MLA in the lab. Thaler et al. (1997) �nd that subjects are

loss averse and that, consistently with MLA, risk-taking behavior increases when information

is given less frequently. Gneezy and Potters (1997, GP97 hereafter) design an experimental

Investment Game where individuals face a sequence of nine independent and identical lot-

teries. Each lottery gives a probability of 1
3
to win 2.5 times the amount bet, x 2 [0;W ],

and a probability of 2
3
of losing it. The expected monetary payo¤ of the induced lottery

corresponds to 1
6
x � 0, which implies that a risk neutral individual should invest the full

endowment, W , at all times. In one treatment (�High Frequency�, HF) subjects play the

nine rounds one by one. At the beginning of each round they have to decide how much to

bet. Then, before moving to the next round, they are informed about the lottery outcome.

In the other treatment (�Low Frequency�, LF) subjects play rounds in blocks of three. They

must bet the same amount for the three lotteries in the same block. They are informed

about the lottery outcomes at the end of rounds 3, 6, and 9. GP97 �nd that, consistently

with MLA, subjects bet signi�cantly more in the LF treatment. In particular, in the LF

treatment they bet on average a 33% more than in the HF treatment.

GP97 Investment Game has become a reference in the �eld and has been replicated

by papers such as those of Haigh and List (2005, HL05), Bellemare et al. (2005), Langer

and Weber (2005) and Iturbe-Ormaetxe et al. (2014, IPT14). Figure 1 reports the bet
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Gneezy and Potters (1997) run an experiment to test the empirical content of My-
opic Loss Aversion (MLA). They �nd that the attractiveness of a risky asset depends
upon the investors�time horizon: consistently with MLA, individuals are more willing
to take risks when they evaluate their investments less frequently. This paper shows
that these experimental �ndings can be easily accommodated by the most standard
version of Expected Utility Theory, namely a CRRA speci�cation. Additionally, we use
four di¤erent datasets to estimate a CRRA model and two alternative MLA versions,
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metric exercise �nds little evidence of subjects�loss aversion, which provides empirical
ground for our theoretical claim.
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1 Introduction

Benartzi and Thaler (1995) propose Myopic Loss Aversion (MLA hereafter) as an explanation

to the so-called equity premium puzzle. This term was coined by Mehra and Prescott (1985),

when they estimate that investors should have relative risk aversion coe¢ cients in excess of
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distributions (averages by subject, normalized on a 0-100 scale) of the four datasets object

of this study, disaggregated by treatment. As Figure 1 clearly shows, all these papers con�rm

GP97 main �nding: people invest more when their so-to-speak �myopia�is corrected.

Figure 1. Bet distributions in Investment Games

The increasing popularity of MLA, together with its intuitive appeal, lies on the wide-

spread belief that the evidence of GP97-like experiments cannot be reconciled with expected

utility theory: �At the same time, subjective expected utility theory does not predict a system-

atic di¤erence in risk taking between the two treatments in our setup.�(GP97 , p. 633).1 The

starting point of this paper is a proof that the most common textbook version of expected

utility -namely, a Constant Relative Risk Aversion (CRRA) utility function- can explain the

1Along the same lines, HL05 claim: �First, our �ndings suggest that expected utility theory may not
model professional traders�behavior well�(p. 531). By contrast, Harrison and Rutström (2008) defend that,
although a CRRA speci�cation cannot explain the behavior observed by GP97, expected utility can explain
the data using other parametrizations. In particular, they use the so-called expo-power utility function from
Saha (1993) and Holt and Laury (2002).
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experimental evidence of GP97, as well as that from all its replications.

Precisely, we provide a su¢ cient condition -namely, a lower bound for the return of the

investment- that guarantees that any risk averse individual with a CRRA utility function

will be willing to take more risk in the LF treatment than in the HF treatment. Under risk

neutrality or risk loving, individuals bet all their endowment in both treatments.

The key assumption of Proposition 1 is that, consistently with standard utility theory,

subjects�monetary endowment is added to the lottery gains and losses, so that all monetary

payo¤s in the experiment are non-negative. By contrast, MLA sets the reference point at

the initial endowment, from which gains and losses are evaluated. This is the key di¤erence

between the two competing models: one which takes an ex-ante view (i.e., the endowment is

also taken into account when evaluating the lottery payo¤s), and another one which takes

an ex-post view (i.e., subjects evaluate the lottery outcomes as gains and losses with respect

to the value of the endowment).2 This di¤erence is crucial when comparing the two models,

once we have proved that a CRRA utility function plus expected utility maximization is

consistent with the experimental evidence on these investment games. All the literature

following GP97 takes for granted the ex-post view, so that the �bad outcome�in the lottery

is associated with a loss. By contrast, by the ex-ante view, loss aversion plays no role in these

experiments: since bets are constrained not to exceed their endowments, subjects cannot -

technically- �lose money�in the experiment (as in any experiment approved by any Ethics

Committee, for that matters).3 Put it di¤erently, the issue addressed in this paper is not

directly related with the empirical content of MLA per se, but is about whether investment

game experiments are the appropriate protocols to test the external validity of MLA.

To tackle this question, we rely on a structural estimation exercise, using the original

2Mas-Colell et al. (1995, page 170), when describing how expected utility works, rely on the so-called
consequentialist premise: �We assume that for any alternative, only the reduced lottery over �nal outcomes
is of relevance to the decision maker.�

3Similar considerations hold for the so-called bankruptcy game experiments, which mimic situation in
which claimants have to negotiate on how to share a �xed loss, measured as the di¤erence between the sum
of their claims and the total value of the estate (Herrero et al., 2010).
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data from the experiments of GP97, HL05 and IPT14, for a total of 249 subjects. Our

estimation approach is twofold. We �rst use our data to estimate, separately, CRRA and

MLA parameters. Two alternative versions of MLA are considered: i) a model that -by

analogy with Iturbe-Ormaetxe et al. (2011)- posits a piecewise linear value function with

two di¤erent slopes, one for the gain and one for the loss domain, respectively; ii) another

model that -by analogy with Tversky and Kahneman (1992)- posits loss aversion and just

one curvature, the same for gains and losses.

We then compare CRRA with each one of our two MLA parametrizations by estimating

binary mixture models in which: i) we evaluate the ex-ante probability that each individual

decision is generated by either competing model, CRRA or MLA, and ii) the ex-post proba-

bility -conditional on the pool i) estimations- that each individual subject behaves according

with either competing model, CRRA or MLA. Finite mixture models have become increas-

ingly popular to test the empirical content of competing behavioral theories and seem ideal

also for our empirical exercise.4

The remainder of this paper is organized as follows. Section 2 frames GP97 invest-

ment game as a standard expected utility maximization problem, assuming a CRRA utility

function and an ex-ante reference point, i.e., integrating gains and losses with the initial

endowment. As Proposition 1 shows risk averse individuals invest more in LF than in HF,

provided that the expected return of the investment is su¢ ciently high. Section 3 reports our

estimation exercise, in which we �rst estimate separately maximum-likelihood parameters

for the two competing models, CRRA and MLA, in its two alternative versions. In this case,

our estimations cannot reject the null of � = 1, i.e., absence of loss aversion, except in the

case of the piecewise linear version i) of MLA. These results are consistent with those of

Santos-Pinto et al. (2014), who also �nd no evidence of loss aversion looking at experimen-

tal data on lotteries involving both gains and losses. Like in their case, our experimental

4See Harrison and Rutström (2009) for the methodology we apply to estimate model i) and Conte et al.
( 2010) and -especially- Bruhin et al. (2010) for the methodology we apply to estimate model ii).
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evidence seems to suggest that subjects frame negative outcomes as �lesser gains�, rather

than �true losses�(p. 7). We then look at our mixture probability estimates, where we �nd

that the estimated probability of MLA (against CRRA) is signi�cantly bigger than zero, but

also signi�cantly smaller than 1/2 (roughly, 1/3, depending on the model and the dataset

being used), except in Model (ii), the one with loss aversion and just one curvature, where

the estimated mixture probability is around 50%. Section 4 discusses our results in light of

the cited literature, and its relation with the antecedents that, in our opinion, have created

the misconception that this paper aims to correct. Finally, Section 5 concludes, followed by

an Appendix containing supplementary theoretical results.

2 Theory

We begin by presenting in detail the GP97 investment game in a slightly more general

framework. Individuals receive an endowment W and are asked how much they want to

invest in a risky option. The amount invested, x � W; yields a return of (1 + �)x; � > 0;

with probability p and is lost with probability 1�p: Individuals keep the money not invested,

(W�x): The payo¤s with this lottery are, therefore, (W+�x) with probability p and (W�x)

with probability 1� p: In GP97�s experimental parametrization, � = 5
2
and p = 1

3
.

In treatment HF subjects play nine rounds one by one. In each round they receive the

endowment W and they have have to choose the amount x; 0 � x � W; they want to bet

and the amount W � x they want to keep. Then, they are informed about the realization

of the lottery. In the other treatment, LF, they play rounds in blocks of three. Again, they

have an endowment of W to bet in each round. At the beginning of round 1 they choose

how much of W to bet in rounds 1, 2, and 3. That is, the amount bet must be the same for

each one of the three rounds. At the end of round 3 they are informed about the outcome

of the three lotteries. Then, they have to decide again at the beginning of rounds 4 and

7. Since subjects are deciding how much to bet in three identical lotteries, there are four
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possible outcomes, depending on whether they win in 3, 2, 1, or 0 lotteries. Let x be the

amount bet in each one of the three lotteries within a block. Payo¤s are (3W + 3�x) with

p3, (3W + (2�� 1)x) with 3p2(1� p), (3W + (�� 2)x) with 3p(1� p)2, and (3W � 3x) with

(1� p)3.

A risk averse individual will always choose x = 0 if p � 1
1+�

(or � � 1�p
p
) since in that

case the expected value of the bet will be less or equal than W . The expected value with n

repetitions of the lottery is nW + n(p�� (1� p))x: Then, to have x > 0 we need to assume

that p > 1
1+�

or that � > 1�p
p
: With GP97�s parametrization, we have 1

3
= p > 1

1+�
� 0:286:

We now consider a subject with a standard utility function with Constant Relative Risk

Aversion (CRRA):

u(y) =
y1��

1� �; (1)

where � 6= 1: When � = 1; we take u(y) = ln(y): The case � = 0 corresponds to risk

neutrality.

As for the HF treatment, let UHF (x) denote the expected utility of the lottery induced

by an investment equal to x 2 [0;W ]:5

UHF (x) = p
(W + �x)1��

1� � + (1� p)(W � x)1��
1� � : (2)

We know that an individual with a CRRA utility function will always invest a �xed fraction

of her endowment, W: In the case of the HF treatment and assuming risk aversion (� > 0);

we can easily solve for the optimal solution. In particular, we get:

x�HF =
1� 

1 + �


W; (3)

where 
 =
�
1�p
�p

�1=�
: Here 
 < 1 as long as � > 1�p

p
: It is easy to check that, under risk-

neutrality or risk loving (� � 0); we have x�HF = W:We also check that, as � goes to in�nity,

x�HF goes to zero.

5Note that we are assuming that individuals takes each one of the nine decisions in isolation. This seems
to be the natural framework in the experiment where individuals are repeatedly asked to choose how much
of the endowment W they want to bet.
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We now turn to the LF treatment, where the associated lottery yields expected utility

ULF (x) equal to:

ULF (x) = p3
(3W + 3�x)1��

1� � + 3p2(1� p)(3W + (2�� 1)x)1��
1� � +

+3p(1� p)2 (3W + (�� 2)x)1��
1� � + (1� p)3 (3W � 3x)1��

1� � : (4)

Now x denotes the amount the individual chooses to bet in each one of the three rounds

in the block, with 0 � x � W: As in the HF case, we know that a CRRA individual will

invest a �xed fraction of W in each individual lottery. However, in this case, a closed-form

optimal solution, x�LF , cannot be found analytically. However, since ULF (x) is a strictly

concave function of x when � > 0; what we can do is to compute its �rst derivative and

evaluate it at the point x = x�HF : If
@ULF (x)
@x

���
x=x�HF

> 0 ( @ULF (x)
@x

���
x=x�HF

< 0); then x�LF > x
�
HF

( x�LF < x
�
HF ), respectively.

Proposition 1 Suppose that 0 < p < 1 and p > 1
1+�
.

(i) If � � 0; then x�LF = x�HF = W:

(ii) If � = +1; then x�LF = x�HF = 0:

(iii) If 0 < � < +1; � 6= 1; and � � 2 then 0 < x�HF < x�LF < W:

(iv) If � = 1 (i.e., u(y) = ln(y)); then 0 < x�HF < x
�
LF < W:

Proof. (i) Under risk neutrality (� = 0), both UHF (x) and ULF (x) are linear increasing

functions on x. The solution is to bet the whole endowment in both cases. Under risk loving

(� < 0); both UHF (x) and ULF (x) are strictly convex functions. We compute
@UHF (x)

@x

���
x=0

and

@ULF (x)
@x

���
x=0

and check that these two derivatives are strictly positive because of the condition

that p > 1
1+�
: This means that both UHF (x) and ULF (x) are strictly increasing functions on

the whole domain [0;W ] and, therefore, they reach a maximum at W:

(ii) In the HF case, it is easy to check that, as � goes to in�nity, x�HF goes to zero. In the

LF case, we can prove that, as � goes to in�nity the �rst derivative of EULF (x) evaluated at

8
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x = 0 goes to zero, meaning that the optimum is x�LF = 0.

(iii) It is possible to write @EULF (x)
@x

���
x=x�HF

as follows:

@ULF (x)

@x

����
x=x�HF

= 3W��(1 + �)��B
�
�
3��p3�+ 3��(p� 1)3 1


�
+

+(1� p)p2(2�� 1)
�

1

2 + 


��
+ (1� p)2p(�� 2)

�
1

1 + 2


���
;(5)

where

B =

�
1 + 
�




��
=
(1 + 
�)�


�
> 0; (6)

and 
 =
�
1�p
�p

�1=�
. Given that 
 < 1; we have that

�
1

2+


��
>
�
1
3

��
; and

�
1

1+2


��
>
�
1
3

��
:

Moreover, since � � 2 we get that:

@EULF (x)

@x

����
x=x�HF

> 3W��(1 + �)��B
�
�
3��p3�+ 3��(p� 1)3 1


�
+

+(1� p)p2(2�� 1)3�� + (1� p)2p(�� 2)3��
�

= 31��W��(1 + �)��B
�p(p2�� (1� p)2�+ (1� p)p(2�� 1) + (1� p)2(�� 2))

= 31��W��(1 + �)��B
�p(2� p)(p+ �p� 1) > 0; (7)

since p > 1
1+�
: It can be shown that @EULF (x)

@x

���
x=W

= �1; which, in turn, implies x�LF < W:

(iv) In the case in which u(y) = ln(y); we have x�HF =
p(1+�)�1

�
W: The �rst derivative of

ULF (x) is

@ULF (x)

@x
= 3

�
p3�

3W + 3�x
+
p2(1� p)(2�� 1)
3W + (2�� 1)x +

p(1� p)2(�� 2)
3W + (�� 2)x � (1� p)3

3W � 3x

�
: (8)

Evaluating at x = x�HF we get

@EULF (x)

@x

����
x=x�HF

=
1

W

2�(p(1 + �)� 1)(1� p2 + p�(2� p))
(2(1� p) + p�)(1 + �)(1� p+ 2p�) > 0; (9)

as long as � > 1�p
p
and 0 < p < 1: Notice that @EULF (x)

@x

���
x=W

= �1; which, in turn, implies

that also for the logarithmic case, x�LF < W:

Notice that the fact that � � 2 is only a su¢ cient condition since, in the logarithmic

case, we do not need that condition to obtain the result.

9
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If we go back to GP97�s parametrization it is obvious that � = 5
2
> 2 and 1

3
= p > 1

1+�
�

0:286 and, thus, the CRRA speci�cation prescribes that individuals should invest more in

the LF treatment than in the HF treatment, as long as the coe¢ cient of risk aversion is

strictly positive. Needless to say, it is easy to prove that MLA can also accommodate these

results.6

Figure 2 plots the optimal bets corresponding to the HF treatment (thin line) and to the

LF treatment (bold line), settingW = 100. We see that, except for the case of risk-neutrality

(� = 0); an expected utility maximizer will always choose a higher bet in the LF treatment

than in the HF treatment. We also see that, consistently with Proposition 1, the di¤erence

between x�LF and x
�
HF goes to zero as � grows large.

Figure 2: Optimal choice in HF and LF
treatments

Although our theoretical result in Proposition 1 is for a particular parametric family of

utility functions, namely the CRRA family, this is the most standard version of expected

utility.7 That is, our goal in this paper is not to provide a general proof, but simply to point

out that expected utility theory is compatible with the experimental results in the literature.

6See the Appendix for details.
7Chiappori and Paiella (2011) �nd strong empirical support for CRRA utility functions.
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3 Estimations

We brie�y outline our empirical strategy in which we use an approach similar to that of

Harrison and Rutström (2009) and Santos-Pinto et al. (2014).8

Our statistical model can be summarized as follows. Every individual i has to choose an

amount to bet among m alternative possibilities in every round t. Her utility when choosing

the alternative j in round t is:

Vijt = Uijt(�) + "ijt; (10)

for j = 1; 2; ::;m; t = 1; 2; ::; T; and i = 1; 2; ::; N: Here � represents the unknown utility

parameters. The terms Uijt and "ijt denote deterministic and random components of i�s

utility, respectively. Depending on the structure of our theoretical model and the treatment,

we shall propose di¤erent expressions for the deterministic component, Uijt. According with

our random utility model, individual i selects alternative j in round t with probability:

Pijt = Pr[Vijt � Vikt; for all k 6= j] =

= Pr["ikt � "ijt � Uijt � Uikt; for all k 6= j]: (11)

We assume that the errors "ijt are independent across choices and periods and are distributed

as type I extreme values:

Pr[" � z] = exp(� exp(�z)): (12)

Under this distributional assumption, the probability of choosing alternative j follows the

conditional multinomial Logit model:

Pijt =
exp(Uijt(�))

exp(Ui1t(�)) + exp(Ui2t(�)) + :::+ exp(Uimt(�))
: (13)

Assuming that the individual chooses the alternative j�; the probability of the observed

sequence of choices of individual i is:

Pi(�) =
YT

t=1
Pij�t(�): (14)

8Following Harrison and Ruström (2008), the estimations in this section assume that the objetive function
is linear in probabilities.
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Let Li(�) = logPi(�) denote individual i�s contribution to the �grand�likelihood function

for the entire sample, L(�); calculated as

L(�) =

NX
i=1

Li(�): (15)

We estimate �rst an expected utility model with the CRRA speci�cation (1) we used to

prove Proposition 1:

u(y) =

�
y1��+

1� �+
; (16)

where �+ denotes the CRRA parameter. As for MLA, we consider two alternatives. The

�rst one is a simple piecewise linear utility function:

u(y) =

�
y y � 0;
�y y < 0; � � 1; (17)

where loss aversion implies a lower bound on �: This parametrization has already been used

for structural estimation purposes (see Iturbe-Ormaetxe et al., 2011). The second model

allows for a curvature of the value function, but imposes the same CRRA parameter, � 2 R,

in both domains, gains and losses:9

u(y) =

(
y1��

1�� y � 0;
�� (�y)

1��

1�� y < 0; � � 1:
(18)

The parametrization in (18) has also been used for structural estimation purposes (take, for

example, Tversky and Kahneman, 1992). Table 1 reports our estimation results, for the pool

data and for each one of the four datasets separately.

Table 1. Structural estimation I: CRRA vs MLA
9Köbberling and Wakker (2005) warn that the full-�edged MLA model proposed by Benartzi and Thaler

(1995), with loss aversion and two curvatures, cannot be identi�ed. As Wakker (2008, Chapter 9) says:
�..there is no clear way to de�ne loss aversion for power utility unless the powers for gains and losses
agree.�
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Dataset  ALL GP97 HL05 - T HL06 - S IPT14 
       
 rho_plus 0.162*** 0.152*** 0.150*** 0.164*** 0.192*** 

i) CRRA  (0.0093) (0.0153) (0.0182) (0.0198) (0.0225) 
 Log lik. -4706.3656 -1606.8844 -1064.496 -1235.4153 -776.1103 
       
 lambda 1.274*** 1.269*** 1.273*** 1.272*** 1.285*** 

ii) MLA_LIN  (0.0054) (0.0089) (0.0115) (.0111) (0.0137) 
 Log lik. -5967.3055 -1974.4814 -1126.6427 -1643.9931 -1215.8118 
       
 rho 0.569*** 0.595*** 0.4852** 0.604*** 0.530*** 
  (0.0402) (0.0607) (0.2069) (0.0490) (0.0828) 

iii) MLA_I lambda 1 1 1 1 1 
  (1.16e-08) (2.25e-09) (2.79e-07) (2.57e-09) (6.15e-08) 
 Log. Lik.  -3999.3533 -1339.7236 -807.34472 -1062.454 -786.375 
       
 Obs. 1,491 495 324 384 288 

Robust standard errors (clustered at the subject level) in parentheses  - *** p<0.01, ** p<0.05, * p<0.1.  
 
 
 
 

Table 1 
 
 

15



As for Model (16), we �nd a moderate level of risk-aversion, with estimates of �+ that

go from 0.150 (HL05, Traders) to 0.192 (IPT14).10 In this case, we cannot reject the null

that the estimated CRRA parameters are constant across datasets (neither the pairwise

comparisons, nor the joint test).

As for Model (17), we �rst notice that the estimated values for � are always signi�cantly

above 1.11 This seems to suggest that subjects are loss averse. Again, we �nd that the

estimates from the four datasets are very similar. The minimum estimation we �nd is 1.269

and corresponds to the individuals from GP97. The maximum is 1.285 and is the one we

get using IPT14 data. Also in this case, di¤erences of the estimated � across datasets are

not signi�cant.

Moving to Model (18), we �rst notice that the estimated values of � are higher than

in Model (16). More strikingly, in the estimates of Model (18) loss aversion, essentially,

disappears since the (imposed) lower bound on � seems binding in all cases. Put it di¤erently,

imposing (piecewise) linearity in the value function seems to overestimate the impact of loss

aversion. In this respect, our �ndings are analogous to those of Andersen et al. (2008) in

the case of time preferences, where the estimated discount rate increases substantially when

the value function is no longer constrained to be linear.

We now move to binary mixture models, where we follow the complementary approaches

proposed by Harrison and Rutström (2009) and Santos-Pinto et al. (2014). Let � and 1-�

denote the ex-ante probability that a decision in the experiment is being generated by a MLA

model (17-18) or by a CRRA model (16), respectively. Thus, the grand likelihood function,

GL(�), can be written as the probability weighted average of the conditional likelihoods of

the two models, PCRRAi (�CRRA) and P
MLA
i (�MLA), respectively:

10These results are very similar to those obtained by Harrison and Rutström (2009) who estimate a CRRA
function using data from a Random Lottery Pair experiment (Hey and Orme, 1994). Indeed, they propose
a CRRA function u(x) = xr; and get an estimate of between 0.87 and 0.89, depending on the speci�cation.
11In Table 1, the �stars�associated with the estimated coe¢ cients for � report the con�dence level of a

t�test where the null hypothesis is � = 1:
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GL(�CRRA; �MLA; �) =

NX
i=1

log
�
PCRRAi (�CRRA)(1� �) + PMLA

i (�MLA)�
�
; (19)

where the full set of parameters, f�CRRA; �MLA; �g, is estimated simultaneously.

Table 2. Structural estimation II: Mixture models

Table 2 reports our estimation results. In the �rst panel (MLA_LIN) we confront CRRA

with Model (17). In the second panel (MLA_1) we confront CRRA with Model (18), im-

posing �+ = � (that is, the same curvature for both models). In the third panel (MLA_2)

we confront CRRA with a model as Model (18), imposing two curvatures one for gains -

rho+, common to both models- and one for losses, rho�, respectively.12 As Table 2 shows,

the mixture probability for the MLA is below 30 % overall in models (MLA_LIN) and

(MLA_2), and it is around 50 % in model (MLA_1). Put it di¤erently, the mixture prob-

ability of CRRA is at least as those of our MLA parametrizations. However, in all models,

the estimated loss aversion is null, this time also for the estimates of Model (MLA_LIN).

To summarize the results of our pool estimations, our data provide empirical support for

both competing models, CRRA and MLA, although the estimated parameters of the latter

cannot reject the null of absence of loss aversion. In this respect, our �ndings are consistent

with those of Santos-Pintos et al. (2014), who also cannot reject the null of � = 1 using

mixture models involving expected utility and alternative value function parametrizations.

There is a caveat here. Model (19) derives the ex-ante mixture probability that each

individual decision is being generated by either competing behavioral model, CRRA or

MLA. We can also use Model (19) estimates to compute the ex-post probability that each

individual subject�s behavior is being generated by either competing model, by applying

directly Bayes�Rule on each individual subject�s contribution to the random utility model

density function:

12Since rho+ is the same for both CRRA and MLA, it can now be identi�ed.
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Dataset  ALL GP97 HL05 - T HL06 - S IPT14 
       
 rho 0.285*** 0.305*** 0.305*** 0.288*** 0.254*** 
  (0.0123) (0.0250) (0.0346) (0.0254) (0.0174) 
 lambda 1 1.0056 1 1.0735 1 

i) MLA_LIN  (4.86e-08) (0.1114) (5.18e-09) (.0969) (2.84e-08) 
 pi 0.2590*** .3058*** .3032*** .2715*** .1388 
  (0.0259) (0.0462) (0.0541) (0.0577) (0.0501) 
 Log lik. -3264.371 -1072.5406   -679.2939 -868.3497 -622.5062   
       
 rho 0.244*** 0.244*** 0.2586*** 0.239*** 0.237*** 
  (0.0083) (0.0141) (0.0253) (0.0160) (0.0154) 

ii) MLA_1 lambda 1 1 1 1 1 
  (3.17e-09) (7.86e-09) (3.24e-08) (5.42e-09) (1.56e-08) 
 pi 0.5133*** 0.572*** 0.6478*** 0.5010*** 0.2790*** 
  (0.0333) (0.0565) (0.0769) (0.0653) (0.0768) 
 Log. Lik.  -3552.0401 -1176.4119 -758.1530 -940.3960 -659.0019 
       
 rho_plus 0.274*** 0.2833*** 0.259*** 0.287*** 0.2508*** 
  (0.011) (0.0203) (0.0197) (0.0255) (0.0166) 
 rho_minus 0.966*** 0.965*** 0.971*** 0.6993** 0.957*** 
  (0.0028) (0.0043) (0.0029) (0.2937) (0.00439) 

iii) MLA_2 lambda 1 1 1 1.9602 1 
  (0.0026) (0.0001) (0.0007) (.5481) (0.0001) 
 pi .2725*** .334663*** .3790*** .2726*** .1381*** 
  (0.0289) (0.0540) (0.0600) (0.0592) (.0501) 
 Log. Lik.  -3263.6578 -1072.6447 -667.3834 -869.2339 -621.522 
       
 Obs. 1,491 495 324 384 288 

Robust standard errors (clustered at the subject level) in parentheses  - *** p<0.01, ** p<0.05, * p<0.1.  
 
 
 
 

Table 2 
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� i =
�PMLA

i (�MLA)

(1� �)PCRRAi (�CRRA) + �P
MLA
i (�MLA)

: (20)

Figure 3 shows three histograms reporting the distribution of � i corresponding to the

three mixture models evaluated in Table 2. As Figure 3 shows, in the MLA_LIN case, the

�nite mixture model classi�es subjects cleanly into either CRRA (60%, approximately) or

MLA (40% approximately), respectively. In this case, these ex-post probabilities of MLA

type-membership are either close to 0 or close to 1, with a majority of CRRA-type subjects.

Similar considerations hold for MLA_2 case where, for 95% of the population, we have

�MLA < 0:4, although the classi�cation is not as clear-cut as in the MLA_LIN case.

Figure 3. Posterior probability of being of MLA type

By analogy with the results of Table 2, the case of MLA_1 is the one for which the

ex-post mixture probability estimation fails to come up with an unambiguous classi�cation,

and many subjects exhibit a � close to 1/2 (also the median � roughly equals 0.5).

To summarize, our econometric exercise nicely complements Proposition 1: not only a

standard model of expected utility can explain the experimental evidence on Investment

Games at least as well as one that posits MLA, but it is also consistent with subjects�

(aggregate and individual) behavior. Our results indicate that the most standard version of

an expected utility model yields the same prediction as a MLA model: people invest more in

the LF treatment than in the HF treatment. More research is needed to disentangle whether

the fact that individuals take more risks when they evaluate their investments less frequently
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is due to loss aversion, risk aversion, or probably a mixture of both.

4 Discussion

Two arguments have been suggested in the literature to justify the inability of expected

utility to explain the di¤erence in behavior between the HF and the LF treatment. The �rst

one relies on a classical example from Samuelson (1963). The second one comes from the

work of Gollier et al. (1997). We will present both arguments in turn and will argue why

they cannot be applied to GP97 experimental design.

4.1 Samuelson�s o¤er

Paul Samuelson posed this question to a colleague:

Would you take a bet with a 50% chance of winning $200 and a 50% chance of losing

$100?

The colleague turned down the bet, but told he was willing to accept a string of 100 such

bets. Samuelson proved that this behavior is inconsistent with expected utility theory. In

particular, Samuelson (1963) proved that if that bet is rejected for any wealth level between

[W � 10000;W + 20000]; where W is the initial wealth level, any sequence of n � 100 such

bets should also be rejected. The intuition of the proof is as follows. Suppose you have

already played ninety nine bets and are facing bet one hundred. You should reject this bet,

since it is just the original bet you had originally rejected. Now let us move one step behind.

You have already played ninety eight bets and are facing bet ninety nine. By backward

induction, you anticipate this is the last bet, since you know you will reject bet one hundred.

Then, you should reject as well bet ninety nine. Applying the same argument, we end up

proving that you will reject the �rst bet. Interestingly enough, this proof makes no use of

Expected Utility.

The crucial assumption in Samuelson�s argument is that the single lottery has to be
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rejected for a large range of wealth levels. In particular, this assumption rules out CRRA

utility. Take, for instance, u(y) = ln(y): It is immediate to check that an individual with

this utility function will accept the single lottery as long as her initial wealth is greater than

200. In fact, Samuelson himself warned against extrapolating his theorem.

Samuelson�s paper generated a large literature trying to generalize it. Pratt and Zeckauser

(1987) call a utility function �proper�if the sum of two independent undesirable gambles is

inferior to either of the gambles individually. They provide su¢ cient conditions and separate

necessary conditions on utility functions for them to be proper. Kimball (1993) proposes a

stronger condition called �standard�risk aversion that is easier to characterize. If a utility

function satis�es standard risk aversion, a decision maker who rejects a bet will always

reject a sequence of bets. Kimball (1993) shows that necessary and su¢ cient conditions for

a utility function to be standard are decreasing absolute risk aversion and decreasing absolute

prudence. This amounts to say that �u00(y)=u0(y) and �u000(y)=u00(y) are decreasing function

of y:

However, Samuelson (1989) himself gave examples of utility functions for which a single

bet is unacceptable, but a su¢ ciently long �nite sequence of bets is eventually accepted.

Nielsen (1985) proposed necessary and su¢ cient conditions for a concave function to accept

a sequence of bounded good lotteries. Basically, what is needed is that the utility function

cannot decrease too fast towards minus in�nity.

Ross (1999) extends Nielsen�s results to sequences of good bets that are independent,

although not necessarily bounded or identically distributed. Finally Peköz (2002) shows

that, when the decision maker has the option to quit early, a su¢ ciently long sequence of

lotteries will always be accepted under very mild assumptions on the utility function and

the individual bets.

However, we want to stress that there are two crucial aspects in Samuelson´s example

that are di¤erent from the experimental design in GP97:
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1. Accepting 100 bets means that you are willing to play at most 100 bets. That is, you

can decide to withdraw before arriving to bet one hundred. This is crucial to apply

backward induction.

2. Each individual bet is 0-1. You do not decide how much to bet, you only decide

whether to take the bet or not.

If we drop point (1), that is, if once you accept to play 100 bets, you cannot withdraw

(or, as in Benartzi and Thaler (1995), you do not watch the bet being played out) it is easy

to see that Expected Utility explains easily Samuelson�s colleague behavior. Consider the

following simple example.13 Suppose you own wealth W and are o¤ered at most 2 bets.

Your utility function is piecewise linear with a kink (see Gollier, 2001). In particular:

u(y) =

�
y y � W

W + a(y �W ) y > W:
(21)

This function is increasing if a � 0 and it is concave if a � 1: It is easy to check that,

as long as 1=3 < a < 1=2; EU(1 bet) < EU(0 bets) < EU (2 bets): An individual with this

utility function that maximizes Expected Utility will reject one bet. When o¤ered two bets,

he will take them.

To sum up, we believe that Samuelson�s example is not appropriate for this case. Once

we adapt the example to our framework by eliminating the possibility of withdrawing before

the last bet, expected utility provides an easy explanation for the behavior of Samuelson´s

colleague.

4.2 Gollier et al. (1997)

Gollier et al. (1997) study a standard portfolio problem. There are two periods and two

di¤erent economies called �exible and rigid, respectively. In the �exible economy the indi-

vidual invests at the beginning of period 1, receives her returns, and then decides how much

13See also Tversky and Bar-Hillel (1983) for another example.
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to invest in period 2. In the rigid economy, period 2 decision must be made before knowing

the results of period 1. In period 1 she decides how much to invest. The decision maker has

initial wealth $W to invest in two assets, a risky asset and a safe asset. The returns of the

risky asset are independent and identically distributed. Wealth at the beginning of period 2

is called $z. The problem is to see the e¤ect of �exibility on exposure to risk in period 1. Pe-

riod 1 investment in the risky asset in the rigid and �exible economies are denoted by �r1 and

�f1 ; respectively. The authors are interested in �nding whether �
r
1 < �

f
1 : This can never be

the case with Constant Absolute Risk Aversion utility functions, since in that case �r1 = �
f
1 .

For the case of CRRA utility they prove that �r1 � �
f
1 if and only if the coe¢ cient of relative

risk aversion is less or equal than one. This result has been used by GP97 to suggest that

expected utility implies that individuals should take more risks in the HF treatment than in

the LF treatment. In particular they claim that these authors �..derive su¢ cient conditions

on the utility function for this information e¤ect to have an unambiguous sign. Translated

to our setting, their results indicate that constant relative risk aversion less than 1 would

induce more risk taking in Treatment H than in Treatment L. Under constant absolute risk

aversion there should be no treatment e¤ect.�(page 636, footnote 5).

However, there is a fundamental di¤erence between the paper by Gollier et al. (1997)

and the experimental set up of GP97. In the model of Gollier et al. (1997) the wealth

that will be available for investment in the second period, z; is a random variable from the

point of view of the beginning of period 1. If �rst period investment is successful, z will be

large. If �rst period investment is unsuccessful, z will be low. On the contrary, in GP97 and

the other papers that present similar experimental evidence, individuals receive the same

amount W in each period to invest. This di¤erence makes the results of Gollier et al. (1997)

inapplicable to the framework of GP97.
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5 Concluding remarks

Our econometric exercise nicely complements Proposition 1 in that both competing models,

CRRA and MLA, are consistent with the experimental evidence on investment games. Our

mixture estimations also suggest that both models have signi�cant predictive power and suit

the behavior of di¤erent groups of individuals.

Consistently with the cited literature, our estimation exercise also provides little empirical

support to subjects�loss aversion. As we discussed in the introduction, this may be due to

the fact that the entire experimental framework -together with the normative constraints

imposed by Ethic Committees within Universities and Academic journals- makes it di¢ cult

to implement the experience of a loss in the lab, experience that is much more common in

real life. More experimental research -possibly, in the �eld- is then needed to identify more

neatly the motivation behind the fact that individuals take more risks when they evaluate

their investments less frequently.
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Appendix: MLA Prediction

We assume that p > 1
1+�
; � > 0, the endowment is the reference point and the evaluation

function is linear. The high frequency lottery is HF = (�x; p;�x; 1� p) : The low frequency

lottery is:

LF =
�
3�xp; p3; (2�� 1)x; 3p2(1� p); (�� 2)x; 3p(1� p)2;�3x; (1� p)3

�
:

In the HF treatment, a subject chooses to invest x > 0 if her coe¢ cient of loss aversion � is

below a certain threshold. In particular, if:

� < �HF = �
p

1� p: (22)

In the LF treatment, the same individual chooses x > 0 if:

� < �LF =
�p3 + (2�� 1)p2(1� p) + (�� 2)p(1� p)2

(1� p)3 : (23)

Now, we see that:

�LF � �HF =
p(2� p)(p(1 + �)� 1)

(1� p)3 > 0:

Investing in the LF treatment is, therefore, more attractive than investing in the HF treat-

ment.
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