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1 Introduction

Understanding how stock market returns and volatilities move over time has been of interest to

researchers into the time series literature. In addition, as the �nancial crisis has shown, it is also

very important to realize that stock markets move together. Evidence of these co-movements

can be found, for example, in the fall of several international stock market indices after a very

big investment bank in US, Lehman Brothers, declared bankruptcy in September 2008. There-

fore, trying to model stock markets in a univariate way ignoring their interactions would be

insu¢ cient. In this sense, Multivariate Generalized Autoregressive Conditional Heteroskedas-

ticity (MGARCH) models have been very popular to capture the volatility and covolatility of

assets and markets; see, for example, Bauwens et al. (2006) and Silvennoinen and Teräsvirta

(2009) for a survey.

One of the problems with many MGARCH models is the di¢ culty to verify that the con-

ditional variance-covariance matrix is positive de�nite. Engle et al. (1984) provide necessary

conditions for the positive de�niteness of the variance-covariance matrix in a bivariate ARCH

setting. However, extensions of these results to more general models are very complicated.

Moreover, imposing restrictions on the log-likelihood function, in order to have the necessary

conditions satis�ed, is often di¢ cult.

A model that could avoid these problems is the Constant Conditional Correlation GARCH

(CCC-GARCH) model proposed by Bollerslev (1990). In this model, the Gaussian maximum

likelihood (ML) estimator of the correlation matrix is the sample correlation matrix which is

always positive de�nite. Therefore, the only restrictions needed are the ones for the conditional

variances to be positive. On top of that, since the correlation matrix can be concentrated out

of the log-likelihood function, the optimization problem becomes simpler. Consequently, the

CCC-GARCH model has become very popular in the literature regardless of some limitations

such as the constant correlation assumption and the incapability to explain possible volatility in-

teractions. The extension proposed by Jeantheau (1998), the ECCC-GARCH model, addresses

the last issue by allowing for volatility spillovers. Relaxing the constant correlation assumption

is done by Engle (2002) and Tse and Tsui (2002) who propose the Dynamic Conditional Cor-

relation GARCH (DCC-GARCH) model in which the correlation changes over time. However,

since the correlation dynamics require more parameters, the estimation of the DCC-GARCH

model can be computationally very heavy. One possible solution is to use the correlation target-

ing approach, see Engle (2009), in which the intercept in the correlation equation is replaced by

its sample counterpart. This solution is questioned by Aielli (2008) who suggests a correction

to the DCC-GARCH model, denoted by Consistent DCC-GARCH (cDCC-GARCH) model.

Alternatively, Pelletier (2006) introduces the Regime Switching Dynamic Correlation GARCH

(RSDC-GARCH) model in which the correlation is constant over time but changing between
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di¤erent regimes and driven by an unobserved Markov switching chain. This model can be

thought as in between the CCC-GARCH model and the DCC-GARCH model, with the prob-

lem that the number of correlation parameters to be estimated increases rapidly with the

number of series considered.

When dealing with stock market returns, it is not unusual to �nd some dynamics in the

conditional mean, that could be well approximated by a Vector Autoregressive Moving Average

(VARMA) model; see, for example, da Veiga and McAleer (2008a, 2008b). One way to estimate

the parameters of the VARMA-MGARCH conditional correlation model would be solving the

optimization problem of the full log-likelihood function and therefore obtaining the estimates

for all the parameters in one step. If a Gaussian log-likelihood function is speci�ed and the

true data generating process (DGP) is also Gaussian, then it is known that ML estimators are

consistent and asymptotically normal. In the case that the true DGP is not Gaussian, then we

would be using quasi-maximum likelihood (QML) estimators. Bollerslev andWooldridge (1992)

show that, under quite general conditions, QML estimators are consistent and asymptotically

normal. Estimating all parameters in one step would be the best we could achieve, however

when there are many parameters involved, it is very heavy computationally, when feasible.

Bollerslev (1990), Longin and Solnik (1995) and Nakatani and Teräsvirta (2008) are few of the

papers using one-step estimation.

Under the normality assumption, the parameters could also be estimated in two steps. First,

the mean and variance parameters are estimated assuming no correlation and then, in a second

step, the correlation parameters are estimated given the estimates from the �rst step; see, for

example, Engle (2002). However, as Engle and Sheppard (2001) suggest for the DCC-GARCH

model, these two-step estimators will be consistent and asymptotically normal but not e¢ cient.

The three-steps estimation method is mentioned in Bauwens et al. (2006). It consists

of estimating the mean parameters in a �rst step, the variance parameters in a second step,

given the �rst step estimates, and �nally, given all other parameter estimates, the correlation

parameters in the last step. The second and third steps of the procedure will be equivalent

to the two-steps estimation method for a zero-mean series. Therefore, under normal errors,

the three-steps estimators are also consistent and asymptotically normal. Engle and Sheppard

(2001) implement the three-steps estimation procedure in the empirical part of their paper.

Evidence gathered over the past decades shows that stock market returns are often far from

having a normal distribution. Consequently, we also consider estimating the models assuming

a Student-t distribution. The one-step estimator is obtained by maximizing the log-likelihood

function based on the multivariate t-distribution; see, for example, Harvey et al. (1992) and

Fiorentini et al. (2003). Although there is no theoretical work studying the properties of

multiple steps estimation when assuming a Student-t distribution, we consider two-steps and

three-steps estimators. In this line of research, Bauwens and Laurent (2005) and Jondeau and
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Rockinger (2005) also analyze two-steps estimators. However, their approach is di¤erent in the

sense that the �rst step of their estimation is performed assuming Gaussian errors while we

maintain the assumption that the errors are distributed as a Student-t.

In this paper, we present various Monte Carlo experiments to compare the �nite sample per-

formance of the more e¢ cient one-step estimator with the two-steps and three-steps estimators

for di¤erent Vector Autoregressive Multivariate Conditional Correlation GARCH models. In

particular we consider VAR(1) - CCC, ECCC, DCC, cDCC and RSDC - GARCH(1,1) models.

When the data is normally distributed, we �nd that, for the models considered and for the

sample sizes usually encountered in �nancial econometrics, di¤erences between the one-step

and multiple steps estimators are negligible. When we change the assumption on the distribu-

tion to a Student-t, we conclude that, for some models, the di¤erences between the estimators

could be relevant and therefore, estimating the parameters in multiple steps might not be a

good idea.

The comparison between one-step and two-steps estimators helps us to measure the e¢ -

ciency loss when estimating the correlation parameters separately from the mean and variance

parameters; see Engle (2002) and Engle and Sheppard (2001). As we will see, when the errors

are assumed to be Gaussian, the small sample behavior of one-step and two-steps estimators is

very similar. On the other hand, when the estimation is based on the Student-t distribution,

in some cases two-steps estimators deviate from one-step estimators.

Comparing two-steps and three-steps estimators helps us to analyze the e¤ects of separating

the estimation of mean and variance parameters; see Bauwens et al. (2006). Our results show

that, when the errors are assumed to be Gaussian or Student-t, the small sample behavior of

two-steps and three-steps estimators is also very similar.

Some robustness checks have been carried out to study how the results change when the

true error distribution is di¤erent from the assumed one. Also, we analyze the robustness of

our �ndings to the model misspeci�cation.

One potential problem of our results is their external validity. For the Monte Carlo exper-

iments, we considered bivariate models and in some cases three time series. We assume that

what we �nd for two and three time series could be extrapolated for any number k > 3 of time

series.

The rest of the paper is structured as follows. Section 2 introduces the econometric models

of interest. One-step and multiple steps estimators for the previous models are discussed in

Section 3. Section 4 describes the Monte Carlo experiments and presents a discussion of the

results. Finally, Section 5 concludes the paper.
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2 Econometric Models

For simplicity we consider a k-variate Vector Autoregressive (VAR) model of order one for the

mean equation with the following notation:

Yt = �+ �Yt�1 + "t (1)

where V ar("t jYt�1; :::Y1) = Ht, Yt is a k � 1 vector of returns, � is a k � 1 vector of
constants, � is a k � k matrix of autoregressive coe¢ cients and "t is a k � 1 vector of error
terms as follows.

Yt =
h
y1t y2t : : : ykt

i0
; � =

h
�1 �2 : : : �k

i0

� =

266664
�11 �12 : : : �1k
�21 �22 : : : �2k
...

...
. . .

...

�k1 �k2 : : : �kk

377775 ; "t =
h
"1t "2t : : : "kt

i0

The model is stationary if all values of z solving equation (2) are outside of the unit circle.

jIk � �zj = 0 (2)

The number of mean parameters in the coe¢ cient matrices � and � is k(k + 1): However,

sometimes � is assumed to be diagonal. In that case, there will be 2k mean parameters to

estimate.

The error term "t can be written as follows

"t =H
1=2
t �t

where �t is a k � 1 vector with E(�t) = 0 and V ar(�t) = Ik.

H t = DtRtDt (3)

where Dt = diag(h
1=2
1t ; h

1=2
2t ; :::; h

1=2
kt ) and Rt is the conditional correlation matrix such that

H t = diag(h
1=2
1t ; h

1=2
2t ; :::; h

1=2
kt )

266664
1 �12t : : : �1kt
�12t 1 : : : �2kt
...

...
. . .

...

�1kt �2kt : : : 1

377775 diag(h1=21t ; h1=22t ; :::; h1=2kt )
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=

266664
h1t �12t

p
h1th2t : : : �1kt

p
h1thkt

�12t
p
h1th2t h2t : : : �2kt

p
h2thkt

...
...

. . .
...

�1kt
p
h1thkt �2kt

p
h2thkt : : : hkt

377775
From previous equations, given that the conditional correlation matrix,Rt, is always positive

de�nite, it is clear that as long as conditional variances, hit, are positive for any i = 1; 2; : : : ; k,

the conditional variance-covariance matrix, Ht, will be also positive de�nite. The conditional

variances hit are assumed to follow a GARCH(1,1) model. Then,

ht =W +A"
(2)
t�1 +Ght�1 (4)

where ht =
h
h1t h2t : : : hkt

i0
and "(2)t =

h
"21t "22t : : : "2kt

i0
are k� 1 vectors of conditional

variances and squared errors respectively andW is a k � 1 and A and G are k � k matrices

of coe¢ cients. If A and G are restricted to be diagonal; see, for example, Bollerslev (1990)

and Engle (2002), then volatility spillovers cannot be captured. Alternatively, if A and G

are non-diagonal; see, for example, Jeantheau (1998) and Ling and McAleer (2003), then the

model allows for volatility spillovers. In the former case there will be 3k variance parameters

to estimate, while in the latter that number will be k(2k + 1).

Let us denote by !i = [W]i, �ij = [A]i;j and 
ij = [G]i;j. The following conditions, in

Jeantheau (1998), are su¢ cient for the variances to be always positive.

!i > 0 �ij > 0 
ij > 0 for all i and j:

Nakatani and Teräsvirta (2008) provide necessary and su¢ cient conditions for ht to have pos-

itive elements for all t. They show that o¤-diagonal elements in G could be negative while

Ht is still positive de�nite. This allows for negative volatility spillovers; see also Conrad and

Karanasos (2010). The model is stationary in covariance if the roots of jIk � (A+G)zj = 0

are outside of the unit circle. In the diagonal case, this condition is equivalent to

�ii + 
ii < 1 for all i:

This paper considers �ve conditional correlation GARCH models given by di¤erent spec-

i�cations of Rt in (3). The �rst and simplest one is the CCC-GARCH model where the

correlations are restricted to be constant over time. Bollerslev (1990) shows that, under this

restriction, the Gaussian ML estimator of the correlation matrix, Rt = R, is equal to the matrix

of sample correlations of the standardized residuals, i.e.

[bR]ij = b�ij = P
t b�itb�jtq�P

t b�2it� �Pt b�2jt� (5)

6
8

ssabater
Cuadro de texto



where �t = D�1
t "t are the standardized errors. Notice that, in this case, the number of correla-

tion parameters to be estimated is only k(k�1)=2. The ECCC-GARCH model of Jeantheau

(1998) extends the CCC-GARCH model by allowing for volatility spillovers as A and G in (4)

are non-diagonal.

The third model we consider is the DCC-GARCH in which Rt = PtQtPt with Pt =

diag(Qt)
�1=2 and Qt = (1� �1 � �2)Q+ �1�t�1�

0
t�1 + �2Qt�1 where Qt denotes the covariance

matrix and Q is the long run covariance (correlation) matrix. The correlation targeting ap-

proach suggests replacing Q with the sample covariance matrix of the standardized errors �t;

see Engle (2009). This procedure makes the estimation easier since it reduces the number of

correlation parameters from k(k�1)=2+2 to only 2: �1 and �2. If both are non-negative scalars
satisfying �1 + �2 < 1, then the correlation matrix, Rt; will be positive de�nite. Hafner and

Franses (2009) provide a more general de�nition of the model where they consider coe¢ cient

matrices instead of scalar coe¢ cients allowing for di¤erent dynamics on di¤erent correlations.

However, this increases the number of parameters considerably. For simplicity, we will focus

on the set up with the scalar coe¢ cients.

The DCC-GARCH model su¤ers from two problems. First, as Engle and Sheppard (2001)

and later Engle, Shephard and Sheppard (2008) point out, when k is large the correlation

targeting approach used in the DCC-GARCH model causes signi�cant biases to estimators

of the parameters �1 and �2. To �x this problem, Engle, Shephard and Sheppard (2008)

suggest a composite likelihood estimator which is based on the sum of the likelihoods obtained

from smaller number of series and therefore avoid the trap of high dimensionality. Another

solution is proposed by Hafner and Reznikova (2010), where the authors use shrinkage to

target methods to eliminate these biases asymptotically. The second problem, as Aielli (2008)

argues, is that multiple steps estimators of DCC-GARCH models with correlation targeting

are inconsistent since the covariance matrix of the standardized residuals is not a consistent

estimator of the long run covariance matrix Q. As Caporin and McAleer (2009) point out as

well, Aielli�s conclusion follows from the fact that the unconditional expectations of Qt could

di¤er from the unconditional expectation of �t�1� 0t�1, the former being a covariance matrix

while the latter is a correlation matrix by construction. Aielli (2008) therefore suggests a

corrected version of the DCC-GARCH model, denoted by cDCC-GARCH, in which Qt =

(1� �1� �2)Q+ �1��t�1��0t�1+ �2Qt�1 where ��t = diag(Qt)
1=2�t. He argues that in this model a

natural estimator for the long run covariance matrix, Q, would be the sample covariance matrix

of ��t . The number of parameters to be estimated will be then only 2 as in the DCC-GARCH

model of Engle (2002).

The last model we will consider in this paper is the RSDC-GARCH. In this model the
conditional correlations follow a switching regime driven by an unobserved Markov chain such

that they are �xed in each regime but may change across regimes. For simplicity, we assume a
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two-states Markov process such thatRt, at any time t, could be equal to eitherRL orRH , which

stands for low and high state correlation matrices, respectively. The transition probabilities

matrix is given by � = ff�L;L; �H;Lg; f�L;H ; �H;Hgg, where �i;j is the probability of moving
from state j to state i. Given that �j;j + �i;j = 1, the number of correlation parameters is

k(k � 1) + 2:
In the next section we will discuss how to estimate the parameters of these models.

3 Estimation Procedures

Multivariate GARCH models can be estimated using maximum likelihood. However, how the

estimation is implemented in practice is one of the main problems. When the number of

parameters is large, it is common that optimization procedures fail to �nd the maximum of

the likelihood function. In this section we will describe alternative estimation methods which

could be used in practice.

Let us start by introducing some notation. Let � = (�0; vec(�)0)0 be the vector containing

all the mean parameters in equation (1). The vector containing all the variance parameters

in (4) will be denoted by � = (W0; vec(A)0; vec(G)0)0 and  will be the one with all the

correlation parameters, that will change according to the model considered in each case. For

example,  = vech(R) for a CCC-GARCH model, while for a cDCC-GARCH model, it will be

 = (vech(Q)0; �1; �2)
0:1

3.1 Vector Autoregressive CCC, ECCC, DCC and cDCC GARCH
models

In this section we analyze three possible procedures to estimate the parameters in equations (1)

and (3), denoted by � = (�0; �0;  0)0 when Rt in equation (3) is speci�ed by the CCC-GARCH,

ECCC-GARCH, DCC-GARCH or the cDCC-GARCH model.

3.1.1 One-step Estimation

One possibility is to estimate all parameters of the model, � = (�0; �0;  0)0 simultaneously.

If data is assumed to be normally distributed, this one-step estimator will be the maximum

likelihood estimator of � and it can be found by maximizing the multivariate Gaussian log-

likelihood function:
1Notice that the vec operator stacks the colums of a matrix while the vech operator stacks the columns of

the lower triangular part of a matrix.
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L(�) = �Tk
2
log(2�)� 1

2

TX
t=2

(log jHtj+ "0tH
�1
t "t)

From equation (3) we have that

L(�) = �Tk
2
log(2�)� 1

2

TX
t=2

log jDtRtDtj �
1

2

TX
t=2

"0t(DtRtDt)
�1"t =

= �Tk
2
log(2�)� 1

2

TX
t=2

log jRtj �
TX
t=2

log jDtj �
1

2

TX
t=2

� 0tR
�1
t �t (6)

If errors are assumed to follow a Student-t distribution, then the function to be maximized

will be the multivariate Student-t log-likelihood as in Fiorentini et al. (2003):

L(�; �) = T log

�
�

�
�k + 1

2�

��
� T log

�
�

�
1

2�

��
� Tk

2
log

�
1� 2�
�

�
� Tk

2
log(�)

�
TX
t=2

�
1

2
log jHtj+

�
�k + 1

2�

�
log

�
1 +

�

1� 2��
0
tR

�1
t �t

��
(7)

where � is the inverse of the degrees of freedom as a measure of tail thickness. We assume

0 < � < 0:5 in order to have existence of the second order moments.

As Newey and Steigerwald (1997) pointed out, one concern when maximizing the log-

likelihood function based on a Student-t distribution is that estimators can be inconsistent

if the data does not follow a Student-t distribution. However, this will not be the case as long

as both the true and assumed distributions are symmetric.

Under Gaussianity assumption, one-step estimators of the parameters, �, obtained by max-

imizing the corresponding likelihood function in (6), are consistent and asymptotically normal.

In particular, p
n(b�n � �0) �A N(0; A�10 B0A

�1
0 )

where A0 is the negative expectation of the Hessian matrix evaluated at the true parameter

vector �0 and B0 is the expectation of the outer product of the score vector evaluated at �0
obtained from the likelihood function in (6).

If data is assumed to follow a Student-t distribution, one-step estimators of the parameters,

�, computed by maximizing the likelihood function in (7), are consistent and asymptotically

normal; see Fiorentini et al: (2003). It is important to note that if the true distribution of

the data is Student-t, Maximum Likelihood (ML) estimators (in this case, one-step estimators

using (7)) are more e¢ cient than Quasi-Maximum Likelihood (QML) estimators obtained from

maximizing the likelihood function under the normality assumption given in (6).
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3.1.2 Two-steps Estimation

It is possible to estimate the parameters of the model, � = (�0; �0;  0)0 in two steps following

Engle (2002) and Engle and Sheppard (2001). They proposed to use two-steps when estimating

the parameters of the DCC-GARCH model. The idea is to separate the estimation of the

correlation parameters,  , from the mean and variance parameters, � and � respectively.

In the �rst step, the mean and variance parameters, � and �, are estimated by maximizing

the Gaussian log-likelihood function in (6) in which the correlation matrix Rt is replaced by

the identity matrix. Therefore, in the �rst step, the function to be maximized is the following:

L1(�; �) = �
Tk

2
log(2�)�

TX
t=2

log jDtj �
1

2

TX
t=2

� 0t�t

If volatility spillovers are not allowed, i.e. A and G in equation (4) are restricted to be

diagonal, the �rst step estimation is equivalent to estimating k univariate models separately;

see Engle and Sheppard (2001) for details.

In the second step, given the estimates from the �rst step, b� and b�, the correlation coe¢ cients
are estimated by maximizing the following function

L2

�
 jb�; b�� = �1

2

TX
t=2

�
log jRtj+ b� 0tR�1

t b�t� (8)

where b�t are the standardized residuals obtained in the �rst step.
Bollerslev (1990) shows that when the correlations are constant over time, i.e. in the CCC-

GARCH model, the correlation coe¢ cients estimator obtained in the second step is equal to

the sample correlation matrix of the standardized residuals given in (5).

If data is assumed to follow a normal distribution, two-steps estimators are also consistent.

Furthermore, Engle and Sheppard (2001) give conditions for the DCC-GARCH model under

which two-steps estimators are also asymptotically normal.

Next, we also consider two-steps estimation using the log-likelihood function based on the

Student-t distribution. Accordingly, in the �rst step the function to be maximized is the

multivariate Student-t log-likelihood function in (7) where the correlation matrix Rt has been

replaced by Ik. That is

L1(�; �; �) = T log

�
�

�
�k + 1

2�

��
� T log

�
�

�
1

2�

��
� Tk

2
log

�
1� 2�
�

�
� Tk

2
log(�)

�
TX
t=2

�
log jDtj+

�
�k + 1

2�

�
log

�
1 +

�

1� 2��
0
t�t

��
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Similar to the case of Gaussian innovations, when no volatility spillovers are considered,

we employ univariate estimation for each series while when there are volatility spillovers, we

solve the multivariate problem. In the second step the correlation coe¢ cients are estimated by

maximizing the following function

L2

�
 ; �jb�; b�� = � TX

t=2

�
1

2
log jRtj+

�
�k + 1

2�

�
log

�
1 +

�

1� 2�b� 0tR�1
t b�t�� (9)

where b�t are the standardized residuals obtained in the �rst step.
3.1.3 Three-steps Estimation

An alternative procedure that we will analyze in this paper is the estimation of � = (�0; �0;  0)0

in three steps. In the �rst step, the parameters of the mean equation, �, are estimated assuming

constant variance, i.e. hit = hi 8 t, and assuming that the correlation matrix Rt is equal to the

identity matrix for all t. Therefore, the function to be maximized is the following

L1(�; hi) = �
Tk

2
log(2�)�

TX
t=2

log jDj � 1
2

TX
t=2

� 0t�t

where D = diag(h
1=2
1 ; h

1=2
2 ; :::; h

1=2
k ) contains the conditional standard deviations. This is equiv-

alent to OLS estimation for the univariate mean equations, given that the variance-covariance

matrix is block diagonal.

In the second step, the parameters of the variance equation, �, are estimated given the

estimates of the parameters of the mean equation, b�, and substituting the correlation matrix
Rt by Ik. This leads to the maximization of the following function:

L2

�
�jb�� = �Tk

2
log(2�)�

TX
t=2

log jDtj �
1

2

TX
t=2

~� 0t~�t

where ~�t = D�1
t b"t and b"t are the residuals obtained in the �rst step. After obtaining b� andb� from the two previous steps, in the last step, the correlation coe¢ cients are estimated by

maximizing the following function

L3

�
 jb�; b�� = �1

2

TX
t=2

�
log jRtj+ b� 0tR�1

t b�t� (10)

where b�t are the standardized residuals obtained from the second step. When the correlations

are constant over time, the correlation coe¢ cients estimator obtained in the third step is, as in

the two steps estimation procedure, equal to the sample correlation matrix of the standardized

residuals given in (5).
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Under the Gaussianity assumption, three-step estimators are also consistent and their as-

ymptotic distribution is very similar to that of the two-step estimators; see Engle and Sheppard

(2001).

When using the log-likelihood function based on the Student-t distribution, the three steps

estimation is performed in a similar manner. In the �rst step, the mean parameters, �, are

estimated along with the inverse of the degrees of freedom assuming homoscedastic innovations,

i.e. hit = hi 8 t. The function to be maximized in the �rst step is the following

L1(�; �; hi) = T log

�
�

�
�k + 1

2�

��
� T log

�
�

�
1

2�

��
� Tk

2
log

�
1� 2�
�

�
� Tk

2
log(�)

�
TX
t=2

�
log jDj+

�
�k + 1

2�

�
log

�
1 +

�

1� 2��
0
t�t

��
In the second step, the variance parameters, �, and the inverse of the degrees of freedom, �,

are estimated conditional on the mean parameter estimates, b�. The function to be maximized
is the following

L2

�
�; �jb�� = T log

�
�

�
�k + 1

2�

��
� T log

�
�

�
1

2�

��
� Tk

2
log

�
1� 2�
�

�
� Tk

2
log(�)

�
TX
t=2

�
log jDtj+

�
�k + 1

2�

�
log

�
1 +

�

1� 2� ~�
0
t~�t

��
Finally, in the third step, the correlation coe¢ cients and the inverse of the degrees of freedom

are estimated by maximizing the following function

L3

�
 ; �jb�; b�� = � TX

t=2

�
1

2
log jRtj+

�
�k + 1

2�

�
log

�
1 +

�

1� 2�b� 0tR�1
t b�t�� (11)

where b�t are the standardized residuals obtained in the second step.
3.2 Vector Autoregressive RSDC-GARCH model

The mean, variance and correlation parameters � = (�0; �0;  0)0 when Rt in equation (3) is

speci�ed by the RSDC-GARCH model can also be estimated in multiple steps.

Let us denote by 
t�1 all previous information up to t � 1 and let f(�) be the likelihood
function obtained under the assumption of either a Gaussian or a Student-t distribution. The

one-step estimator of � would be obtained by maximizing the following log-likelihood function:

L(�) =

TX
t=2

log f(Ytj
t�1) (12)
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where

f (Ytj
t�1) = f (YtjSt = L;
t�1)� Pr (St = Lj
t�1) + f (YtjSt = H;
t�1)� Pr (St = Hj
t�1)

The function f (YtjSt;
t�1) is the likelihood function of Yt conditional on the state St, that can
be L or H, and all previous information. The function f (Ytj
t�1) is the likelihood when the
state is marginalized out. On the other hand, Pr (Stj
t�1) denotes the probability of being in a
certain state, St, conditional on previous information. This probability can be computed using

Hamilton �lter (Hamilton, 1994, Chapter 22). In the case of a model with only two states, as

the one analyzed in this section, Pr(Stj
t�1) is given by:

Pr (St = Lj
t�1) = (1� �H;H) + (�L;L + �H;H � 1)�

� f(Yt�1jSt�1 = L;
t�2)� Pr(St�1 = Lj
t�2)
f(Yt�1jSt�1 = L;
t�2)� Pr(St�1 = Lj
t�2) + f(Yt�1jSt�1 = H;
t�2)� (1� Pr(St�1 = Lj
t�2))

and consequently, Pr (St = Hj
t�1) = 1�Pr (St = Lj
t�1). The long run probabilities for each
state are used as initial conditions for the iterative process.

Alternatively, the estimation of � = (�0; �0;  0)0 can be done in two steps. In the �rst step,

estimates of the mean and variance parameters are obtained from maximizing the function

in (12) where the correlation matrix Rt is substituted by the identity matrix. In the second

step, the estimation of the correlation parameters will be done by maximizing the log-likelihood

function taking the mean and variance parameter estimates from previous step as given.

Another alternative is the estimation of � = (�0; �0;  0)0 in three steps. In the �rst step,

estimates of the mean parameters are obtained from maximizing the function in (12) where the

variance and correlation matrix Rt are assumed to be constant. In the second step, variance

parameters are estimated conditional on the mean parameters obtained in the previous step,

and �nally, the estimation of the correlation parameters will be done by maximizing the log-

likelihood function taking the mean and variance parameter estimates from the two previous

steps as given.

Pelletier (2006) estimates a RSDC-GARCH model by using data on four exchange rate

series. After demeaning the data, the correlation parameters are separately estimated from

the variance parameters. This corresponds to what we have called the three-steps estimation

procedure without paying much attention to the mean parameters or a two-steps estimation

method for a zero mean series.

Finally, the asymptotic properties of the one-step and multiple steps estimators of the

RSDC-GARCH model under the Gaussianity assumption are similar and can be found in Pel-

letier (2006).

13
15

ssabater
Cuadro de texto



A summary of the well-known theoretical results about ML estimation is shown in the

following table

Distribution Estimator
True Assumed One-step Two-steps Three-steps

Gaussian Gaussian Consistent Consistent Consistent

Student-t Student-t Consistent . .

Student-t Gaussian Consistent Consistent Consistent

Gaussian Student-t Consistent . .

In the next section we will con�rm the previous theoretical results in �nite samples and study

the cases for which no theory is provided, more speci�cally, what the behavior of multiple steps

estimators is when a Student-t distribution is assumed for the innovations.

4 Monte Carlo Experiments

In this section we analyze the �nite sample performance of one-step, two-steps and three-steps

estimators when they are used to estimate the parameters of �rst order Vector Autoregressive

CCC, ECCC, DCC, cDCC and RSDC-GARCH models. To compare di¤erent estimators, true

parameter values are reported together with the Monte Carlo mean and standard deviation

of the parameter estimates. In addition, kernel density estimates of di¤erent estimators of

each parameter are plotted to compare the performance of multiple steps estimators for each

sample size. Since the main interest of practitioners in this area is not only the estimation of

the parameters but more importantly, the estimation of the underlying conditional variances

and covariances, we will also look at the estimates of volatilities and correlations to compare

di¤erent estimators. For RSDC-GARCH models the correlations are driven by an unobservable

Markov chain and therefore, estimates of the correlation parameters will be analyzed instead

of correlation estimates.

We have carried out Monte Carlo experiments in which 1000 time series vectors of dimension

2 or 3 for sample sizes T = 200; 500; 1000 and 5000 are generated according to the relevant

model and distribution function for the innovations. Then, the parameters of the model are

estimated using one-step, two-steps and three-steps estimators assuming either a Gaussian or

a Student-t distribution for the errors. All simulations are performed by MATLAB computer

language.

Next, we describe in detail the four di¤erent experiments we have carried out. In the

�rst one, we simulate time series vectors following the �ve vector autoregressive multivariate

GARCH models considered assuming �rst a Gaussian distribution for the innovations and then,
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a Student-t distribution. Parameters, volatilities and correlations are then estimated assuming

the true data generating process and di¤erences between one-step and multiple steps estimators

are analyzed. In a second experiment we study how robust the results obtained in the previous

experiment are to the error distribution. With this objective, we simulate data from the �ve

models considered assuming a Gaussian distribution for the innovations and estimate the true

model under the assumption that errors follow a Student-t distribution. In adition, time series

vectors are generated using a Student-t distribution for the errors and then, true models are

estimated under the Gaussianity assumption. In a third experiment we analyze how good or

bad volatilities and correlations generated from a given model can be estimated using a di¤erent

model. Finally, in the fourth and last experiment we use a skewed Student-t distribution to

generate the data and estimate the true model under the assumption that errors follow a

symmetric distribution, Gaussian or Student-t.

4.1 Innovations distributed as a Gaussian or Student-t

We start by considering the case in which data is generated and estimated assuming a normal

distribution. Let us consider a bivariate model given by equations (1) to (3) with a diagonal

matrix � and Rt = R as given by the CCC-GARCH model. The unconditional mean and

variance are �xed to 1. The mean and variance persistences are set to be di¤erent from each

other but quite high. Therefore, in this basic bivariate model, we have 11 parameters to

estimate. The true parameter values as well as Monte Carlo means and standard deviations of

one-step and multiple steps estimators are given in Table 1. Two main patterns, as expected

for consistent estimators, emerge from this table. First, the di¤erences between the Monte

Carlo means and true parameter values go to zero as the sample size increases. Second, the

Monte Carlo standard deviations of the three estimators considered decrease as the sample size

increases. It is remarkable the similarities of the Monte Carlo means and standard deviations of

the three estimators. In general, it seems that the one-step estimator provides estimates with

Monte Carlo means slightly closer to the parameter values and Monte Carlo standard deviations

slightly smaller than the ones obtained for multiple-steps. However, the di¤erences among the

three estimators are practically negligible. On the other hand, we cannot conclude that in

�nite samples, multiple steps estimators over/under estimate the parameters in a systematic

manner. In order to graphically illustrate the distribution, in �nite samples, of the di¤erent

estimators, Figure 1 plots kernel density estimates obtained from one-step, two-steps and three-

steps estimators for the parameter values considered in Table 1 and sample size T = 500. As

the �gure shows, the three estimators give very similar results, even for relatively small sample

sizes.

In order to check the robustness of the results, we consider di¤erent scenarios by changing
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Figure 1: Kernel density estimates for estimated parameters of a VAR(1)-CCC-GARCH(1,1)

model with T = 500
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the parameter values in Table 1 and repeat the Monte Carlo experiment. Table 2 contains

the new parameter values and experiments considered. First, we consider the case in which

the unconditional variance of one of the series is more than six times the other (Experiment

2). In addition, we repeat the experiment with the unconditional mean of one series being

larger than the other (Experiment 3). We also consider the case in which the coe¢ cients of

the �rst variance equation are changed (Experiment 4). The other case we analyze is when

interactions among the series are allowed (Experiment 5). Finally, we consider a trivariate

model (Experiment 6). The results obtained from all these experiments can be summarized

in tables and graphs similar to Table 1 and Figure 1. All the results are similar to the ones

discussed before and summarized in Table 1 and they are not included in the paper to save

space but they are available from the authors upon request.

Since, as mentioned before, the main interest of practitioners in this area is not only the

estimation of the parameters but more importantly, the estimation of the underlying conditional

variances and covariances, we have also calculated the estimated volatilities and correlations

obtained from one-step, two-steps and three-steps estimators. For a sample size T , let us denote

by bhsi;t the estimated volatilities of series i at time t obtained from estimator s (one-step, two-

steps or three-steps) and denote by hi;t the true volatility of series i at time t. Then, the

di¤erence between the estimated and the true volatility of series i could be summarized for

each estimator s by

�bhsi = 1

T

TX
t=1

�bhsi;t � hi;t

�
(13)

Similarly, the di¤erence between the estimated and the true correlation of series i and j could

be summarized for each estimator s by

�bpsij = 1

T

TX
t=1

�bpsij;t � pij;t
�

(14)

Figure 2 plots kernel density estimates of the di¤erences between the estimated and the

true volatilities and correlations measured as in (13) and (14) for a VAR(1)-CCC-GARCH(1,1)

model with parameter values as in Experiment 1 (see Table 1) and sample sizes T = 200,

T = 500 and T = 1000. As the graph illustrates, one-step, two-steps and three-steps estima-

tors provide very similar estimated volatilities and correlations. As the sample size increases,

di¤erences between estimated and true volatilities and correlations are becoming closer to zero.

Alternatively, we have also computed the relative deviations of the estimated volatilities and

correlations from their true values, i.e.
bhsi;t�hi;t
hi;t

;
bpsij;t�pij;t
pij;t

and the corresponding plots are very

similar to the ones in Figure 2.

We have repeated the Monte Carlo experiments simulating the data from di¤erent models.

Kernel density estimates of the di¤erences between the estimated and the true volatilities and
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Table 2: Parameter values of the VAR(1)-CCC-GARCH model for di¤erent Monte Carlo ex-

periments

Parameter Basic (Table 1) Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6

�1 0:20 0:20 0:30 0:20 0:10 0:20

�2 0:40 0:40 0:40 0:40 0:40 0:40

�3 - - - - - 0:30

�11 0:80 0:80 0:80 0:80 0:80 0:80

�12 0:00 0:00 0:00 0:00 0:10 0:00

�21 0:00 0:00 0:00 0:00 0:10 0:00

�22 0:60 0:60 0:60 0:60 0:60 0:60

�33 - - - - - 0:70

!1 0:10 0:10 0:10 0:10 0:10 0:10

!2 0:05 1:00 0:05 0:05 0:05 0:05

!3 - - - - - 0:05

�1 0:10 0:10 0:10 0:35 0:10 0:10

�2 0:05 0:15 0:05 0:05 0:05 0:05

�3 - - - - - 0:15


1 0:80 0:80 0:80 0:55 0:80 0:80


2 0:90 0:70 0:90 0:90 0:90 0:90


3 - - - - - 0:80

�12 0:20 0:20 0:20 0:20 0:20 0:10

�13 - - - - - 0:20

�23 - - - - - 0:30
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Figure 2: Kernel density estimates of deviations from estimated to true volatility in a VAR(1)-

CCC-GARCH(1,1) model with Gaussian innovations
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correlations in VAR(1)-DCC, cDCC, ECCC and RSDC-GARCH(1,1) models were computed.

The parameter values used in this case for the mean equation (1), i.e. �;� are the same

as the ones in Table 1. The variance parameters in equation (4) are also the same as the

ones in Table 1 for VAR(1)-DCC, cDCC and RSDC-GARCH(1,1) models. For the VAR(1)-

ECCC-GARCH(1,1) model they are !1 = 0:2, !2 = 0:3, �11 = 0:25, �12 = 0:05, �21 = 0:10,

�22 = 0:20, 
11 = 0:50, 
12 = 0:10, 
21 = 0:05 and 
22 = 0:40. Finally, the correlation

parameter is the same as the one in Table 1 for the VAR(1)-ECCC-GARCH(1,1) model. Other

correlation parameters are �Q12 = 0:20, �1 = 0:04 and �2 = 0:94 for the VAR(1)-DCC and

cDCC-GARCH(1,1) models, and �LL = 0:80, �HH = 0:90, RL12 = 0:20 and R
H
12 = 0:80 for the

VAR(1)-RSDC-GARCH(1,1) model. Since the graphs are very similar to Figure 2 they are not

included in the paper. Consequently, our results suggest that under normal innovations, using

multiple step estimators is a reasonable strategy to estimate volatilities and correlations in all

the models considered. This �nding supports, for �nite samples, the theoretical asymptotic

results summarized in Section 3.

Next, we consider the case in which data is generated and estimated assuming a Student-t

distribution and we repeat the simulations for all the models. The number of degrees of freedom

used in the simulations is 1
�
= 5. For DCC-GARCH and cDCC-GARCH models the results are

similar to the ones obtained under the normal assumption. Figure 3 contains, as an example,

kernel density estimates of the di¤erences between the estimated and the true volatilities and

correlations in a VAR(1)-DCC-GARCH(1,1) model. As we can see, one-step, two-steps and

three-steps estimators provide volatilities and correlations estimates which are very close to

each other. These �ndings are in line with the results in Bauwens and Laurent (2005) and

Jondeau and Rockinger (2005) who show that, for the DCC-GARCH model, estimating mean

and variance parameters separately from the correlation parameters provides similar outcomes

to one-step estimation. In the case of the cDCC-GARCH model, results are very similar and

the graphs are not included to save space.

However, for three of the models considered, namely the VAR(1)-CCC-GARCH(1,1), VAR(1)-

ECCC-GARCH(1,1) and VAR(1)-RSDC-GARCH(1,1) models, important di¤erences appear

when estimating the correlations (or correlation parameters and transition probabilities for the

RSDC-GARCH model) with di¤erent estimators. In this case, one-step estimator provides the

best estimates. Figure 4 plots kernel density estimates of the di¤erences between the estimated

and the true volatilities and correlations in the VAR(1)-CCC-GARCH(1,1) model. Volatilities

and correlations seem to be underestimated when using multiple steps estimators. The �gure

corresponding to the VAR(1)-ECCC-GARCH model is very similar to Figure 4 and it is not in-

cluded in the paper. For the RSDC-GARCH model, Figure 5 contains kernel density estimates

of the di¤erences between the estimated and the true volatilities and of the correlation parame-

ters and the transition probabilities, instead of di¤erences from estimated to true correlations.
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Figure 3: Kernel density estimates of deviations from estimated to true volatility in a VAR(1)-

DCC-GARCH(1,1) model with Student-t innovations

­0.5 0 0.5
0

2

4

6

8

10
∆h1

s

1s
2s
3s
zero line

­0.5 0 0.5
0

2

4

6

8

10
∆h2

s

­0.2 ­0.1 0 0.1 0.2
0

5

10

15

20
∆ps

­0.5 0 0.5
0

2

4

6

8

10
∆h1

s

­0.5 0 0.5
0

2

4

6

8

10
∆h2

s

­0.2 ­0.1 0 0.1 0.2
0

5

10

15

20
∆ps

­0.5 0 0.5
0

2

4

6

8

10
∆h1

s

­0.5 0 0.5
0

2

4

6

8

10
∆h2

s

­0.2 ­0.1 0 0.1 0.2
0

5

10

15

20
∆ps

Sample size:200 Sample size:500 Sample size:1000

30
24

ssabater
Cuadro de texto



Figure 4: Kernel density estimates of deviations from estimated to true volatility in a VAR(1)-

CCC-GARCH(1,1) model with Student-t innovations
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Figure 5: Kernel density estimates of deviations from estimated to true volatility, of esti-

mated correlation parameters and of estimated transition probabilities in a VAR(1)-RSDC-

GARCH(1,1) model with Student-t innovations
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As we can see, estimates obtained with multiple steps estimators seem to be far from the ones

obtained with the one-step estimator. Therefore, our results suggest that when innovations are

distributed as a Student-t, using multiple steps estimators under the correct error distribution

might not be a good idea.

4.2 Robustness to the error distribution

We are also interested in analyzing how robust the di¤erent models and estimators are to the

distribution of innovations. In that sense, we have carried out an experiment which consists of

generating data from the models considered with errors following a Gaussian distribution and

estimating the true model assuming a Student-t distribution for the innovations. In another

experiment, we simulate data in which innovations follow a Student-t distribution and estimate

the true model assuming Gaussian errors.

Figure 6 contains kernel density estimates of the di¤erences between the estimated and

the true volatilities and correlations in a VAR(1)-ECCC-GARCH(1,1) model when the data is

generated using a Student-t distribution for the errors and estimated assuming Gaussian errors.

Di¤erences between one-step and multiple steps seem to be, again, negligible. Compared to the

case in which the true and assumed error distributions are both normal, the estimated densities

in Figure 6 have fatter tails. Finally, the results illustrate how the density estimates of the

di¤erences between the estimated and the true volatilities and correlations tend to zero as the

sample size increases. Similar �gures are obtained for the other four models.

When we simulate the data with Gaussian errors and estimate the model under the Student-t

distribution assumption, for the models considered2, i.e. VAR(1)-DCC and cDCC-GARCH(1,1)

models, �gures look very similar to the case when the true and the assumed distribution are

both normal. Figure 7 shows the results for the VAR(1)-DCC-GARCH(1,1) model in this case.

This similarity makes sense since Student-t distribution has an extra parameter, namely the

degrees of freedom, such that this distribution could approximate Gaussian distribution when

this parameter is su¢ ciently large. In fact, in the experiments for this last case, we obtained

very large estimates for the degrees of freedom of the Student-t distribution.

4.3 Robustness to Model

The next question we address is how bad (or well) volatilities and correlations can be estimated

when the model is misspeci�ed. We analyze the di¤erences between true conditional volatilities

and correlations and the estimated ones when the model used to generate the data is di¤erent

2Models VAR(1)-CCC, ECCC and RSDC-GARCH(1,1) have been excluded since, as we have previously seen,

multiple steps estimators do not perform well when the estimation is done under the assumption of Student-t

innovations.
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Figure 6: Kernel density estimates of deviations from estimated to true volatility in a VAR(1)-

ECCC-GARCH(1,1) model generated with Student-t innovations and estimated assuming

Gaussian errors
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Figure 7: Kernel density estimates of deviations from estimated to true volatility in a

VAR(1)-DCC-GARCH(1,1) model generated with Gaussian innovations and estimated assum-

ing Student-t errors
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from the estimated model. To perform this experiment, we take the parameter values from

real data. We have considered daily returns of three European stock market indices, BEL-20

(Brussels), DAX (Frankfurt) and FTSE-100 (London) for the period January 8, 2002 - April

30, 2009. The table below contains some descriptive statistics of the returns series, computed

as 100� log
�

pt
pt�1

�
, of sample size 1774.

Mean SD Skewness Kurtosis

BEL-20 -0.02 1.45 -0.05 9.12

DAX -0.01 1.74 0.15 7.80

FTSE-100 -0.01 1.41 -0.03 10.30

Using the returns series, we estimate all the �ve models considered, i.e. VAR(1)- CCC,

ECCC, DCC, cDCC and RSDC-GARCHmodels with no mean transmissions assuming Gaussian

errors. The results are given in Table 3 in which series 1,2 and 3 correspond to BEL-20, DAX

and FTSE-100, respectively.

As we can see in the table, three-steps estimates of the mean parameters are the same, as

expected, since the mean equation is the same for all the models. Two-steps mean parameter

estimates are also very similar, with the exception of the ECCC-GARCH model, since the

variance equation is the same across the other 4 models. Correlation estimates for the CCC

and ECCC-GARCH models are also very similar. The correlation parameter estimates of the

dynamic correlation models are signi�cantly di¤erent from zero, suggesting that correlations

are not constant during this period. When looking at the other parameters, as expected, the

di¤erences between one-step, two-steps and three-steps estimates are not very large. Figures

8 and 9 plot the volatilities and correlations estimates respectively. We can see that estimates

obtained using di¤erent estimators are very similar. The graphs containing the correlation

estimates obtained from DCC and cDCC models show that the correlation between the returns

of these markets in the period analyzed has been changing over time.

For the Monte Carlo experiments, we take the one-step estimates obtained in this empirical

exercise as the true parameter values to generate the data sets. Given that there are �ve

models, it adds up to 25 di¤erent experiments. For each model, we generate 1000 trivariate

time series vectors of sample size 1000 and given each of the time series vectors, we estimate the

�ve models considered. We perform the experiments assuming a Gaussian error distribution

for generating the data and also for estimating the parameters.

The results are reported in Table 4, in which the models used to generate the data appear

in the �rst column and the estimated models are in the second row. For each series, each

replication and at each time t, the relative di¤erence between estimated volatility (correlation)

and true volatility (correlation) is calculated and then the average is computed across the

number of series k, replications R and sample size T . For example, for the volatilities, the
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Figure 8: One-step, two-steps and three-steps estimates of the volatilities of BEL-20, DAX and

FTSE-100 observed from January 8, 2002 to April 30, 2009, asuming Gaussian innovations.
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Figure 9: One-step, two-steps and three-steps estimates of the correlations between BEL-20,

DAX and FTSE-100 indices observed from January 8, 2002 to April 30, 2009, asuming Gaussian

innovations.
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relative di¤erence between the estimated and the true ones is given by the ratio

ratiotrueh;est =
1

TRk

TX
t=1

RX
r=1

kX
i=1

 bhri;t � hi;t

hi;t

!
(15)

where in our case, k = 3, R = 1000 and T = 1000. The ratios corresponding to the one-

step estimation of a model that is correctly speci�ed is set to be equal to 0. Therefore, the

ratios reported in Table 4 are relative ratios and they should be read as the performance of the

corresponding estimator in a certain model when estimating the volatility (correlation), relative

to the one-step estimator in the correctly speci�ed model. The results are reported in three

parts: volatilities, correlations and covariances. In general, we can see that the ratios are all

very close to zero, indicating that, on average, volatilities and correlations are relatively well

estimated even when using a misspeci�ed model.

More speci�cally, looking at the results for the volatilities, we can see that the largest ratio

is 0:0165 and it appears when the true volatilities are generated by the VAR(1)-cDCC-GARCH

model and estimated by the VAR(1)-ECCC-GARCH in one step. Other large ratios correspond

to three-steps estimators of all the models considered when the data have been generated by the

VAR(1)-ECCC-GARCH model. For example, when the true volatilities are generated by the

VAR(1)-ECCC-GARCH model and estimated by the VAR(1)-CCC-GARCH in three steps, the

ratio is 0:0137, when they are estimated by the VAR(1)-DCC-GARCH, the ratio is 0:0154 and

when using the VAR(1)-cDCC-GARCH and the VAR(1)-RSDC-GARCH models to estimate

the volatilities, the ratio is 0:0141 and 0:0136 respectively. The reason could be that with the

exception of the correlation structure, all the models considered are nested in the VAR(1)-

ECCC-GARCH model, being this one more general and therefore, the rest of the models have

problems in explaining the volatilities generated by the VAR(1)-ECCC-GARCH model. On

the other hand, the true volatilities generated by the VAR(1)-CCC-GARCH model can be well

estimated by the other models since CCC-GARCH is nested within all of them.

When looking at the results for the correlations, we can see that the largest ratio is 0:0071

and it appears when the true correlations are generated by the VAR(1)-DCC-GARCH model

and estimated by the VAR(1)-ECCC-GARCH in one step. As expected, when the correla-

tions are generated by a dynamic correlation model, their estimation is better when assuming

another dynamic correlation model than when a constant correlation model is used. Also ex-

pected is the fact that the VAR(1)-ECCC-GARCH model produces better estimates of the

correlations generated by the VAR(1)-CCC-GARCH model than the estimates produced by

the VAR(1)-CCC-GARCH model when estimating the correlations generated by the VAR(1)-

ECCC-GARCH model. The reason could be that the VAR(1)-CCC-GARCH model can not

capture the volatility spillovers which indirectly can a¤ect correlations.

In general terms, when volatilities and correlations which have been generated by a partic-
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ular model are estimated by another model, their estimation seem to get worse as the number

of steps used in the estimation increase. On the other hand, the average ratios do not deviate

from zero more than 2 % in most of the cases. An interpretation of this result could be that, on

average, multiple steps estimates of volatilities (correlations) deviate from the corresponding

true volatilities (correlations) at most 2 % more than the amount that one-step estimates of

the correctly speci�ed model do.

4.4 Innovations distributed as a Skewed Student-t

In this section, we analyze the case in which innovations follow a skewed Student-t distribution.

For this purpose, we generate random vectors from a skewed multivariate Student-t distribution

following Bauwens and Laurent (2005). At each time t; a k dimensional random vector ��t is

given by:

��t = �(�)jxtj
jxtj = (jx1tj; jx2tj; :::; jxktj)0

where xt follows a multivariate Student-t distribution with zero mean and unit variance and

�(�) is a k � k diagonal matrix such that:

�(�) = ��� (Ik � �)��1

� = diag(�)

� = (�1; �2; :::; �k); with �i > 0

� = diag(� 1; � 2; :::; � k); with � i 2 f0; 1g

� i v Ber

�
�2i

1 + �2i

�
where Ber

�
�2i
1+�2i

�
is a Bernoulli distribution with probability of success �2i

1+�2i
and the ele-

ments of � are mutually independent. Given that in the GARCH set up, the elements of �t are

zero mean random numbers with unit variance, ��t should be standardized such that �it =
��it�mi

si

where:

mi =
�
�
v�1
2

�p
v � 2

p
��
�
v
2

� �
�i �

1

�i

�
s2i =

�
�2i �

1

�2i
� 1
�
�m2

i
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We �rst generate bivariate series with skewness parameters �1 = �2 = exp(0:4) for both

series, which implies a skewness of 1:5. Later we take �1 = exp(0:4) and �2 = exp(�0:7)
(implying a skewness of �2 for the second series) to see how the results change. Notice that
when �1 = �2 = 1, we have a symmetric multivariate Student-t distribution.

For the Monte Carlo experiments we use the estimates reported in Table 53 as the true

parameter values. We generate 1000 bivariate time series vectors of sample size equal to 1000.

Innovations are generated from a skewed Student-t distribution with skewness 1:5 for both

series or with skewness f1:5;�2g for the �rst and second series respectively and with degrees
of freedom 5. Then we estimate the true model assuming Gaussian or Student-t errors but

ignoring skewness.

Figure 10 plots the results of the Monte Carlo experiment when data has been generated

using a positively skewed Student-t distribution with the same skewness for both series and

estimated assuming Gaussian innovations. In this �gure, the rows correspond to a di¤erent

model and the columns represent the kernel densities estimates of the relative deviations of

estimated volatilities and correlations from the true ones calculated respectively as:4

�bhsi = 1

T

TX
t=1

(bhsi;t � hi;t

hi;t

)
(16)

�bpsi = 1

T

TX
t=1

�bpsi;t � pi;t

pi;t

�
(17)

As we can see, for all the models, the kernel densities of the relative deviations of one-

step and multiple steps estimates of volatilities (correlations) from the true ones follow each

other closely. It seems that the large positive skewness assumed in the data generating process

results in overestimation of the conditional correlations by around 2-3 % in each model while

the conditional volatility estimates don�t seem to be a¤ected much.

Figure 11 plots the same estimates as Figure 10 but now the estimation has been done as-

suming a Student-t distribution for the innovations. Similar conclusions can be made about the

one step correlation estimates for all models. We notice that in the CCC and ECCC-GARCH

models, the di¤erences between one step and multiple steps estimates of the correlations are

very large.

On the other hand, when the series have di¤erent skewness and the estimation is performed

assuming Gaussian errors, volatilities and correlations seem to be underestimated in all the

�ve models considered. The �gures corresponding to di¤erent skewness are not included in the

3Table 5 contains parameter estimates for the 5 models considered using daily returns of the BEL-20 and

DAX stock market indices under the assumption that innovations are distributed as a Student-t.
4Relative deviations are prefered to absolute ones, although conclusions do not change if absolute deviations

are plotted.
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Table 5: One-step parameter estimates for two real time series under Student-t innovations

VAR(1)-CCC-GARCH VAR(1)-ECCC-GARCH VAR(1)-DCC-GARCH VAR(1)-cDCC-GARCH VAR(1)-RSDC-GARCH

�1 0:0936 0:0937 0:0956 0:0963 0:0920

�2 0:1090 0:1093 0:1143 0:1136 0:1100

�1 0:0087 0:0088 0:0002 0:0006 0:0030

�2 �0:0503 �0:0498 �0:0488 �0:0469 �0:0485
!1 0:0185 0:0177 0:0156 0:0149 0:0160

!2 0:0191 0:0162 0:0152 0:0141 0:0156

�11 0:0877 0:0947 0:0963 0:0978 0:0894

�21 0:0001

�12 0:0034

�22 0:0732 0:0692 0:0775 0:0790 0:0717


11 0:8987 0:8789 0:8938 0:8950 0:8998


21 0:0086


12 0:0001


22 0:9195 0:9225 0:9170 0:9181 0:9218

�12 0:7950 0:7949

�L12 0:7298

�H12 0:8924

�1 0:0376 0:0390

�2 0:9453 0:9465

�LL 0:9816

�HH 0:9682
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Figure 10: Kernel density estimates of deviations from estimated to true volatility and cor-

relation for all the models considered. The series in the data are generated using Student-t

innovations with same skewness parameter and estimated assuming Gaussian innovations.
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Figure 11: Kernel density estimates of deviations from estimated to true volatility and cor-

relation for all the models considered. The series in the data are generated using Student-t

innovations with same skewness parameter and estimated assuming Student-t innovations.
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paper to save space. One-step correlation estimates seem to be slightly less a¤ected by the

skewness than the multiple step estimates. As well when the estimation is based on Student-t

errors, the one-step estimators underestimate the volatilities and correlations. In general, one-

step estimators are less a¤ected by the skewness than multiple steps estimators, except for the

volatility estimates of ECCC-GARCH model. In the case of DCC and cDCC-GARCH models,

the multiple steps estimates deviate slightly from the one step estimates. It should be noted

that one of the series have higher skewness when � = fexp(0:4); exp(�0:7)g compared to the
case when � = fexp(0:4); exp(0:4)g and this could be the reason behind the underestimation
of volatilities and correlations with both Gaussian and Student-t errors.

Newey and Steigerwald (1997) suggest that when the data is not symmetrically distributed,

the one-step QML method based on Student-t errors do not produce consistent estimators in

general. Therefore in this case what is expected is that even though the estimation is performed

in one-step, the estimates could be far from the true values and the di¤erences might not

disappear in larger samples. In our experiments with a data of length T = 1000, we see that

one-step QML estimators based on Student-t errors are over/underestimating the volatilities

and correlations. We would expect that this result holds for larger datasets produced with the

same parameter values and skewness.

For the RSDC-GARCH model, multiple steps estimators of conditional volatilities behave

similar to the one-step estimators as illustrated in Figure 5 and this does not seem to depend

on the skewness. In this model, the conditional correlations follow an unobserved Markov

Chain, therefore instead of reporting correlation estimates, we report the correlation parameter

estimates, RL, RH , �LL, �HH together with their true values. Figure 12 plots kernel density

estimates of estimated correlation parameters when the series have the same skewness and errors

are assumed to follow a Gaussian or Student-t distribution. As we can see, when the estimations

are based on Gaussian errors, the one-step and multiple steps estimators of the correlation

parameters are behaving similarly when the series have the same skewness. Although the

corresponding �gure is not included in the paper, when the skewness of both series is di¤erent,

the multiple steps estimates of RL and �LL deviate slightly from the one step estimates. When

Student-t errors are used in the estimation, the di¤erences between the behavior of one-step

and multiple steps estimators become more apparent.

Finally, when the data generating process is symmetric and the estimation is based on

Gaussian errors, the kernel density estimates of relative di¤erences between one-step and mul-

tiple steps estimates of the volatilities and correlations from the true values are very close to

each other for all the models as was illustrated in Figure 6. Also when the estimation is based

on Student-t errors, the multiple steps correlation estimates of CCC and ECCC-GARCH mod-

els are far from the true ones as was shown in Figure 4. The multiple steps estimates of DCC

and cDCC-GARCH models of volatilities and correlations follow closely the one-step estimates
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Figure 12: Kernel density estimates of estimated correlation parameters for the RSDC-GARCH

model. The series in the data are generated with Student-t innovations and with same skewness,

and estimated assuming Gaussian and Student-t errors, respectively.
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and are not far from the true values as in Figure 3. These results are also not reported in the

paper, but are available from the authors upon request.

To sum up, we have seen that even though the data generating process is skewed, when the

estimation is based on Gaussian errors, multiple-steps estimators could still be preferred to one-

step estimators given that their performances are very similar. Given that the estimation based

on Gaussian errors is a Quasi-maximum Likelihood estimation, as Bollerslev and Wooldridge

(1992) show, it produces consistent estimators. Therefore our results from Section 4.1 and 4.2

still prevail in the existence of skewness. On the other hand, as noted by Newey and Steigerwald

(1997), if the data generating process is skewed, the one-step QML estimator based on Student-

t errors do not produce consistent estimators. In conformance with this, we have found in this

section that the correlations are over-estimated in all models with one-step and and also with

multiple steps estimators. Hence, when the true distribution is skewed, one should be cautious

in using one-step or multiple-steps estimators based on Student-t errors.

5 Conclusions

In this paper we have carried out several Monte Carlo experiments to study the performance in

�nite samples of one-step and multiple steps estimators of Vector Autoregressive Multivariate

Conditional Correlation GARCH models. Although one-step estimators are preferable because

of their theoretical properties, they are not always feasible and therefore, estimating the pa-

rameters of a model in multiple steps could be a reasonable alternative. Our results indicate

that, when the distribution of the errors is Gaussian, multiple steps estimators have a very

good performance even in small samples. However, when the estimation is based on Student-t

errors, we �nd that multiple steps estimators do not always perform well even when the data

follows a Student-t distribution.

Our results also show that if the true error distribution is Student-t but estimation is

based on the Gaussian distribution, kernel density estimates of the estimates of volatility and

correlation obtained from one-step and multiple steps estimators are quite similar. Analogously,

if the true error distribution is Gaussian but estimation is based on the Student-t distribution,

we obtain the same results as when the true and assumed distribution is a Student-t.

We also analyze the robustness of our results to the misspeci�cation of the model when the

estimation is based on Gaussian errors. We �nd that, on average, volatilities and correlations are

relatively well estimated even when using a misspeci�ed model. The multiple-steps estimates of

volatilities (correlations) deviate from the true values at most by 2 % more than what one-step

estimates of the correctly speci�ed model do.

Finally, when errors are distributed as a skewed Student-t but the estimation is performed

assuming non-skewed Gaussian or Student-t errors, we �nd that kernel density estimates of
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the di¤erence between one-steps and multiple steps estimates of volatilities and correlations

from their true values are very similar when the estimation is based on a Gaussian distribution.

However, this is not true when the estimation is based on Student-t errors. In any case, when

the true distribution is skewed, one should be cautious in using one-step or multiple-steps

estimators based on Student-t errors since both are inconsistent estimators.
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