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1 Introduction

Heterogeneous agent models with market incompleteness have been playing an increasing role

in macroeconomics and finance (den Haan, Judd, and Juillard, 2010), as the assumptions

behind the classic representative-agent models are too stringent to be realistic in a number of

circumstances (Kirman, 1992). Explicit accounting for heterogeneity is also necessary when

considering important questions concerned with differential effects of economic fluctuations,

and redistributive effects of policies: as Kocherlakota (2010) notes, the models in which “the

distribution of financial wealth evolves over time ... lead to a better understanding of the

cost of economic downturns”. However, finding equilibria of such models is often a challenge,

since their state space includes cross-sectional distributions, which are typically objects of

very high dimension. With most of the existing methods requiring computational time that

is growing exponentially in the number of state variables, this leads to the so called “curse

of dimensionality”.

In this paper we propose a simulation-based nonparametric method of solving heteroge-

neous agent models with aggregate uncertainty. In our method agents make their decisions

based on a fully-specified high-dimensional cross-sectional state distribution, and do not

adopt any restrictive assumptions on its’ transition law, such as separability or a specific

parametric form.

This flexibility differentiates our method from others proposed in the literature, that has

largely been following the approach of den Haan (1996) and Krusell and Smith (1998), which

is based on restricting the agents’ decision-making to a small number (often one) of aggregate

statistics from the entire cross-sectional distribution, and on adopting additional assump-

tions (e.g. linearity) on their transition law. Our algorithm is comparable in simplicity

of implementation and computational time to that of Krusell and Smith (1998). In addi-

tion, it allows to overcome naturally a number of limitations faced by the other algorithms,

such as difficulties in accounting for explicit inter-dependencies between the cross-sectional

distribution and individual decisions.

Our proposed approach is motivated by the substantial recent advances that have been

made in the fields of machine learning and operations research, leading to a development

of a class of “reinforcement learning,” or “approximate dynamic programming” algorithms,

which have been used to compute approximate solutions to previously intractable large

dynamic optimization problems with thousands, and sometimes hundreds of thousands, of

state variables (Powell, 2007). The problems that have been addressed by these methods

range from large-scale industrial logistics (Simão, Day, George, Gifford, Nienow, and Powell,

2009) to optimal investment (Nascimento and Powell, 2010) to the game of backgammon
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(Tesauro, 1994), but the main underlying common feature of the methods in this class is

that they rely on stochastic simulations in order to both approximate the expectation of the

objective in different future states of the world, and to prioritize the most important states

for further analysis.

Our method consists of a combination of a nonparametric k-nearest-neighbor (k-nn)

regression with stochastic simulations. On each iteration of the algorithm, we simulate a

realization of aggregate uncertainty, and estimate the expected continuation value using k

closest historical simulated realizations of the cross-sectional distribution in the functional

space. Equipped with the estimated continuation value, we solve the optimization problem.

We illustrate the method for the classical Krusell and Smith (1998) economy. In the

model, the agents face both idiosyncratic employment shocks and aggregate productivity

shocks, and can choose to save only into capital, subject to a no-borrowing constraint. The

recursive formulation of the agent decision problem includes the cross-sectional distribution

of capital stock, which in our implementation is described by 1,000 continuously-valued state

variables.

2 A heterogeneous agent model

In this section, we describe the environment of Krusell and Smith (1998) with the unem-

ployment insurance as in den Haan, Judd, and Juillard (2010), and we define the recursive

competitive equilibrium.

We select this environment as our example because it is a classic, well-studied and well-

understood model. In addition, it has received extensive attention in a recent (January,

2010) issue of the Journal of Economic Dynamics and Control (see den Haan, Judd, and

Juillard, 2010), where several competing methods for its’ solution have been presented and

compared in detail (den Haan, 2010b).

One limitation of this comparison is that, as Krusell and Smith (2006) argue, in this

particular setup the agents decisions are, in fact, primarily driven by the mean of wealth,

whose dynamics is close to linear, and thus the methods that explicitly make such an as-

sumption are applicable and show good performance. Since in this paper we solve the model

without making these assumptions, our results can serve as an independent confirmation of

the validity of the Krusell and Smith’s conjecture.
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2.1 The model

The baseline model is a modified version of Krusell and Smith (1998), as described by den

Haan, Judd, and Juillard (2010), whose notation we largely adopt.

There is a measure-one continuum of ex-ante identical consumers, with the preferences

over the stream of consumption given by the following utility function:

E
∞∑
t=0

βt
c1−γit − 1

1− γ
(1)

Agents face two sources of uncertainty: aggregate shock to productivity at and individual

shock to employment et, where et = 1 if the agent is employed and zero otherwise. Employed

agents inelastically supply l units of labor on which they earn a wage wt. The employed

agents pay a labor tax at rate τt, while unemployed agents receive a subsidy µwt. The

agents cannot pool away the employment risk by trading any contingent bonds, thus the

markets are incomplete. The agents can only save nonnegative amounts kit by investing in

capital, earning the net return rt− δ, where rt is the rental price of capital and δ is the rate

of capital depreciation.

The consumption good is produced by competitive firms having Cobb-Douglas production

function. The aggregate output is therefore equal to the following

Yt = atK
α
t (lLt)

1−α (2)

where Kt is the aggregate capital, Lt is the employment rate, and lLt is the aggregate

employment.

The government pays unemployment benefits, paid for by taxing the employed. It bal-

ances its budget every period, implying a tax rate τt = µ(1− Lt)/(lLt).
We consider a recursive competitive equilibrium, which includes a law of motion of the

aggregate state of the economy. Denoting the density of cross-sectional distribution over

capital and employment as λ, the aggregate state of the economy is (λ, a). The individual

state (k, e, a, λ) consists of the individual holdings of capital, the employment status of the

agent, and the aggregate state.

The individual maximization problem in the recursive form is

V (k, e, a, λ) = max
c,k′
{u(c)− βE{V (k′, e′, a′, λ′)|e, a, λ}} (3)
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subject to the budget constraint

c+ k′ = r(K,L, a)k + [(1− τ(L))le+ µ(1− e)]w(K,L, a) + (1− δ)k (4)

the nonnegativity constraint on capital holdings

k′ ≥ 0 (5)

and the transition law of λ

λ′ = H(λ, a, a′) (6)

The policy function for the next period capital is denoted by function f as k′ = f(k, e, a, λ).

Wages and prices in this economy are competitive and given by

w(K,L, a) = (1− α)a

(
K

lL

)α
(7)

r(K,L, a) = αa

(
K

lL

)α−1
(8)

where the market clearing conditions require K =
∫ 1

0
kiλidi and L =

∫ 1

0
eiλidi.

A recursive competitive equilibrium is the aggregate law of motion H, a pair of individual

functions v and f , and the pricing system (r, w) such that (i) (v, f) solve the consumer

problem, (ii) w and r are competitive, and (iii) the aggregate law of motion H is consistent

with the individual policy function f .

2.2 Exogenous driving process

There are two types of shocks in the model, aggregate and individual. The exogenous shock to

aggregate productivity at is a two-state Markov process, at ∈ {ab, ag} ≡ {1−∆a, 1+∆a}, with

transition probability P{at+1 = a′|at = a} ≡ π(a′|a). The individual shock to employment

status is also a Markov process, conditional on the realization of the aggregate shock, with

transition probabilities given by P{ei,t+1 = e′|eit = e, at+1 = a′} ≡ π(e′|e, a′). The joint

transition probability P{at+1 = a′, ei,t+1 = e′|at = a, et = e} is denoted as π(a′, e′|a, e), and

is chosen so that the aggregate employment is only a function of the aggregate state of the

economy1.

1While this assumption serves to simplify application of other solution methods, it is not necessary for
our approach. We retain it, as well as the rest of the calibration in den Haan, Judd, and Juillard (2010), for
comparison purposes.
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3 Solving the model

Finding the equilibrium of the model is complicated, since a distribution function (gener-

ally, an infinite-dimensional object) enters the decision problem as a state, leading to the

so called “curse of dimensionality”. There are two primary aspects to this “curse”. First,

accurate representation of λ itself requires a large number of state variables. Second, the

transition function λ′ = H(λ, a, a′) is an unknown, potentially nonlinear and nonseparable,

high-dimensional function of a high-dimensional argument, which would present complica-

tions even if it were possible to represent λ with a relatively small state vector.

An innovative algorithm has been suggested for such problems by Krusell and Smith

(1998). It relies upon making two assumptions. First, Krusell and Smith assume limited

rationality on part of the agents. The agents only consider a small number (commonly one)

of summary statistics of the distribution λ in their decisions. Second, the aggregate law of

motion for these statistics, as perceived by the agents, is restricted to a simple parametric

(e.g. linear) functional form. Among the functions of this form, the authors use stochastic

simulation to find a “self-confirming” rule, i.e. such a rule that, when taken by agents as

given, results in simulated dynamics for the statistics of interest that are close to those

implied by the rule within a given tolerance.

In addition to the classic algorithm of Krusell and Smith (1998), a number of alternative

techniques have also been proposed in the literature. For instance, “projection methods”

still rely on parametrization, but avoid the simulation step by embedding the aggregation

of the individual policy functions into the individual problem explicitly. The cross-sectional

distribution is either parametrized independently from the individual decision rules (Algan,

Allais, and den Haan, 2010, Reiter, 2010), or follows from the parametrization of the indi-

vidual policy functions (den Haan and Rendahl, 2010). On the other hand, “perturbation

methods” (Kim, Kollmann, and Kim, 2010) are based on approximation of the individual

policy functions and the aggregate law of motion around the steady state. These methods,

however, are most suitable in environments where individual policies can be easily approxi-

mated by a few terms in a functional expansion, and thus face a difficulty with models with

occasionally binding borrowing constraints, since the policy functions in such models are not

differentiable.

There are two related caveats with respect to the algorithm of Krusell and Smith (1998).

First, since it is by construction a limited-rationality solution, where agents are constrained

in both their information set and decision-making, it does not easily allow to check how

restrictive these constraints are, and how much of an impact they have on the solution.

While it is possible to partially address this issue by including additional aggregate state
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variables, such as higher-order cross-sectional moments, such an expansion is limited due to

the second problem: it would also require additional parameters in the transition function,

and estimating these parameters in a robust manner can be quite difficult, especially when

non-linear interactions between the states are allowed. Moreover, due to the “curse of di-

mensionality”, the computational cost of solving the individual problem grows exponentially

with each additional state variable. These issues become even more challenging when the

aggregate distribution is multidimensional.

In contrast, our proposed method does not require these assumptions (although, it still

allows to make use of them, if warranted by the theory). It is based on the “reinforcement

learning” approach2 to solving high-dimensional dynamic optimization problems. As noted

by Powell (2007), there are two critical components that any stochastic algorithm facing

the curse of dimensionality requires in order to be effective: (i) a way to infer approximate

objective values in the states (e.g. realizations of the cross-sectional distribution) that have

not yet been investigated from those that are already known, and (ii) a way to focus attention

on the more likely states of the world (the so-called “ergodic set”). Importance of focusing

the procedure on the ergodic set has been recently highlighted by Maliar, Maliar, and Judd

(2010). In our example, we combine both approaches to find solution to a model with a

distribution that is at all times fully described by a 1000-dimensional state vector.

The basic intuition for the proposed method is that it splits the value function the

decision-maker maximizes into the current utility and the conditional expectation of the

continuation value, and uses stochastic simulation to approximate the latter.

3.1 Continuation values and their estimation

We can rewrite the individual maximization problem (3) as

V (k, e, a, λ) = max
c,k′
{u(c) + βψ(k′, e, a, λ)} (9)

subject to the conditions (4)-(8), where ψ is the continuation value of picking capital k′,

conditional on current shocks (e, a) and the current cross-sectional distribution λ:

ψ(k′, e, a, λ) = Ee′,a′|e,a {V (k′, e′, a′, H(λ, a, a′)) |e, a} (10)

Note that ψ is a scalar-valued, non-stochastic function that encompasses both the tran-

sitional dynamics H(λ) and the dependency between λ and V , and maximization (9) no

2Sometimes also referred to as “approximate”, “asynchronous”, or “adaptive” dynamic programming; see
Sutton and Barto (1998) for an excellent introduction.
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longer involves computing an explicit expectation. Nevertheless, it requires finding ψ, which

is a function of λ and therefore a high-dimensional object.

If there were no heterogeneity and no aggregate uncertainty in the model, ψ could be

found by value function iteration: first, given a value of V (j) in an iteration j, find ψ(j) by

evaluating the expectation in (10). Next, compute the value V (j+1) at the next iteration

by maximizing (9), and repeat the procedure until convergence. In this way, the classic

value function iteration algorithm can be visualized as proceeding backward through time,

with iteration-(j + 1) value function computed as the previous-period expectation of the

iteration-(j) value.

Aggregate uncertainty and distribution-dependency greatly complicate things. First, the

expectation in (10) can no longer be evaluated directly, since the exact form of H is not

generally available. Second, even if it were available, evaluating (9) and (10) would require

to cover all possible values of the distribution λ, leading to the “curse of dimensionality”

issue.

Instead of solving for the continuation value ψ explicitly, we propose using stochastic

simulation to approximate ψ with a sequence of easy to compute random functions ψ̂t, such

that ψ̂t → ψ as t→∞.

Imagine that at time t we know the true continuation value ψ(·, ·, a, λ) in N points{
(ãτ , λ̃τ )

}N
τ=1

, i.e. we have a set of triplets Ψ =
{
ãτ , λ̃τ , ψτ (·, ·, ãτ , λ̃τ )

}N
τ=1

, and observe

at and λt. Finding an approximation ψ̂t(·, ·, at, λt) can then be interpreted as a problem of

statistical estimation, which can be addressed nonparametrically.

One method of such estimation is a k-nearest-neighbor regression, which is the most

popular nonparametric method that dates back to Fix and Hodges (1951). It involves

first finding M nearest realizations, i.e. such (τ1, ..., τM) that ãτ1 = ... = ãτM = at and

d(λt, λ̃τ1) ≤ ... ≤ d(λt, λ̃τM ) ≤ d(λt, λ̃τ ) ∀τ /∈ {τ1, ..., τM}, where d(λt, λ̃τ ) is some distance

metric between two distributions λt and λ̃τ . Then, the k-nn estimator of the continuation

value ψ is computed as a simple average:

ψ̂t(k
′, e, at, λt) =

1

M

M∑
j=1

ψτj(k
′, e, ãτj , λ̃τj) ∀(k′, e) (11)

Since the k-nn regression estimator in a separable metric space is asymptotically consistent

(Cover and Hart, 1967), ψ̂t converges to ψ with probability one as the sample size N increases

and thus allows to approximate functions of arbitrary complexity.

Consider now a sample realization of this economy, driven by a shock sequence {ãτ}, with

a corresponding sample path of cross-sectional distributions {λ̃τ}, observed up to time (t−1).

8
10

ivie
Cuadro de texto



Given this history, in time t there are only two possible combinations of (at, λt), namely(
ag, H(λ̃t−1, ãt−1, a

g)
)

and
(
ab, H(λ̃t−1, ãt−1, a

b)
)

, with known probabilities π(ag|ãt−1) and

π(ab|ãt−1), and with the two values of transition function H that are implied by the individual

policy functions at time t− 1. Therefore, if we knew the value function for these two values

of (at, λt) and for all possible (kt, et), then computing the period-(t− 1) continuation value

ψ(·, ·, ãt−1, λ̃t−1) in (10) could be done for all kt and et−1 by simply applying the Markov

transition matrix for (a, e):

ψ(kt, et−1, ãt−1, λ̃t−1) = Eat,et

{
V
(
kt, et, at, H(λ̃t−1, ãt−1, at)

)
|et−1, ãt−1

}
(12)

Thus, observing a time evolution of such an economy up to time t−1 provides a set of values

{ψ(·, ·, aτ , λτ )}t−1τ=1.

The main idea of our method is to simulate a sequence of shocks; at each time t to

approximate ψ(·, ·, at, λt) by the k-nn regression estimator ψ̂t (11) using the simulated values

Ψt−1; and substitute this approximation into the time t optimization problem (9) in order

to find the approximate value function Ṽt:

Ṽt(kt, et, at, λt) = max
c,k′

{
u(c) + βψ̂t(k

′, et, at, λt)
}

(13)

subject to (4)-(8). This newly-obtained estimate Ṽt is then used to compute an approximate

continuation value at time (t− 1):

ψ̃t−1(kt, et−1, ãt−1, λ̃t−1) = Eat,et

{
Ṽt

(
kt, et, at, H(λ̃t−1, ãt−1, at)

)
|et−1, ãt−1

}
(14)

which, in its’ turn, is then added to the set of observations:

Ψt = Ψt−1 ∪
(
ãt−1, λ̃t−1, ψ̃t−1(·, ·, ãt−1, λ̃t−1)

)
(15)

This way, the problem is solved iteratively forward in time, with each new iteration

corresponding to the next simulated time period, as opposed to the backward direction

(with each new iteration corresponding to the previous time period) in the standard value

function iteration algorithm.

One complication that arises in this approach is that it results in a data-generating pro-

cess which is not stationary due to the ongoing learning by the agents. For example, as the

simulation progresses and more observations become available, the agents learn their contin-

uation values better, and their value function approximations and policy decisions improve.

In order to mitigate the effect of non-stationarity, we only use the most recent m(t) real-
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izations: Ψt =
{
aj, λj, ψ̃j(·, ·, aj, λj)

}t−1
j=t−m(t)−1

, where m(t) is an unbounded, monotonically

increasing function defined on natural numbers such that 2 ≤ m(t) ≤ t− 1. For example if

m(t) = max(2,min(t − 1, 0.1t)), the look-back period only includes the most recent 10% of

the sample.

The complete procedure is summarized in Algorithm 1. This procedure can be further

refined, but in some cases, especially in models calibrated to annual data and thus having

lower values of the discount factor β, it may already be capable of producing an acceptable

solution in reasonable time.

3.2 Distance measurement

The algorithm described in the previous section requires a distance metric between two

probability distributions. In our implementation, the distribution is defined on a grid of

values of k ∈ K, e ∈ {0, 1}. The possible metrics thus include those induced by L1, L2, or

L∞ norms in the space of empirical distribution functions.

Recently, Sriperumbudur, Gretton, Fukumizu, Schölkopf, and Lanckriet (2010) have pro-

posed a group of kernel-based distance metrics, and shown that they have attractive prop-

erties for learning applications. For a given kernel function κ(x, y), an induced distance

metric between two conditional empirical densities, λk|e(·|e) and λ′k|e(·|e) takes the form

dκ(λ, λ
′) =

∑
k∈K

∑
k′∈K

κ(k, k′) [λ(k)− λ′(k)] [λ(k′)− λ′(k′)] (16)

In this paper, we use a distance metric based on a Gaussian kernel, κ(x, y) = e−(x−y)
2/σ2

to compare the conditional distributions across capital k ∈ K, for each value of employment

status e. The two conditional distributions are then weighted with the probabilities of each

employment status e:

d(λ, λ′) =
∑

e∈{0,1}

dκ(λ(k|e), λ′(k|e))π(e) (17)

Choice of the distance metric is important for convergence. Since different metrics em-

phasize different divergent features of distributions, metrics that focus on features of low

relevance do poorly at signal extraction and matching neighbors, resulting in noisier k-nn

estimates ψ̂, leading to noisier policy functions, and poor (or no) convergence.

It is necessary to note, however, that even though in this paper we, for demonstration

purposes, explicitly compute the distance between the distribution functions at their highest

level of disaggregation, in some cases there may be prior economic reasons why a smaller

number of specific aggregate statistics would be expected to matter. Krusell and Smith
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(2006) argue that the model considered in this paper is in fact such a case, and the agents’

decisions in it are primarily governed by the mean capital stock. In order to take such

information into account, one could, for example, measure distances between distributions

by distances between the corresponding aggregates, thus reducing the estimation noise and

improving the continuation value estimates, while still retaining full flexibility in terms of

their transitional dynamics (i.e. avoiding the linearity assumption). Not surprisingly, in

this example explicit accounting for such information improves the speed of convergence (see

Figure 1, Panel A).

Figure 1: Convergence of NPRL
log10 of the mean absolute Bellman equation error εt = |ψ̂t − ψ̃t|, 1000-period moving average.

Left: Convergence under different metrics: mean-K only (blue line), fully disaggregated with dκ
(red line). ν = 0.05. Right: Convergence for different values of discount factor β. ν = 0.10,

distance on λ(k).

A: Convergence and distance metrics B: Convergence and β

3.3 Improving convergence

Convergence of algorithm 1 ensures that the resulting solution is optimal in the limited-

rationality sense, that is, the agents are content with their decision rule to the extent that

value forecasts they are making are off by no more than ε. Unfortunately, in practice

convergence of reinforcement learning algorithms can be slow, especially in models where

the discount factor β is close to unity (see Figure 1, Panel B).

We propose a refined based on the principle of “temporal difference” (TD) learning

(Sutton, 1988). The intuition for the adjustment is as follows. Note that if the continuation
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value estimator ψ̂ is unbiased, at time t− 1 we have3:

Et−1ψ̃t−1 = ψ̂t−1 ≡
1

M

M∑
j=1

ψ̃τj

and the expected one-step discrepancy is equal to zero:

0 = Et−1εt−1 ≡ Et−1(ψ̂t−1 − ψ̃t−1) = Et−1

(
ψ̃t−1 −

1

M

M∑
j=1

ψ̃τj

)
=

1

M
Et−1

∑
j

(
ψ̃t−1 − ψ̃τj

)
In case there is a bias, Eεt−1 is no longer zero, and the sample realization of εt−1 (observed

at time t) is an estimate of this bias. Since the predicted continuation value ψ̂t−1 was

computed as a mean of past continuation values, a bias in ψ̂t−1 implies that, on average,

there is also a bias in {ψ̃τj}. Adjusting ψ̂t−1 by a fraction αTD of the bias, where 0 ≤ αTD ≤ 1,

we have

ˆ̂
ψt−1 ≡ ψ̂t−1 − αTD(ψ̂t−1 − ψ̃t−1) =

1

M

M∑
j=1

[
(1− αTD)ψ̃τj + αTDψ̃t−1

]
(18)

i.e., such an adjustment can be done at time t by “nudging” each of the neighbors in step

t − 1 towards ψ̃t−1, thus affecting future estimates that would depend on these neighbors.

The entire modified procedure is summarized as Algorithm 2.

4 Results

The solution proceeds as follows: first, a sequence of T = 350, 000 random aggregate shocks

is generated, and Algorithm 2 is applied to find a solution, which in this case is represented

by a lookup table ΨT . This lookup table is subsequently used to simulate an economy that

is subjected to a predefined sequence of 10,000 aggregate shocks to productivity, and a single

agent within this economy, who has her starting value of individual capital equal to 43, and

is subjected to another predefined sequence of 10,000 individual shocks to employment. Both

sequences are as specified in den Haan, Judd, and Juillard (2010).

As a benchmark to compare our nonparametric reinforcement learning (NPRL) algorithm

against, we select the implementation of the KS algorithm by Maliar, Maliar, and Valli (2010)

(henceforth KS-sim), subject to the same test shock sequence.

The baseline parameters of the NPRL algorithm are:

3Note that ψ̃t−1 here is an object from the time t information set.
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• Window width coefficient: ν = 0.05

• Kernel bandwidth: σ2 = 30, 000

• Grid for capital: 501 points uniformly spaced on [0, 100]

• “Temporal difference” adjustment factor: αTD = 0.5

• Number of neighbors M = 4

The remaining parameters of the model correspond to den Haan, Judd, and Juillard

(2010):

• Time-discount factor (quarterly): β = 0.99

• Coefficient of relative risk aversion: γ = 1

• Capital share of total output: α = 0.36

• Capital depreciation rate: δ = 0.025

• Labor endowment: l̄ = 1/0.9

• Unemployment benefit: µ = 0.15

• Standard deviation of aggregate productivity shocks ∆a = 0.01

4.1 Aggregate law of motion

Figure 2 shows part of the sample path of the aggregate law of motion of capital, according

to the solution by the KS-sim and NPRL algorithms. Table 1 presents summary statistics

of the capital stock per capita4.

Clearly, the resulting aggregate dynamics are very similar, both across employment status

and across productivity states, indicating that the KS algorithm is indeed well-suited for its’

namesake application, and that its’ assumptions are not overly restrictive in this case.

4.2 Accuracy evaluation

We measure the accuracy of solution by Euler equation errors (den Haan, 2010b, Judd, 1992).

For a given agent, the Euler equation error at time t is defined as the percentage difference

between the computed period-t consumption and that implied by the Euler equation:

Et

[
β
u′(ct+1)

u′(ct)
(1 + rt+1 − δ)

]
= 1 (19)

4Since the initial state of the economy at the beginning of the simulation would be generally different
between the two methods (in case of the NPRL model, determined by the realizations of the random shocks
at the end of the training sample), we drop first 1,000 periods of the test sequence, and compute the statistics
over the remaining 9,000 periods.
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Figure 2: Dynamics of Aggregate Capital
Aggregate capital dynamics in two solutions: Maliar, Maliar, and Valli (2010) (KS-sim, black lines)

and nonparametric reinforcement learning (NPRL, red lines, 350,000 periods simulated, TD with

α = 0.5, kernel distance with σ2 = 30, 000, ν = 0.1.) Time is from the beginning of the aggregate

shock sequence in den Haan, Judd, and Juillard (2010). Panel A: aggregate capital; Panel B:

aggregate capital by employment status.

A: Aggregate capital, all agents
B: Aggregate capital, by employment

status

Table 1: Aggregate Capital Stock
Time-series means and standard deviations of capital stock per capita. Last 9,000 periods of the

sample sequence in den Haan, Judd, and Juillard (2010). Recessions and expansions defined as

periods of low and high aggregate productivity, respectively. KS-sim is the solution in Maliar,

Maliar, and Valli (2010), NPRL is the solution produced by the nonparametric reinforcement-

learning algorithm.

Full sample Recessions Expansions
KS-sim NPRL KS-sim NPRL KS-sim NPRL

Means:
Total 39.333 39.321 39.040 39.027 39.645 39.635

Employed 37.697 37.684 36.974 36.959 38.467 38.456
Unemployed 39.475 39.463 39.269 39.257 39.694 39.684

Standard Deviations:
Total 1.026 1.031 0.988 0.992 0.971 0.977

Employed 1.456 1.460 1.274 1.278 1.223 1.228
Unemployed 0.989 0.994 0.968 0.972 0.964 0.970
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We exclude the periods in which the agent is binding by the liquidity constraint (by

setting the Euler equation error to zero), since the Euler equation does not hold in those

periods.

Euler equation errors primarily reflect the accuracy of the solution of the individual

problem. In this paper, we used a piecewise-linear approximation of the value function on

the grid of capital K. In addition to a uniform equally-spaced grid, we evaluated a polynomial

grid suggested in Maliar, Maliar, and Valli (2010), with grid points defined as

kj = k̄ (j/N)θ (20)

where N is the grid size and k̄ = 100 is the upper bound for capital; we consider a number

of values for the power parameter θ. In Table 2 we report mean and maximum errors for

different grid sizes and types. Clearly, an irregular grid is superior to the uniformly-spaced

one for solving the individual problem. However, grid choice had very little effect on the

dynamics of the aggregate capital: for example, while individual Euler equation errors were

at 9% in case of a uniformly-spaced 501-point grid, the largest difference between the two

resulting series of aggregate capital was only 0.07%. The reason for this is that the largest

Euler equation errors are observed for agents with very low level of capital, whose decisions

have a very small effect on the aggregate investment.

Table 2: Euler equation errors and prediction R2.
Euler equation errors (19). 350,000 simulations; kernel distance with σ2 = 30, 000. Column 1:

number of grid points for capital on [0, 100], for each level of individual shock. p(n) denotes a

polynomially-spaced grid (20) with power factor n. Euler equation errors are in percent of current

consumption. Presented are time-series mean and maximum of the Euler equation errors for a

single simulated agent, using the individual and aggregate shock sequences as per den Haan, Judd,

and Juillard (2010).

Grid points Spacing EE error, %: mean EE error, %: max

1001 Uniform 0.0937 8.5426
p(2) 0.0923 0.4302
p(4) 0.0933 0.2981
p(7) 0.0968 0.3499

501 Uniform 0.0976 9.2257
p(2) 0.0953 0.8661
p(4) 0.1005 0.6313
p(7) 0.1125 0.4063

KS-sim 0.0930 0.4360
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Accuracy of the KS method is often measured by the R2 statistic. While, as den Haan

(2010a) notes, this measure does not reflect the accuracy of the solution well, it is nevertheless

an indicator that reflects how well the actual aggregate law of motion corresponds to the one

perceived by the agents, and serves to evaluate whether the “limited-rationality” assumption

of a linear aggregate law of motion is realistic. Since our method relies on approximation

of the continuation values for each agent, rather than of the aggregate law of motion for

capital, a similar statistic is the R2 of the one-step-ahead k-nn predictor ψ̃ (11), which can

be computed for any (k, e) as follows:

R2 = 1−
T∑
t=1

(ψ̃t − ψ̂t)2

(ψ̃t − ψ)2
(21)

where ψ is the sample mean of ψ̃t. Similarly to the R2 statistic in the KS method, a high R2

implies that an agent finds her estimates of the continuation value to be sufficiently precise.

Figure 3 shows R2 of the nearest-neighbor estimator for different values of k and e, Panel

A corresponding to a simulation with distance measured between the full λ distributions, and

Panel B to one with distance between mean capital only. Both methods result in high values

of the R2 statistic for all agents, although slightly higher in the capital-only case (equally-

weighted mean R2 = 0.999988) than in the full-distribution case (mean R2 = 0.999948).

Figure 3: R2 of the k-nn estimator
One-step-ahead R2 of the k-nn continuation-value estimator for each value of individual capital

and employment status. 350,000 simulations; 500-point polynomial grid (20) with θ = 4. A: kernel

distance metric with σ2 = 30, 000. B: distance between means of capital.

A: Full λ B: mean K only
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5 Conclusion

In this paper, we have develop a method of solving heterogeneous agent models in which

individual decisions depend on the entire cross-sectional distribution of individual state vari-

ables, that does not require parametric assumptions on either the agents’ information set,

or on the functional form of the aggregate dynamics.

As an illustration, we apply it to the classic Krusell and Smith economy, as described in

den Haan, Judd, and Juillard (2010). Our unconstrained solution of this model is very close

to the limited-rationality solution of the original Krusell and Smith algorithm.

Even though in this paper we focus on a heterogeneous-agent setting with aggregate

uncertainty, we believe that related approximate optimization methods could prove useful

in other large economic models, such as multi-country growth models, as well.
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Algorithm 1 Stochastic simulation

1: Define a grid K over capital, K = (k1, ..., kN)
2: Pick initial realization of the aggregate shock ã0, initial approximation ψ̂0(k

′, e, a), and
initial distribution λ1(k, e|a).

3: Pick tolerance ε, maximum number of neighbors M , and lookback window parameter
m(t), e.g. m(t) = 0.1t

4: Initialize t← 1, Ψ0 ← ∅
5: repeat
6: for all possible values of the aggregate state a ∈ {ab, ag} and corresponding capital

distribution λt(·, ·|a) do
7: Compute aggregate capital K ←

∑
k∈K [λt(k, 0|a) + λt(k, 1|a)]k

8: Compute state-dependent wage w(K, a) and interest rate r(K, a)
9: Search Ψt−1 for M nearest realizations {t1, ..., tM}, i.e. find the largest M ≤ M

and {tj}Mj=1 ⊂ (t −m(t), ..., t − 2), such that ∀j = 1...M , atj = a, and d(λt, λtj) ≤
d(λt, λτ ) ∀τ /∈ {t1, ..., tM}.

10: for all possible values of the individual state e ∈ {0, 1} and capital k ∈ K do
11: Compute ψ̂t(k

′, e, a, λt)← 1
M

∑M
j=1 ψ̃tj((k

′, e, ãtj , λ̃tj)), k
′ ∈ K if M > 0, or other-

wise set ψ̂t ← ψ̂0

12: Solve the optimization problem (9) using ψ̂t in place of ψ, and determine k′t(k, e, a)
and Vt(k, e, a)

13: end for
14: end for
15: Compute ψ̃t−1 ← E{Vt(kt, et, at)|et−1, ãt−1}, using the Markov transition matrix

π(a′, e′|a, e)
16: Compute discrepancy εt−1 ← maxk,e |ψ̂t−1(k, e, ãt−1)− ψ̃t−1(k, e, ãt−1)|
17: Add an observation (λt−1, ãt−1, ψ̃t−1) to the lookup table: Ψt ← Ψt−1∪(λt−1, ãt−1, ψ̃t−1)

18: Generate the current realization of the aggregate shock ãt according to π(at|ãt−1)
19: Using the policy function k′t(k, e, a) found in step 12, compute the next period capital

distribution λt+1(kt+1, et+1, at+1) for all (et+1, at+1) and kt+1 ∈ K
20: advance t← t+ 1
21: until maxt−T0≤τ≤t−1 ετ < ε

Algorithm 2 Stochastic simulation with temporal-difference adjustment

1: Select the temporal difference update factor 0 ≤ αTD ≤ 1
2: Initialize M ′ ← 0
3: Proceed with steps 1 - 17 of Algorithm 1
4: if t > 1 and M ′ > 0, for each of the nearest neighbors of period (t − 1), τ1, ..., τM ′ ,

perform an adjustment: ψ̃τj ← (1− αTD)ψ̃τj + αTDψ̃t−1(k, e, ãt−1)
5: Save M ′ ←M and {τj} ← {tj}, j = 1...M
6: Proceed with the remaining steps of Algorithm 1 until completion
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