
W
o

rk
in

g
 p

ap
er

s
W

o
rk

in
g

 p
ap

er
s

n
g

 p
ap

er
s

Elena Martinez-Sanchis, Juan Mora and Ilker Kandemir

Counterfactual distributions of wages via 
quantile regression with endogeneity ad

serie

 WP-AD 2011-25

ivie
Cuadro de texto



 

 
 
 
Los documentos de trabajo del Ivie ofrecen un avance de los resultados de las 
investigaciones económicas en curso, con objeto de generar un proceso de 
discusión previo a su remisión a las revistas científicas. Al publicar este 
documento de trabajo, el Ivie no asume responsabilidad sobre su contenido.  
 
Ivie working papers offer in advance the results of economic research under way 
in order to encourage a discussion process before sending them to scientific 
journals for their final publication. Ivie’s decision to publish this working paper 
does not imply any responsibility for its content. 
 
 
La Serie AD es continuadora de la labor iniciada por el Departamento de 
Fundamentos de Análisis Económico de la Universidad de Alicante en su 
colección “A DISCUSIÓN” y difunde trabajos de marcado contenido teórico. 
Esta serie es coordinada por Carmen Herrero. 
 
The AD series, coordinated by Carmen Herrero, is a continuation of the work 
initiated by the Department of Economic Analysis of the Universidad de 
Alicante in its collection “A DISCUSIÓN”, providing and distributing papers 
marked by their theoretical content. 
 
 
Todos los documentos de trabajo están disponibles de forma gratuita en la web 
del Ivie http://www.ivie.es, así como las instrucciones para los autores que 
desean publicar en nuestras series. 
 
Working papers can be downloaded free of charge from the Ivie website 
http://www.ivie.es, as well as the instructions for authors who are interested in 
publishing in our series. 
 
 
 
 
 
 
 
 
 
Edita / Published by: Instituto Valenciano de Investigaciones Económicas, S.A. 
 
Depósito Legal / Legal Deposit no.: V-  
 
Impreso en España (  201 ) / Printed in Spain (  201 )  

2

ivie
Cuadro de texto



3 
 

WP-AD 2011-25 
 

Counterfactual distributions of wages  
via quantile regression with endogeneity* 

 
 

Elena Martinez-Sanchis, Juan Mora  

and Ilker Kandemir  
 

Abstract 

Counterfactual decompositions allow the researcher to analyze the changes in wage distributions 
by discriminating between the effect of changes in the population characteristics and the effect of 
changes in returns to these characteristics. In this paper, counterfactual distributions are derived 
by recovering the conditional distribution via a set of quantile regressions, and correcting for the 
endogeneity of schooling decisions using a control function approach. Our proposal enables us 
to isolate the effect on the wage distribution of changes in both the conditional and 
unconditional distribution of schooling and changes in the distribution of unobserved ability. 
This methodology is used to analyze the sources of the changes in wage distribution that took 
place in the United States between 1983 and 1993, using proximity to college for different 
parental background as instruments. Our results show that the change in the distribution of 
ability had a negative effect on wages at the low quantiles, which almost compensates the positive 
effect of the change in the schooling distribution over this period. It is also found that the impact 
on wages of changes in the conditional distribution of unobserved ability is larger than the 
impact of changes in the conditional distribution of distance to college. 
 
 
Keywords: Counterfactual Decomposition, Wage Inequality, Quantile Regression, Endogeneity. 
 
JEL codes: C21, C14, D63, J31. 

                                                 
* The authors are grateful to Manuel Arellano, Iván Fernández-Val, Blaise Melly and seminar 
participants at CEMFI, UCL and ESWC 2010 for helpful suggestions. Financial support from the Spanish 
Ministry of Education-FEDER (Grant ECO2008-05271/ECON) and IVIE is gratefully acknowledged. All 
errors are our own. 
 

 E. Martinez-Sanchis, Dpto. Fundamentos del Análisis Económico, Universidad de Alicante. J. Mora, 
Dpto. Fundamentos del Análisis Económico, Universidad de Alicante. I. Kandemir, University College, 
London. Corresponding author: J. Mora,  juan@merlin.fae.ua.es. 
 



1 Introduction

Wage inequality has been an active area of interest for econometric studies since the mid-sixties,

and even more so since the eighties due to the accelerating wage inequality, not only among

di¤erent groups of characteristics but also among the individuals which belong to the same

group. This phenomenon is well documented in Levy and Murnane (1992), Juhn et al. (1993)

and Gottschalk and Smeeding (1997), among many others. The skill-biased technological change

explanation to this wage inequality was based on the fact that mean regressions of wage indicated

a rise in the returns to schooling despite the increase of the relative supply of high-skilled

labour. However, the increase in education seems to have exacerbated both unconditional and

conditional wage inequality. One possible explanation to this empirical �nding is that although

an increase in the educated labor supply would decrease the wage of these individuals, highly

educated individuals might experience greater spreads in the wage distribution because of a

di¤erent impact of schooling on wages at the top and at the bottom of the wage distribution.

Other methods di¤erent from the mean regression are needed in order to disentangle the e¤ect of

changes in the composition of the labor force from the e¤ects of changes in returns to regressors

on the whole distribution of wages, and not only on the average wages.

DiNardo et al. (1996) propose a method to extend the traditional Oaxaca decomposition

(Oaxaca, 1973) of the e¤ects of changes in several explanatory factors in mean wage regressions

to the entire distribution of wages. Their methodology amounts to constructing counterfactual

marginal distributions in a given year, assuming that the distribution of observed individual

characteristics had been the same as in the comparison year. The comparison of actual marginal

distributions and counterfactual distributions allows them to asses the extent to which the

observed changes in the marginal distribution of wages may be ascribed to changes in the

distribution of the individual attributes.

An alternative method to estimate actual and counterfactual distributions was proposed

by Machado and Mata (2005), using a series of linear quantile regressions; their procedure,

which may be thought of as semiparametric, avoids the curse of dimensionality, which a¤ects

the approach suggested by DiNardo et al. (1996), and potentially reveals the whole condi-

tional distribution of wages, if a large enough number of quantiles are estimated. Moreover, the

methodology in Machado and Mata (2005) has the appealing feature that the estimated coef-

�cients can be used to construct a measure of the residual or within-group inequality (i.e. the

spread of the conditional wage distribution derived from the quantile regression model). Melly

(2005) proposes a similar procedure as the one in Machado and Mata (2005), which solves the

problem of the crossing of di¤erent quantile curves; additionally, he proposes a decomposition
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of the changes in returns into two parts: one captures the changes in median returns, and the

other captures changes due to the widening in returns across the wage distribution. Applications

and extensions of the methodology of Machado and Mata (2005) include Albrecht et al. (2003),

Autor et al. (2005) and Arulampalam et al. (2007), among others. Gosling et al. (2000) also

propose an alternative three-step procedure to obtain unconditional quantiles from estimated

conditional quantile functions.

Although controlling for endogeneity is a common problem in the estimation of wage equa-

tions in Econometrics, it has not been taken into account before in the literature on counter-

factual distributions. The main objective of this paper is to extend the Machado and Mata

(2005) methodology by discussing how the endogeneity problem of schooling may be solved and

accounted for in the construction of counterfactual distributions. Our assumptions allow the

unobservable factors a¤ecting the education decision to be correlated with the unobserved skills

a¤ecting wages. The estimation problems that arise in this context are solved by using the

control function approach as in Lee (2007). The importance of controlling for endogeneity when

deriving counterfactual distributions lies in the fact that it also allows us to discuss the role that

changes in the distribution of unobserved components (e.g. ability) play in the observed changes

of the distribution of wages.

Our methodology likewise yields a decomposition of the part of the di¤erences in the wage

distribution which is explained by changes in the joint distribution of individual attributes; this

decomposition is deeper than those proposed in the previous literature: we do not only review

how to obtain counterfactual quantiles when only the distribution of one (or some, but not all) of

the explanatory variables remains �xed, but we also discuss how the so-called composition e¤ect

can be further decomposed, and this helps to clarify the role of the changes in the (conditional

or marginal) distribution of each covariate. The estimation of the counterfactual quantiles that

we propose might involve high dimensional nonparametric estimation, which might be quite

data demanding in applications with a large set of conditioning variables and samples of the

usual size; for these cases, we propose parametric estimators consistent with our model for the

schooling decision process. An alternative decomposition can be found in Firpo et al. (2007);

they provide estimates of the e¤ect of the change in the expectation of each regressor, when

the distribution of the rest of the regressors remains �xed. In contrast, we are able to compute

counterfactual e¤ects of changes on the whole distribution of some or a particular covariate, not

just on the mean.

In the empirical section, we analyse the sources of the changes in the distribution of wages in

the United States between 1983 and 1993 using hourly wage data from the Panel Study of Income
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Dynamics (PSID). The decomposition of the observed changes in the wage distribution between

both periods into the composition e¤ect and the e¤ect of a change in the returns shows that

the change in the joint distribution of the covariates would have shifted the wage distribution to

the right if returns were held �xed at 1993. Our empirical results point out that the increase in

wage inequality observed between 1983 and 1993 is chie�y explained by the change in the returns

along all the quantiles, which arises due to an increase in within-group inequality. Our results

suggest that the isolated e¤ect of the change in the marginal distribution of schooling observed

in the eighties would have increased all quantiles, and also inequality mainly at the bottom of

the distribution; but the isolated e¤ect of the change in the unobserved ability, conditional on

education, would have been the opposite, almost compensating the positive e¤ect of schooling

at the bottom quantiles.

The rest of the paper is organized as follows. In Section 2, we introduce the underlying

model, describe the estimation procedure used, and discuss the appropriateness of the stochastic

assumptions underlying the control function approach. Section 3 discusses how marginal and

counterfactual densities can be derived when endogeneity of schooling is taken into account,

derives formally how changes in wages can be decomposed into changes in regressors and changes

in returns in this context, and explains how a further decomposition may be achieved for each

of these terms. Section 4 describes the data set that is used in the application. In Section 5, we

apply the proposed methodology to the study of the sources of wage inequality in the United

States between 1983 and 1993. Section 6 concludes.

2 Model and inference

2.1 Model

Let W be the log wage, S the years of schooling and Z = (Z 01; Z
0
2)
0 2 Rp1 � Rp2 the vector

of regressors including individual characteristics (no constant variable is included in Z and

p1 + p2 � p). Hereafter, for a given � 2 (0; 1); Q� (�) denotes the �th quantile of the random

variable �: Following the control function approach proposed in Lee (2007), we assume that, for

a real number � in (0; 1); there exist parameters �� 2 R; � 2 Rp1 ; � 2 R and � 2 Rp such that

W = ��S + 
0
�Z1 + U� ;

S = �+ �0Z + V;

9=; (2.1)

where U� and V are unobserved random variables such that, for any (z0; v)0 in the support of

(Z 0; V )0;

Q� (U� j Z = z; V = v) = Q� (U� j V = v) and (2.2)
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Q0:5(V j Z = z) = 0: (2.3)

Note that U� and V are not assumed to be independent and, hence, schooling is an endogenous

variable. It is easy to prove that assumption (2.2), together with the second equation in (2.1),

imply that Q� (U� j S = s; Z1 = z1; V = v) = Q� (U� j V = v); hence, if we denote �� (v) �

Q� (U� j V = v); it follows from (2.1)-(2.3) that

Q� (W j S = s; Z1 = z1; V = v) = ��s+ 0�z1 + �� (v) and (2.4)

Q0:5(S j Z = z) = �+ �0z: (2.5)

Note that (2.4) provides an explicit expression for the conditional quantile of wages as a function

of schooling, the control variables a¤ecting wage and the unobservable component a¤ecting

schooling decisions. The control variables in Z1 may include age, tenure and powers of age

and/or tenure among other demographic variables. The variables included in Z2 (�instruments�)

are excluded variables so that they a¤ect the schooling decisions but not the individual wages,

such as cost shifters involved in the educational decisions; in Section 4 we discuss our choice

of instruments. Note that, following Lee (2003), identi�cation for �� ; � and �� (�) is achieved

if Var(S;Z1 j V ) is nonsingular almost surely (rank condition); this condition would not hold

if the last p2 components of �; i.e. those associated to Z2, are all equal to 0 (signi�cance of

instruments).

Although we interpret throughout the paper that the unobservable random variable V cap-

tures individual ability, this is obviously just a simpli�cation, as many other unobservables can

a¤ect schooling after controlling for Z; such as preferences. The unobservables in the wage

equation U� are also interpreted as luck in the labour market, though many other sources of

heterogeneity can a¤ect wages given both schooling and the demographic characteristics Z1:

Condition (2.3) implies that unobserved ability is median independent of Z: Condition (2.2)

assumes that the unobservables a¤ecting wages are �th-quantile independent of the exogenous

variables Z; once we control for V .

Schooling might be interpreted as an equilibrium outcome partially determined by U� and,

since U� and V have not been assumed to be independent, then years of education is an en-

dogenous variable. In order to motivate the particular form of the system of equations above,

consider that the agent optimally chooses S by maximizing the expected outcome minus the cost

associated to each particular level of schooling, given by the information set of the individual.

We assume this information set contains only ability or preferences captured by V; cost shifters

included in Z2 and demographic variables included in Z1: Let �(S;Z1; U� ) be the wage function

linearly speci�ed in the �rst equation in (2.1) and c(S;Z) be the cost function associated to
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the level of schooling S: Then S is obtained as the solution to an individual choice problem:

S = argmaxs Ef�(s; Z1; U� ) j V;Zg�c(s; Z): This motivates that the schooling equation in (2.1)

is a reduced form which is a function of Z and unobserved V:

2.2 Discussion of the stochastic assumptions

Endogeneity of schooling could have arisen under alternative stochastic assumptions on the

unobservables. More speci�cally, the quantile restriction in (2.2), which characterizes the so-

called control function (CF) approach, could be replaced by the quantile restriction Q� (U� j

Z = z) = Q� (U� ); which characterizes the so-called instrumental variable (IV) approach (see

e.g. Honoré and Hu, 2004). The IV assumption means that the unobservables a¤ecting wages

are �th quantile independent of the variables in Z: Schooling in this case is endogenous since

S does not appear in the set of conditioning variables. As opposed to the CF assumption,

there is no need to condition on ability to assume quantile independence between luck in the

labour market and demographics and cost shifters in Z: Thus, the IV assumptions mean that

those individuals for which higher education is less costly are not more or less lucky in the

labour market than those individuals for which costs are higher. Under the CF restrictions,

this quantile independence only holds once we condition on a particular ability level. In fact,

the IV assumption does not provide information about the dependence of the unobservables

in the wage and the schooling equation. Only in linear conditional mean models where the

endogenous variable appears linearly in the equation and a linear reduced form is estimated for

the endogenous variable, the CF approach imposes extra assumptions not imposed by the IV

approaches which lead to less robust estimators derived under CF assumptions. However, for

more general structural models, the CF restriction (2.2) and this IV restriction are non-nested

and both sets of restrictions are no more or less general. As stated by Blundell and Powell (2003)

and Lee (2004), both sets of assumptions are implied if the strong independence of (U� ; V ) and

Z is satis�ed:

Also note that the CF approach and the IV approach allow for di¤erent types of heteroskedas-

ticity: the su¢ cient conditions that a data generation process must satisfy in order to ensure

that the CF restriction holds do not exclude the possibility of heteroskedasticity depending on

V; S and Z1; and the su¢ cient conditions ensuring that the IV restriction is satis�ed only allow

for heteroskedasticity depending on Z1 (Lee, 2004). In our context, given the sequential na-

ture of the relationship between schooling and wages, it seems more reasonable to assume that

the heterogeneity of the unobservables in the wage equation depends on those unobservables

a¤ecting schooling, on schooling itself and on the exogenous variables Z1:

5
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Chernozhukov and Hansen (2005, 2006) show that the IV restriction, together with the as-

sumption that the unobserved ability variable is made invariant to schooling (conditional on

Z1), identi�es �� and � : However, only the CF restriction allows us to identify the conditional

quantile Q� (W j S = s; Z1 = z1; V = v), and this will allow us to assess the impact of a change

in the distribution of, say, the unobservables a¤ecting schooling V; while keeping �xed schooling

and the control variables Z1: In this sense, CF restriction allows to solve for the endogeneity of

schooling as an omitted variable problem by including an unknown function of the unobservable

ability. This kind of counterfactual analysis is not possible under the IV restrictions. Nonethe-

less, the IV assumptions imply the advantage that there is no need for specifying a reduced form

equation for S and no continuity assumptions on S are required.

Our model does not cover the case of heterogenous returns to schooling depending on either

the unobserved ability V and/or the unobserved U� . Under the CF assumption, when the returns

to schooling are heterogenous in both V and U� ; the estimation of the returns to schooling at

di¤erent values of the support of ability could be achieved in our model by adding interactions

of an unknown function of V with schooling, for each quantile � (see Lee 2007). Under the

strong assumptions of independence of U� and V; and allowing for heterogeneity in both ability

and luck, the quantile treatment e¤ect of education on earnings at di¤erent ability quantiles and

luck quantiles has been considered by Brunello et al. (2009) (see also Ma and Koenker 2006 and

Chesher 2003 for the estimation).

Our model assumes that the conditional median of S given Z = z is linear (see 2.5). Instead,

we could have assumed that the �th conditional quantile of S given Z = z is linear for some other

quantile � 2 (0; 1): In this case, in practice one would have to decide which � should consider.

Since our main concern is the estimation of the conditional quantile of wages, one could try to

�nd the value � which leads to the most e¢ cient estimation of this conditional quantile. If Z and

V� � S �Q�(S j Z) were independent, this criterion would lead to choose the value � 2 (0; 1)

that minimizes �(1 � �)=fV�(0)2, where fV�(�) denotes the probability density function of V�
(see Lee 2007). However, in our context it is likely that Z and V� are not independent (e.g. this

hypothesis is rejected in our empirical application, see Section 5), and in this case the previous

criterion leads to an intractable optimization problem. Hence, for clarity of exposition, we have

decided to state our assumptions considering the conditional median for the schooling equation.

2.3 Estimation

Given independent and identically distributed (i.i.d.) observations f(Wi; Si; Zi)gNi=1; Lee (2007)

describes how the parameters of the model and the unknown function �� (�) can be consistently

6
9



estimated. We brie�y describe this estimation procedure with the notation that is more appro-

priate for the discussion of the following section.

First, the conditional quantile restriction in (2.5) suggests to estimate � and � using linear

median regression estimation; thus, the �rst stage estimates, denoted by b� and b�; are the solution
to the optimization problem

min
(�;�)

XN

i=1

��Si � �� �0Zi�� ; (2.6)

In a second stage, the conditional quantile restriction in (2.4) suggests that, once � and � are

estimated, �� and � can be estimated using a series approximation of �� (�) and a trimmed

linear quantile regression; this trimming is introduced not only to show the uniform convergence

and asymptotic normality of the estimator, but also to avoid in�uences of large values of the

covariates (Newey et al. 1999). Thus, the second stage estimates, denoted by b�� and b� , are
the �rst 1 + p1 components of the solution to the optimization problem

min
(�;;�)

XN

i=1

��Wi � �Si � 0Z1i � �0P (Si � b�� b�0Zi)�� t(Si; Zi; b�; b�); (2.7)

where P (�) � (p1(�); :::; pkN (�))0, fpk(�)g1k=1 is a basis for smooth functions such that a linear

combination of them can approximate �� (�); kN = O(N�) for some � > 0; t(s; z; �; �) � 1fs 2

�Sg1fz1 2 �Z1g1fs � � � �0z 2 �V g; where 1f�g is the usual indicator function, �S and �V
are compact intervals in R, and �Z1 is a compact rectangle in Rp1 . The second stage also yields

an estimate of the function �� (�); namely b�0�P (Si � b� � b�0Zi); where b�� denotes the last kN
components of the solution to the optimization problem (2.7); however it is di¢ cult to perform

inference with this estimate. As an alternative, since �� (v) is the �th quantile of the conditional

distribution U� j V = v, it can be estimated with a local linear quantile regression estimation ofbU� �W � b��S � b0�Z1 on bV � S � b�� b�0Z; thus, for any v in the support of V , the third stage
estimate of �� (v), denoted by b�� (v), is the �rst component of the solution to the optimization
problem

min
(d1;d2)

XN

i=1

���Wi � b��Si � b0�Z1i � d1 � d2(Si � b�� b�0Zi � v)���Kh(Si � b�� b�0Zi � v); (2.8)

where Kh(�) � h�1K(�=h); K(�) is a kernel function and h is a bandwidth (Yu and Jones, 1993).

After this three-stage estimation procedure, it follows from (2.4) that the natural estimate of

the conditional quantile function Q� (W j S = s; Z1 = z1; V = v) is

bQ� (W j S = s; Z1 = z1; V = v) = b��s+ b0�z1 + b�� (v): (2.9)

This estimator plays a key role in the procedure to construct counterfactual quantiles that is

described in Section 3.

7
10



The asymptotic properties of the second-stage estimators b�� and b� are derived in Lee (2007)
under relatively standard smoothness and moment conditions; �nally, since b�; b�; b�� and b� are
root-N -consistent, the asymptotic properties of the third-stage estimator b�� (v) are the same as
those of the infeasible estimator of �� (v) that would be obtained using �; �; �� and � instead

of their estimates in (2.8), and the properties of this infeasible estimator are also well-known

(see e.g. Chaudhuri, 1991).

In practice, the second stage requires the choice of the family of functions fpk(�)g1k=1; the

number kN of functions pk(�) that are used in the optimization problem (2.7), and the sets

�S ; �Z1 ; �V that characterize the trimming function. The asymptotic results derived in Lee

(2007) assume that fpk(�)g1k=1 are either polynomials or splines; the simulation results reported

in Lee (2003) indicate that kN values between 3 and 8 can be adequate, and suggest that the

performance of the estimator is not very sensitive to this choice. As regards the sets �S ; �Z1 ,

�V ; they must be contained in the interior of the support of S; Z1; V; respectively; in practice

they should be chosen in such a way that there are no unduly in�uential observations.

It is worth discussing an additional issue of practical relevance that might arise in the �rst

stage estimation. Observe that the dependent variable in the �rst stage, i.e. schooling S, is

continuous in nature, but possibly recorded as discrete. In almost all samples, it only takes on

integer values and there are many observations with the same recorded years of education. The

fact that some observations of a continuous variable take on the same value poses a problem

in many contexts; but in this case this is especially worrying, since the standard optimization

procedures for quantile regression assume a continuous dependent variable and do not work

properly when the number of observations sharing the same value of the dependent variable

is relatively high. Furthermore, the asymptotic results derived in Lee (2007) require that this

�rst-stage endogenous variable be continuously distributed. To circumvent this problem, we

suggest to transform the integer-valued variable years of schooling into a continuous variable by

adding a uniform (�0:5; 0:5) random noise to the recorded values. This approach is basically the

same that is proposed in Machado and Santos-Silva (2005), who studied both theoretically and

by simulations the consequences of this type of smoothing. The good asymptotic behaviour of

the resulting estimates only holds if the conditional quantile of the smoothed dependent variable

is linear on the regressors; however, the asymptotic results that they report suggest that, even

if this condition is not met, the resulting estimates are surprisingly accurate and compare very

favorably with respect to the estimates that are obtained if the problem is solved with other

smoothing techniques. In the empirical analysis of this paper, the schooling variable is smoothed

by adding a uniform (�0:5; 0:5) noise, but very similar results are obtained if this variable is
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smoothed by adding a uniform (�"; ") noise, if 0:3 < " < 1:

3 Counterfactual quantiles with endogenous regressors

Hereafter we assume that we are interested in analysing changes in the wage distribution along

T periods (or groups) when a random sample of size Nr is available for each r 2 f1; :::; Tg:

Furthermore, we assume that in all periods and for every � 2 (0; 1); assumptions (2.1), (2.2)

and (2.3) hold. In the remainder of this section the set of explanatory variables (S;Z 01; V )
0 is

denoted as X:

Given a set of explanatory variables X; the starting point of DiNardo et al. (1996) to

derive counterfactual densities of wages is the relationship fW (w) =
R
fW jX=x(w)dFX(x); where,

hereafter, F�(�) and f�(�) denote the cumulative distribution function (CDF) and probability

density function (PDF) of the random variable �; respectively. Unfortunately, when working

with quantiles this type of relationship does not hold, i.e. the �th marginal quantile marginal of

wages Q� (W ) does not coincide with
R
Q� (W j X = x)dFX(x): But it is still possible to derive

a relationship between Q� (W ); the marginal distribution of X and the quantiles of W j X = x;

more speci�cally, it is easy to prove that Q� (W ) can be de�ned implicitly as the solution q to

the equation Z �Z
1fw � qgfW jX=x(w)dw

�
dFX(x) = � : (3.1)

In the next subsections we describe how to use this relationship to de�ne counterfactual quantiles.

Equation (3.1) could also be used as the starting point to derive estimates of the counterfac-

tual quantiles (see Melly 2005). However, following Machado and Mata (2005), in this context

it is easier to apply a simulation-based procedure. Here we describe how this procedure is used

to derive estimates of the marginal quantiles of wages that are consistent with the model; in

the next subsections we describe how it can be used to estimate counterfactual quantiles. The

key idea behind the Machado and Mata (2005) procedure is the inverse probability integral

transform. More speci�cally, for a �xed x; the inverse probability integral transform ensures

that if � is a random variable with uniform distribution on (0; 1); then the random variable

Q�(W j X = x) has the same distribution as W j X = x; using this result it is possible to

prove that the CDF of the random variable Q�(W j X) is the same as the CDF of W: As a

consequence, given our model for all conditional quantiles Q�(W j X = x) and their consistent

estimates bQ�(W j X = x) de�ned in (2.9), the following simulation-based procedure can be

used to derive an estimate of Q� (W ); hereafter denoted as bQ� (W ): i) obtain a draw of size m
from the uniform distribution on (0; 1); denoted as f�igmi=1; ii) obtain a draw of size m from the

empirical distribution bF bX(�), denoted as f bX�igmi=1 (note that this is just a draw of size m with
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replacement from f bXigNi=1; also note that bX is used instead of X since one of its components (e.g.

V ) is not observable and the correponding components should be replaced by the appropriate

estimates); iii) �nd the �th sample quantile of f bQ�i(W j X = bX�i)gmi=1: Note that, of course, the
natural estimate of Q� (W ) is not bQ� (W ), but the �th sample quantile of fWigni=1; the former

is of interest because it is coherent with the proposed model and it suggests how counterfactual

quantiles can be estimated. Also note that this simulation-based estimation procedure is similar

in spirit to (but not coincidental with) that of Melly (2005), though Melly (2006) shows if the

size of the simulation draws m increased to in�nity, then both would be numerically equivalent.

Finally, note that Albrecht et al. (2009) show that bQ� (W ) is a consistent estimate of Q� (W ), if
consistent estimates of the conditional quantiles Q�(W j X = x) are used; in our context, this

can be ensured under the regularity conditions speci�ed in Lee (2007).

3.1 Counterfactual quantiles �xing all regressors or all returns

Hereafter, we use the superscript t = r in operators, parameters, estimators and observations in

order to emphasize that they are considered at time period r; thus the �th marginal quantile of

W in period r will be denoted by Qt=r� (W ); and so on.

In equation (3.1) the �th marginal quantile ofW in period r is de�ned implicitly as a solution

to an equation which depends on the marginal distribution of X in period r and the conditional

density ofW j X = x in period r: Then, given r; r� 2 f1; :::; Tg, with r� � r, if we were interested

in the �th quantile of wages that would have prevailed in period r if the distribution of individual

attributes had remained distributed as in period r�; and workers had been paid according to the

wage schedule observed in period r; what we should �nd is the solution q to a similar equation

to (3.1), but using the marginal distribution of X in period r� and the conditional density of

W j X = x in period r :Z �Z
1fw � qgf t=rW jX=x(w)dw

�
dF t=r

�
X (x) = � : (3.2)

We denote this �th counterfactual quantile by QtX=r
�;t�=r

� (W ); where � stands for the set of pa-

rameters that determine the returns to X through all quantiles, i.e. � � f(��; 0�; ��(�))g�2(0;1):

Following the methodology of Machado and Mata (2005), an estimate of QtX=r
�;t�=r

� (W ); de-

noted by bQtX=r�;t�=r� (W ), is the �th sample quantile of f bQt=r�i
(W j X = bXt=r�

�i )gmi=1; where

f�igmi=1 is a draw of size m from a uniform distribution on (0; 1); f bXt=r�
�i gmi=1 is a draw of size

m with replacement from f bXt=r�
i gNr�i=1 ;

bXt=r�
i � (St=r�i ; (Zt=r

�
1i )0; bV t=r�i ) and bV t=r�i � St=r

�
i �b�t=r��(b�t=r�)0Zt=r�i : Note that bQt=r�i

(W j X = �) is the estimator de�ned in (2.9) computed with

the observations in t = r; but then this function is evaluated at observations of the individual

characteristics in t = r�:
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Once the �th counterfactual quantile is estimated, a decomposition of the di¤erence between

the estimated �th marginal quantiles in periods r and r� may be proposed:

bQt=r� (W )� bQt=r�� (W ) =
h bQtX=r;t�=r� (W )� bQtX=r�;t�=r� (W )

i
+ (3.3)h bQtX=r�;t�=r� (W )� bQtX=r�;t�=r�� (W )
i
:

The �rst term on the right-hand side is the part of the di¤erence between quantiles that is

explained by changes in the distribution of the individual characteristics between periods r�

and r; and is usually referred to as the composition e¤ect. The second term is the part of the

di¤erence that is explained by changes in the returns to the individual characteristics.

A counterfactual quantile which assumes that returns are kept �xed at t = r� can be de�ned

in a similar way as QtX=r
�;t�=r

� (W ), by simply exchanging the roles of r and r� in the previous

de�nitions. If we denote the estimate of this counterfactual quantile by bQtX=r;t�=r�� (W ); then

an alternative decomposition to (3.3) may be proposed using the di¤erences [ bQtX=r;t�=r� (W ) �bQtX=r;t�=r�� (W )] and [ bQtX=r;t�=r�� (W )� bQtX=r�;t�=r�� (W )]: There is no reason why this alternative

decomposition and (3.3) should lead to similar results, i.e. the order in which the decomposition

is made may matter.

3.2 Counterfactual quantiles �xing some (but not all) regressors

The methodology that is used in the previous subsection also allows us to de�ne and estimate

counterfactual quantiles keeping �xed only the distribution of some of the explanatory variables

of the model. In this case, several alternative counterfactual distributions can be de�ned, and

one must choose in each application which one is the most appropriate or relevant for the analysis

to be performed. Hereafter we consider that X is divided into two subvectors X1 2 Rd1 and

X2 2 Rd2 :

First, let us assume that we are interested in the distribution of wages that would have

prevailed if the individual characteristics X1 had remained distributed as in period r�; but

workers had been paid according to the wage schedule observed in period r and the remaining

individual attributes X2 are distributed as in period r. Then, the �th counterfactual quantile of

this wage distribution, denoted by Q
tX1=r

�;tX2jX1=r;t�=r
� (W ); is de�ned implicitly as the solution

q to the equationZ �Z �Z
1fw � qgf t=rW jX=x(w)dw

�
dF t=rX2jX1=x1(x2)

�
dF t=r

�
X1 (x1) = � : (3.4)

When estimating this counterfactual quantile, it is necessary to generate samples from an

estimate of F t=rX2jX1=x1(x2): We propose to use the Nadaraya-Watson estimate
bF t=r
X2jX̂1=x1

(x2) �
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PNr
j=1 1f bXt=r

2j � x2g!t=rbX1;j(x1); where !t=rbX1;j(x1) � K(h�11 (x11 � bXt=r
11j ); :::; h

�1
d1
(x1d1 � bXt=r

1d1j
))=PNr

l=1K(h
�1
1 (x11 � bXt=r

11l ); :::; h
�1
d1
(x1d1 � bXt=r

1d1l
)); K(�) is a d1�dimensional kernel function; h1;

:::; hd1 are bandwidths and bX1sj denotes the sth component of bX1j . Note that a draw ofbF t=r
X2jX̂1=x1

(x2) is bXt=r
2j� ; where j� is a draw from a discrete random variable J with proba-

bility mass function P (J = j) = !t=rbX1;j(x1) for j 2 f1; :::; Nrg: As a consequence, an esti-

mate of Q
tX1=r

�;tX2jX1=r;t�=r
� (W ); denoted by bQtX1=r�;tX2jX1=r;t�=r� (W ), can be found as fol-

lows: i) obtain a draw of size m from the uniform distribution on (0; 1); denoted as f�igmi=1;

ii) obtain a draw of size m with replacement from f bXt=r�
1i gNr�i=1 ; denoted as f bXt=r�

�1i gmi=1; iii) for

i 2 f1; :::;mg; obtain one draw from a discrete random variable J with probability mass function

P (J = j) = !t=rbX1;j( bXt=r�
�1i ) for j 2 f1; :::Nrg; this draw is denoted j�(i); iv) �nd the �th sample

quantile of f bQt=r�i
(W j X1 = bXt=r�

�1i ; X2 =
bXt=r
2j�(i)

)gmi=1: Note that this estimator is based on a

nonparametric estimator of a conditional distribution given X1 and, hence, it is a¤ected by the

curse of dimensionality if d1 is large; this problem could be circumvented by assuming a paramet-

ric speci�cation for the conditional distribution of X2 j X1 = x1. Also note that in all de�nitions

of this subsections, returns could also be �xed at the same period as the marginal CDF of X1;

by simply using f t=r
�

W jX=x(�) instead of f
t=r
W jX=x(�) in (3.4), and bQt=r��i

(W j X1 = �; X2 = �) instead

of bQt=r�i
(W j X1 = �; X2 = �) in the fourth step above.

The estimator of the counterfactual quantiles that we propose di¤ers from the one introduced

in Machado and Mata (2005) when the distribution of some of the regressors are held �xed.

Machado and Mata (2005) derive an estimator where the support of X1 is divided into a �nite

number of partitions; hence the di¤erence between our estimator and theirs is the same as the

di¤erence between an histogram and a nonparametric kernel estimate. We have preferred to use

nonparametric kernel estimates because it has better statistical properties, and the problems

of bandwidth selection and kernel choice have been studied more in detail than the problem

of selecting partitions in histogram-like estimation. Additionally, the estimator we propose is

easier to implement in the case of multivariate X1:

Once this �th counterfactual quantile is estimated, the composition e¤ect the �rst term in

(3.3) may be further decomposed as follows:

QtX=r;t�=r� (W )� bQtX=r�;t�=r� (W ) = (3.5)

=
h bQtX=r;t�=r� (W )� bQtX1=r�;tX2jX1=r;t�=r� (W )

i
+h bQtX1=r�;tX2jX1=r;t�=r� (W )� bQtX=r�;t�=r� (W )
i
:

The �rst term on the right-hand side is the part of the composition e¤ect that is explained by

changes in the marginal distribution of the individual characteristics X1; and the second term

is the part of the composition e¤ect that is explained by changes in the conditional distribution
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of X2 j X1:

If the dimension of X is greater than 2, then there are various possible ways to split the

explanatory variables into X1 and X2; and hence various di¤erent decompositions in the spirit

of (3.5) are possible. In addition, each term on the right-hand side of (3.5) can be further

decomposed, using an additional decomposition of X1 or X2, and the same methodology as

above. Among all these possible decompositions of the composition e¤ect, the researcher should

decide which ones are of interest to her.

3.3 Counterfactual quantiles �xing some (but not all) returns

The previous methodology also allows us to de�ne counterfactual quantiles keeping �xed only

some of the returns of the model. Here we just present some of the counterfactual quantiles that

can be de�ned; with the same methodology many others can be de�ned.

First, let us assume that we are interested in the �th counterfactual quantile of wages

that would have prevailed with individual attributes distributed as in period r�, returns to

schooling as in period r� and all other returns as in period r: This counterfactual quantile,

denoted by Q
tX=r

�;t�=r�;t(;�)=r
� (W ), can be de�ned as the solution q to an equation similar to

(3.2), but replacing f t=rW jX=x(w) with f
t�=r

�;t(;�)=r

W jX=x (w); which denotes the PDF derived from

the quantile function Q
t�=r

�;t(;�)=r
� (W j X = x) � �t=r

�
� s + z01

t=r
� + �t=r� (v): And this coun-

terfactual quantile can be estimated by bQtX=r�;t�=r�;t(;�)=r� (W ); which is de�ned in the same

way as bQtX=r�;t�=r� (W ); but replacing bQt=r�i
(W j X = x) by bQt�=r�;t(;�)=r�i

(W j X = x) �b�t=r��i
s + z01bt=r�i

+ b�t=r�i
(v): In a similar fashion, it is possible to de�ne other counterfactual

quantiles considering some returns in period r� and the remaining ones in period r: Once these

counterfactual quantiles are estimated, the di¤erence between the marginal quantiles in periods

r and r� that is explained by changes in returns, i.e. the second term on the right-hand side of

(3.3), can be further decomposed, for instance, as follows:

bQtX=r�;t�=r� (W )� bQtX=r�;t�=r�� (W ) = (3.6)

=
h bQtX=r�;t�=r� (W )� bQtX=r�;t�=r�;t(;�)=r� (W )

i
+h bQtX=r�;t�=r�;t(;�)=r� (W )� bQtX=r�;t(�;�)=r�;t=r� (W )

i
+h bQtX=r�;t(�;�)=r�;t=r� (W )� bQtX=r�;t�=r�� (W )

i
:

Here, the �rst term on the right-hand side is the part of the di¤erence that is explained by changes

in the returns to schooling, the second term is the part of the di¤erence that is explained by

changes in the labour market returns to the unobservables a¤ecting schooling, and the third

term is the part of the di¤erence that is explained by changes in the returns to the observable

13
16



control variables in Z1:

Another type of counterfactual exercise may be performed in order to disentangle the e¤ect

of changes in one of the returns, say the median ones �0:5 � (�0:5; 00:5; �0:5(�))0, from the e¤ect of

changes in the corresponding errors, say the median ones "0:5 � U0:5 � �0:5(V�); using the same

methodology as in Melly (2005, p.581). This allows one to decompose the di¤erence between

the marginal quantiles in periods r and r� that is explained by changes in returns into that part

that is explained by the changes in median returns and that part that is explained by changes in

the conditional distribution of the unobservable component of the median wage regression given

X; or equivalently, by changes in the within-group or residual inequality.

4 Data

The requirement of �nding instruments for schooling restricts the data sets that can be used to

apply our methodology. The Panel Study of Income Dynamics (PSID) is an ideal data set for

this study since it contains both information on the county of residence during the adolescence

and also information on parental education.

We use the 1983 and 1993 waves of the PSID. In both waves we restrict our attention to

current male heads in each period who report to work for someone else. These individuals

were members of the original families chosen in 1968 and, hence, our dataset does not take into

account the immigration e¤ects from 1968 onwards; to overcome this problem, several samples

with immigrants were added to the PSID in the mid-nineties, but they were not available for the

period considered in our analysis. In both waves we only consider individuals from the Survey

Research Center (SRC) and discard those individuals belonging to the Census Sample (which

was added to the PSID cross-section in order to oversample low-income families and it would

decrease representativeness of the original PSID sample if included). We choose the waves for

1983 and 1993 in order to capture the increase in wage inequality experienced during the eighties

in the United States (see e.g. Levy and Murnane 1992); additionally, our instrument is only

available for this time window. We do not exploit the panel dimension and consider these two

waves as two cross sections. The exact de�nition of wages, schooling and the variables included

in Z can be found in the Appendix.

For our study we only consider male heads between 22 and 65 years old for whom the

two variables that are used to compute hourly wages are positive. Younger workers are not

considered to ensure that all workers in the sample have possibly completed their schooling

decisions. Similar results are obtained if male heads between 18 and 21 years old are included.

In addition, all observations with some missing value for any of the regressors are also excluded.
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The �nal sample sizes are 1469 individuals for 1983 and 1633 individuals for 1993. In Table 1 we

report descriptive statistics of all the variables. Note that hourly wages increased, on average,

by 2 dollars per hour; however, the median of the distribution remained unchanged (10.94 in

1983 and 10.97 in 1993), the 95th quantile increased (22.90 in 1983 and 29.18 in 1993) and the

5th quantile decreased (4.09 in 1983 and 3.92 in 1993). There is also evidence that the ratio

between quantiles at the top of the distribution increased (the ratio between the 90th quantile

and the 70th quantile is 1.40 in 1983 and 1.52 in 1993), whereas the ratio between the quantiles

at the bottom of the distribution slightly decreased (the ratio between the 30th quantile and

the 10th quantile is 1.59 in 1983 and 1.57 in 1993). All these results show that wage inequality

increased between 1983 and 1993. To better understand the sources of this increase in wage

inequality, it is important to note the increase in education attainment: the number of college

graduates and postgraduates increased by 5% and the percentage of individuals with only high

school or dropouts slightly decreased; also the distribution of parental education shifted to the

right between both periods.

The vector Z to be used as a set of regressors in the schooling equation must include the

exogenous variables in the wage equation Z1 and valid instruments Z2 excluded from the wage

equation. In order to be able to quantify the causal relationship between schooling and earnings,

an exogenous source of variation in education outcomes is required. Much attention has been

focussed on the institutional sources of variation in schooling, arising from minimum school

leaving age, tuition costs for higher education or from the geographic proximity to schools.

Following Card (1995), Carneiro and Lee (2009) and Kling (2001), among others, we consider

proximity to college as a measure of these institutional factors. This variable aims to assess

the cost of attending schooling based on the geographical variation of the individuals when

they were young: those individuals who grow up in a county without a college face a higher

cost of continuing education and, therefore, there is a decrease in the level of schooling that

is eventually achieved. The choice of this instrument is not free of controversy; Carneiro and

Heckman (2002) showed that distance to college is correlated with the result of a test score

capturing cognitive ability in the National Longitudinal Survey of Youth; since we do not have

access to this proxy for ability in the PSID, distance to college is the most appropriate instrument

at hand. We introduce proximity to college in our model considering a dummy variable denoted

by proximity that takes value 1 if there is at least a two-year post-secondary institution within

the county where the individual grew up and 0 otherwise; this variable can be constructed by

combining data on the PSID with the information on the location and foundation year of all

public two-year and four-year colleges in the United States reported by the National Center of

15
18



Table 1: Descriptives of main variables. Mean of each variable with standard errors in brackets. For education, percentage of observations in
each level with standard errors in brackets

Year 1983 (1469 obs.) Year 1993 (1633 obs.)
Total wages 24868.79 (15141.63) 27507 (22648.32)
Hourly wages 12.1885 (17.7681) 13.861 (14.504)

Age 36.8944 (10.8846) 38.55 (9.82)
Tenure 12.3474 (9.7633) 13.7440 (8.6924)

Size of City Dummy 0.5207 (0.4997) 0.4868 (0.4999)
Govern. Occup. 0.1912 (0.3934) 0.1984 (0.3989)
White Dummy 0.9278 (0.2588) 0.9326 (0.2507)

South 0.3036 (0.4599) 0.3129 (0.4638)
North 0.3158 (0.4650) 0.3312 (0.4708)
West 0.1803 (0.3846) 0.1592 (0.3659)

Northeast 0.2001 (0.4002) 0.1965 (0.3975)
Proximity to College 0.7243 (0.4470) 0.7495 (0.4334)
Industry Dummies
Agriculture & Fisheries 0.0231 (0.1504) 0.0202 (0.1407)

Mining 0.0149 (0.1214) 0.0091 (0.0954)
Construction 0.0769 (0.1665) 0.0857 (0.2800)
Manufacturing 0.3042 (0.4602) 0.2584 (0.4379)

Transport &Communication 0.1266 (0.3326) 0.1065 (0.3086)
Wholesale/Retail Trade 0.1463 (0.3535) 0.1671 (0.3732)

Finance, Insurance, Real State 0.0394 (0.1948) 0.0404 (0.1969)
Business & Repair Serv. 0.0408 (0.1979) 0.0545 (0.2270)

Personal Serv. 0.0088 (0.0936) 0.0085 (0.0922)
Entertainment/Recreation Serv. 0.0061 (0.0780) 0.0091 (0.0954)

Professional Serv. 0.1198 (0.3248) 0.1439 (0.3511)
Public Admin. 0.0925 (0.2899) 0.0961 (0.2948)
Education % Close to College % Close to College

% < High School (S < 12) 13.75 (0.3445) 57.92 10.90 (0.3117) 67.97
% High School (S = 12) 38.39 (0.4865) 71.45 34.41 (0.4752) 73.67
% 1 Year College (S = 13) 6.73 (0.2507) 80.81 8.26 (0.2754) 74.81
% 2 Year College (S = 14) 11.70 (0.3216) 76.16 10.90 (0.3117) 80.34
% 3 Year College (S = 15) 3.13 (0.1742) 78.26 4.16 (0.1998) 76.47
% College Graduate (S = 16) 15.72 (0.3641) 76.62 19.65 (0.3975) 79.13
% Postgraduate (S = 17) 10.55 (0.3073) 77.42 11.69 (0.3214) 72.77
Father�s Education

% < High School (F1,F2,F3) 51.05 (0.5000) 64.93 36.25 (0.4808) 67.06
% High School (F4,F5) 29.27 (0.4551) 77.21 37.78 (0.4849) 75.36
% Some College (F6) 7.69 (0.2665) 78.76 8.81 (0.2836) 80.56
% College (F7,F8) 11.43 (0.3183) 89.29 16.65 (0.3727) 88.60

Mother�s Education
% < High School (M1,M2,M3) 38.36 (0.4876) 63.05 25.78 (0.4375) 66.27
% High School (M4,M5) 45.88 (0.4984) 68.43 53.52 (0.4989) 75.97
% Some College (M6) 7.01 (0.2554) 82.52 9.92 (0.2990) 82.72
% College (M7,M8) 8.03 (0.2718) 82.20 10.71 (0.3094) 83.43



Education Statistics (NCES) in the Higher Education General Information Survey (HEGIS), for

the years 1966 to 1985, and in the Integrated Postsecondary Education Data System (IPEDS)

(Institutional Characteristics Survey) from 1986 onwards; for each institution we use the year

when it was founded (in fact, we use the �rst year a 2-year or a 4-year degree was o¤ered), and

by matching this information with the county of residence where the individual grew up, we

determine the presence of a two-year or a four-year postsecondary institution. We assume that

this information provided by the PSID coincides with the county where the individual lived when

he was 16. As opposed to Card (1995), the 2-year degrees have been considered important in the

college decision in Carneiro and Lee (2009) and Kling (2001). However, as a robustness check,

�rst stage quantile estimates for the schooling equation were obtained using in the de�nition of

proximity to college only those institutions o¤ering 4-year degrees in 1993. We obtain that the

di¤erence of these results with the results reported in the remainder of the paper are signi�cantly

small (e.g. the average di¤erence between the estimated schooling coe¢ cient over 40 equally

spaced quantiles is 0.0089 in 1983 and -0.0011 in 1993, with bootstrapped standard errors for

these di¤erences of 0.0191 in 1983 and 0.0227 in 1993).

In Table 1 we report, for each education group, the percentage of individuals for which there

is at least a 2-year college in the county where he grew up. In both years, the percentage of

college graduates that lived near a college is signi�cantly greater than the percentage of dropouts

living close to a college. It has also been discussed in the literature that the e¤ect on schooling

decisions of a nearby college di¤ers with family background. Thus, the impact on schooling of

decreasing the cost of higher education for those individuals close to a college must be greater

for poor families or families with low educated parents. In order to control for this, Z2 includes,

in addition to proximity; interaction variables between proximity to college and 14 dummies for

parental education: The identifying assumption is that, controlling for individual and parental

education, college proximity should have no direct e¤ect on wage for any parental background

group. It is important to control for parental education in the earnings and schooling equations

in order to ensure that this identifying assumption holds, since otherwise distance to college could

be correlated with wages and schooling decisions through parental education. This correlation is

observed in Table 1: the percentage of dropout parents of those individuals living near a college

is almost 20 points lower than the percentage of graduated parents of those individuals living

close to a college.

Finally, it is important to note that other instruments for schooling that have been used

in previous literature were not available for our sample or proved to be non-signi�cant. More

speci�cally, following Angrist and Krueger (1991), we could have derived an instrument for
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schooling by using the exogenous variation implied by the quarter of birth in the amount of

years of education attained; but, given our small sample size, only a few observations per year

and per quarter are available and, in our samples, those individuals who were born earlier in the

year do not achieve lower education level than those who were born later in the year. On the

other hand, following Carneiro and Lee (2009) among others, average county or state tuition

fees could also be used to approximate the cost of attending college; the data from HEGIS and

IPEDS only contain information on tuition fees from 1969 onwards and, therefore, for most of

the individuals in our samples it is not possible to derive the average tuition fee in the county or

state where he grew up. With the information that is available, we derived a proxy for average

county tuition fees, assuming that the tuition fees in years previous to 1969 were the same as in

1969; the results that are obtained including it in Z2 are similar to the ones that are reported

below.

5 Results

5.1 Estimation of the Wage and Schooling Equations

We estimate the model de�ned by (2.1)-(2.3) with di¤erent values of � for both periods 1983

and 1993. For comparative purposes, we also provide the estimates that are obtained when

schooling S is assumed to be exogenous, i.e. assuming that the �rst equation in (2.1) holds with

an intercept term and error term satisfying that Q� (U� j S = s; Z1 = z1) = 0 for any (s; z01)0 in

the support of (S;Z 01)
0; these results will be referred to as results for the �exogenous model�,

whereas those obtained for the model de�ned by (2.1)-(2.3) will be referred to as results for the

�endogenous model�.

The upper panel in Table 2 reports the estimated coe¢ cients of the instrumental variables

Z2 in the �rst stage estimation. The fact of having grown up in a county with a college has a

signi�cant positive e¤ect on the schooling level of those individuals whose parents only achieved

the lowest educational level. For this group, the median schooling for those individuals living

close to a college is 2.5 years higher in 1983 and 1.7 years higher in 1993 than for those individuals

that lived further away. The e¤ect of distance to college is monotonically decreasing with the

education of the father; in fact, we obtain that in 1983 distance to college has almost no impact

for those individuals whose fathers �nished college. Maternal education does not have any

di¤erential e¤ect on the impact of distance to college in 1993; however, in 1983 living close to

a college increases schooling by 1 year for those individuals with mother�s education above the

sixth grade. The bottom panel in Table 2 reports the p-values of the joint signi�cance test of the
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Table 2: Estimates of the coe¢ cients of the instrumental variables Z2 in the �rst stage estimation of the conditional median (upper panel) and
Test of joint signi�cance of regressors in Z2 (lower panel).

Year 1983 Year 1993
Dep. Variable: Years of Schooling Coe¤. p-value Coe¤. p-value
proximity to college 2.548198** 0.000 1.737971* 0.014

proximity*father education 2 -.9891704* 0.038 -1.115219* 0.055

proximity*father education 3 -.9551701** 0.099 -1.517416* 0.022

proximity*father education 4 -1.201334* 0.023 -1.244606* 0.040

proximity*father education 5 .6578266 0.473 -1.014563 0.296

proximity*father education 6 -1.362265* 0.032 -2.315919** 0.001

proximity*father education 7 -.2193215 0.762 -.7503964 0.309

proximity*father education 8 -2.457444* 0.014 -1.382607 0.122

proximity*mother education 2 -1.60994** 0.001 -.3863 0.590

proximity*mother education 3 -1.645981** 0.004 -0.7953959 0.292

proximity*mother education 4 -1.757884** 0.001 -.6746985 0.345

proximity*mother education 5 -1.084456 0.247 1.505461 0.112

proximity*mother education 6 -1.593101* 0.017 -.286328 0.722

proximity*mother education 7 -1.792687* 0.016 -1.08793 0.199

proximity*mother education 8 -1.084995 0.278 0.3964252 0.693

H0 : coe¤ of Z2 = 0
�rst-stage quantile =0:5 F(15,1421)=2.62 pvalue 0.0007 F(15,1585)=2.28 pvalue 0.0035
�rst-stage quantile =0:05 F(15,1421)=5.12 pvalue 0.0000 F(15,1585)=2.80 pvalue 0.0003
�rst-stage quantile =0:25 F(15,1421)=3.82 pvalue 0.0000 F(15,1585)=3.43 pvalue 0.0000
�rst-stage quantile =0:75 F(15,1421)=1.15 pvalue 0.3034 F(15,1585)=3.05 pvalue 0.0001
�rst-stage quantile =0:95 F(15,1421)=44.45 pvalue 0.0000 F(15,1585)=6.65 pvalue 0.0000

Note: First stage median regression additionally includes as regressors an intercept and vector Z1 (tenure, squared tenure, race
dummy, dummy for size of city, dummy for government occupation, regional dummies, dummies for parental education and industry
dummies. Signi�cant estimates at 1% signi�cance level are denoted **; signi�cant estimates at 5% signi�cance level are denoted *.



excluded variables Z2 when estimating the quantile model Q�(S j Z) = �� + �0�Z, for various

�; a joint signi�cant impact of distance to college and its interactions with parental education

is found for most of the schooling quantiles, except for some quantiles at the top. Using these

estimates for various quantiles �; the test of Koenker and Basset (1982) rejects the independence

of V and Z: Therefore, it is not immediate to determine which �rst stage quantile is optimal one

in terms of e¢ ciency as discussed in the Estimation Section and the median as the �rst stage

quantile is assumed. Following Card (1995), the interpretation that the reduction in the cost

of education of a close college is higher for families with poor background allows us to check

whether distance to college is a valid instrument. There are reasons to suspect that individuals

who grew up near a college may have higher earnings after controlling for parental education

and current geographical information. Under the identifying assumption that the direct earning

e¤ects of having lived near a college does not di¤er by family or parental background, we are

able to use the interactions of distance to college and parental education as instruments, and

use the distance to college dummy as a direct control in the schooling equation. The results of

this quantile regression allow us to conclude that distance to college is not a signi�cant variable

in the wage equation and therefore these estimates provide no evidence against the assumption

that distance to college provides an exogenous variation of schooling.

Before estimating the conditional quantiles of wages, we have estimated its conditional mean.

The OLS and IV estimates (and standard errors) of the education coe¢ cient are, respectively,

0.0764 (0.00595) and 0.0464 (0.05722) for year 1983, and 0.0814 (0.00766) and 0.0634 (0.07231)

for year 1993. In both periods, the IV estimates are below the corresponding OLS estimate,

as expected in a model with homogenous returns to schooling and positive correlation between

schooling and innate ability (see e.g. Carneiro and Heckman, 2002).

Figure 1 shows the quantile regression estimates for the education coe¢ cient �� for various

� in both periods; the third graph in this �gure plots the changes in the coe¢ cients between the

two years. If education is endogenous, then the estimates of �� obtained with the exogenous

model are misleading and biased. The �rst feature to notice when comparing the estimates of ��

from the exogenous and the endogenous model is that the former are roughly constant around

0.06 and 0.09, whereas the latter show noteworthy di¤erences across quantiles. The third graph

in Figure 1 also shows that the changes in the quantile regression estimates between both years

have been more stable in the exogenous model than in the endogenous model, although for the

latter the di¤erence is not statistically signi�cant. The di¤erences in the adjusted-by-endogeneity

returns to education arise mainly because of the increase in the returns for the individuals at

the bottom of the distribution, and the decrease of the returns for those individuals at the top of
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Figure 1: Estimates of the coe¢ cients of education with the exogenous and the endogenous model for various quan-
tiles. Dotted lines represent 95% pointwise con�dence intervals derived from the asymptotic distribution by Lee (2007).
Note: A �fth order polynomial was used to approximate function �� (�) in the second-stage estimation; i.e. pk(s) = sk�1, kN = 6; and in
the trimming function we use [ ~Q0:02 (S) ; ~Q0:98 (S)] as AS ; [ ~Q0:02(V̂ ); ~Q0:98(V̂ )] as AV ; and the product of the intervals [ ~Q0:02 (Z1j) ; ~Q0:98 (Z1j)];
for j = 1; :::; p1; as AZ1 ; (where ~Q� (�) denotes the �th sample quantile of f�igNi=1). The bandwidth choice is the product of the standard deviation
of the residuals of each linear quantile regression and N�0:15; this bandwidth satis�es the asymptotic restrictions imposed in Lee (2007) if �� (�)
is at least �ve times continuously di¤erentiable.
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the wage distribution. The �nding that quantile e¤ects are larger at the lower end of the wage

distribution in the adjusted-by-endogeneity returns is also found in Lee (2007) and Honoré and

Hu (2004) for the 1980 US Census using di¤erent instruments; however, the opposite is found

in Buchinsky (1994), Machado and Mata (2005) and Melly (2005), who do not control for the

endogeneity of education. The di¤erences between the estimated coe¢ cients for the variables in

Z1 with both models are less important than those observed for the coe¢ cient of education. The

di¤erence between the estimated coe¢ cients with the exogenous and the endogenous models can

be explained using the omitted variables bias formula derived in Angrist et al. (2006).

In Figure 2, we plot the estimates of the nonparametric function �� (�) that are obtained

in the third stage estimation of the conditional quantiles, for various � : This �gure can be

interpreted as the quantile regression equivalent of the Hausman test for endogeneity in the

mean regression, where the statistical signi�cance of the �rst-stage residuals is tested in the

wage equation; this �gure shows evidence in favour of the existence of endogeneity, since it

shows that the nonparametric control functions �� (�) are not constant over the support of the

unobservables V .

5.2 Decomposition of Changes in the Wage Distribution

First of all, Table 3 reports the sample marginal quantiles of hourly wages (in logs), and the

estimates of the marginal quantiles that are consistent with our model (described at the begin-

ning of Section 3), and those that would be consistent with a model with exogenous schooling.

In all cases, the three estimates are very similar. If schooling is endogenous and our model

is correctly speci�ed, then the results of the endogenous model provide a consistent estimate

of the conditional quantile function Q� (W j S;Z1; V ) for � 2 (0; 1). Since our data supports

the assumption of endogeneity of schooling, the conditional quantile function Q� (W j S;Z1) is

not necessarily linear in S and Z1: Therefore, although the estimates of the exogenous model

provide the best linear prediction of this conditional quantile function (Angrist et al. 2006), it

does not necessarily provide a consistent estimate of it. However, the results in Table 3 suggest

that the approximation error between the conditional quantile function and its linear prediction

must be very small. The similarities between the estimates of the endogenous and the exogenous

model hold despite the fact that the coe¢ cient for schooling in the latter is contaminated by

the omission of V in the wage equation.
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Figure 2: Local linear quantile regression estimates for �� (�) over the support of V for di¤erent quantiles � with 95% con�dence bands:
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5.2.1 Decomposition of di¤erences keeping all regressors �xed

Table 4 shows the decomposition of the changes in the quantiles of the wage distribution into

changes that can be attributed to changes in the joint distribution of the individual attributes

and changes in the returns of these characteristics as in (3.3). It should be pointed out that

all counterfactual distributions are computed using the second-stage estimator of �� (�) ; for

computational reasons. We performed robustness checks in order to ensure that the second-stage

and the third-stage estimators of �� (�) yield very similar quantitative results. The second line

in each cell reports the 95% con�dence interval of the di¤erences of estimated quantiles (derived

with 100 bootstrap replications). We conjecture that a bootstrap procedure can be applied in

order to compute the standard error of the counterfactual quantiles and their di¤erences. This is

not guaranteed, however, in conditions established in Chernozhukov et al. (2009); they require
p
n�convergence of bQ� (W j X = bXi) toQ� (W j X = Xi); which in the case of the nonparametric

three-stage estimator proposed in (2.9) is not satis�ed. Monte Carlo experiments could be used

to provide evidence in favour of the conjecture we make here in order to compute bootstrapped

standard errors, but they are beyond the scope of this paper. The estimates of the marginal

quantiles of wages allow us to estimate inequality measures. Speci�cally, given � ; � 0 2 (0; 1)

with � > � 0, the interquartile range (IQR) of wages for period t = r between quantiles �

and � 0; denoted as IQRt=r�;� 0(W ); can be estimated by [IQR
t=r

�;� 0(W ) = bQt=r� (W ) � bQt=r� 0 (W ):

Counterfactual inequality measures are de�ned and estimated similarly.

The �rst column of Table 4 allows us to conclude that the marginal distribution of wages in

1993 stochastically dominates the marginal distribution for 1983, since the di¤erences between

quantiles are all positive. Wage inequality increased between both periods, as shown by the

changes in the various IQR and the fact that the quantile di¤erences are larger for the top

quantiles: the top wage quantile and the IQR0:9;0:1 increased by 12% between both time periods.

The increase in wage inequality was signi�cantly noteworthy at the top of the distribution. The

second column of Table 4 shows that the counterfactual distribution of wages that would have

prevailed if the individual attributes had been distributed as in 1983, but had been paid according

to the wage structure in 1993, is dominated by the actual distribution of wages in 1993. This

means that the change in the distribution of the regressors from 1983 to 1993 would have shifted

the wage distribution to the right if the returns had remained as in 1993. This would have

been mostly bene�cial for individuals at the bottom of the distribution. The results in the third

column imply that the changes in the returns go in the opposite direction: if the distribution of

the regressors had been kept �xed at 1983, the changes in the returns to attributes experienced

from 1983 to 1993 would have decreased wages at most of the quantiles, except at the top one;

20
27



Table 3: Sample quantiles of wages and quantiles estimated from the model

Log Hourly Wages 1983 Log Hourly Wages 1993
� Sample quantile Qt=1983� (W ) Endogenous Qt=1983� (W ) Exogenous Sample Quantile Qt=1993� (W ) Endogenous Qt=1993� (W ) Exogenous

10th quantile
1.6297

[1.5627;1.6903]
1.6572

[1.6070;1.7073]
1.6551

[1.6041;1.7060]
1.6564

[1.5871;1.7084]
1.6581

[1.6049;1.7114]
1.6582

[1.6051;1.7112]

30th quantile
2.0952

[2.0605;2.1352]
2.0969

[2.0633;2.1306]
2.1002

[2.0663;2.1341]
2.1077

[2.0735;2.1541]
2.1235

[2.0881;2.1589]
2.1227

[2.0878;2.1577]

50th quantile
2.3920

[2.3546;2.4338]
2.3740

[2.3443;2.4037]
2.3730

[2.3437;2.4023]
2.3953

[2.3694;2.4278]
2.4040

[2.3712;2.4368]
2.4051

[2.3724;2.4378]

70th quantile
2.6194

[2.5916;2.6423]
2.6201

[2.5934;2.6469]
2.6191

[2.5923;2.6460]
2.6744

[2.6436;2.7105]
2.6755

[2.6430;2.7079]
2.6793

[2.6466;2.7119]

90th quantile
2.9543

[2.9031;2.9883]
2.9496

[2.9141;2,9850]
2.9511

[2.9170;2.9852]
3.0959

[3.0386;3.1298]
3.0786

[3.0294;3.1277]
3.0765

[3.0312;3.1218]

Note: 95% bootstrap con�dence intervals (with 100 replications) are provided in squared brackets.

Table 4: Decomposition of the total changes in the marginal quantiles of wages for the endogenous model

Total Change Changes in Regressors Changes in Returns

Quantile � bQt=93� (W )� bQt=83� (W ) bQtX=93;t�=93� (W )� bQtX=83;t�=93� (W ) bQtX=83;t�=93� (W )� bQtX=83;t�=83� (W )

10th quantile
0.0009

[-0.0759;0.0777]
0.0774*

[0.0263;0.1285]
-0.0765*

[-0.1145;-0.0385]

30th quantile
0.0265

[-0.0244;0.0774]
0.0809*

[0.0447;0.1171]
-0.0544*

[-0.0774;-0.0314]

Median
0.0300

[-0.0166;0.0766]
0.0751*

[0.0432;0.1071]
-0.0451*

[-0.0687;-0.0215]

70th Quantile
0.0553*

[0.0102;0.1004]
0.0745*

[0.0432;0.1059]
-0.0192

[-0.0429;0.0045]

90th Quantile
0.1290*

[0.0684;0.1896]
0.0568*

[0.0156;0.0981]
0.0722*

[0.0373;0.1071]

Quantiles � ; � 0 dIQRt=93�;� 0 (W )� dIQRt=83�;� 0 (W )
dIQRtX=93;t�=93�;� 0 (W )� dIQRtX=83;t�=93�;� 0 (W ) dIQRtX=83;t�=93�;� 0 (W )� dIQRtX=83;t�=83�;� 0 (W )

� = 0:9; � 0 = 0:1
0.1281*

[0.0423;0.2139]
-0.0206

[-0.0768;0.0356]
0.1487*

[0.0527;0.2446]

� = 0:5; � 0 = 0:1
0.0291

[-0.0325;0.0906]
-0.0023

[-0.0418;0.0372]
0.0314

[-0.0363;0.0990]

� = 0:9; � 0 = 0:5
0.0990*

[0.0415;0.1565]
-0.0183

[-0.0522;0.0156]
0.1173*

[0.0571;0.1775]

Note: 95% bootstrap con�dence intervals (with 100 replications) are provided in square brackets.
Signi�cant estimates at 5% signi�cance level are denoted *.

28

ivie
Cuadro de texto



for those individuals at the highest wage decile, the change in returns, had the distribution of

regressors not changed, would have improved their wages. The signs of the contributions of both

regressors and returns are in line with the results obtained in Melly (2005) for the U.S.

The counterfactual decomposition of the di¤erences between the IQR shows that the observed

increase in the inequality, mainly at the top of the distribution, has been driven by the changes

in the returns. We �nd however that the observed changes in the distribution of the regressors

from 1983 to 1993 are not signi�cant in explaining the evolution of wage inequality between both

periods. The percentage of overall growth of wage inequality than can be ascribed to changes in

the regressors with our results is smaller than that found in Melly (2005); however, it is similar

in magnitude to the percentage found in Juhn et al. (1993) who, by assuming independence

between the errors and the regressors, do not account for heteroskedasticity of the errors as

Melly (2005) and we do.

We have also performed the counterfactual analysis of this subsection using bQtX=r;t�=r�� (W )

instead of bQtX=r�;t�=r� (W ) on the right-hand side of (3.3), so that the returns are �xed at 1983

in the composition e¤ect. Although similar qualitative results are obtained in both cases, this

is not necessarily ensured because the di¤erences in returns between the two periods could have

been such that composition e¤ect could have been di¤erent in both cases. The results obtained

under exogeneity of schooling are very close to the results presented under endogeneity in Table

4 for each term. The reason for this similarity is the same as for the close results of the marginal

wage quantile in both exogenous and endogenous models explained above.

5.2.2 Decomposition of di¤erences keeping some regressors �xed

In our context, it is interesting to isolate the e¤ects of schooling and the unobserved ability

component from the total e¤ect of the joint distribution of regressors on wages while returns

are held �xed. We analyse both the e¤ect of the observed change in the marginal distribution

of schooling and the conditional distribution of schooling given the rest of exogenous individual

attributes.

Following the notation in Section 3.2, let us consider the estimate of the �th counterfactual

quantile of wages if only the marginal distribution of schooling is distributed as in 1983 and the

rest of attributes and returns are �xed at 1993, which is denoted by bQtS=83;t(Z01;V )jS=93;t�=93� (W );

and the �th counterfactual quantile of wages if both schooling and the unobserved ability are

distributed as in period 1983 and the rest of attributes and returns are �xed at period 1993,

which is denoted by bQt(S;V )=83;tZ1j(S;V )=93;t�=93� (W ): Both counterfactual quantiles are estimated

using the Epanechnikov kernel. The bandwidths for the Nadaraya-Watson weights are 1:5 for S
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and 2:5 for V ; these bandwidths guarantee su¢ cient observations around each data point. These

two counterfactual quantiles allow us to decompose the composition e¤ect [ bQtX=93;t�=93� (W ) �bQtX=83;t�=93� (W )] into three di¤erent terms: [ bQtX=93;t�=93� (W ) � bQtS=83;t(Z01;V )jS=93;t�=93� (W )];

which is the part of the di¤erence that is explained by changes in the marginal distribution of

schooling, [ bQtS=83;t(Z01;V )jS=93;t�=93� (W )� bQt(S;V )=83;tZ1j(S;V )=93;t�=93� (W )]; which is the part of the

di¤erence that is explained by changes in the conditional distribution of the unobserved com-

ponent a¤ecting schooling V; given S; and [ bQt(S;V )=83;tZ1j(S;V )=93;t�=93� (W ) � bQtX=83;t�=93� (W )];

which is the part of the di¤erence that is explained by changes in the conditional distribution

of the control variables Z1; given S and V: In the �rst term, we compare the �th wage quantile

of two populations that only di¤er in the proportion of individuals at each educational group.

Given that the conditional distribution of (Z1; V ) given S is the same in both populations, a

di¤erent distribution of schooling arises due to a change in the conditional distribution of edu-

cation S given (Z1; V ): Then, either changes in the distribution of Z2 given (Z1; V ) or changes

in the parameters of the schooling decision process in (2.5), or both, can drive the observed

di¤erences in the conditional distribution of education given (Z1; V ):

Table 5a reports the results corresponding to this decomposition of the composition e¤ect,

where each column corresponds to each of the terms above. In the second column, we observe

that the counterfactual distribution of wages with the marginal distribution of schooling as in

1983 and the rest of the individual attributes and returns as in 1993 is dominated by the marginal

distribution of wages in 1993. The change in the marginal distribution of schooling from 1983 to

1993 towards a more educated population, holding the returns and the distribution of the rest

of individual attributes �xed, increased hourly wages around 1.8% at the bottom quantiles and

by 3.3% at the top quantiles. These changes account for the 24% (for the lowest quantiles) and

the 58% (for the top quantiles) of the overall composition e¤ect.

Although the change in the joint distribution of regressors does not signi�cantly explain the

increase in wage inequality, by decomposing the role of each regressor, we �nd that the change in

the marginal distribution of schooling is the only factor that signi�cantly explains the increase

in wage inequality (note the positive impact on IQR0:9;0:1; denoting that the di¤erence between

the top decile and the bottom decile is 1.5% higher when schooling is marginally distributed as

in 1993); this e¤ect mainly arises because the marginal change in schooling would have increased

inequality below the median. These results are in line with the conventional belief of the wage

inequality increasing e¤ect of education (see Buchinsky 1994 or Machado and Mata 2005, among

others). The interpretation of the unconditional e¤ect on wages of changes in the distribution

of a covariate needs some care, because both the returns over the wage distribution and how the
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Table 5a: Decomposition of the changes in the wage distribution that can be attributed to changes in the joint distribution of regressors
(endogenous model)

Endogenous Model

Quantile �

Change in Regressors:

bQtX=93;t�=93� (W )�
� bQtX=83;t�=93� (W )

Change in Marginal
of Schooling:

bQtX=93;t�=93� (W )�
� bQtS=83;t(Z01;V )jS=93;t�=93� (W )

Change in
Distribution of V j S :

bQtS=83;t(Z01;V )jS=93;t�=93� (W )�
� bQt(S;V�)=83;tZ1j(S;V )=93;t�=93� (W )

Change in
Distribution of Z1j (S; V ) :

bQt(S;V )=83;tZ1j(S;V )=93;t�=93� (W )�
� bQtX=83;t�=93� (W )

10th quantile
0.0774*

[0.0263;0.1285]
0.0189*

[0.0090;0.0288]
-0.0154*

[-0.0276;-0.0032]
0.0739*

[0.0237;0.1240]

30th quantile
0.0809*

[0.0447;0.1171]
0.0257*

[0.0158;0.0356]
-0.0167*

[-0.0268;-0.0065]
0.0719*

[0.0376;0.0376]

Median
0.0751*

[0.0432;0.1071]
0.0296*

[0.0197;0.0395]
-0.0146*

[-0.0247;-0.0045]
0.0601*

[0.0301;0.0901]

70th Quantile
0.0745*

[0.0432;0.1059]
0.0334*

[0.0235;0.0433]
-0.0116*

[-0.0224;-0.0008]
0.0527*

[0.0229;0.0825]

90th Quantile
0.0568*

[0.0156;0.0981]
0.0334*

[0.0235;0.0433]
-0.0070

[-0.0180;0.0041]
0.0304

[-0.0112;0.0719]

Quantiles � ; � 0
dIQRtX=93;t�=93�;� 0 (W )�
�dIQRtX=83;t�=93�;� 0 (W )

dIQRtX=93;t�=93�;� 0 (W )�
�dIQRtS=83;t(Z01;V )jS=93;t�=93�;� 0 (W )

dIQRtS=83;t(Z01;V )jS=93;t�=93�;� 0 (W )�
�dIQRt(S;V )=83;tZ1j(S;V )=93;t�=93�;� 0 (W )

dIQRt(S;V )=83;tZ1j(S;V )=93;t�=93�;� 0 (W )�
�dIQRtX=83;t�=93�;� 0 (W )

� = 0:9; � 0 = 0:1
-0.0206

[-0.0768;0.0356]
0.0145*

[0.0044;0.0246]
0.0084

[-0.0016;0.0184]
-0.0435

[-0.0994;0.0125]

� = 0:5; � 0 = 0:1
-0.0023

[-0.0418;0.0372]
0.0107*

[0.0035;0.0179]
0.0008

[-0.0075;0.0083]
-0.0138

[-0.0533;0.0257]

� = 0:9; � 0 = 0:5
-0.0183

[-0.0522;0.0156]
0.0038

[-0.0036;0.0111]
0.0076*

[0.0029;0.0123]
-0.0297

[-0.0627;0.0034]

Note: 95% bootstrap con�dence intervals (with 100 replications) are provided in square brackets.
Signi�cant estimates at 5% signi�cance level are denoted *.
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Table 5b: Decomposition of the changes in the wage distribution that can be attributed to changes in the joint distribution of regressors (exogenous
model)

Exogenous Model

Quantile �

Change in Regressors:

bQtX=93;t�=93� (W )�
� bQtX=83;t�=93� (W )

Change in Marginal
of Schooling:

bQtX=93;t�=93� (W )�
� bQtS=83;tZ01jS=93;t�=93� (W )

Change in
Distribution of Z1jS :

bQtS=83;tZ01jS=93;t�=93� (W )�
� bQtX=83;t�=93� (W )

10th quantile
0.0833*

[0.0399;0.1267]
0.0172*

[0.0034;0.0311]
0.0661*

[0.0266;0.1055]

30th quantile
0.0819*

[0.0511;0.1128]
0.0243*

[0.0106;0.0381]
0.0576*

[0.0315;0.0838]

Median
0.0723*

[0.0447;0.0999]
0.0297*

[0.0155;0.0439]
0.0426*

[0.0204;0.0649]

70th Quantile
0.0680*

[0.0400;0.0959]
0.0323*

[0.0180;0.0466]
0.0357*

[0.0125;0.0589]

90th Quantile
0.0573*

[0.0234;0.0912]
0.0299*

[0.0176;0.0421]
0.0274

[-0.0040;0.0589]

Quantiles � ; � 0
dIQRtX=93;t�=93�;� 0 (W )�
�dIQRtX=83;t�=93�;� 0 (W )

dIQRtX=93;t�=93�;� 0 (W )�
�dIQRtS=83;tZ01jS=93;t�=93�;� 0 (W )

dIQRtS=83;tZ01jS=93;t�=93�;� 0 (W )�
�dIQRtX=83;t�=93�;� 0 (W )

� = 0:9; � 0 = 0:1
-0.0260

[-0.0714;0.0194]
0.0126*

[0.0029;0.0224]
-0.0386

[-0.0817;0.0045]

� = 0:5; � 0 = 0:1
-0.0110

[-0.0433;0.0213]
0.0124*

[0.0051;0.0198]
-0.0234

[-0.0554;0.0085]

� = 0:9; � 0 = 0:5
-0.0150

[-0.0401;0.0101]
0.0002

[-0.0070;0.0074]
-0.0152

[-0.0383;0.0079]

Note: 95% bootstrap con�dence intervals (with 100 replications) are provided in square brackets.
Signi�cant estimates at 5% signi�cance level are denoted *.
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change in the distribution of the regressor over its support must be taken into account. Thus,

although the estimated returns of schooling for 1993 are higher for the bottom wage quantile

than for the top, the change in education over both periods was more concentrated at the top

of the wage distribution. In fact, the average increase in years of education is 0.73 for those

individuals at the 7th and 8th deciles of 1993 wages and 0.60 for those individuals in the 5th

and 6th decile. This contrasts with the decrease of 0.40 for those individuals in the 3rd and

4th decile. This explains why the change in schooling increases wage inequality if returns are

assumed to be �xed at 1993. The impact on inequality of the change in schooling and the change

in the conditional distribution of the rest of the regressors are of opposite signs.

The results reported in the third column of Table 5a imply that individuals, mainly at the

top, would earn more if both schooling and ability were distributed as in 1983 than if only

the marginal distribution of schooling was as in 1983. The change in the distribution of V

given S goes in the opposite direction of schooling and it compensates almost completely the

e¤ect of the change in the marginal distribution of schooling for the individuals at the bottom

of the distribution, it compensates only around half of the e¤ect for the individuals at the

middle of the distribution, and has no e¤ect for the individuals at the top of the distribution.

Thus, considering the results in the second and third columns jointly, the evolution of the joint

distribution of schooling and ability between years 1983 and 1993 did not have any e¤ect on

wages at the bottom of the distribution, although it signi�cantly increased wages by 2.7% for

those individuals at the top.

For comparative purposes, Table 5b reports the results that are found when a similar decom-

position is performed, but assuming that education is exogenous. In this case it is not possible

to analyze the part of the di¤erence that can be attributed to changes in the distribution of the

unobserved ability V; since this variable is not included in the exogenous model; note that, if our

endogenous model is correctly speci�ed, then in Table 5b the part of the changes in the wage

distribution that can be attributed to changes in the unobserved ability is wrongly attributed to

changes in the distribution of Z1 given schooling. The results in Table 5a allow for a deeper un-

derstanding of the changes in the wage distribution than those in Table 5b. In fact, these results

show that the joint evolution of the distribution of schooling and unobserved ability is crucial

to understand the contribution of each regressor to explain the changes in the wage distribution

during the eighties in the US. Once we take into account the joint evolution of schooling and

unobserved ability, we �nd that the change in the bivariate distribution of S and V did not have

any impact at the bottom quantiles of wages, and a much smaller impact at the top quantiles

than the e¤ect of the change in the marginal distribution of schooling.
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Section 3 only discusses the case when the set of explanatory variables is X = (S;Z 01; V )
0:

However, all the de�nitions that are given in Section 3 can also be applied, mutatis mutandis, if

we consider X = (S;Z 0)0 (note that assumptions (2.1)-(2.3) allow us to identify Q� (W j S;Z)):

Speci�cally, if we take X1 = Z and X2 = S, we can consider the �th counterfactual quantile

of wages if the conditional distribution of schooling, given the attributes Z; is distributed as

in period 1983, but the returns and the distribution of Z are �xed in 1993; it is denoted as

Q
tSjZ=83;tZ=93;t�=93
� (W ): This counterfactual quantile is of interest in order to isolate the e¤ect

on wages of a change in the conditional distribution of education given the individual attributes

in Z: In principle, the estimation of this counterfactual quantile could be performed as described

in subsection 3.2. However, given the large dimension of Z; the Nadaraya-Watson estimatebF t=83SjZ=z(s) is a¤ected by the curse of dimensionality. In order to circumvent this problem, we

introduce the following additional assumption: for every � 2 (0; 1); there exist parameters

�� 2 R and �� 2 Rp such that Qt=83� (S j Z = z) = �t=83� + z0�t=83� : With this additional

assumption, we can ensure that eF t=83SjZ=z(s) �M
�1PM

j=1 1fb�t=83�(j) + (b�t=83�(j) )
0z � sg is a consistent

estimate of F t=83SjZ=z(s); where �(j) � j=(M + 1); M is a large enough number (e.g. M = N83),

and b�t=83�(j) ; b�t=83�(j) are consistent estimates of �
t=83
�(j) ; �

t=83
�(j) : The estimator of the counterfactual

quantile Q
tSjZ=83;tZ=93;t�=93
� (W ) using eF t=83SjZ=z(s) instead of

bF t=83SjZ=z(s) is performed as follows: i)

obtain a draw of size m from the uniform distribution on (0; 1); denoted as f�igmi=1; ii) obtain a

draw of size m with replacement from fZt=93i gN93i=1 ; denoted as fZt=93�i gmi=1; iii) for i 2 f1; :::;mg;

obtain a draw from fb�t=83�(j) + (b�t=83�(j) )
0Zt=93�i gMj=1; this draw is denoted as S

tSjZ=83
�i ; iv) �nd the

�th sample quantile of f bQt=93�i
(W j S = StSjZ=83�i ; Z = Zt=93�i gmi=1: This estimator is denoted asbQtSjZ=83;tZ=93;t�=93� (W ):

We could further decompose the joint distribution of Z: let us assume that we are in-

terested in the distribution of wages that would have prevailed if workers had been paid ac-

cording to the wage schedule observed in period 1993; and both S and Z2 (conditional on

Z1) are distributed as in period 1983, but the rest of the individual attributes in Z1 remain

distributed as in 1993. The corresponding �th quantile of this distribution is denoted by

Q
tSj(Z01;Z2)

=83;tZ2jZ1=83;tZ1=93;t�=93

� (W ): We also aim to estimate this counterfactual quantile by

assuming a parametric speci�cation for the distribution of Z2 given Z1 = z1: In our application,

the excluded variables Z2 contain the variable distance to college proximity and its interactions

with a subset of variables in Z1; in this case, assuming a distribution for Z2 given Z1 = z1

amounts to specifying a particular parametric distribution for the binary variable proximity

given Z1 = z1: This conditional distribution is estimated using a probit model.

These counterfactual quantiles allow us to decompose [ bQtX=93;t�=93� (W )� bQtX=83;t�=93� (W )]
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into three di¤erent terms: [ bQtX=93;t�=93� (W )� bQtSjZ=83;tZ=93;t�=93� (W )]; which is the part of the

di¤erence that is explained by changes in conditional distribution of schooling given the observed

individual characteristics in Z; [ bQtSjZ=83;tZ=93;t�=93� (W )� bQtSj(Z01;Z2)=83;tZ2jZ1=83;tZ1=93;t�=93� (W )];

which is the part of the di¤erence that is explained by changes in the conditional distribution of

the distance to college given Z1; and [ bQtSj(Z01;Z2)=83;tZ2jZ1=83;tZ1=93;t�=93� (W )� bQtX=83;t�=93� (W )];

which is the part of the di¤erence that is explained by changes in the marginal distribution of

the control variables Z1: Table 6 reports this decomposition of the composition e¤ect, where

each column corresponds to each of the terms above.

In the counterfactual exercise performed in the �rst term, under the assumption that both

the returns to individual characteristics Z and the CDF of Z are held �xed, a change in the

conditional distribution of schooling given Z can arise in our model from either a change in the

conditional distribution of unobserved ability V given Z or a change in the parameters (�; �0)0

in the schooling decision model described in (2.5) between both years, or both. The results in

the second column show that this change increased hourly wages not monotonically in wage

quantiles: around 6.7% for the bottom wage quantile, around 5% for the median wage and

almost 9% for the top wage quantiles. This explains the increase in wage inequality at the top

of the wage distribution.

The impact on wages of the change in the distribution of distance to college given the

individual attributes in Z1, while holding �xed the CDF of Z1 and returns in 1993 and the

conditional distribution of schooling in 1983, can be found in the third column in Table 6.

These results show that the e¤ect of the observed changes in the distribution of distance to

college, given the rest of schooling determinants, does not have any statistical signi�cant impact

on the distribution of wages. Note that one possible reason for the change in the distribution of

proximity given Z1 is the increase in the number of colleges during this period. The results in

this table suggest that the changes in wage inequality are mainly explained by the changes in the

distribution of the unobserved ability or by changes in the process that determines individual

educational attainment, and not by changes in the distribution of distance to college.

Comparing the role of schooling in Tables 5 and 6 shows that the e¤ect of a change in

the distribution of education conditional on its observable determinants has higher impact on

all the quantiles than a change in the marginal distribution of schooling; they also explain

di¤erent parts of the increase in wage inequality. The estimates in both tables capture the

e¤ect of the observed changes in the schooling decision process during this time period. The

change in the marginal distribution of schooling is additionally capturing the e¤ect of changes

in the conditional distribution of distance to college given (Z 01; V ); the e¤ect of the change
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Table 6: Decomposition of the changes in the wage distribution that can be attributed to changes in the joint distribution of regressors

Quantile �

Change in Regressors:

bQtX=93;t�=93� (W )�
� bQtX=83;t�=93� (W )

Change in Conditional
of Schooling given Z1; Z2:

bQtX=93;t�=93� (W )�
� bQtSj(Z01;Z2)=83;t(Z01;Z2)=93;t�=93� (W )

Change in
Distribution of Z2j Z1 :

bQtSj(Z01;Z02)=83;t(Z01;Z2)=93;t�=93� (W )�
� bQt(S;Z2)jZ1=83;tZ1=93;t�=93� (W )

Change in
Distribution of Z1 :

bQt(S;Z2)jZ1=83;tZ1=93;t�=93� (W )�
� bQtX=83;t�=93� (W )

10th quantile
0.0774*

[0.0263;0.1285]
0.0675*

[0.0346;0.1005]
-0.0141

[-0.0529;0.0247]
0.0240

[-0.0262;0.0741]

30th quantile
0.0809*

[0.0447;0.1171]
0.0352*

[0.0088;0.0616]
-0.0064

[-0.0461;0.0333]
0.0521*

[0.0221;0.0820]

Median
0.0751*

[0.0432;0.1071]
0.0485*

[0.0201;0.0769]
-0.0092

[-0.0295;0.0111]
0.0358*

[0.0077;0.0638]

70th Quantile
0.0745*

[0.0432;0.1059]
0.0731*

[0.0400;0.1063]
-0.0174

[-0.0393;0.0045]
0.0187

[-0.0115;0.0488]

90th Quantile
0.0568*

[0.0156;0.0981]
0.0890*

[0.0497;0.1282]
-0.0151

[-0.0409;0.0107]
-0.0171

[-0.0592;0.0250]

Quantiles � ; � 0
dIQRtX=93;t�=93�;� 0 (W )�
�dIQRtX=83;t�=93�;� 0 (W )

dIQRtX=93;t�=93�;� 0 (W )�
�dIQRtSj(Z01;Z2)=83;t(Z01;Z2)=93;t�=93�;� 0 (W )

dIQRtSj(Z01;Z02)=83;t(Z01;Z2)=93;t�=93�;� 0 (W )�
�dIQRt(S;Z2)jZ1=83;tZ1=93;t�=93�;� 0 (W )

dIQRt(S;Z2)jZ1=83;tZ1=93;t�=93�;� 0 (W )�
�dIQRtX=83;t�=93�;� 0 (W )

� = 0:9; � 0 = 0:1
-0.0206

[-0.0768;0.0356]
0.0214

[-0.0161;0.0590]
-0.0010

[-0.0378;0.0358]
-0.0410

[-0.0837;0.0017]

� = 0:5; � 0 = 0:1
-0.0023

[-0.0418;0.0372]
-0.0190

[-0.0486;0.0106]
0.0049

[-0.0295;0.0394]
0.0118

[-0.0436;0.0672]

� = 0:9; � 0 = 0:5
-0.0183

[-0.0522;0.0156]
0.0404*

[0.0136;0.0673]
-0.0059

[-0.0384;0.0266]
-0.0529

[-0.0848;-0.0209]

Note: 95% bootstrap con�dence intervals (with 100 replications) are provided in square brackets.
Signi�cant estimates at 5% signi�cance level are denoted *.
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in the conditional distribution of schooling given Z is also estimating the e¤ect of changes in

the conditional distribution of unobserved innate ability V given Z: Therefore, the di¤erent

results in both decompositions are explained by the higher impact on wages of changes in

the conditional distribution of unobserved ability than the impact on wages of changes in the

conditional distribution of distance to college.

5.2.3 Decomposition of di¤erences keeping some returns �xed

Table 7 reports the results that are found when the changes in the wage distribution that can

be attributed to changes in the returns are decomposed as described in (3.6). First of all, note

that none of the terms in the decomposition of the di¤erences between quantiles is statistically

signi�cant. It is not surprising that the di¤erences attributed to changes in the returns to

schooling (second column) are not signi�cant, since in Figure 1 we obtain that the di¤erences

between the estimates of the returns to education are not signi�cantly di¤erent from zero. The

point estimates imply that the change in the returns to schooling from 1983 to 1993 increased

wages at the bottom of the distribution and decreased wages at the top of the distribution. This

is in line with the changes in the returns to schooling obtained for the endogenous model shown

in Figure 1. However, this implies a statistically signi�cant decrease in the wage inequality due

to the change in the returns to schooling, as the bottom part in the second column show. The

changes in the returns to ability had the opposite e¤ect: a negative impact on the bottom part of

the wage distribution and a positive impact at the upper part. The increase in wage inequality

attributed to changes in returns is explained by the change in the returns to Z1; which increased

inequality slightly more than the changes in the returns to schooling decreased inequality. We

also �nd that the changes in the returns to ability are not statistically signi�cant in order to

explain the observed changes in wage inequality.

The results of separating the e¤ects of coe¢ cients from the e¤ects of residuals suggested by

Melly (2005, p.581) show that the changes in the within-group inequality are the only signi�cant

factor explaining the signi�cant changes in wage inequality that arise from changes in the returns;

also, the decrease in wages at the bottom and median quantiles if only the returns to skills

would have changed from 1983 to 1993 holding the distribution of regressors �xed is explained by

changes in the median coe¢ cients. It is important to stress that the evolution of the distribution

of the residuals account for a larger percentage of the overall change in inequality than in Melly

(2005): residuals account for around 90% of that part of the change in wage inequality explained

by changes in returns. Although we also correct for the composition e¤ect, our results show that

most of the wage inequality arises from a change in the distribution of the residuals as is standard
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Table 7: Decomposition of the changes in the wage distribution that can be attributed to changes in the returns (decomposition return by return;
endogenous model)

Quantile �

Change in Returns:

bQtX=83;t�=93� (W )�
� bQtX=83;t�=83� (W )

Change in Returns
to Schooling:

bQtX=83;t�=93� (W )�bQtX=83;t�=83;t(;�)=93� (W )

Change in Returns
to unobservables V :

bQtX=83;t�=83;t(;�)=93� (W )�bQtX=83;t(�;�)=83;t=93� (W )

Change in Returns
to Z1 :

bQtX=83;t(�;�)=83;t=93� (W )�
� bQtX=83;t�=83� (W )

10th quantile
-0.0765*

[-0.1145;-0.0385]
0:9019

[-0.8107;2.6145]
�0:0044

[-0.0648;0.0559]
�0:9740

[-2.6953;0.7473]

30th quantile
-0.0544*

[-0.0774;-0.0314]
0:4171

[-0.8413;1.6756]
0:0032

[-0.0439;0.0502]
�0:4746

[-1.7563;0.8071]

Median
-0.0451*

[-0.0687;-0.0215]
0:1410

[-1.0090;1.2911]
�0:0063

[-0.0462;0.0335]
�0:1798

[-1.3315;0.9719]

70th Quantile
-0.0192

[-0.0429;0.0045]
�0:5793

[-1.8514;0.6929]
0:0012

[-0.0457;0.0481]
0:5589

[-0.7036;1.8213]

90th Quantile
0.0722*

[0.0373;0.1071]
�1:2424

[-2.9302;0.4454]
0:0742

[-0.0455;0.1939]
1:2404

[-0.3936;2.8743]

Quantiles � ; � 0
dIQRtX=83;t�=93�;� 0 (W )�
�dIQRtX=83;t�=83�;� 0 (W )

dIQRtX=83;t�=93�;� 0 (W )�dIQRtX=83;t�=83;t(;�)=93�;� 0 (W )

dIQRtX=83;t�=83;t(;�)=93�;� 0 (W )�dIQRtX=83;t(�;�)=83;t=93�;� 0 (W )

dIQRtX=83;t(�;�)=83;t=93�;� 0 (W )�
�dIQRtX=83;t�=83�;� 0 (W )

� = 0:9; � 0 = 0:1
0.1487*

[0.0527;0.2446]
�2:1443�

[-3.2292;-1.0594]
0:0786

[-0.0434;0.2007]
2:2143�

[1.1426;3.2861]

� = 0:5; � 0 = 0:1
0.0314

[-0.0363;0.0990]
�0:7609�

[-1.4108;-0.1110]
�0:0019

[-0.0577;0.0539]
0:7942�

[0.1679;1.4205]

� = 0:9; � 0 = 0:5
0.1173*

[0.0571;0.1775]
�1:3834�

[-2.1780;-0.5889]
0:0806

[-0.0316;0.1927]
1:4202�

[0.6613;2.1791]
Note: 95% bootstrap con�dence intervals (with 100 replications) are provided in square brackets.
Signi�cant estimates at 5% signi�cance level are denoted *.
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in the literature (see Juhn et al. 1993).

6 Concluding remarks

In this paper we have performed a counterfactual decomposition of the changes in wages by

disentangling the e¤ect of changes in the joint distribution of the individual characteristics

and the e¤ect explained by changes in the prices of these attributes (i.e. changes in the wage

structure) by extending the works of Machado and Mata (2005) and Melly (2005) to the case

where the schooling decisions are regarded as endogenous to earnings. Although controlling for

endogeneity is common when estimating wage equations, it has not been previously taken into

account in the construction of counterfactual decompositions. The goal is to obtain the marginal

wage quantile consistent with the conditional quantile function model of wages given schooling,

exogenous attributes and ability and de�ne those counterfactual distributions when the joint,

conditional and marginal distribution of the regressors are �xed for a comparison year or group.

This methodology is used to analyze the sources of the changes in wage distribution that

took place in the United States between 1983 and 1993. In the estimation of the conditional

quantile model, we obtain the quantile structural e¤ects of schooling on wages under the control

function assumption by using proximity to college for di¤erent parental education as instruments.

We discuss the advantages of using the control function (CF) approach for our context over

the instrumental variable (IV) approach: on the one hand, the IV assumption only allows for

heteroskedasticity in Z1 while the CF assumption does not exclude heteroskedasticity of the

errors depending on V; S and Z1; on the other hand, the CF assumption allows us to identify

the conditional quantile function of wages given schooling and other individual attributes in

order to obtain the counterfactual distributions.

Our decomposition results show that the observed change in the joint distribution of the

regressors would have increased wages at all quantiles without any signi�cant impact on wage

inequality. However, if only returns to skills had changed and the distribution of the attributes

had remained as in 1983, all but the top quantile would have decreased and this change would

have had a signi�cant and positive e¤ect on the increase in wage inequality.

As opposed to the results in Melly (2005), we obtain a small contribution of the compositional

e¤ects in explaining the increase in wage inequality, which is not statistically signi�cant, despite

the fact that we allow for the whole distribution of residuals to depend on regressors. This is due

to the fact that while the change in the joint distribution of schooling and ability experienced

during the eighties would have signi�cantly increased wage inequality, the e¤ect of the change

in the joint distribution of the rest of the regressors goes in the opposite direction. Schooling
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on its own has provided to be a factor that lead to a more unequal wage distribution. As in the

previous literature, the change in the distribution of the conditional distribution of the residuals

is the main factor explaining the increase in the wage inequality while the changes in the median

returns are not important to explain the observed changes in the wage distribution.

Our results suggest that schooling is endogenous, since the quantiles of the unobservables

a¤ecting wages are a function of the unobserved ability a¤ecting education. In any case, for

comparison reasons, we perform the decomposition of the changes in wages under both the as-

sumption of endogeneity and exogeneity of education. Some di¤erences between the results from

the endogenous and the exogenous model arises in the decomposition of the part of the overall

change due to changes in returns into those parts explained by changes in the coe¢ cients of each

subset of individual attributes. The coe¢ cients of education can be interpreted as the returns

to schooling only under the control function approach. Once we control for the endogeneity of

schooling, we observe a decrease in the returns of schooling at the top of the distribution and an

increase at the bottom of the distribution during the decade under consideration. Both e¤ects

consequently imply our result that, if only the returns to schooling had changed between both

periods, wage inequality would have decreased. A larger and opposite e¤ect is found for the

changes in the returns of the rest of the exogenous variables, so that the overall impact of the

changes in returns is positive.

We also provide alternative decompositions of the aggregate e¤ect of regressors on wages

into the role of the change in the distribution of each covariate of interest. Although the

aggregate contribution of the regressors and coe¢ cients are similar in both the endogenous and

the exogenous model, accounting for the endogeneity of schooling allows us to perform those

counterfactual distributions that would have prevailed if ability given schooling or if schooling

given ability had been distributed as in the comparison year. It is not possible to obtain these

distributions under the exogenous model, where only the marginal distribution of schooling can

be �xed.

The analysis of the impact of the change in the conditional distribution of ability given

schooling shows that its negative e¤ect on wages compensates the positive e¤ect at the lower

wage quantile of the change in the marginal distribution of schooling. Therefore, the change

in the joint distribution of wages and ability did not have any e¤ect at the bottom part of the

wage distribution; it has a positive e¤ect at the top decile driven by an increase of 3.3% due

to the change in the marginal distribution of schooling, while the change in the distribution of

ability given education did not have any e¤ect. The e¤ect of schooling at the top quantile is

reduced to 1.45% once we condition on ability. The part of the changes in wages explained by
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the changes in ability is misleadingly attributed to the rest of the regressors if the exogenous 

model is estimated. 

When the aggregate effect of regressors is decomposed into the effect of schooling, given 

the rest of individual attributes, and the effect of the joint distribution of these regressors, we 

find that the changes in the conditional distribution of unobserved ability or the changes m 

the parameters of the model leading the individual schooling decision are more important m 

explaining the increase in wage inequality than the changes in the distribution of individual 

attributes. Comparing the effect of the change in the marginal distribution of schooling and the 

effect of the change of the conditional distribution of education, given its determinants, allows 

us to condude that the change in the conditional distribution of unobserved ability produces a 

higher shift in the wage distribution than the change in the conditional distribution of distance 

to college, given individual attributes and ability. However, this latter change in the distribution 

of ability explains the overall increase in wage inequality better. 
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APPENDIX: Definition of Variables 

The measure of wage W used is the logarithm of the hourly wage, which is computed as the 

ratio between the total annual amount of labor income (total wages and salaries, including tips 

and commissions) from the previous year and the total annual hours that the individual reports 

to have worked for money in the previous year. For comparative purposes, we defiate wages to 

1982-1984 do llar s using the annual CPI-U (All Urban Consumers) Price Index. 

The schooling variable S is defined as the number of school grades completed by the indi

vidual, which coincides with the number of years of schooling; it takes on 18 different values: 

from O if the individual achieved no grade to 17 (censoring point) if the individual finished 

sorne postgraduate activity (thus, S is 16 for college graduates, and less than 12 for high school 

dropouts). 

The vector of exogenous variables Zl includes: tenure (self-reported number of years worked 

since the individual was 18), squared tenure, a race dummy (1 if the individual reports to be 

w hi te ), a dummy for the size of the ci ty (1 if the size of the largest ci ty in the current county 

of residence is larger than 50,000 inhabitants), a dummy for government occupation (1 if the 

individual reports to work for the federal, state or local government), 3 regional dummies (for 

south, north and northeast regions; west is the reference region), 11 industry dummies (public 

administration industry is used as the reference group) and 14 dummies, Fj , M j , for j = 2, ... ,8, 

to capture parental education, where Fj (or Mj) is a dummy variable which takes value 1 only 

if the father (or mother) of the head has completed at most education level j, where education 

level 2 is from the 6th to the 8th grade, education level 3 is from the 9th to the 11th grade, 

education level 4 is high school, education level 5 is high school plus nonacademic training, 

education level 6 is sorne college (but not completed) or an associate degree, education level 7 is 

a college BA and education level 8 is finished college, advanced or professional degree or sorne 

graduate work (note that the reference group are parents who only completed the 5th grade at 

most). 

The vector of excluded instruments Z2 includes dummy distance to college proximity as 

defined in Section 4 and its interaction with parental education dummies, i.e. proximity * Fj 

and proximity * M j , for j = 2, ... ,8. 
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