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1 Introduction

Social networks play an important role in many socio-economic settings, and it has been docu-

mented that particular network architectures in�uence individual and global economic outcomes.1

It is then important to understand both how and why networks are formed.

Risk and uncertainty are ubiquitous and individual attitudes toward risk constitute a funda-

mental element of decision-making in economics and �nance (Pratt, 1964; Arrow, 1965). Risk is

also present while people form ties with others, but so far the role of risk aversion and its e�ects

on social organization has been neglected in network formation literature.

Economic agents form relationships with others in order to generate bene�ts. Network links

provide access to information, ideas, di�erent markets, or represent joint creation of innovations.2

However, in many situations the potential bene�ts from linking to a certain agent are not fully

observable before the establishment of the relationship. Hence, creating connections can be risky.

In network contexts, people can avoid such risky decisions by connecting to individuals about

whom they have more information. In this way, risk aversion may play an important role in

network formation processes.

In this paper, we propose a network formation model, building on standard microeconomic

concepts of utility maximization, incomplete information, and risk aversion. In the model, the

linking decision is endogenized and individuals can create links in two ways. They can link up

either locally to neighbors of their neighbors or globally, using random search in the population.

Naturally, creating links randomly is more uncertain and aversion to risk in�uences which type

of link a node is willing to create.

The introduction of risk aversion and risk exposure to network formation generates several

questions. Can di�erent network positions of individuals be traced back to heterogeneity in

risk attitudes? If so, how does it a�ect the payo� distribution? How does higher exposure

to risk and uncertainty in�uence linking decisions and which e�ect does it have on generated

architectures? Given the relevance of networks for economic outcomes, answering these questions

can contribute to a better understanding of wealth distribution in networked populations. It also

provides an opportunity to evaluate the impact of exogenous environmental changes, such as

natural disasters, �nancial crises, emergence of epidemics or policy interventions, onto networked

societies.

In our model, individuals sequentially enter the population. Initially, an entering individual,

say, A does not know anyone, and acquaints a random individual B. By interacting with B, A

learns the bene�ts from the interaction with B, but she also learns about the potential bene�ts

1See Goyal (2007) and Jackson (2008) for reviews.
2See Jackson (2010) for a survey of economic applications.
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from the neighbors of B.3 With this information, A then has to make a choice: does she acquaint

one of B's neighbors about whom she is now informed, or does she leave the "circle of friends"

of B and meet some random stranger?

We argue that A connects to a neighbor of B if at least one of them is attractive enough

for A. Otherwise, she will create a link to a random individual in the population. There are

two crucial factors for such a decision: �rst, the beliefs about the bene�ts one could get from

neighbors of neighbors versus that from strangers, and second, the amount of risk aversion of

the individual, because creating a link to a random node is much riskier than creating a link to

a neighbor of a neighbor, about whom one has more information.

The proposed model generates positive association between risk aversion and clustering of

individuals' neighborhoods; that is, neighbors of a risk averse individual are more likely to be

neighbors as well. Thus, we are partly able to trace back heterogeneity in local clustering to

heterogeneity in risk aversion. On the other hand, there is no relation between risk attitudes

and degree.

Two main results of the model arise from the microfoundation of the network formation

process. First, we show that there is a positive relation between the clustering coe�cient and

expected payo�s of agents. There are two reasons that induce people to link through network-

based meetings and, consequently, increase their clustering coe�cient: risk aversion and attrac-

tive neighborhoods. In the former case, risk averse people accept relatively lower payo�s and

drive the payo� of highly clustered individuals down, while the latter e�ect makes people link

through the network, because they link to attractive neighbors of their neighbors, rising the

payo�s of highly clustered agents. We show that the latter e�ect outperforms the former.

Second, relating the economic fundamentals of the environment to linking decision allows to

make predictions about the shape of generated networks. We show that the linking decisions

of individuals and, consequently, the whole network architecture depend on the riskiness of the

environment. More precisely, the volatility of bene�ts from linking to "strangers" generates more

clustered networks and allows us to rank the in-degree distribution in the sense of second-order

stochastic dominance. If the environment becomes more risky, the number of links of highly

connected individuals increases, while the number of links of less connected agents decreases.

Hence, more risky environments generate more unequal networks.

Our paper makes three important contributions to social network analysis. First, the pro-

posed network formation process has solid behavioral foundations as in economic models, but at

the same time our model is empirically veri�able as in statistical mechanics models, synergizing

3The idea that agents learn more about their local neighborhood than about nodes outside the local network
is natural (Galleoti et al., 2010; Gallo, 2009) and has been con�rmed empirically by Fafchamps et al. (2010).
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the economic and physics approach to network formation (see Jackson, 2006, for a discussion of

this issue).4

Second, we discover a new mechanism that relates network structure to individual payo�s.

This mechanism di�ers starkly from the more traditional, sociological explanations (Granovetter,

1973; Coleman, 1988; Burt, 1995). In those sociological theories, the social network is assumed

to be rigid, and behavioral processes taking place on the network allow some individuals to

bene�t more from their (given) network position than others. In contrast, in our model it is the

network formation process that creates a relation between clustering and payo�s. Individuals

learn about their network neighborhood during the network formation process. If this information

or experience is particularly positive, then the individual does not leave her neighborhood, and

therefore any additional tie will be created within her local network. Only those who happen to

get into a bad neighborhood have incentives to leave and try to form �random� ties. We may

therefore call this mechanism a �good neighborhood e�ect�.5

The last contribution lies in the linkage between the environment the network is embedded

in (characterized by the distribution of payo�s from linking), on the one hand and the result-

ing network architecture and expected payo�s, on the other. Jackson and Rogers (2007) show

that more unequal networks lower the welfare of the population. However, their model is me-

chanical and cannot predict under which conditions the network is to be expected more or less

unequal. We show that shocks increasing the volatility of potential bene�ts from relationships

make people rely more on local neighborhoods, a�ecting the clustering and degree distribution

of the global architecture.6 This may help to evaluate policies in contexts, where networks play

a role. A particular intervention will a�ect both behavior and the underlying social organization

and, therefore, �nal policy implications cannot be correctly evaluated without a proper under-

standing of how the network itself will react to the proposed policy. Hence, abstracting away the

endogenous network formation process may result in undesirable policy decisions.

We proceed our paper as follows. In Section 2 we present the model and establish the relation

between network structure and risk aversion. In Sections 3 and 4 we continue the theoretical

analysis linking the network structure and payo�s, and analyze the e�ect of contextual variables

4Campbell (2008) also microfoundates the decision to link globally or locally. He argues that people link to
neighbors of their neighbors in order to signal their willingness to cooperate. See also Vigier (2009) or Bramoullé
& Rogers (2009). Babus & Ule (2008), Gallo (2009) and König, Tessone & Zenou (2009) start from the standard
game theoretical models, but propose versions that are empirically more realistic.

5Naturally, this mechanism does not preclude the existence of the other mentioned mechanisms. However, we
do point out that the empirical identi�cation of those sociological theories becomes much more challenging in
the presence of the �good neighborhood e�ect�. Data from a simple non-repeated survey measuring networks and
individual performance, such as has been common in the sociological and management science literature (e.g. Burt,
1995), would not allow the researcher to separate the e�ect of, say, structural holes from our mechanism. These
problems are in line with the identi�cation problems recognized in the social interaction/peer e�ects literature
(Manski, 1993; Mo�tt, 2001).

6The present model does not allow for relinking, but we believe that the same mechanism would also operate
when agents decide which links to sever or to whom to redirect their links.
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on the resulting architecture. In Section 5 we discuss potential extensions and applications of

the model. Section 6 concludes. An illustration of how the model changes if we relax one of the

model's assumption, model simulations and proofs are relegated to Appendix.

2 The Model

In this section, we propose a network formation model. The model is a variant of the models

in Jackson and Rogers (2007) and Vázquez (2003), but unlike those papers, we base the model

on standard economic assumptions. This section contains two results, we formally characterize

the network structures generated by the model and relate individuals' network characteristics to

their risk attitudes.

Let N(t) be the population of agents existing at time t. The directed network among those

agents is denoted by G(t), and gij(t) = 1 denotes a directed link from i to j at time t. De�ne

Ni(t) = {j : gij(t) = 1} as the outdegree neighborhood of individual i at time t. For notational

convenience, dependence on t will be dropped if confusion is unlikely.

Network formation occurs through the following dynamic process. Each period one new

player enters the population. This player is identi�ed by its entrance period i. We assume that

individuals have a capacity constraint with respect to outdegree, and agent i is only able to have

m links pointing outwards, which it creates when entering the network. On the other hand,

we assume that individuals do not have capacity constraints with respect to the in-degree, and

therefore no individual j refuses a link ij if o�ered by i. Links are only created by the entering

node i at time of entrance. Afterwards links cannot be changed.7

The bene�ts node i gets from linking with an existing node j ∈ N(i) ≡ {0, 1, . . . , i − 1} is
denoted as uij , which is drawn from an i.i.d. distribution F having support on the interval [a, b].

This distribution (but not the realizations) is common knowledge and has mean ū. Naturally, the

assumption that uij is independently distributed for each i and j is a very strong assumption.

For example, it excludes the possibility that some nodes have intrinsic traits vj that make them

more bene�cial for any node i. It also excludes any (indirect) network e�ects once the network is

in place. As we will see, even this simplest case gives rise to a relation between network structure,

risk aversion and payo�s, such that it is best to focus on this case �rst. Later, in Section 5, we

explore deviations from the independence assumptions.

Let Ui = Ui(
∑

Ni
uij) be the (Bernoulli) utility function of i. This utility is strictly increasing

and concave with a constant risk premium ri, such that node i is indi�erent between a sure bene�t

of ū− ri against a random bene�t drawn from F , that is Ui(x+ ū− ri) = E[Ui(x+uij)] for all x.

Let individuals di�er in their risk attitudes. In particular, we assume that there are two levels

7The network formation process is initialized by letting the �rst m + 1 agents create a link with all their
predecessors, that is, each agent k ∈ {0, . . . ,m} creates k−1 links, such that gki = 1 if i < k, and gki = 0 if i > k.
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of risk aversion with risk premium, rH and rL, with u− b < rL < rH < u− a. A new node i has

risk premium ri = rH with probability θ, and ri = rL with 1− θ.8

The decision of node i to link with m nodes j1, . . . , jm goes as follows. When entering,

individual i initially does not have information on the bene�ts nor on the number of links of

the other individuals. Nonetheless, individual i may obtain information on j by connecting to

a friend of j, say k, who is connected to j, gkj = 1.9 The new node i �rst connects with one

randomly drawn existing node j1. We assume that by connecting to j1, individual i obtains

a perfect signal on the bene�ts of the out-degree neighbors of j1.
10 Individual i then makes a

decision on whom to connect next. If

max
k∈Nj1

uik > ū− ri (1)

then i connects to the node k ∈ Nj1 that maximizes uik, otherwise i connects to a random node

outside Nj1 . Let this second node to which i links be denoted by j2. By connecting to j2 it again

learns about the bene�ts of the nodes in Nj2 . Starting from j2 the process is repeated, that is, if

max
k∈Nj2

uik > ū− ri,

then i connects to the node k ∈ Nj2 that maximizes uik, otherwise i connects to a random node

outside Nj2 .
11 The linking process of i stops when i has formed m links, after which agent

i+ 1 enters the network, and starts to create links. Figure 1 illustrates one step of the network

formation process when m = 3.12

8The results of this paper would still work if we assumed more complex distributions of risk aversion.
9An alternative approach is to consider a process that creates homophily with respect to quality, such as in

Montgomery (1991). In that case, linking to, say, a high type would give us information on the type of the
neighbors.

10As in Jackson and Rogers (2007) we assume that network search is directed, in particular, channeled through
out-degree links. Allowing for network search through in-degree links would complicate the analysis signi�cantly.
See Jackson and Rogers (2007) for details.

11We assume that i does not recall (or is unable to contact) the neighbors of previously visited links, that is, at
the s-th step, the agent i is unable to recall the bene�ts from linking to agents in neighborhoods of N1, . . . , Ns−1.
This is only in order to keep the model tractable, but has no major implications on the results. If we would allow
for aggregation of information on neighbors, the probability to link a friend would steadily increase during the m
linking steps.

12It is worth noting that with the decision rule in (1), we assume a certain bounded rationality of agents. More
precisely, suppose that i connects to j in the �rst linking decision and k, a neighbor of j, afterwards. If j linked up
locally to a neighbor of k in one of the previous rounds, then there exists a node l who is an out-degree neighbor
of both j and k. Hence, i observed l after the �rst linking, but has not connected to him (since he linked up to k),
and observes l again after linking to k. This means that i observes again the same node, about whom he has full
information. Since this occurs with positive (non-negligible) probability, there is a certain (expected) utility loss
from linking to a neighbor of a neighbor anytime agents link through the network. Completely rational agents
should take this potential utility loss into account while deciding whether to connect locally or through random
search. In the main model, we abstract from this possibility, but in the appendix, we illustrate how taking this
into account a�ects the linking decision of individual for m = 3 and how it adds substantial complexity to the
model.
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Figure 1: Example of link formation of a new node i, when m = 3, u = .5 and ri = .1. (a) Node
i creates a random link to j, and learns about the bene�ts of linking to j and j's neighbors. A
link to k gives the highest bene�t to i, and since uik = .8 > u− ri = .4, a link to k is preferred
to a random link. (b) Node i creates a link to k and learns about the bene�ts of linking to k's
neighbors. (c) Since the bene�ts of linking to a neighbor of k are all lower than u − ri, node i
creates a link to a random node in some other part of the network.

We �rst analyze the statistical properties of the network that is generated by the above

network formation process, and we compare it to the structrual properties commonly observed in

social networks. In particular, we will look at in-degree distribution and local clustering. Given

the complexity of the problem (especially due to the dependence of meetings on the network

structure), we rely on mean-�eld analysis of the model. The mean-�eld approach approximates

the complex evolution of a stochastic system by a simpler deterministic system, in which the

evolution is determined by the expected change.

Before we state the results, we introduce some notation. Denote di(t) =
∑

j gji(t) the in-

degree of individual i at period t. Let p(r) measures the tendency to search locally through the

network, instead of randomly. More formaly, p(r) is the probability that an entering node t+ 1

of type r, having already linked to j1, . . . , js : 0 < s < m agents, decides to link to a friend of js

instead of linking to someone randomly. The expected probability that a random agent �nds it

optimal to follow a network-based meeting is then pθ = θp(rH) + (1− θ)p(rL).

The clustering coe�cient of individual i is the fraction of i's direct neighbors that are neigh-

bors themselves, thus measuring how much overlap there is in friendship circles. There are several

de�nitions of the clustering coe�cient depending on the way one keeps track of the direction of

the links.13 We focus on one measure, called the fraction of transitive triples. In the terms of

our model, it measures the fraction of times, in which an agent i connects to agent k, who has

an in-going link from j who at the same time has an in-going link from i. Formally:

Ci(g) =

∑
j 6=i;k 6=i,j gijgjkgik∑
j 6=i;k 6=i,j gijgjk

. (2)

13See Wasserman and Faust (1994) or Newman (2003) for discussions on this issue.
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Again there are several de�nitions of the average clustering coe�cients in the population.

Here, we focus on the de�nition that measures the total fraction of transitive triples in the

network. Formally,

C(g) =

∑
i;j 6=i;k 6=i,j gijgjkgik∑
i;j 6=i;k 6=i,j gijgjk

. (3)

The proposed network formation process, based on the utility maximization of agents, exhibit

typical features of empirical social networks:14

Theorem 1 Under mean �eld approximation,

(i) if m > 1 and p(rL) > 0, the (complementary) cumulative distribution function of in-

degrees in period t can be characterized as

1− Ft(d) =

 m(m+pθ−mpθ)
(m−1)pθ

d+ m(m+pθ−mpθ)
(m−1)pθ

 m
(m−1)pθ

(4)

(ii) the average clustering coe�cient in the network satis�es

C(g) ≥ pθ
m2

(m− 1). (5)

Theorem 1 shows that - as long as there is a positive probability of low-risk individuals to

�nd an attractive agent through network - f(d) ∝ d
−( m

(m−1)pθ
+1)

for large d; that is, the in-

degree distribution of agents for large d has a power-law distribution in the tail, and the average

clustering coe�cient will be strictly positive independently of other characteristics of the model.

We now turn to the relation between an agent's risk aversion and her position in the network.

We have the following proposition:

Proposition 2 The in-degree of i, di(t) is independent of ri, the degree of risk aversion of i,

while rH types have a higher fraction of transitive triples than rL types.

By assumption of the model the outdegree of all individuals is identical, m, and therefore

independent of risk aversion. Expression (14) in Appendix shows that the same also holds for

in-degree. On average, the in-degree of both rH and rL types depends on the distribution of risk

aversion in the population, determined by θ, rather than on i's type. This is due to two facts;

�rst, because link formation is one-sided, that is, only the entering agent t + 1 decides on the

formation of a link, and second, because the distribution of risk aversion in the population is

independent of the distribution of utilities that i conveys for entering agent t + 1. As a result,

14All proofs can be found in Appendix.
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entering node t+ 1 does not take into account the risk attitude of agents while deciding whether

to connect to them or not.

Proposition 2 also shows that in our model more risk averse types with rH have a higher

fraction of transitive triples than rL types. The intuition is that random links do not contribute

to closing triads, whenever the network is large. The fact that rH types have fewer random links

implies that they have larger clustering.

To complement the results of this section, we provide simulation results of the model in the

appendix. The motivation is twofold. First, we aim to check the precision of the mean-�eld ap-

proximations in previous theoretical results. The simulations con�rm the �ndings from Theorem

1 and Proposition 2. Second, we would like to show that the proposed network formation pro-

cess generates architectures, which exhibits other typical properties of empirical social networks,

namely short network distances, assortativity, and the negative clustering/degree correlation.

The �rst states that the average network distances and the largest distance between two (reach-

able) nodes in real-life networks are in general low in relation to the size of the network. The

second property, assortativity, is a tendency such that high (low) degree nodes are more likely

linked to high (low) degree nodes. Last, negative clustering/degree correlation simply suggests

that the larger the degree of the node the lower its clustering coe�cient. The simulated networks

exhibit these network properties (see Figures 2 and 3 in Appendix).

3 Network Position and Payo�s

One of the main interests in the study of social and economic networks is the relation between

individual network position and individual economic outcomes. In particular, the relation be-

tween clustering coe�cient and payo�s has raised some debate. On the one hand, the theory of

network closure (Coleman, 1988) argues that local clustering is bene�cial, because it allows for

better monitoring, which enforces more cooperation and higher trust levels (see also Granovet-

ter, 1985). On the other hand, the theory of structural holes (Burt, 1995) argues that network

positions that bridge di�erent groups allow for better information access and control. These

structural hole positions are typically characterized by low local clustering.

Given that our model builds on standard economic assumptions of utility maximization, we

are able to give an alternative view on the relation between clustering and payo�s. To this aim,

we �rst show that the expected monetary payo� depends on the type. De�ne the monetary

payo� of i as
∑

j∈Ni uij .
15

Proposition 3 Suppose that rH > rL > 0. The expected monetary payo� of an individual of

type r, E[
∑

j∈Ni uij |ri = r], is decreasing with the risk premium r.

15Utilities of individuals U(
∑
j∈Ni

uij) are non-comparable, and therefore not considered.
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Proposition 3 shows that, in our model, individuals with larger risk premium tend to earn

less. There is a standard economic interpretation behind this result: risk averse individuals

accept sure relatively low payo�s from second-order neighbors in order to avoid risky decisions.

Now we proceed with the analysis of the relation between the individual network position and

payo�s. By the construction of the model, there is no relation between in-degree (outdegree and,

hence, degree) and payo�s, since only the quality of outdegree neighbors are relevant for payo�s

of agents and outdegree is the same for all nodes. Therefore, we focus on clustering coe�cient.

So far, we have derived two results regarding risk aversion, Propositions 2 and 3. The former

establishes a positive relation between risk aversion of individuals and their clustering coe�cient,

while the latter proposition proves that the expected payo� is negatively a�ected by risk aversion.

This might suggest that if there is any relation between clustering coe�cient and payo�s it should

be negative. However, Theorem 4 shows that this is not the case.16

Theorem 4 For m < 5, the expected monetary payo� of individual i, conditional on her clus-

tering coe�cient c, E[
∑

j∈Ni uij |Ci = c], is (weakly) increasing in c.

At �rst sight, Theorem 4 seems to contradict Propositions 2 and 3. Nevertheless, a closer look

at the forces behind the formation of transitive triples (that determine the level of clustering)

reveals a more complex relation between payo�s and clustering.

There are two forces that in�uence this relation. Propositions 2 and 3 captures one direction:

Risk averse individuals pay a risk premium for sure payo�s from network-based linking, which

leads to larger clustering and this drives payo�s of more clustered individuals down.

However, there is a �neighborhood e�ect,� which goes into the opposite direction. More

precisely, people, whose neighborhoods are attractive, tend to stay within their neighborhoods,

i.e. link to the neighbors of their neighbors, increasing the individual clustering coe�cient and

increasing the average payo� of highly clustered nodes.

Theorem 4 shows that the neighborhood e�ect always dominates the in�uences from Propo-

sitions 2 and 3. Note that if relatively less risk averse individuals adhere to the clustering, then

their neighbors have to be really attractive. This e�ect drives up the average payo�s conditional

on the level of clustering.

16We were only able to prove the theorem for m < 5. The matters are complex for larger m. However, we can
easily show that there are upper and lower bounds on the payo� conditional on clustering, both strictly increasing
in the level of clustering. Therefore, we conjecture that the theorem holds for any m.
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4 Risk Preferences and Contexts

Recent empirical literature presents evidence that who links up with whom is an endogenous pro-

cess in�uenced by the socioeconomic environment (de Weerdt, 2004; Krishnan & Sciubba, 2009).

Other streams of literature document how existing networks reshape when the environmental

conditions change. For instance, Goyal, van der Leij & Moraga-González (2006) report how

the structure of scienti�c collaboration has changed over past decades in parallel with the burst

of communication technologies, and Eeckhout & Munshi (2010) - while analyzing an informal

�nancial institution that brings agents together in groups - observe that participants rematch

immediately following an unexpected exogenous regulatory change. To provide an example out-

side the domain of economics, it has been documented that the emergence of HIV epidemics has

considerably a�ected the architecture of needle-sharing among drug users (Rothemberg et al.,

1998). Hence, networks endogenously reorganize in presence of exogenous shocks. This generate

many new questions. Which aspects of the environment trigger the endogenous adaptation of

social organization? Why and how do network architectures react to these variables?

The present framework allows us to relate how network properties depend on the economic

and social context in which the network formation takes place. If risk attitudes or the distribution

of bene�ts are di�erent in one environment compared to the other, then individual decisions are

di�erent, and so is the network formation process and the eventual network structure. Hence,

di�erent social and economic contexts lead to di�erent network architectures, and this may have

implications on eventual social and economic outcomes as well.

We illustrate formally how the change of the context, characterized by the distribution func-

tion of bene�ts, F , interacts with risk preferences of individuals. To this aim, we assume that

agents have constant relative risk aversion utility functions with risk aversion coe�cient ρi and

the payo� distribution of linking to individual j, uij , is normally distributed with mean u and

variance σ2.

Let the (Bernoulli) utility function of individual i be

Ui(x) = − 1

ρi
e−ρix. (6)

With this utility function, the risk premium of an individual will be a function of her risk-aversion

coe�cient and characteristics of the payo� distribution F :

r = r(ρi, u, σ
2)

Proposition 5 Suppose that individual i has utility function (6) with coe�cient of absolute risk

aversion ρi. Let F be a cumulative distribution function of a normal distribution with mean u

and variance σ2. Then,
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(i) p[r(ρi, u, σ
2)] does not depend on u, and

(ii) p[r(ρi, u, σ
2)] increases with σ2.

This result has strong implications for the model. It shows that we can observe the same

individuals in very di�erent network position (in terms of their random vs. local search), de-

pending on the riskiness of the environment, in which a particular network is embedded. More

precisely, we show that more risky contexts will drive people to link up to neighbors of their

neighbors more often. On the other hand, a simple increases or decrease of the average bene�ts

will not a�ect the decisions of agents, as long as preferences for absolute riskiness are preserved.

Proposition 5 also has direct implications for the global structure of the model:

Theorem 6 Let F and F ′ be two normal distribution functions with means u and u′ and vari-

ances σ2 and σ′2 respectively. Consider the networks g and g′ associated with linking bene�t

distributions F and F ′.

(i) If σ2 > σ′2, then the degree distribution of g′ second order stochastically dominates the

degree distribution of g, and C(g) > C(g′).

(ii) If σ2 = σ′2, then the degree distribution of g and g′ are identical and C(g) = C(g′),

independently of u and u′.

This result shows how a change of context a�ects the network properties. A mean preserving-

spread of the payo� distribution has a direct e�ect on whether the network will be more or less

random, since more risky environment enhances local, non-random search. This at the same

time a�ects the probabilities of incumbent nodes to receive a link. More precisely, less connected

agents, who mostly rely on global search, become less likely to receive a link, while agents above

a certain degree, whose main source of new connections is to be found through the network,

are now more likely to receive new incoming links. The global a�ect, stated in Theorem 6, is a

shift of degree distribution in terms of second-order stochastic dominance; a riskier environment

creates more inequality in terms of connectivity.

Concerning the local clustering of the network, riskier environments generate more clustered

network architectures. Location shift alone will a�ect neither the degree distribution nor local

clustering of the network.

These �ndings illustrate how network architectures endogenously adapt to changes of en-

vironmental variables. For instance, people might be more careful choosing close friends than

mere acquaintanceship, leading to more clustered networks in the former case. Other examples

might be that �rms' position in technological networks can di�er according to the riskiness of

the innovation in progress, and that people will search for new sexual partners more locally after
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the start of the HIV epidemics. Despite that our network model does not allow for relinking,

we believe the same logic - which determines which type of connection will establish - will also

operate when individuals sever or redirect their links.

5 Extensions and Discussion

Our model is built on strong assumptions in order to keep it tractable. In particular the assump-

tion that bene�ts are identically and independently distributed is unlikely to be true. These

assumptions help us to focus on the role of risk aversion in network formation, the main objec-

tive of this paper, but it is important to understand what happens if we relax some of these

assumptions. In this section, we therefore discuss variations on the standard model.

5.1 Common Bene�ts from Linking

The assumption that the bene�ts that agents derive from their neighbors, are idiosyncratic makes

the proposed model applicable to only a few contexts. There is a large number of applications,

where the potential bene�ts of a particular node are the same for all the members of the popu-

lation. Examples of such applications can be labor market connections, where some individuals

have better access to job opportunities, coauthorship networks, research networks among com-

panies etc. In terms of our model, this would make uij = uj for each i ∈ N\{j}. The e�ect of
this speci�cation is that network-based linking would become more frequent, because anytime

an entering node i links up to j, who formed at least one link through the network (say to a node

k), i will create a link to k with probability one if i's risk premium is equal or larger than j's

one, since, given that gjk = 1 and uik = ujk = uk, uk > u − ri if ri ≥ rj . Then, network-based

search is enhanced under such a speci�cation.

However, the main results of this paper remain unchanged. Note that the relation between

clustering and risk aversion holds, since the above argument does not hold for ri < rj , that is if

i is less risk averse than j, he does not necessarily create links to neighbors of j found through

the network. As a result, there still is a positive relation between risk aversion and clustering

coe�cient, while in-degree would still be independent of risk attitudes. Similar considerations

hold for the relation between clustering and expected payo�s. The bene�ts an agent earns,

conditional on the way of linking are larger when linking through the network.

Since in such a speci�cation the network-based search is enhanced the only e�ect would be

larger clustering coe�cient and a di�erent, more unequal degree distribution. The qualitative

features of generated networks would be unchanged. Therefore, our model also applies to situa-

tions where the bene�ts of a particular node are the same for all the members of the population.
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5.2 Public Knowledge

In our model we assumed that an entering agent initially has zero information about the bene�ts

it can obtain by connecting to other agents. In reality, this is not always realistic. For example,

in the academic world it is always possible to �nd information on other scientists by looking up

their C.V.

The assumption of no prior information on the bene�ts of linking is easily relaxed. For

example, suppose instead that an individual i has an imperfect signal about the bene�ts of

linking to j, say ũij = uij+εij where εij is unobserved i.i.d. noise with zero expectation. Initially,

the entering agent i links to the agent j about whom it has the best signal, maxj ũij . Next, the

agent receives a better, perhaps perfect, signal about the neighbors of j, and again the agent

decides to link the best neighbor of j, or to link to the best outside option, that is the node k

with the best signal that is not j or a neighbor of j, maxk∈N\{j∪Nj} ũik. Agent i chooses to link

to a neighbor of j if and only if

max
k∈Nj1

uik > max
k∈N\{j∪Nj}

E[uik|ũik]− r̃i

Naturally, r̃i is smaller than ri, because given that there is some initial information on non-

neighbors, the risk of linking to a non-neighbor is smaller. Nonetheless, given that i still has a

better signal about the neighbors of j than about non-neighbors, risk aversion again plays a role;

the more risk-averse agent i, the more likely i links to a neighbor of j. This implies the same

positive relation between clustering coe�cient and risk aversion. Here it is irrelevant that the

choice of non-neighbor is not random anymore, that is, agent i would choose the non-neighbor

with the best signal, but given that the bene�ts and the signals are still randomly distributed,

for the outside observer the choice of agent i is observably equivalent to random linking if it is

not a neighbor of j.

Note that conditional on the signal ũik, the expected bene�t of linking to k, E[uik|ũik] will
be between the true bene�t uik and the average bene�t ū with the expected value closer to the

former when the quality of the signal is better. Therefore,

max
k∈N\{j∪Nj}

E[uik|ũik] > ū.

When agents have prior information on non-neighbors, it is therefore more likely that they choose

a �random� link than a friend of a friend, compared to the case where agents do not have such

prior information. Moreover, the better the signal on the bene�ts of linking to non-neighbors,

the more likely it is that the agent chooses to link to a non-neighbor, which for the outsider is a

�random� link.
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This observation allows for a direct application towards the impact of internet on network

formation. The emergence of internet has made it much easier to publish and obtain information

on other individuals. For example, it is now standard that scientists put their C.V. on their

homepage, which is then publicly available. In our model this implies that individuals have some

prior knowledge on the bene�t of linking to individuals, and therefore they are much less likely

to link to a friend of a friend. That is, random linking should have become much more prominent

than local network-based linking. Evidence provided in Fafchamps, Goyal & Van der Leij (2010)

indeed suggests that this is the case.

6 Conclusion

This paper contributes to synergizing the game-theoretic and statistical mechanical models of

network formation. We introduce a simple economic reasoning into the models of Vázquez (2003)

and Jackson and Rogers (2007) and show that all the stylized facts of socially generated networks

can be derived from standard microeconomic concepts.

Moreover, we show that inherent characteristics of individuals may play an important role in

network formation and explaining empirical regularities of networks. Ex-ante individual hetero-

geneity is an issue that has been underexplored; partly in order to keep models tractable, and

partly due to the believe the network formation is an endogenous process, and that understanding

this endogenous process is what is most important.17 However, recent work of Fowler, Dawes &

Christakis (2009) suggests that ex-ante individual di�erences are very important as well. Com-

paring the network positions of identical and non-identical twins they �nd that about 45 % of the

variation in in-degree and clustering coe�cient can be traced back to variation in genes. They

do not explore what behavioral heritable aspects lead to this variation, though. With respect to

in-degree it has been argued before that ex-ante heterogeneity in technology/potential bene�ts

may lead to a stronger attractiveness of some nodes, and therefore a higher in-degree.18 Since

Cesarini et al. (2009) report that a non-negligible part of risk-taking preferences of people are

due to genes, we believe that we uncover a possible heritable aspect explaining social network

positions of individuals: the variation in clustering can partly be traced back to variation in risk

aversion among individuals.19 We hope our results will enhance the exploration of the relevance

of heterogeneity in social networks.

17Exceptions are Galeotti, Goyal & Kamphorst (2006), and Jackson & Rogers (2005) in the economics literature,
Bianconi & Barabasi (2001) and Kong et al. (2008) in the physics literature, and Burt et al. (1998) in the sociology
literature.

18For example, Google has been able to outcompete other search engines and become a star on the WWW,
because of its superior search technology, see Barabasi (2003) and Kong et al. (2008).

19A similar relation is indirectly present in Dohmen et al. (2008). In a sample of tens of thousands of obser-
vations, they report that less risk averse individuals are more likely to migrate for work than more risk averse
people. One can expect then that the social ties of the more risk averse people will more likely know each other,
i.e. will be more clustered.
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Another contribution of the paper is the new mechanism that relates network position to

payo�s. Standard sociological theory and economic theory on network e�ects (Coleman, 1988;

Burt, 1980; Ballester et al., 2006) takes the network as rigid, and proposes mechanisms of social

interaction that lead to di�erent payo�s for agents in di�erent social network positions. On the

other hand, the relation between network position and payo�s in our model is induced by the

network formation process, and the fact that information on the bene�ts of linking a friend of a

friend is more precise than information of the bene�ts of linking a stranger.

As a last contribution, we provide an argument for why di�erent network topologies arise

in di�erent socioeconomic contexts, and why they may be a�ected by changing environment,

such as lower cost of communication and link maintenance, or external interventions or shocks

that in�uence the bene�ts from linking opportunities. Hence, our model or its variations might

provide an interesting tool for the evaluation of policies in networked contexts. Nevertheless,

whether networks indeed react this way to external shocks is an empirical question, which we

leave for future research.
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7 Appendix

7.1 Perfect rationality for m = 3

There is an important issue concerning the rationality of players for m > 2. In particular, the

clustering of the network can lead to a situation, such that anytime a node i links through network

there is a positive probability that one or more of newly observed neighbors of neighbor have

already been observed and not chosen in previous linking stages. A completely rational individual

should take this into account. Since the entering node has not linked up to such node(s), i has

information about them. This a�ects the mean �eld analysis, because the expected payo� from

linking to such neighbors of neighbors is lower than the expected payo� i gets from observing

and linking to someone i has no information about. In this section, we illustrate this argument

formally.

Denote the nodes that t+ 1 connects in each linking stage as j1, j2 and j3. First, note that

this issue never concerns the �rst and last linking decision, since the �rst is always random, while

in the last linking decision the entering nodes do not care about who they observe afterwards.

Hence, for m = 3 the only linking decision, in which he may observe someone, whom he has

already observed, is the second one. Suppose that t+ 1 decides to link to a node j2 ∈ Nj1(t+ 1)

such that j2 ∈ arg maxj∈Nj1(t+1) uij . If so, then there is a positive probability that j1 is connected

to a neighbor of j2. It this occurs there exist a node l, an out-degree neighbor of both j1 and j2,

who t+ 1 observes after linking to j1 and will observe after linking to j2. Furthermore, there is

an important information in the fact that t+ 1 observed l, but has not connected to him.

Formally, t+ 1 links to a j2 ∈ arg maxj∈Nj1(t+1) uij if

max
j∈Nj1(t+1)

uij −
m−1∑
s=1

C(g)s(m− s)
m

[u− m− s
m

u− s

m

maxj∈Nj1(t+1) uij∫
a

udF (u)]

 > u− rt+1 (7)

where C(g) is the fraction of transitive triples in the population and measures the average

probability that a triangle exists. C(g) = pθ(m−1)
m2− pθ

m

for m = 3 and re�ects the average probability

that t+ 1 observes m− 1 new individuals and 1 individual t+ 1 has already been observed and

have not chosen because the utility he would reported to t+ 1 was lower that maxj∈Nj1(t+1) uij .

The second expression, u− m−1
m u− 1

m

∫ maxj∈Nj1(t+1) uij

a
udF (u), re�ects the expected utility loss

due the fact that t+ 1 observes only m− 1 new individuals (instead of m), taking into account

the expected utility from the individual observed and unchosen in the previous linking stage.
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After some simpli�cation of (7), we get

max
j∈Nj1(t+1)

uij −
m−1∑
s=1

C(g)ss2

ms
[u−

maxj∈Nj1(t+1) uij∫
a

udF (u)] > u− rt+1 (8)

max
j∈Nj1(t+1)

uij −

[
m−1∑
s=1

C(g)ss2

ms

] b∫
maxj∈Nj1(t+1) uij

udF (u)

 > u− rt+1. (9)

As a result, the probability that t + 1 links through network search in its second linking

decision is

p2nd(rt+1) = 1− F

u− rt+1 +

m−1∑
s=1

C(g)ss2

ms

b∫
maxj∈Nj1(t+1) uij

udF (u)m

 > p(rt+1).

Then, the expected probability of node i < t+ 1 to receive a new link in t+ 1, analogous to

expression (13), is

ddi(t)

dt
=

1

t
+

[
1− p2nd(rt+1)

t
+ p2nd(rt+1)

di(t)

t

1

m

]
+

[
1− p(rt+1)

t
+ p(rt+1)

di(t)

t

1

m

]
. (10)

The only di�erence between (13) and (10) is the intermediate term. The e�ect of perfect

rationality is to enhance global search. In (10), it increases the probability of receiving a random

link and decreases the probability of receiving a link from a neighbor of a neighbor. The overall

e�ect, hence, depends on the current in-degree of each node. In particular, nodes with large

in-degrees will be negatively a�ected by perfect rationality, because a large fraction of nodes

they receive is through local linking. Nodes with low connectivity, on the other hand, bene�t

from the form of rationality we model here, since they receive almost no links through network

anyway. Formally,
∂
ddi(t)

dt

p(r2ndt+1)
= di(t)

t
1
m −

1
t > 0 if di(t) > m. Hence, the e�ect of the rationality

discussed here is the following:

� If di(t) > m, i receives a link with lower probability than in the original speci�cation,

� If di(t) = m, i is una�ected by the new speci�cation,

� If di(t) < m, i receives a link with higher probability in the new speci�cation.

In sum, the e�ect of the perfect rationality considered here is to enhance random search.

This will a�ect the in-degree of each agent as a function of his connectivity. From the global

point of view, the tails of the degree distribution shift down, more frequent global search lowers

the clustering coe�cient, and the distances would shrink.
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Figure 2: (a) The predicted (solid line) and simulated (crosses and circles) degree distributions.
(b) The average clustering coe�cient. The solid line is the predicted lower bound from Proposi-
tion 4.

7.2 Simulations

Results in the main text are based on the mean �eld approach. Therefore, it only provides

approximations. In order to check the accuracy of the predictions, we also run simulations of the

model and match them with the approximations. Moreover, there are three other stylized facts

of empirical social networks, that we wish to verify in our model through means of simulations:

short network distances, positive assortativity and the negative clustering/degree correlation.

The reader is referred to Goyal (2007) or Jackson (2008) for formal de�nitions and evidence.

The simulation assumes that uij is drawn from a standard uniform distribution. Agents have

a risk premium of either rL = 0 and rH = .25 with equal probability (θ = .5). We initially set

m = 2 and we generate a network of 5000 nodes. Figures 4a through 5b contain various plots for

four of the �ve stylized facts of observed social networks that our model predicts. The distances

are only discussed at the end of this section.

Figure 4a contrasts the predicted in-degree distribution with the simulated one. They seem

to be very similar. Hence, we can conclude that the mean �eld approach approximates very

well the degree distribution generated by the model. Moreover, we distinguish between the high

(crosses) and low (circles) risk premium types. Figure 4b plots the average clustering coe�cient

(in terms of fraction of transitive triples) for several values of m. The �gure shows that the

clustering coe�cient is indeed positive and lies above the lower bound derived in Proposition 1.

In fact, the simulated values of the average clustering coe�cient are well above and increase over

m, suggesting that the more connections the agents of our model form, the more clustered the

network becomes.
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Figure 3: (a) Relation between degree and clustering., (b) Assortativity

Figure 5a shows that our model also generates the negative clustering/degree correlation.

(Here the clustering coe�cient is measured ignoring the direction of the links.) The x- and y-

axes plot the degree and clustering, respectively, and there is an obvious negative relation between

the two variables in the graph. Moreover, in this plot we also make a distinction between the

clustering coe�cient of high risk-averse agents and low risk-averse agents. The plot shows that

the clustering coe�cient is substantially higher for high-risk averse agents, in particular for low

degree values, where the majority of the nodes lies (see Figure 2a).

To check for assortativity, we draw a plot with the degree of a node on the x-axis and the

average degree of an out-neighboring node on the y-axis. This plot shows a positive correlation.

Nodes with high degree have also high degree neighbors, indicating positive assortativity. We

also compute the degree correlation, which is .260, well above zero.

To check for network distances, we compute the average networks distance and the largest

distance between two nodes in the resulting simulated network, again ignoring directions. The

obtained values are 5.74, and 13, respectively, thus of the order of ln(n).

7.3 Proofs

Proof of Theorem 1. Let us �rst prove part (i) of the theorem. For an entering individual

t + 1 after linking to js, p(r) equals the probability that at least one of m friends of js is more

attractive than the bene�ts of linking randomly, that is

p(r) = 1− F (ū− r)m. (11)
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This probability naturally depends on the risk aversion of agent t+ 1, such that p(rH) > p(rL),

and the expected probability that a random agent �nds it optimal to follow a network-based

meeting is pθ = θp(rH) + (1− θ)p(rL).

At entrance, the linking process of t+ 1 is as follows: She �rst links up randomly. Thus, for

a particular agent i < t + 1 the probability of receiving this link is 1
t . Once this link has been

created, t + 1 faces m − 1 decisions between linking locally through the network (by observing

the neighbors of his neighbors), or linking to a randomly chosen agent from the population. In

this case, the probability of i to increase its degree in one of these decisions is approximately

1− p(rt+1)

t
+ p(rt+1)

di(t)

t

1

m
, (12)

where the �rst part corresponds to the probability that t + 1 decides for a random search and

links up to i. The second part of the expression is the joint probability of three events: (i) t+ 1

�nds it attractive to connect through the network structure, p(rt+1), (ii) she has connected to

one of the di (in-degree) neighbors j of i in the previous decision, di(t)/t,
20 and (iii) i has the

largest gain for t+ 1 out of the (outdegree) neighbors of j, 1/m.

Given that each link i < t + 1 can receive at most one link in each period, that is, multiple

links are ruled out, we can write the deterministic change of i's in-degree in period t as

ddi(t)

dt
=

1

t
+ (m− 1)

[
1− pθ
t

+ pθ
di(t)

t

1

m

]
. (13)

Note that (13) can be rewritten as ddi(t)dt = adi(t)t + b
t+c, where a = (m−1)pθ

m , b = [1 + (m− 1)(1− pθ)],
and c = 0. Given that m > 1 and that p(rL) > 0 ensures pθ > 0, the �rst part of Lemma 1 in

Jackson and Rogers (2007) applies.

As for the clustering coe�cient, consider an agent i. Each agent initially creates 1 random

link and afterwards faces m−1 decisions to either link locally or search randomly. The �rst case

occurs with probability p(ri). Thus the agent has on average p(ri)× (m−1) links that are based

on network search. If k is found through network search, then it must be through j to whom i

is also linked. So we have gij = gjk = gik = 1. Each such network-searched link creates at least

one transitive triple. Given that the amount of triples for which gij = gjk = 1 equals m2 and

E[p(ri)] = pθ, we obtain (5).

Proof of Proposition 2. Using that the initial in-degree of entering agents is 0, solving (13)

leads to the in-degree of an agent i at period t:

di(t) =

[
m(m+ pθ −mpθ)

(m− 1)pθ

](
t

i

) (m−1)pθ
m

− m(m+ pθ −mpθ)
(m− 1)pθ

. (14)

20This approximation does not take into account that there is positive assortativity in the network. If indegree
neighbor j is found through local network search, then the probability that j is found increases in the degree
of j, dj , and given that there is a positive degree correlation, in the degree of i, di, as well. Simulation results
obtainable from the authors suggest that this ignorance does not have major implications on the results.
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Given that it is independent of ri, the �rst part of the proposition directly follows. The second

follows from that p(rH) > p(rL), thus high types are more likely to search through the network.

Each time an agent i decides to link through the network at least one transitive triple is created

in its neighborhood, whereas the probability that a transitive triple is created after a random

linking decision converges to 0 for large t. The proposition directly follows.

Proof of Proposition 3. Note that

E[
∑
j∈Ni

uij |ri = r] = u+ (m− 1)

{
[1− p(r)]u+ p(r)E[max

j∈Ni
uij |max

j∈Ni
uij > u− r]

}
.

Since

[1− p(rH)]u+ p(rH)E[max
j∈Ni

uij |max
j∈Ni

uij > u− rH ]

=

∫ u−rH

a
udF (u)m +

∫ b

u−rH
udF (u)m

=

∫ u−rH

a
udF (u)m +

∫ u−rL

u−rH
udF (u)m +

∫ b

u−rL
udF (u)m

<

∫ u−rH

a
udF (u)m +

∫ u−rL

u−rH
udF (u)m +

∫ b

u−rL
udF (u)m

=[1− p(rL)]u+ p(rL)E[max
j∈Ni

uij |max
j∈Ni

uij > u− rL],

it directly follows that E[
∑

j∈Ni uij |ri = rL] > E[
∑

j∈Ni uij |ri = rH ].

Proof of Theorem 4. For any existing link ij, de�ne Lij an indicator that is 1 if i found j

through local network search, and 0 if found by random search. For any existing link ij, let

u ≡ E[uij |Lij = 0] =

b∫
a

udF (u)

and

ũ ≡ E[uij |Lij = 1]

= P [ri = rH |Lij = 1]E[uij |Lij = 1, ri = rH ] + P [ri = rL|Lij = 1]E[uij |Lij = 1, ri = rL]

= P [ri = rH |Lij = 1]

b∫
u−rH

udF (u)m + P [ri = rL|Lij = 1]

b∫
u−rL

udF (u)m

denote the expected payo� of linking up to a random individual and a neighbor of a neighbor,

respectively. Let Li =
∑

j∈Ni Lij . Then

E[
∑
j∈Ni

uij |Ci = c] = uE[m− Li|Ci = c] + ũE[Li|Ci = c].
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Naturally, ũ > u. Hence, nodes who search more often locally will tend to earn higher payo�s.

To complete the proof, we now show that E[Li|Ci = c] is weakly increasing in c for m < 5.

Note that each node i can close at most
m−1∑
j=1

j = m(m−1)
2 triples in period i since links are directed

and entering nodes can only link up to older nodes.

Suppose m = 2. Then Ci is (approximately) 0 or positive, depending on whether the second

link was random or via a friend of friend. Hence, E[Li|Ci = 0] = 0 and E[Li|Ci > 0] = 1.

Next, suppose m = 3 and denote the outdegree neighbors of i as j1, j2, j3. Then Li is at

most 2, and at most 3 triples can be closed. The �rst link does not close triples, the second

link closes one triple if Lij2 = 1, and the third link closes one or two triples if Lij3 = 1. Hence,

E[Li|Ci = 0] = 0, E[Li|Ci = 1/9] = 1, E[Li|Ci ≥ 2/9] = 2.

Finally, suppose m = 4 and let i have outdegree neighbors j1, . . . , j4. Then Li is at most

3, and at most 6 triples can be closed. We have, E[Li|Ci = 0] = 0, E[Li|Ci = 1/16] = 1,

E[Li|Ci = 2/16] = 2, E[Li|Ci = 3/16] ∈ (2, 3), and E[Li|Ci ≥ 4/16] = 3.

Proof of Propostion 5. With utility (6), the certainty equivalent y of linking to a random

agent solves

Ui(y) = EF [U(x)].

Hence, with normal distribution of payo�s, y is given by

y = u− ρi
2
σ2

The risk premium is de�ned as r = u− y = ρi
2 σ

2, leading to

p
(ρi

2
σ2
)

= 1− F
(
u− ρi

2
σ2
)m

.

With a normal distribution, F (u − ρi
2 σ

2) = Φ(−ρi
2 σ) where Φ(.) is the cumulative distribution

function of standard normal distribution. Since it is decreasing with σ2 and independent of u,

the proposition directly follows.

Proof of Theorem 6. Since pθ = θp(rH)+(1−θ)p(rL), it follows from Proposition 5 that ratio

of the global and local search probabilities 1+(1−pθ)(m−1)
pθ(m−1) decreases with σ2 and is independent

of uF . It then directly follows from Jackson and Rogers (2007), Theorem 6, that the degree

distribution of g′ second order stochastically dominates the degree distribution of g whenever

σ2 > σ′2, independently of u and u′. Moreover, since pθ increases with σ
2 and remains constant

with u, the results on the clustering coe�cient directly follow.
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