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Abstract

We introduce an envelope condition method (ECM) for solving dynamic programming problems. The
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1 Introduction

Dynamic programming methods are an important tool in economics; see Judd (1998),
Santos (1999), Rust (2008) and Stachursky (2009) for reviews. Conventional value
function iteration (VFI) goes backward: we guess a value function in period t+1, and
we solve for a value function in period ¢ using the Bellman equation. Conventional
VF1is expensive: it requires us to find a root to a non-linear equation in all gridpoints,
which involves interpolating value function off the grid and approximating conditional
expectation in a large number of candidate solution points; see Aruoba et al. (2006)
for examples assessing the cost of VFI.

Carroll (2005) introduces an endogenous grid method (EGM) that simplifies
rootfinding under time iteration. The idea is to construct a grid on future endogenous
state variables instead of current endogenous state variables, which are treated as
unknowns. In a typical economic model, it is easier to solve for current endogenous
state variables given the future state variables than to solve for future endogenous
state variables given the current state variables. This is why EGM dominates con-
ventional VFL

In this paper, we have two contributions. First, we introduce an envelope condi-
tion method (ECM), another solution method that simplifies rootfinding in dynamic
programming problems. ECM does not perform conventional backward iteration on
the Bellman equation but iterates forward. Also, to construct policy functions, ECM
uses the envelope condition instead of the first-order conditions used by conventional
VFI and EGM. We find that systems of equations produced by ECM are typically
easier to solve than those produced by conventional VFI. In this sense, ECM is
similar to EGM.

Second, we introduce versions of the EGM and ECM methods that approximate
derivatives of value function instead of value function itself. We find that these ver-
sions produce far more accurate solutions than do similar methods that approximate
value function itself.

We compare the EGM and ECM methods using both analytical arguments and
numerical examples. We find that EGM and ECM are nearly identical in terms of
accuracy and speed in our test problem, the neoclassical growth model with elastic
labor supply. Codes are available at http://www.stanford.edu/ maliarl.

2 The model

We study the standard neoclassical growth model with elastic labor supply.



2.1 Bellman equation

We solve for value function V' that satisfies the Bellman equation,

V (k,a) = s fu e,0) + BBV (K, 0
st. K'=0-98)k+af (k{) —c, (2)
Ina" = plna+¢, ¢ ~N(0,0%), (3)

where k, ¢, ¢ and a are capital, consumption, labor and productivity level, respec-
tively; 8 € (0,1); 6 € (0,1]; p € (—1,1); o > 0; the utility and production functions,
u and f, respectively, are strictly increasing, continuously differentiable and concave;
the primes on variables denote next-period values, and E [V (K, a’)] is an expectation
conditional on state (k,a).

2.2 Optimality conditions

We divide the optimality conditions in two blocks. The first block identifies policy
functions that correspond to a given value function V', and the second block identifies
a value function that corresponds to given policy functions.

2.2.1 Block 1: Identifying policy functions given a value function

If a solution to Bellman equation (1)—(3) is interior, the optimal quantities satisfy
first-order conditions (FOCs) with respect to labor and consumption and the envelope
condition, which, respectively, are

up (e, ) = —u.(c,l)af(k,0), (4)
Ue (C> E) = BE [Vk (k,> a,)] ’ (5)
Vi (k,a) = uc(c,l)[1—0+afg(k,0)], (6)

as well as budget constraint (2). Here, F} (...,,...) denotes a first-order partial
derivative of function F'(...,z,...) with respect to variable z.

2.2.2 Block 2: Identifying a value function given policy functions

In the optimum, value function V' and its derivative V} satisfy

Vik,a) = u(e,l)+pEV (K, d)], (7)
V;c (/C,CL) = B [1 -0+ afk (k>€)] E [Vk (k,> a,)] . (8)



Condition (7) is Bellman equation (1) evaluated under the optimal policy functions
(which makes a maximization sign unnecessary), and condition (8) follows by com-
bining (5) and (6).

2.3 Discussion

Envelope condition (6) is central to our analysis." Observe that we have two con-
ditions that describe the relation between V}, and the policy functions: one is FOC
(5) and the other is envelope condition (6). Conventional VFI and EGM of Carroll
(2005) approximate policy functions using FOC (5), namely, they solve the system
(2), (4) and (5). In contrast, our ECM method will approximate policy functions
using envelope condition (6), namely, it will solve the system (2), (4) and (6). In
Sections 3 and 4, we show that system of equations built on envelope condition (6)
are easier to solve than system of equations built on conventional FOC (5), in which
case ECM is a preferred choice.

Furthermore, the envelope condition provides a basis for condition (8). This
condition allows us to approximate V, without finding V. Under our construction,
all methods described in the paper can approximate a solution by iterating on either
(7) or (8) or both, whereas the previous literature including conventional VFI and
EGM of Carroll (2005) iterate only on Bellman equation (7). In Section 5, we show
that iteration on (8) leads to far more accurate solutions than iteration on (7).

3 The model with inelastic labor supply

Consider first a model with inelastic labor supply under the following assumptions

wen =S wmd fn =k 9)

where v > 0 and « € (0,1). In this case, we have ¢ = 1, and FOC (4) is absent.

3.1 Conventional VFI

The conventional VFI method makes a guess on the future value function V (£, a’)
and identifies policy functions using budget constraint (2) and FOC (5). By substi-

! Typically, the envelope condition is used to derive the Euler equation (namely, (6) is updated
to get Vi (k',a’) and the result is substituted into (5) to eliminate the unknown derivative of the
value function). In the present paper, we do not derive the Euler equation but concentrate on the
envelope condition in the form (6).



tuting ¢ from (2) into (5) under the assumptions (9), we obtain
BE [V, (K,a) =k —(1—0)k—ak*]". (10)

We must solve (10) for &' in each grid point (k,a). Finding a solution to (10) is
expensive. For example, if we parameterize V' with a polynomial function, then solv-
ing (10) includes interpolation of V}, to new values (k' a’), as well as approximation
of conditional expectation E [V}, (k',a’)]. We must explore many different candidate
values of (k’,a’) until we find a solution to (10).

3.2 Endogenous grid method

EGM of Carroll (2005) also makes a guess on the future value function V' (%', a’) and
identifies policy functions using budget constraint (2) and FOC (5). The difference
is that EGM treats the future endogenous state variable as fixed, and it treats the
current endogenous state variable as unknown. Since the values for £’ are fixed, it is
possible to compute up-front E' [V (k',d')] = W (K',a) and E [V}, (K',d)] = W (K, a).

Consider again the system (2), (4) and (5) under the assumptions (9). Now, we
find ¢ directly from (5), ¢ = [BW} (k:’,a)]_l/fy, and we are left to solve for k that
satisfies budget constraint (2) given (K, a)

(1=0)k+ ak™ = [BW, (K, a)] " + . (11)

Observe that (11) is easier to solve numerically than (10) because it does not involve
either interpolation or approximation of conditional expectation.

Carroll’s (2005) change of variables. Still, equation (11) must be solved nu-
merically. However, Carroll (2005) finds a clever change of variables that makes
unnecessary solving (11) on each iteration. He introduces a new variable Y =
(1 —9)k+ ak™ = ¢+ K, which allows us to rewrite Bellman equation (1) as

-1
V(Y a) :max{i + W (Y’,a)}, (12)
K 1—7
where W (Y’ a) = E [V (Y’,a’)]. The FOC of this problem is
¢ = BE [vy (Y, d') (1 — 5+ ad (k’)a—l)} . (13)

Since we know Y’ = (1 — §) k' +d’ (K')*, we can find the expectation in the right side
of (13) and hence, we can compute ¢ and Y = k' + ¢. Therefore, we can iterate on
Bellman equation (12) without using a solver. Once V' is computed, we find % that
corresponds to Y = (1 — §) k + ak® using a numerical solver (just once).



3.3 Envelope condition method

Like conventional VFI, our ECM method operates on exogenous grid however makes
a guess on the current value function V' (k,a) (or its derivative Vi (k,a)) instead of
the future value function. This enables us to solves for ¢ using the envelope condition
(6) instead of FOC (5). Under the assumptions (9), ¢ can be derived explicitly from

(6), /
B Vi (k,q) Al
‘" (1—5+aa(k‘)a_1) ' 14

We can next compute k" directly from budget constraint (2). In this example, ECM

is simpler than Carroll’s (2005) EGM as all policy functions can be constructed
analytically and a solver must never be used (not even once).

3.4 Discussion

Four combinations are possible from two alternative conditions for V}, (FOC (5) and
envelope condition (6)) and two alternative grids (exogenous and endogenous). So
far, we have distinguished two competitive methods: one is EGM of Carroll (2005)
(FOC (5) and endogenous grid) and the other is our ECM (envelope condition (6)
and exogenous grid). The conventional VFI (FOC (5) and exogenous grid) is not
competitive. Therefore, we are left to explore the remaining combination (envelope
condition (6) and endogenous grid). Combining (2) and (14) yields

a =1/
(1—06)k+ak® = (1 — ;ﬁ(j; ()k)a—l) + K. (15)

We must solve (15) for £ given (k’, a). This involves evaluations of V} (k, a) for many
candidate solution points (k, a), which is costly. We conclude that the combination of
the envelope condition and endogenous grid does not lead to a competitive method.
Our results are suggestive for other applications.

4 The model with elastic labor supply

We now consider the model with elastic labor supply under the following assumptions:
-1 (1-0""-1
1—7 1—p

where v > 0, 4 > 0 and « € (0,1). We restrict attention to EGM and ECM that we
found to be competitive.

u (e, l) = and f(k,0)=k*0*~,  (16)



4.1 Endogenous grid method

Under EGM, we must solve equations (2), (4) and (5) for (c, ¢, k) given (k' a).
As in the model with inelastic labor supply, we compute E [V (K',a')] = W (K, a),
EV, (K,a")] =W, (¥,a) given V, and we find ¢ = [W}, (', a)] /" using (4). Under
(16), we can express k from (4) and substitute it into (2) to get

o B1—o™" '
F=0 5)(5Wk<kxa>a<l—a>) f
B(1—0)"¢

— ' a —1/7.
T AW (K, a) (1— ) (Wi (K, a)] (17)

The equation (17) that must be solved numerically for one unknown ¢. This equation
is relatively cheap as it does not involve either interpolation or approximation of
expectations.

4.2 Envelope condition method

Under ECM, we must solve equations (2), (4) and (6) for (¢, ¢, k') given (k,a). By
substituting ¢~ from (4) into envelope condition (6), we obtain

Vi (k.a) = B(1-0™"

TR [1 =6+ aak* 170 . (18)

We must solve equation (18) for ¢. Like (17), the equation (18) does not involve
either interpolation or approximation of expectations.

4.3 Discussion

Under our implementation, the rootfinding problems under EGM and ECM are com-
parable in their complexity. In both cases, we must find a solution to a non-linear
equation in each grid point. Such an equation is relatively cheap to solve as it does
not involve either interpolation or approximation of expectations.

In the model with elastic labor supply, Carroll’s (2005) change of variables does
not avoid rootfinding. The variable Y’ = d'f (K',¢') + k' depends on future labor
V', and E [V (Y’,d’)] cannot be computed without specifying labor policy functions.
Barillas and Fernandez-Villaverde (2007) propose a way of extending EGM to the
model with elastic labor supply. Namely, they fix a policy function for labor ¢ =



L (K, a), construct the grid of (Y’ a), solve the model on that grid holding £ fixed
and use the solution to reevaluate £; and they iterate on these steps until £ converges.

Our implementation of EGM for the model with elastic labor supply differs from
that in Barillas and Ferndndez-Villaverde (2007). First, we use future endogenous
state variables for constructing gridpoints but we do not use Carroll’s (2005) change
of variables. Second, to deal with rootfinding, we use a numerical solver while Barillas

and Ferndndez-Villaverde (2007) iterate on a state contingent policy function for
labor L (K, a).

5 Numerical analysis

We compare the performance of EGM and ECM in the context of the model with
elastic labor supply.

5.1 Methodology

We calibrate the model (1)—(3) under (16) such that in the steady state, the capital-
output ratio is m; = 10, the consumption-output ratio is 7. = 3/4, the steady
state labor is ¢ = 1/3 and o = 1/3; this implies § = 0.99, § = 0.025 and B =
(1—«) Wél_v)a/(l_a)ﬂcﬂ (1 —£)"¢77. In the benchmark case, we use (v, u) = (2,2).
The parameters in (3) are p = 0.95 and ¢ = 0.01. Our design of EGM and ECM
is similar. As a solution domain, we use a rectangular, uniformly spaced grid of
10 x 10 points for capital and productivity within an ergodic range. We use a 3-node
Gauss-Hermite quadrature rule for approximating integrals. We parameterize value
function with complete ordinary polynomials of degrees up to 5. To solve for the
polynomial coefficients, we use fixed-point iteration. To solve nonlinear equations
(17) and (18), we use a solver csolve written by Christopher Sims. We use MATLAB
software, version 7.6.0.324 (R2008a) and a desktop computer ASUS with Intel(R)
Core(TM)2 Quad CPU Q9400 (2.66 GHz), RAM 4MB. A detailed description of the
algorithms is provided in the Appendix A.

5.2 Results for the model with elastic labor supply

We first solve for V' by iterating on Bellman equation (7); we refer to the corre-
sponding methods as EGM-VF and ECM-VF. The results are shown in Table 1.
The performance of EGM-VF and ECM-VF is very similar. EGM-VF produces
slightly smaller maximum residuals, while ECM-VF produces slightly smaller aver-
age residuals. EGM-VF is somewhat slower than ECM-VF.

10



Table 1: Accuracy and speed of EGM-VF and ECM-VF in the model with elastic
labor supply.®

Polynomial EGM-VF ECM-VF
degree I L. CPU I L. CPU
1st - - - - - -
2nd -3.28 -2.81 83| -3.34 -2.75 5.8
3rd -4.31 -3.99 8.9 | -4.38 -3.87 7.2
4th -5.32  -4.96 7.3 | -5.45 -4.86 5.8
5th -6.37 -5.85 6.5 | -6.57 -5.72 4.7

¢ Notes: L; and Lo, are, repectively, the average and maximum of absolute residuals across opti-
mality condition and test points (in logl0 units) on a stochastic simulation of 10,000 observations;
CPU is the time necessary for computing a solution (in seconds).

We next solve for Vj, by iterating on (8); we call these methods EGM-DVF and
ECM-DVEF. The results are provided in Table 2. Again, EGM-DVF and ECM-DVF

Table 2: Accuracy and speed of EGM-DVF and ECM-DVF in the model with elastic
labor supply.®

Polynomial EGM-DVF ECM-DVF
degree I L. CPU I L. CPU
1st -3.03  -2.87 8.1 -3.08 -2.92 7.2
2nd -4.13 -3.82 7.2 -4.18 -391 6.5
3rd -5.06 -4.77 7.3 | -5.20 -4.87 6.7
4th -6.09 -564 74 |-6.29 -572 6.8
5th 712 626 7.6 | -7.36 -6.32 6.9

¢ Notes: L; and Lo, are, repectively, the average and maximum of absolute residuals across opti-
mality condition and test points (in logl0 units) on a stochastic simulation of 10,000 observations;
CPU is the time necessary for computing a solution (in seconds).

perform very similarly. Both methods deliver accuracy levels that are about an
order of magnitude higher than those of EGM-VF and ECM-VF. Overall, we attain
accuracy levels that are comparable to the best accuracy attained in the related
literature.

Iterating on (8) produces more accurate solutions than iterating on (7) because
the object that is relevant for accuracy is Vj, and not V' (namely, V) identifies the
model’s variables from (2)—(6)). Approximating a supplementary object V' and com-
puting its derivative Vj involves an accuracy loss compared to the case when we
focus on the relevant object Vj directly. For example, if we approximate V' with a

11



polynomial, we effectively approximate V}, with a polynomial which is one degree
lower, i.e., we "lose" one polynomial degree.

We finally implement versions of EGM and ECM which approximate V' jointly
with V} by iterating on both (7) and (8); we call them EGM-VF&DVF and ECM-
VF&DVF. We specifically fit a polynomial approximation for V' on the grid using a
constrained linear least-squares that imposes a linear restriction on the coefficients
of a polynomial that approximates V). This procedure is similar in spirit to a Her-
mite interpolation method described in Cai and Judd (2012). In our simple example,
approximating V' jointly with V}, lead to the same results as those obtained approxi-
mating V' alone. However, in more complex models in which value function has many
endogenous arguments, fitting both V' and V; on the grid may improve accuracy of
solutions because it imposes consistency on cross derivatives of V.

6 Conclusion

Conventional VFI is expensive. Carroll (2005) introduces the EGM method that
reduces the cost of value iteration dramatically. In this paper, we propose the ECM
method that can compete with Carroll’s (2005) method. In our simple application,
EGM and ECM perform similarly. But in more complex applications, one method
may lead to a more simple system of equations and thus, be preferable to the other.
One application in which ECM can be a useful choice is models of sovereign default;
see, e.g., Villemot (2012).

In the paper, we build ECM and EGM using tensor product grids. However, ECM
and EGM can be implemented using nonproduct techniques that are tractable in high
dimensional applications; see Maliar and Maliar (2005) for a numerical method that
solves for a value function on simulated series, and see Judd et al. (2011, 2012)
for effective non-product grid constructions, low-cost monomial integration formulas
and numerically stable fitting methods. In particular, Maliar and Maliar (2012)
show versions of ECM that solves dynamic programming problems with up to 16
state variables.
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Appendix A

We first provide a description of 3 versions of ECM used.
ECM-VF, ECM-DVF, ECM-VF&DVF
Step 0. Initialization.

a. Choose an approximating function V (-;b) = V.
b. Choose integration nodes, €;, and weights, w;, j =1,...,J.
c. Construct a grid I' = {km, am},,—;
d. Make an initial guess on b(1).
Step 1. Computation of a solution for V.
At iteration ¢, for m =1, ..., M,
a. Solve for ¢,, that satisfies
B(1—=0y) ™" (1 =6+ acks Hlo) = Vi (K, am; b9) a (1 — o) k&9
Vi (kmam:p®) _1/7_
1—6+aakd tel-o ’
c. Compute k!, = (1 —8) kpy + amk& 0% — ¢
ECM-VEF. Find value function on the grid

vm = S 4 BUEL 4 50 0 (K, ahexp ()00
ECM-DVF. Find derivative of value function on the grid
dm =8 [1 — 0+ aak%‘lﬁ}n_a] ijl ijA/k (k;n, ah, exp (€5) ;b(i)>;
Step 2. Computation of b that fits the value function on the grid.
a. Run a regression to find b

ECM-VF. b = arg mbin 2%21 va Vv (km, am; b)H

ECM-DVF. b = arg mbin Z%Zl Hdm - Vk (K am; b)”

ECM-VF&DVF. b = arg mbin 2%21 va -V (K, b)H s.t. dy,, = Vk (Kms am; ).
b. Use damping to compute b0+ = (1 — £)b@ + £b.

b. Compute ¢, =

M
c. Check for convergence: end Step 2 if 7; Z

m=1

‘ (k) Y — (k)™
(kf) )

We now provide a description of 3 different version of EGM used (steps that are
identical under ECM and EGM are omitted).

14



EGM-VF, EGM-DVF, EGM-VF&DVF
...c. Construct a grid I' = {k,, am},,—;
...At iteration ¢, for m =1, ..., M,

~ , ) -1/
a. Find ¢, = (6 ijl w; Vi (km, am exp (€;) ;b(’)>> ’
b. Solve for ¢,, that satisfies
k= (1= 8) (BU=n Y Ot 0

cm ' a(l—a) cm! (1-a)
B—Lm)~" )1/0“
e a(l—a) ™ ’

c. Compute k,, = (

15
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