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Abstract

We assess gains from parallel computation on Backlight supercomputer. We find that information
transfers are expensive. To make parallel computation efficient, a task per core must be sufficiently
large, ranging from few seconds to one minute depending on the number of cores employed. For small
problems, the shared memory programming (OpenMP) leads to a higher efficiency of parallelization
than the distributive memory programming (MPI).
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1 Introduction

The speed of processors was steadily growing over the last few decades. However,
this growth has a natural limit (because the speed of electricity along the con-
ducting material is limited and because a thickness and length of the conducting
material is limited). The recent progress in solving computationally intense prob-
lems is related to parallel computation. A large number of central processing units
(CPUs) or graphics processing units (GPUs) are connected with a network and
are coordinated to perform a single job. Each processor alone does not have much
power but taken together, they can form a supercomputer.

An important role in parallel computation plays communication. A zero core
(master) splits a large problem into many small tasks and assigns the tasks to
other cores (workers); workers complete their tasks and return their results to the
master; and the master aggregates the results and produces the final output. In
a typical application, the master and workers exchange information during the
process of computation. If the information exchange is not sufficiently fast, the
gains from parallelization may be low or absent. Instead of parallel speedup, we
may end up with parallel slowdown.

In this paper, we assess the speed of communication on Blacklight supercom-
puter — a state-of-art high performance computing machine with 4096 cores. Our
numerical examples are implemented using C programming language and two al-
ternative parallelization methods: shared memory programming (OpenMP) and
distributed memory programming (MPI). For high performance computing such as
Blacklight, the network is designed and optimized for fast communication between
the cores using a three-dimensional torus topology design. Still, the information
exchange between the cores on Blacklight is far slower than that between the cores
on conventional desktops and laptops.

We assess gains from parallel computation on Backlight supercomputer, and
we find that information transfers are expensive. Our experiments show that the
problem must be sufficiently large to insure gains from parallelization on super-
computers. The optimal size of the task assigned to each core must be at least few
seconds if several cores are used, and it must be a minute or more if a large num-
ber (thousands) of cores are used. We also find that for small problems, OpenMP
leads to a higher efficiency of parallelization than MPI.

A key novel feature of our analysis is that it focuses on state-of-art supercom-
puters. High performance computing is commonly used in many fields (physics,
biology, engineering, etc.) but applications to economics are scarce. Usefulness of
high performance computing for economic applications was shown in pioneering
work of Amman (1986, 1990), Nagurney and Zhang (1998); and also, see Nagurney
(1996) for a survey. This earlier literature focuses on mainframes and is closest to
our analysis. More recent literature on parallel computation rely on desktops and



clusters of computers. Doornik et al. (2006) review many applications of paral-
lel computation in econometrics; Creel (2005, 2008) and Creel and Goffe (2008)
illustrate the advantages of parallel computation in the context of several econom-
ically relevant examples; Sims et al. (2008) employ parallel computation in the
context of large-scale Markov switching models; Aldrich et al. (2011), and Morozov
and Mathur (2012) apply GPU computation to solve dynamic economic models;
Durham and Geweke (2012) use GPUs to produce sequential posterior simulators
for applied Bayesian inference; Cai et al. (2012) apply high throughput computing
(Condor network) to implement value function iteration; Villemot (2012) use par-
allel computation in the context of sovereign debt models; and finally, Valero et al.
(2013) review parallel computing tools available in MATLAB and illustrate their
application in the context of the Smolyak methods for solving large-scale dynamic
economic models.

The rest of the paper is organized as follows. In Section 2, we describe the
parallel computation paradigm and its applications in economics. In Section 3,
we discuss state-of-art supercomputers and assess their speed in communicating
information. Finally, in Chapter 4, we conclude.

2 Parallel computation

In this section, we describe the advantages and limitations of parallel computation
and show examples of parallelizable problems in economics.

2.1 Why do we need parallel computation?

In the past decades, the speed of computers was steadily growing. Moore (1965)
made an observation that the number of transistors on integrated circuits doubles
approximately every two years, and the speed of processors doubles approximately
every 18 months (both because the number of transistors increases and because
transistors become faster). The Moore law continues to hold meaning that in 10
years, computers will become about 100 times faster.

What shall we do if a 100-times speedup is not sufficient for our purposes or
if a 10-year horizon is too long for us to wait? There is an alternative source of
computational power that is available at present — parallel computation: we split
a large problem into smaller subproblems, allocate the subproblems among mul-
tiples workers (processors), and solve all the subproblems at once. Serial desktop
computers have several central processing units (CPUs) and may have hundreds of
graphics processing units (GPUs), and a considerable reduction in computational
expense may be possible. Supercomputers have many more cores (hundreds of
thousands) and have graphical cards with a huge number of GPUs. Each proces-



sor in a supercomputer is not (far) more powerful than a processor on our desktop
but pooling their efforts gives them a high computational power. Executing 10,000
tasks in parallel can increase the speed of our computation up to a factor of 10,000.
This is what supercomputers are.

2.2 Parallelizable problems in economics

Many applications in economics can benefit from parallel computation. The easiest
case for parallelization are jobs that are composed of a large number of independent
tasks. This case is known in computer science literature as naturally parallelizable
jobs.

One example of naturally parallelizable jobs is stepwise regressions in econo-
metrics: we run a large number of regressions of a dependent variable on different
combinations of independent variables to see which combinations produce best
results, and we may run each regression on a separate core. Another example is
sensitivity analysis: we solve an economic model under many different parameteri-
zations either because we want to study how the properties of the solution depend
on a specific parameterization or because we want to produce multiple data sets
for estimating the model’s parameters (nested fixed point estimations). In this
case, we may solve a model for each different parameter vector on a separate core.
See Doornik et al. (2006) for a review of applications of parallel computation in
econometrics. Other examples of naturally parallelizable jobs are matrix multipli-
cation, exhaustive search over a discrete set of elements, optimization of a function
over a region of state space, etc.

However, most applications in economics cannot be parallelized entirely. A
typical application will contain some parts that are naturally parallelizable, other
parts that cannot be parallelized and must be executed serially and other parts that
can be parallelized but require information exchange between cores in the process
of computation. For example, in numerical methods for solving economic models,
one can paralelize expensive loops across grid points and or integration nodes.
Since such loops appear inside an iterative cycle, after each iteration, a master
core needs to gather the output produced by all workers and to combine it in order
to produce an input for the next iteration; iterations continue until convergence is
achieved. In this case, the computer code is a sequence of alternating parallel and
serial computations; see, e.g., Creel (2005, 2008), Creel and Goffe (2008), Aldrich
et al. (2011), Morozov and Mathur, Cai et al. (2012), Villemot (2012), Valero et
al. (2013).



2.3 Limitations of parallel computation

Parallel computation is a promising tool for many problems in economics but it is
not automatically useful in every possible context. The limitations of the parallel
computation approach are as follows.

i) Not every problem can be parallelized. For example, suppose we need to
produce time series for an AR(1) process z;11 = pxy + €441, wWhere p € (—1,1)
and ;41 is a random variable drawn from a given distribution. To produce each
subsequent value x;;; we need to know the previous value z; and thus, the loop
must be executed in a serial manner.

ii) Gains from parallelization are limited by the fraction of code that cannot
be parallelized (i.e., that needs to be executed serially), which is referred to in
the literature as Amdahl’s (1967) law. Indeed, if 50% of time is spent on running
nonparallelizable code, we can reduce the total running time by a factor of 2 at
most, no matter how many cores we employ.

iii) Different tasks executed in a parallel manner may differ in the amount of
time necessary for their execution. For example, when searching for a maximum
of a function over different regions of state space, a numerical solver may need
considerably more time for finding a maximum in some regions than in others. The
most expensive region will determine the speedup and efficiency of parallelization
since all the workers will have to wait until the slowest worker catches up with the
rest.

iv) The cost of information transfers between multiple cores may be high and
may dramatically reduce the gains from parallelization. Instead of a parallel
speedup, we may have a parallel slowdown.

3 Supercomputers

For desktops, the information exchange between CPU is very fast. The informa-
tion exchange is slower for GPU computations but is still very fast; see Aldrich
(2010), Morozov and Mathur, and Valero et al. (2013). For supercomputers, the
information exchange is far slower and may reduce dramatically gains from paral-
lelization even in applications that are naturally suitable for parallelization. The
goal of this section is therefore to determine how large a task per core should be
to obtain sufficiently high gains from parallelization on supercomputers. we first
discuss the capacities of modern supercomputers, and we then assess the cost of
information transfers on Blacklight supercomputer.



3.1 Supercomputer types

Three different types of supercomputers are distinguished in computer science
literature; see Blood (2011).

1. High-performance computing (HPC) runs one large application across mul-
tiple cores (either CPUs or GPUs). The user is assigned a fixed number of
processors for a fixed amount of time, and this time is over if not used.

2. High-throughput computing (HTC) runs many small applications at once.
The HTC computation is opportunistic: the user gets a certain number of
cores that nobody uses at that time, and this computer time would be wasted
otherwise.

3. Data intensive computing focuses on input-output operations, where data
manipulation dominates computation.

We are interested in the first two types of supercomputers, HPC and HTC.
Blacklight is an example of an HPC machine. It consists of 256 nodes each of
which holds 16 cores, 4096 cores in total. Each core has a clock rate of 2.27
GHz and 8 Gbytes of memory. The total floating point capability of the ma-
chine is 37 Tflops, and the total memory capacity of the machine is 32 Tbytes.
Blacklight has many software packages installed including C, C++, Fortarn, R,
Python, MATLAB, etc. For a detailed description of Blacklight supercomputer,
see hitp://www.psc.edu/index.php /computing-resources/blacklight.

Condor is an example of an HTC machine. It is composed of a large net of
computers. Computers in the net belong to priority users and are not always free
(our own computers can become a part of the Condor network if we give them a
permission). Condor software detects computers that are not currently occupied by
priority users and assigns tasks to them. It passes messages between masters and
workers, queue the tasks, detects failures and interruptions, collects the output and
delivers it to users. The Condor network is slower than that of HPC machines but
the speed of communication is not essential for many applications, in particular,
for those that are naturally parallelizable. For a detailed description of Condor
network, see https://www.zsede.org/purdue-condor.

High computational power becomes increasingly accessible to economic re-
searchers. In particular, eXtreme Science and Engineering Discovery Environment
(XSEDE) portal financed by NSF provides access to supercomputers for US acad-
emic/nonprofit institutions. Currently, XSEDE is composed of 17 service providers
around the world, see https://portal.zsede.org. Blacklight and Condor are two ex-
amples of supercomputers that belong to the XSEDE portal. Computer time can
be also bought in internet at relatively low prices. For example, Amazon Elastic



Compute Cloud Amazon provides the possibility to pay for compute capacity by
the hour; see, e.g., http://aws.amazon.com/ec2/#pricing.

3.2 Shared versus distributed memory programming

Using supercomputers requires certain knowledge of the computer architecture and
the operational system (typically, Unix), as well as software that distributes and
exchanges information between different cores. This is because in addition to our
main code, we must design software that splits a given job into smaller jobs, that
exchanges information between the different cores in the process of computation
and that gathers the information to produce final output.

An important issue for parallel computation is how to share the memory. Two
main alternatives are shared memory programming and distributed memory pro-
gramming.

e Shared memory programming. There is a global memory which is accessible
by all processors, although processors may also have their local memory. For
example, OpenMP software splits loops between multiple threads and shares
information through common variables in memory; see http://www.openmp.org.

o Distributed memory programming. Processors possess their own memory
and must send messages to each other in order to retrieve information from
memories of other processors. MPI is a commonly used software for passing
messages between the processors; see hitp://www.mpi-forum.org.

The advantage of shared memory is that it is easier to work with and it can
be used to parallelize already existing serial codes. The drawbacks are that the
possibilities of parallelization are limited and that sharing memory between threads
can be perilous. The advantage of distributed memory is that it can work with a
very large number of cores and is ubiquitous but it is also more difficult to program.
There are also hybrids that use distributed memory programming for a coarse
parallelization and that use shared memory programming for a fine parallelization.

3.3 Cost of information transfers on Blacklight supercom-
puter

To assess the cost of information transfers, we implement a simple numerical ex-
ample on Blacklight supercomputer. We specifically consider a function with a
unique input z, which is randomly drawn from a uniform distribution [0, 1]

5

y = sin (3x) + cos (mx) + % + v/ arccos () + 8z exp(x). (1)



Our objective is approximate the expectation of y using a conventional Monte Carlo
1

integration method E (y) ~ + > | 1;. We study how the computational expense
depend on the size of the problem n. We split the problem across multiple cores
so that all cores performs tasks of the same size. For example, if the number of
cores is 16, each core processes n/16 observations.

Our code is written in C programming language (compiled with mpicc). We
implement parallel computation using both shared memory programming under
OpenMP (with multiple threads) and distributed memory programming under
MPI (with point-to-point communication). In the experiments with OpenMP, we
parallelize computation across 16 cores of a single Blacklight blade. In the experi-
ments with MPI, we used 16, 32 and 128 cores corresponding to 1, 2 and 4 blades,
respectively. In the MPI code, each core (process) runs a copy of the executable
(single program, multiple data), takes the portion of the work according to its rank
and works independently of the other cores, except when communicating.

In Figure 1, we plot the speedup, which is defined as defined as a ratio

S(N)=r1/7n, (2)

where 71 and 7y are the times for executing a job on one core and N cores,
respectively.

Figure 1. Speedup on Blacklight supercomputer.
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In the experiments using OpenMP, the cost of information transfers is relatively
low, in particular because all 16 cores belong to the same blade. Here, we ob-
serve positive speedups even for problems of very small sizes. In contrast, in the
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experiments using MPI, the costs of information transfers dominates gains from
parallelization for small problems, and the serial code on just one core runs faster
than the parallelized code. We have parallel slowdown instead of parallel speedup.
The intersections of the speedup curves with a straight line equal to one indicate
the points at which the speedup becomes positive: it ranges from 0.03 seconds
for 16-core case to about 0.9 seconds for 128-core case, which correspond to the
running time per core ranging from 0.003 to 0.007 seconds respectively. When the
problem increases, so do the speedups, approaching the number of cores used in
computation.
In Figure 2, we plot the efficiency of parallelization, which is defined as

£(N) = “/% 3)

The efficiency shows gains from parallelization 71/7y relative to the number of
cores used N.

Figure 2. Efficiency of parallelization on Blacklight supercomputer.
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The tendencies in Figure 2 are parallel to those observed in Figure 1. When the
problem is small, the efficiency of parallelization is low, however, when the problem
increases, so does the efficiency, approaching one gradually. In the experiements
with 16 cores, the efficiency of parallelization using OpenMP is higher than using
MPI. Furthermore, our experiements with MPI show that the efficiency of paral-
lelization also depends on the number of cores used: with 16 cores, the efficiency
of paralelization of 90% is reached for 20-second problem (2.5 seconds per core),
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while with 128 cores, a comparable efficiency of parallelization is reached only
for 2000-second problem (15.6 seconds per core). Thus, the cost of information
transfers increases with the number of cores used. Our sensitivity experiments
(not reported) had shown that for larger number of cores, the size of the task per
core must be as a minute or even more to achieve high efficiency of parallelization
under MPI.

4 Concluding comments

Parallel computing opens a new dimension in numerical analysis in economic.
Substantial gains from parallelization are possible even on desktop computers with
few cores. Supercomputers have thousands and thousands of CPUs and GPUs
that can be coordinated for computationally intensive tasks. Also, they have large
memories to record the results. These new possibilities may help to bring economic
research to a qualitatively new level in terms of generality, empirical relevance, and
rigor of results.

However, to take advantage of this novel technology, we must formulate prob-
lems and design codes in a manner which is suitable for parallelization. Further-
more, an important factor to take into account is the cost of information transfers
between the cores. The tasks assigned to each core must be sufficiently large to
have non-trivial gains from parallelization.

Our numerical assessment shows that the cost of communication is high for
supercomputers and may reduce the gains from parallelization dramatically. This
is true even for high performance machines, such as Blacklight, whose network is
optimized for a fast connection between the cores. We find that the task assigned
to a core must be between few seconds and one minute depending on the number
of cores used. The efficiency of parallelization is higher under OpenMP than
under MPI but the possibilities of parallelization are more limited. Of particular
interest appear to be hybrids that use distributed memory programming for coarse
parallelization (across blades) and that use shared memory programming for fine
parallelization (across cores withing the blade).

Our numerical findings may be useful to researchers who design parallelization
codes for supercomputers. The Monte Carlo analysis is a specific example that
maybe of limited interest. However, the Monte Carlo code can be readily replaced
in our OpenMP and MPI programs by any other code the readers maybe interested
in (regression, numerical analysis of equilibrium in some model, etc.). The results
of our numerical assessment are suggestive for other applications as well.
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