
W
o

rk
in

g
 p

ap
er

s
W

o
rk

in
g

 p
ap

er
s

n
g

 p
ap

er
s

Serguei Maliar, Lilia Maliar and Kenneth Judd

Solving the multi-country real
business cycle model using ergodic
set methodsad

serie

WP-AD 2011-01

Los documentos de trabajo del Ivie ofrecen un avance de los resultados de las
investigaciones económicas en curso, con objeto de generar un proceso de
discusión previo a su remisión a las revistas científicas. Al publicar este
documento de trabajo, el Ivie no asume responsabilidad sobre su contenido.

Ivie working papers offer in advance the results of economic research under way
in order to encourage a discussion process before sending them to scientific
journals for their final publication. Ivie’s decision to publish this working paper
does not imply any responsibility for its content.

La Serie AD es continuadora de la labor iniciada por el Departamento de
Fundamentos de Análisis Económico de la Universidad de Alicante en su
colección “A DISCUSIÓN” y difunde trabajos de marcado contenido teórico.
Esta serie es coordinada por Carmen Herrero.

The AD series, coordinated by Carmen Herrero, is a continuation of the work
initiated by the Department of Economic Analysis of the Universidad de
Alicante in its collection “A DISCUSIÓN”, providing and distributing papers
marked by their theoretical content.

Todos los documentos de trabajo están disponibles de forma gratuita en la web
del Ivie http://www.ivie.es, así como las instrucciones para los autores que
desean publicar en nuestras series.

Working papers can be downloaded free of charge from the Ivie website
http://www.ivie.es, as well as the instructions for authors who are interested in
publishing in our series.

Edita / Published by: Instituto Valenciano de Investigaciones Económicas, S.A.

Depósito Legal / Legal Deposit no.: V-253-2011

Impreso en España (enero 2011) / Printed in Spain (January 2011)

WP-AD 2011-01

Solving the multi-country real business
cycle model using ergodic set methods*

Serguei Maliar, Lilia Maliar and Kenneth Judd**

Abstract

We use the stochastic simulation algorithm, described in Judd, Maliar and
Maliar (2009), and the cluster-grid algorithm, developed in Judd, Maliar
and Maliar (2010a), to solve a collection of multi-country real business cycle
models. The following ingredients help us reduce the cost in high-
dimensional problems: an endogenous grid enclosing the ergodic set,
linear approximation methods, fixed-point iteration and efficient
integration methods, such as non-product monomial rules and Monte
Carlo integration combined with regression. We show that high accuracy in
intratemporal choice is crucial for the overall accuracy of solutions and
offer two approaches, precomputation and iteration-on-allocation, that can
solve for intratemporal choice both accurately and quickly. We also
implement a hybrid solution algorithm that combines the perturbation and
accurate intratemporal-choice methods.

Keywords: heterogeneous agents, numerical methods, stochastic
simulation, parameterized expectations algorithm, projection,
perturbation.

JEL Classification: C63.

* Lilia Maliar and Serguei Maliar acknowledge support from the Hoover Institution at
Stanford University, the Stanford Institute for Theoretical Economics, the Center for
Financial Studies in Frankfurt, the Paris School of Economics, the Ivie, the Ministerio de
Ciencia e Innovación and FEDER funds under the project SEJ-2007-62656 and the
Generalitat Valenciana under the grants BEST/2010/142 and BEST/2010/141,
respectively. We thank Wouter Den Haan, Michel Juillard, Sébastien Villemot and an
anonymous referee for useful comments. We thank Ben Malin and Paul Pichler for
providing us with the Smolyak-polynomial terms and log-linear solutions, respectively.
** S. Maliar and L. Maliar: University of Alicante and Hoover Institution at Standfor
University. Contact author: maliars@stanford.edu. K. Judd: Hoover Institution at Stanford
University.

 3

mailto:maliars@stanford.edu

1 Introduction

In the present paper, we show how to apply two ergodic-set algorithms for

solving a collection of multi-country real business cycle models proposed

by Den Haan, Judd and Juillard (2010) (henceforth, DJJ). One of these

algorithms is the stochastic simulation algorithm (SSA) described in Judd,

Maliar and Maliar (2009, 2010b).12 The other is the projection cluster-grid

algorithm (CGA) developed in Judd, Maliar and Maliar (2010a) (henceforth,

JMM). The models studied in the current JEDC project include up to 10

countries (i.e., 20 state variables) and feature heterogeneity in fundamentals

(preferences and technology) and endogenous labor-leisure choice, as well as

complete markets, adjustment costs, continuously valued state variables, and

non-additively separable preferences and technology.

SSA and CGA build on strategies that allow to reduce the cost of finding

global solutions in high-dimensional applications. The first and most impor-

tant distinctive feature of these two methods is that they operate on endoge-

nous domains which enclose the ergodic set: SSA computes a solution on a

set of simulated points, whereas CGA does so on a grid of points constructed

by clustering simulated data (the center of each cluster represents one grid

point). Focusing on the ergodic set allows us to avoid the costs associated

with computing solutions in those areas of the state space that are never vis-

ited in equilibrium. Second, to approximate policy functions, SSA and CGA

use polynomials with additively separable terms, estimate the polynomial co-

efficients using numerically stable linear approximation methods and update

the coefficients along iterations using a fixed-point iteration method. These

choices ensure that the cost of approximating the policy functions does not

increase significantly with the dimensionality of the problem (in particular,

because we iterate on policy functions of all countries simultaneously rather

than country by country). Finally, to evaluate conditional expectations, SSA

and CGA rely on integration methods that are particularly suitable for high-

1JMM (2009) present SSA in the context of a one-country model. In a more recent

version of the paper, JMM (2010b) extend the results to include the case of a multi-country

model similar to Model 1 of the current JEDC project.
2SSA is similar to the simulation-based parameterized expectations algorithm (PEA)

by Marcet (1988) and Den Haan and Marcet (1990) in how it uses stochastic simulation

to compute an ergodic distribution, its support and the associated policy functions. SSA

differs from the simulation-based PEA in that it relies on a mixture of techniques that

ensures numerical stability; see JMM (2009) for a discussion.

2

dimensional applications. Namely, SSA combines Monte Carlo integration

and regression in a manner that makes it possible to approximate expec-

tations (integrals) in all simulated points at once, whereas CGA performs

numerical integration using low-cost non-product monomial rules and the

product Gauss-Hermite rule with small numbers of nodes in each dimension

(including the rule with one node).

The models considered in JMM (2010a, 2010b) include up to 200 coun-

tries and thus, are more challenging in the dimensional aspect than those

studied in the JEDC project. However, the models of the JEDC project are

more challenging in another aspect, namely, in that solving for consumption

and labor of heterogeneous countries is a non-trivial task. Let us separate

the intertemporal choice (capital) and intratemporal choice (consumption

and labor). The intertemporal choice is concerned with dynamics and is

characterized by the capital policy functions defined in terms of state vari-

ables. Such functions are also the laws of motion for capital and allow to

compute an entire capital path without solving for consumption and labor.

The intratemporal-choice problem is static: Given a capital path, in each

period of time, we must solve a system of static optimality conditions (in-

cluding a resource constraint) with respect to consumption and labor. In

the models of the JEDC project, this system cannot be solved analytically.

Solving this system numerically a large number of times (in each time pe-

riod, iteration, grid point, integration node) is costly, especially when the

number of countries is large. Moreover, as we show in the present paper,

the intratemporal choice must be computed with a high degree of accuracy;

otherwise, the overall accuracy of solutions decreases.

In the present paper, we describe two novel intratemporal-choice ap-

proaches that can find the consumption and labor allocations both accu-

rately and quickly. Our first approach, called iteration-on-allocation, relies

on a numerical solver that implements fixed-point iteration directly on the

intratemporal-choice variables. (The policy functions for the intratemporal-

choice variables are never constructed explicitly). This approach allows us

to achieve effectively zero errors in all intratemporal-choice conditions (in-

cluding the resource constraint) so that the only source of errors for us is

Euler-equation errors.3 The iteration-on-allocation solver does not require

derivatives (Jacobian and Hessian), and its cost does not increase signifi-

3This approach was originally proposed in the context of PEA in Maliar and Maliar

(2004) and was later implemented for SSA and CGA.

3

cantly with dimension. Moreover, it can work with vectors and matrices,

making it fast in vectorized applications.

Our second approach, called precomputation, constructs the intratemporal-

choice functions on an appropriately chosen grid of points outside the main

iterative cycle and uses the precomputed functions to interpolate the in-

tratemporal choice inside the main iterative cycle as if a closed-form solution

was available.4 Like iteration-on-allocation, this approach can work with

vectors and matrices and attains high accuracy in the examples considered.

The iteration-on-allocation and precomputation approaches can be vec-

torized because of the separation of the intertemporal and intratemporal

choices. Given the laws of motion for capital, we construct a capital path

without solving for the intratemporal-choice variables (consumption and la-

bor). Then, given a capital path, we compute all the consumption and labor

allocations at once rather than one by one.

The accuracy and speed of the SSA and CGA methods under our base-

line implementation are assessed in Kollmann, Maliar, Malin and Pichler

(2010) (henceforth, KMMP). In the present paper, we report a few additional

experiments that show how the performance of the CGA method depends

on the specific integration method, approximating polynomial function and

intratemporal-choice approach.

First, we find that CGA can compute solutions of essentially the same

accuracy as those submitted for the comparison in KMMP (2010) but at a

significantly lower cost. Our baseline integration method (used to compute

solutions submitted to the comparison in KMMP, 2010) is an accurate but

expensive two-step procedure that combines a cheap non-product monomial

rule and an expensive product Gauss-Hermite rule. It turns out that such a

high-accuracy integration method is not needed for the models of the JEDC

project since cheaper and less accurate integration methods also produce ac-

curate solutions. For example, it took us 35 hours to solve an asymmetric

ten-country model using our two-step integration procedure (see Table 3 in

KMMP, 2010). In the present paper, we solve the same model in 7 minutes

using only the first step of our two-step integration procedure without a visi-

ble accuracy loss (solution errors are identical up to the fourth digit). More-

over, using the one-node Gauss-Hermite rule advocated in JMM (2010a), we

4Maliar and Maliar (2005) introduce the precomputation approach in the context of the

standard neoclassical growth model for computing labor-leisure choice outside the main

iterative cycle. Maliar and Maliar (2007) implement this approach in the context of the

current JEDC project.

4

solve this model in 2 minutes with a modest accuracy loss (maximum error

increases by 5%).

Second, we find that the third-degree polynomial delivers solutions that

are almost an order of magnitude more accurate than those produced by

our baseline second-degree polynomial (used to generate the results for the

comparison in KMMP, 2010). We also find that the Smolyak polynomial,

used in the Smolyak collocation algorithm by Malin, Krueger and Kubler

(2010) (henceforth, MKK), allows CGA to achieve nearly the same accuracy

as does the third-degree polynomial. However, under the Smolyak polyno-

mial, the cost grows less rapidly with dimension than under the third-degree

polynomial (independently of dimension, the Smolyak polynomial has only

four times more terms than the second-degree polynomial).

Third, our approach in which consumption and labor are approximated

by functions of both the current-period state variables and the current period

capital choices (i.e., next period’s values of the endogenous state variables)

delivers much better accuracy than the standard intratemporal-choice ap-

proach that approximates policy functions for consumption and labor by

functions of state variables only. To be more specific, we approximate the

consumption policy function(s) by a polynomial of the same (second) degree

as that used to approximate the capital policy functions, and we obtain sub-

stantially larger approximation errors in the intratemporal-choice conditions

than in the intertemporal-choice conditions (Euler equations).5 For com-

parison, we also solve the same model using the precomputation approach.

Neither our baseline iteration-on-allocation approach (used to compute the

solutions reported in KMMP, 2010) nor our precomputation approach (im-

plemented in the present paper) restrict the overall accuracy of solutions.

Finally, we propose a way to increase the accuracy of the solution methods

that do not accurately compute the intratemporal choice in their own solution

procedures. We specifically take the capital policy functions delivered by such

a method and replace its low-accuracy solution for consumption and labor

with a high-accuracy solution (computed by the iteration-on-allocation and

precomputation approaches). In our examples, this replacement increases

the overall accuracy of solutions by an order of magnitude. We apply this

idea for constructing a hybrid solution algorithm that combines the pertur-

bation method (a cheap way to compute capital policy functions) and our

5The importance of accuracy in intratemporal choice for the overall accuracy of solu-

tions is also seen from Table 6 of the comparison paper by KMMP (2010).

5

intratemporal-choice methods (a cheap way to accurately compute consump-

tion and labor allocations).

The rest of the paper is as follows: Section 2 presents the model and

derives the first-order conditions. Section 3 describes how SSA and CGA

address challenges of high-dimensional problems. Section 4 develops two ap-

proaches for computing the intratemporal choice. Section 5 outlines the steps

of SSA and CGA. Section 6 describes the baseline and alternative implemen-

tations of SSA and CGA. Section 7 presents the numerical results for CGA

and constructs a hybrid of the perturbation and accurate intratemporal-

choice methods. Finally, Section 8 concludes.

2 The model

We consider a model with a finite number of countries,  , in which each coun-

try is populated by a representative consumer. A social planner maximizes a

weighted sum of the expected lifetime utilities of the countries’ representative

consumers subject to the aggregate resource constraint, i.e.,

max
{  +1}=1=0∞

0

X
=1

 

Ã ∞X
=0


¡


  




¢!
(1)

subject to

X
=1



 =

X
=1

⎡⎣  ¡  ¢− 

2




Ã


+1





− 1
!2
+ 


 − 


+1

⎤⎦  (2)

where  is the operator of conditional expectation; 

 , 


 , 


 , 


 , 

,   and

  are consumption, labor, capital, productivity level, utility function, pro-

duction function and welfare weight of a country  ∈ {1  }, respectively;
 is the discount factor; and  is the adjustment-cost parameter. Initial con-

dition (k0a0) is given, where k0 ≡
¡
10  


0

¢
and a0 ≡

¡
10  


0

¢
. The

process for productivity levels in country  is given by

ln 

 =  ln 


−1 + 


 , (3)

where 

 ≡  + 


 with  and 


 being common and country-specific pro-

ductivity shocks, respectively,  

 ∼ N (0 1);  is the autocorrelation coef-

ficient of the productivity level; and  determines the standard deviation of

the productivity level.

6

An interior solution to the social planner’s problem (1) − (3) satisfies
first-order conditions (FOCs) of the form


¡


  




¢
  = 

0


³

0
  

0


´
 

0
 (4)





¡


  




¢
= −

¡


  




¢







¡


  




¢
 (5)


¡


  




¢


 = 

©

¡


+1 


+1

¢ £


+1 + 


+1




¡


+1 


+1

¢¤ª
 (6)

where , 0 ∈ {1  }, and 

 and 


 are defined as



 ≡ 1 + 

Ã


+1





− 1
!




 ≡ 1 +



2

Ã


+1





− 1
!Ã



+1





+ 1

!


Here, and further on, notation of type  stands for the first-order partial

derivative of a function  (  ) with respect to a variable .

In the project, eight models are considered. Models 1, 2, 3 and 4 have

the same types of preferences and technology as do Models 5, 6, 7 and 8,

respectively, however, the former models assume identical preferences and

technology parameters for all countries, while the latter models have different

parameters across countries. Models 1 and 5 do not have endogenous labor-

leisure choice, while the other models do. A description of the models studied

is provided in Juillard and Villemot (2010).

Intertemporal versus intratemporal choices Let us make a distinction

between intertemporal and intratemporal choices. Consider a capital policy

function that determines a country’s  end-of-period capital stock, 

+1, as a

function of the current state variables, k and a,



+1 =  (ka)  (7)

where k ≡
¡
1   




¢
and a ≡

¡
1   




¢
. We call 


+1 an intertemporal-

choice variable because it captures dynamic aspects of the planner’s choice.

A capital policy function is an equilibrium law of motion for capital.

For each period , given k, a and k+1, we must solve a system of 2 sta-

tic optimality conditions (i.e., one resource constraint (2),−1 conditions (4)

7

and  conditions (5)) with respect to c ≡
¡
1   




¢
and ` ≡

¡
1   




¢
.

A solution to this system is given by solution manifolds for consumption and

labor:



 = Φ (kak+1) and 


 = Θ (kak+1)   = 1   (8)

We refer to consumption c and labor ` as intratemporal-choice variables

because under our representation, such variables are determined within pe-

riod  if the state, (ka), and the intertemporal choice, k+1, are given. For

Model 1, the intratemporal choice can be expressed analytically, while for

Models 2-8, it must be approximated numerically.

3 Addressing challenges of high dimensions

The high-dimensional models described in DJJ (2010) pose four challenges

for numerical methods designed to find a global solution: () a large size of

the domain on which the solution is computed, () a high cost of finding the

polynomial coefficients in the approximating polynomial functions, () a

large number of integration nodes for evaluating the conditional expectation

functions, and () a high cost of solving for the intratemporal choice.

JMM (2010a, 2010b) show how to address the first three challenges in the

context of CGA and SSA, respectively. The problems solved in JMM (2010a,

2010b) are of higher dimensionality (they include up to 200 countries) but

simpler in the structure of the intratemporal choice (which can be charac-

terized analytically) than those studied in the current JEDC project. The

strategies used by JMM (2010a, 2010b) to address challenges (), () and ()

are discussed in Sections 3.1, 3.2 and 3.3, respectively, and the coordination

of these strategies is described in Section 3.4. The last challenge, (), which

is concerned with the intratemporal choice in high-dimensional problems, is

not studied in JMM (2010a, 2010b). In the present paper, solving for the

intratemporal choice accurately proved to be crucial for the overall accuracy

of solutions. We address the intratemporal-choice challenge separately, in

Section 4.

3.1 Multi-dimensional domain

To make a numerical method suitable for high-dimensional applications, we

must restrict attention to a relatively small set of grid points in the multi-

8

dimensional space.6 Both SSA and CGA achieve this goal by focusing on

the ergodic set of points realized in equilibrium. In Figure 1a, we show

the ergodic set constructed from a simulated series of 10 000 observations,

which are produced by the standard representative-agent neoclassical sto-

chastic growth model. SSA computes the solution on the given set of simu-

lated points (the number of simulated points is controlled by the researcher

and needs not necessarily increase with the number of countries, ). CGA

chooses a more efficient representation of the ergodic set; namely, it replaces

a large number of closely situated simulated points with relatively few rep-

resentative points constructed by grouping similar points into clusters (the

number of representative points is again controlled by the researcher). To

be specific, CGA transforms correlated variables into uncorrelated principal

components (denoted 1
 and 2

) using principal components (PCs) de-

composition (see Figure 1b); normalizes the principal components to zero

mean and unit variance (see Figure 1c); and constructs  clusters applying

a clustering algorithm. It subsequently uses the centers of the constructed

clusters as a grid for projections; see JMM (2010a) for details. (Note that

CGA does not compute different solutions in each cluster, but a global so-

lution on the entire cluster grid). Making the domain endogenous to the

model allows SSA and CGA to compute a solution only in the relevant area

of the state space (an ellipsoid area shown in Figure 1a). This eliminates an

enormously large number of grid points that are never visited in equilibrium.

For example, for a model with 100 state variables, a hypersphere is only

about a 2 · 10−70 fraction of a multi-dimensional hypercube which encloses
the hypersphere; see JMM (2010a) for a further discussion.

3.2 Multi-dimensional polynomials

SSA and CGA parameterize policy functions by an additively separable com-

plete polynomial. For example, parameterizing the end-of-period capital

stock of a country  by a first-degree polynomial yields



+1 = 


0 + 


1
1
 + + 





 + 


+1

1
 + + 


2


  (9)

6The literature commonly considers a multi-dimensional hypercube domain composed

of the tensor product of discretized state variables. In this case, the total number of

grid points grows exponentially with the dimensionality of the state space (the curse of

dimensionality).

9

where
¡


0 


1  


  


+1  


2

¢0 ≡ v ∈ R(2+1)×1 is country’s  vector of
the polynomial coefficients. The number of polynomial terms in the first-,

second- and third-degree complete polynomials grows with the dimensionality

of the problem linearly, quadratically and cubically, respectively; see Table 1

in JMM (2010a). When the dimensionality is large, high-degree polynomials

are costly.

The assumption of additively separable polynomials allows us to estimate

the polynomial coefficients using fast and numerically stable linear approx-

imation methods, such as the least-squares methods using SVD and QR

factorization, Tikhonov regularization, least-absolute deviation methods and

the principal components method; see JMM (2009). Moreover, it allows us to

estimate the polynomial coefficients for all  countries at once rather than

country by country.

To update the polynomial coefficients along iterations, SSA and CGA use

fixed-point iteration, which is a simple derivative-free iteration method whose

cost does not significantly increase with the dimensionality of the problem;

see Judd (1998, p. 555-557).7 Fixed-point iteration computes the coefficients

for the next iteration as a weighted average of the coefficients at the beginning

and at the end of the previous iteration. It works for vectors and matrices

and allows to iterate on policy functions of all countries simultaneously. A

shortcoming of fixed-point iteration is that it does not guarantee convergence.

However, a slow updating is typically sufficient to ensure convergence; see

Section 4.2 for a discussion. In the models of the JEDC project, fixed-point

iteration was always numerically stable.

3.3 Multi-dimensional integration

SSA and CGA require the calculation of integrals that represent conditional

expectation functions in the Euler equations. SSA employs Monte Carlo

integration combined with regression, as is used in Den Haan and Marcet

(1990). This integration procedure makes it possible to infer expectations

(to compute integrals) simultaneously in all simulated points. If the length

7Fixed-point iteration is simpler to implement than alternative iterative schemes such as

time iteration (that involves finding a solution to a system non-linear equation; see Judd,

1998, p. 553-555) or Newton methods (that require to compute Jacobian and Hessian

matrices and to use optimization methods; see Judd, 1998, p. 103-119). Also, Gaspar

and Judd (1997) argue that fixed-point iteration has a lower computational cost than time

iteration and Newton methods for problems of medium and high dimensionality.

10

of simulations  is held fixed, the cost of this integration procedure does not

grow substantially with the dimensionality of the problem (though accuracy

may decrease as more polynomial coefficients must be identified); see JMM

(2010b) for the corresponding results. In particular, JMM (2010b) find that

under  = 10 000, first- and second-degree complete polynomials are feasible

for a model (similar to Model 1 of the present project) with up to  = 200

and up to  = 30 countries, respectively.

CGA is a projection method and relies on deterministic methods of inte-

gration. The choice of an integration method depends on the dimension-

ality of the problem. One-dimensional integrals can be computed accu-

rately using the Gaussian quadrature approach (as is done, for example,

in Judd’s (1992) Galerkin algorithm). For a given weighting function  (),

Gaussian quadrature approximates an integral (conditional expectation) by

 [ () ()] =
R
R () ()  ≈

X
=1

 () for some nodes {}=1
and weights {}=1 . One can extend the Gaussian quadrature approach
to multi-dimensional integration problems using a product rule. However,

product rules are not feasible in high-dimensional problems due to the curse

of dimensionality: the total number of integration nodes  increases ex-

ponentially with dimension. To reduce the cost of numerical integration

in economic applications of high dimensionality, Judd (1998) proposes to

use non-product monomial integration formulas; see Judd (1998, p.271 and

p.331). A large collection of such formulas is available in Stroud (1971).

JMM (2010a) elaborate the monomial formulas for a heterogeneous-agent

model similar to those studied in the present paper, illustrate the use of such

formulas by way of examples and provide an exhaustive comparison of the

performance of the CGA method under different integration strategies. Such

strategies include the product Gauss-Hermite rule with 1, 2 and 3 nodes

in each dimension (referred to as  (1),  (2) and  (3), respectively) and

non-product monomial rules with 2 and 22+1 nodes (referred to as 1

and 2, respectively). Using second-degree polynomials, JMM (2010a) find

that the integration formulas  (3),  (2), 2, 1 and  (1) are feasible

for the models with up to  = 6,  = 8,  = 12,  = 20 and  = 40

countries, respectively. Using first-degree polynomials, JMM (2010a) find

that the formulas 1 and  (1) are feasible for the models with up to  =

100 and  = 200 countries, respectively.

11

3.4 Coordinating the approximation, integration and

intratemporal-choice strategies

As is argued in JMM (2010a), making a numerical method cost-efficient re-

quires proper coordination between the approximation and integration strate-

gies. For example, if a polynomial approximation of a given degree can deliver

accuracy of no more than 10−4, it would be inefficient to compute integrals
with accuracy of 10−10 (doing so would increase costs without increasing
the overall accuracy of the solutions). It is therefore important to identify

combinations of the approximation and integration strategies that are well

matched in terms of accuracy.

JMM (2010a) identifies the following regularities: For a first-degree poly-

nomial, all integration methods lead to the same level of accuracy, including

the one-node Gauss-Hermite quadrature rule. For a second-degree polyno-

mial, the two- and three-node Gauss-Hermite rule and the monomial formulas

lead to the same level of accuracy (up to the fourth digit), while the one-node

Gauss-Hermite rule leads to Euler-equation errors that are 5 − 10% larger

than those calculated with more accurate integration methods. JMM (2010a)

give an example of coordination between the approximation and integration

strategies that consists in combining the second-degree polynomial and the

one-node Gauss-Hermite integration rule. This combination makes it possi-

ble to increase the number of countries,  , from 20 to 40 at a cost of a small

decrease in accuracy.

In the presence of endogenous labor-leisure choice, the approximation

and integration strategies should be properly coordinated not only with each

other, but also with the intratemporal-choice strategy. The numerical results

in Section 7.1 show that insufficient accuracy in intratemporal choice can

drastically reduce the overall accuracy of the solutions; the importance of

accuracy in intratemporal choice is also seen in Table 6 of the comparison

paper by KMMP (2010).

4 Intratemporal choice

In Section 4.1, we discuss intratemporal-choice approaches that currently

exist in the literature. In Sections 4.2 and 4.3, we describe two novel ap-

proaches, iteration-on-allocation and precomputation, that allow us to solve

for the intratemporal choice both accurately and quickly. Finally, in Section

12

4.4, we show that combining iteration-on-allocation and precomputation can

produce additional gains in speed.

4.1 Standard intratemporal-choice approaches

Existing literature provides two approaches to computing the intratemporal

choice. First, given k, a and k+1, one can solve a system of 2 equations,

(2), (4) and (5), with respect to 2 unknowns, c and `, using a standard

Newton method. The cost of this approach can be prohibitive because we

must find a numerical solution to the 2-dimensional system of equations

a large number of times (in each time period, grid point, integration node)

within an iterative cycle.

Second, one can treat the intratemporal choice in the same way as the

intertemporal choice, i.e., one can compute the policy functions for the

intratemporal-choice variables, 

 =  (ka) and 


 =  (ka) satis-

fying the corresponding optimality conditions (2), (4) and (5) inside the

main iterative cycle. (In contrast to the intratemporal-choice manifolds

Φ (kak+1) and Θ (kak+1) in (8) defined for any k+1, the pol-

icy functions  (ka) and  (ka) do not include k+1 as an argument

because such functions are defined for the equilibrium intertemporal choice,

k+1, determined by the capital policy functions (7)). In our experiments,

this approach does not produce sufficiently accurate results; see Section 7.1.

Moreover, simultaneous iterations on policy functions for the intertemporal-

and intratemporal-choice variables reduce both the numerical stability and

the speed of convergence.

4.2 Iteration-on-allocation

The first intratemporal-choice approach we use relies on a numerical solver,

(fixed-point) iteration-on-allocation, proposed by Maliar and Maliar (2004).

This method’s name emphasizes that fixed-point iteration is applied to the

intratemporal-choice allocations and distinguishes it from a different fixed-

point iteration procedure, described in Section 5, that is applied to the coef-

ficients of an approximating polynomial function.

The iteration-on-allocation approach proceeds as follows:

•  1. Re-write conditions (2), (4) and (5) to define a mapping  that

explicitly and uniquely maps a set of values z = (c `) into a new set

13

of values ez = ³ec è´ (this is possible to do for all of the eight models
studied in the current JEDC project):

ez =  (z)  (10)

•  2. Use some initial guess on z and calculate ez via mapping (10).
•  3. Use partial updating (damping) to compute an input for the

next iteration as (1− )z + ez, where  ∈ (0 1) is a damping para-
meter.

Iterate until a fixed point, z =  (z), is found with a given degree

of accuracy, i.e.,

1

 · 
X
=1

°°°°ez − zz

°°°°  10− (11)

where   0, and k·k is some vector norm.

On the initial iteration, we can assume that z is equal to its steady-state

value. Typically, we need not iterate on all 2 unknown elements of c and `
since there are explicit closed-form expressions relating these variables, and

fixing one or a few of them allows to analytically find the values of all the

intratemporal-choice variables. As an example, we describe how to construct

a mapping of type (10) for Model 5; the mappings for Models 6-8 are given

in Appendix A.

Example 1 (Model 5). There is no labor-leisure choice, so condition (5) is

absent. The remaining intratemporal-choice conditions (4) and (2), written

in a form suitable for iteration-on-allocation, respectively, are

e = h¡1¢−11  1 i−   = 2   (12)

e1 = X
=1

⎡⎣ + 


¡




¢ − 

2




Ã


+1





− 1
!2
− 


+1

⎤⎦− X
=2

e  (13)

where {}=1 are the utility-function parameters, and  is a normalizing
constant. For given k, a and k+1, equations (12) and (13) define a mapping

14

e1 =  (1). We iterate on consumption of the first country, 
1
 , as follows:

Assume some value for 1 ; compute
©eª=2 from (12); obtain e1 from

(13); if 1 6= e1 , compute the input for the next iteration as (1− ) 1 + e1 .
Iterate until convergence.

Iteration-on-allocation has two advantages over standard Newton-type

methods. First, iteration-on-allocation does not require to compute deriva-

tives (such as Jacobian or Hessian) but instead performs a straightforward

summation; as a result, its cost does not increase considerably with the di-

mensionality of the problem. Second, iteration-on-allocation can operate on

a time series or on all grid points simultaneously while Newton-type methods

compute a solution point by point and are more difficult to vectorize.

Convergence of fixed-point iteration is in general not guaranteed; for for-

mal results about convergence of fixed-point iteration, see Judd (1998 p.165-

166). However, damping can often help achieve convergence. In particular,

by choosing an appropriate value of the damping parameter, , we were able

to achieve convergence in all eight models of the current JEDC project. Be-

low, we discuss the issue of convergence using Model 5 as an example.

Example 2 (Model 5). Conditions (12) and (13) together imply

1 = 
¡
1
¢ ≡  −

X
=2

∙
 1

 

¡
1
¢−11¸−

 (14)

where  is aggregate consumption that is given. Note that if {}=1 are
of the same sign, then 0 (1)  0. There is a unique fixed point (1)

∗
satis-

fying (1)
∗
= 

¡
(1)

∗¢
(at this point,  (1) crosses the 45

 line). However,

applying  iteratively to some initial guess 1 , i.e.,  ( ( (
1
))) does not

guarantee the convergence to this fixed point. Depending on whether 0 is
larger than, smaller than or equal to minus one, the result will be conver-

gence, divergence or cycling, respectively. (Note that the slope of  depends

on the model’s parameters and welfare weights, as well as on the specific way

in which  is constructed). Figures 2a and 2b show, respectively, the cases

of convergence and divergence of fixed-point iteration. Figures 2c and 2d il-

lustrate fixed-point iteration with damping (1− ) 1 +  (1). In particular,

Figure 2d demonstrates that a sufficiently small damping parameter  can

help restore convergence.

15

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

c t1

g(ct
1)

Fi
gu

re
 2

a.
 It

er
at

io
n-

on
-a

llo
ca

tio
n

un
de

r -
1<

g'
<0

:

 c

on
ve

rg
en

ce
 w

ith
ou

t d
am

pi
ng

.

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

c t1

g(ct
1)

Fi
gu

re
 2

b.
 It

er
at

io
n-

on
-a

llo
ca

tio
n

un
de

r g
'<

-1
:

di

ve
rg

en
ce

 w
ith

ou
t d

am
pi

ng
.

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

c t1

g(ct
1)

Fi
gu

re
 2

d.
 It

er
at

io
n-

on
-a

llo
ca

tio
n

un
de

r g
'<

-1
:

 c
on

ve
rg

en
ce

 w
ith

 d
am

pi
ng

.

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

c t1

g(ct
1)

Fi
gu

re
 2

c.
 It

er
at

io
n-

on
-a

llo
ca

tio
n

un
de

r -
1<

g'
<0

:

 c

on
ve

rg
en

ce
 w

ith
 d

am
pi

ng
.

g(
c t1)

g(
c t1)

g(
c t1)

g(
c t1)

c t1c t1
c t1

c t1

N
ot

e:
 F

ig
ur

es
 2

a-
2d

 il
lu

st
ra

te
 p

os
si

bl
e

ou
tc

om
es

 o
f t

he
 it

er
at

io
n-

on
-a

llo
ca

tio
n

m
et

ho
d;

 c
t1 is

 c
on

su
m

pt
io

n
of

 th
e

fir
st

 c
ou

nt
ry

; g
 is

 th
e

m
ap

pi
ng

us

ed
 in

 th
e

ite
ra

tio
n-

on
-a

llo
ca

tio
n

m
et

ho
d

an
d

g'
 is

 th
e

fir
st

 d
er

iv
at

iv
e

of
 g

.

4.3 Precomputation

The second intratemporal-choice approach we use is precomputation, which

consists of constructing intratemporal-choice manifolds defined in (8) out-

side the main iterative cycle using either analytical derivations or numerical

computations or a combination of both. This approach was originally pro-

posed by Maliar and Maliar (2005) for constructing a labor manifold outside

the main iterative cycle in the standard neoclassical growth model. Maliar

and Maliar (2007) introduced the precomputation approach in the context

of the current JEDC project. In the present paper, we give a more elaborate

description of the precomputation approach.

A general version of the precomputation approach, applied to the model

(1)− (3), constructs the intratemporal-choice manifolds Φ (kak+1) and

Θ (kak+1) in (8) as follows:

•  1. Outside the main iterative cycle, choose a grid of  values for

k, a, k+1, i.e.,
©
kak

0


ª
=1

. For each grid point  = 1  ,

solve equations (2), (4) and (5) using a numerical solver with respect

to consumption  and labor 

 for  = 1   .

•  2. Extend the constructed set functions to the relevant continuous

domain using some interpolation method (a global polynomial approxi-

mation, piecewise linear polynomial approximation, splines, etc.), such

that

 = bΦ (kak0) and  = bΘ (kak0)   = 1   (15)

where bΦ and bΘ are the precomputed consumption and labor manifolds

of a country , and (kak0) ∈ R3 .
•  3. In the main iterative cycle, use the precomputed manifoldsbΦ (kak0) and bΘ (kak0) to find the intratemporal choice given the
state, (ka), and the intertemporal choice, k+1.

Many applications have enough structure to simplify the precomputation

approach in two ways. First, it might be not necessary to precompute all

the intratemporal-choice manifolds because some of these manifolds can be

constructed analytically. Second, it may be possible to precompute the in-

tratemporal choice in terms of a set of arguments that is smaller than k, a,

16

k+1 or that is given by some function of k, a, k+1. We illustrate these two

points by way of example for Model 5 described in Maliar and Maliar (2007).

In this case, we precompute a single manifold, consumption of country 1, 1 ,

in terms of one argument, aggregate consumption,  (which is a function of

k, a, k+1).

Example 3 (Model 5). Outside the main iterative cycle, take  values

for aggregate consumption , i.e., {}=1 . For each , use a numerical
solver to find a solution 1 to equation (14) written as

1 +

X
=2

∙
 1

 

¡
1
¢−11¸−

=  (16)

Interpolate the constructed set function to a continuous domain to obtain the

manifold b1 (). Inside the main iterative cycle, given k, a, k+1, compute
 from resource constraint (2), use the precomputed manifold to find con-

sumption of country 1, 1 = b1 () and compute consumption of the other
countries as 


 =

h
1


(1)

−11
i−

,  = 2   .

As with Model 5, precomputing a single intratemporal-choice manifold

(either consumption or labor manifolds) is sufficient for Models 2 and 6; see

the formulas in Appendix A. For Models 3, 4, 7 and 8, we can precompute

 labor manifolds and find the corresponding consumption allocations using

the formulas provided in Appendix A; note that for these models, we cannot

precompute  consumption manifolds and find the corresponding labor allo-

cations analytically: there is a closed-form expression for consumption given

labor but there is no closed-form expression for labor given consumption.8

We can precompute the intratemporal choice in Model 2 in terms of two

composite arguments (see Appendix B for details). For the remaining mod-

els - Models 3, 4, 6, 7 and 8 - the intratemporal-choice manifolds must be

precomputed in terms of 3 arguments k, a, k+1. To make the precompu-

tation approach feasible for high-dimensional problems, we can precompute

the intratemporal-choice manifolds on the ergodic set realized in equilib-

8The advantage of solving for labor over solving for consumption was exploited by

Maliar and Maliar (2005) to simplify finding the intratemporal choice in the standard

neoclassical growth model.

17

rium.9 For SSA, the domain for precomputation is a set of simulated points;

for CGA, it is a set of the clusters’ centers obtained from simulated points.

The domains of SSA and CGA are discussed in Section 5.

4.4 Combining iteration-on-allocation and precompu-

tation

For Models 3, 4, 7 and 8, the pure iteration-on-allocation approach requires

to iterate simultaneously on labor allocations of  countries
©




ª=1
(see

Appendix A). In turn, the pure precomputation approach requires to pre-

compute the labor choice of each country as a function of 3 arguments k,

a, k+1. We now show that under the assumption of additively separable

production across countries, we can combine iteration-on-allocation and pre-

computation into a single method that precomputes the labor manifolds in

terms of three arguments and iterates on one allocation.10 This is possible

because conditions (4) and (5) implicitly define the intratemporal choice of

each country  in terms of its own capital 

 , its own productivity level 




and aggregate consumption ; i.e., 

 = Ω

¡


  


  

¢
and 


 = Λ

¡


  


  

¢
,

 = 1   . Model 2 is an example of the economy in which such manifolds

can be constructed analytically (see Appendix B); generally, however, such

manifolds must be precomputed numerically.11

We combine iteration-on-allocation and precomputation as follows:

•  1. Outside the main iterative cycle, for each country , choose

a grid of  values for 

 , 


 , , i.e.,

©
 


 

ª
=1

. For each grid

point  = 1  , solve equations (4) and (5) using a numerical solver

with respect to  and  for  = 1   .

9To construct the domain for the intratemporal-choice manifolds, one can use a tensor-

product grid of 3 arguments k, a, k+1. However, the number of grid points will grow

exponentially with dimension, and the precomputation method will not be feasible even

for a moderately large number of countries.
10Combining iteration-on-allocation and precomputation is also possible for Models 2

and 6, but does not provide any advantages over the pure iteration-on-allocation method

described in Section 4.2.
11Maliar and Maliar (2001, 2003a) construct similar intratemporal-choice manifolds an-

alytically for certain classes of heterogeneous-agent economies and use these manifolds to

derive non-Gorman aggregation results.

18

•  2. Interpolate the constructed set functions to the relevant con-

tinuous domain,

 = bΩ
¡
  

¢
and  = bΛ

¡
  

¢
  = 1   (17)

where bΩ and bΛ are the precomputed consumption and labor manifolds

of a country , and (  ) ∈ R3.

•  3. Substitute the precomputed labor manifolds bΛ (  ) for

 = 1   into resource constraint (2) to define the mapping of the

form e =  (),

e = X
=1

⎡⎣  ³  bΛ
¡


  


  

¢´− 

2




Ã


+1





− 1
!2
+ 


 − 


+1

⎤⎦ 
(18)

Inside the main iterative cycle, compute aggregate consumption, ,

using the iteration-on-allocation approach. For each , given k, a,

k+1, assume some value for  and calculate e from (18); if  6= e,
compute an input for the next iteration equal to (1− ) +e. Iterate
until convergence.

Like the pure iteration-on-allocation and precomputation methods, their

combination allows to solve for the intratemporal allocations (including ag-

gregate consumption, ) with a high degree of accuracy.

5 Two ergodic-set algorithms

In this section, we describe two ergodic-set algorithms, SSA and CGA, that

we use to solve the models (1)− (3). Both algorithms find a solution on the
ergodic set. However, they differ in how they use information on the ergodic

set: SSA uses simulated points both as a domain for finding the solution

and as nodes for integration, while CGA uses such points exclusively for

constructing the domain (it performs integration using deterministic methods

unrelated to the estimated density function). For both methods, we re-write

Euler equation (6) in a form suitable for parameterizing the capital policy

19

function 

+1 =  (ka):



+1 = 

(


¡


+1 


+1

¢




¡


  




¢




£


+1 + 


+1




¡


+1 


+1

¢¤


+1

)
(19)

' Ψ
¡
ka;v


¢


where Ψ (ka;v
) is a flexible functional form used to parameterize the

capital policy function, and v is a vector of coefficients.12 See Appendix C

for the specifications of (19) corresponding to Models 5-8. We denote by v

a matrix composed of the vectors of polynomial coefficients of all countries,

v≡ ¡v1 v v¢.
We assume thatΨ is given by a complete set of ordinary polynomials, i.e.,

Ψ (ka;v
) ≡Xv

, whereX is a row vector composed of -period mono-

mial terms of the state variables, k and a. For the first-degree polynomial

function in the example given in (9), we haveX =
¡
1 1   


  

1
   




¢ ∈
R1×(2+1), and v =

¡


0 


1  


  


+1  


2

¢0 ∈ R(2+1)×1.
We should emphasize that the end-of-period capital stocks k+1 are the

only variables we approximate by functions of the state variables, k and a.

The remaining variables (consumption and labor) are either computed by the

iteration-on-allocation solver or obtained from the precomputed intratemporal-

choice manifolds in form (8).

Properly separating the intertemporal and intratemporal choices is cru-

cial for the speed of SSA and CGA. Approximating the policy functions for

capital, as in (19), has an important advantage over approximating the pol-

icy functions for other variables such as consumption and leisure. Namely,

the equilibrium capital policy functions are the equilibrium capital laws of

motion 

+1 =  (ka)   = 1   . As a result, we can first construct

a path for capital, {k+1}=0 , and subsequently fill in the corresponding
intratemporal allocations {c `}=1 . The iteration-on-allocation and pre-
computation methods can work with vectors and even matrices and can thus

find the intratemporal choice in all periods, grid points, integration nodes at

once rather than one by one.

12This kind of parameterization was used by Den Haan (1990) as a device to implement

the simulation-based parameterized expectations algorithm in a model with more than

one Euler equation.

20

5.1 Stochastic simulation algorithm

SSA simultaneously computes the ergodic distribution of state variables, its

support and the associated policy functions. It proceeds as follows:

Fix the simulations length  and initial condition (k0a0). Draw and fix

for all simulations a sequence of productivity levels {a}=1 using equation
(3). If precomputation is used, construct the intratemporal-choice manifolds

of type (8) as described in Section 4.3, and if precomputation is combined

with iteration-on-allocation, do so as described in Section 4.4.

•  1. For an iteration , fix some matrix of coefficients v (). For each

country  = 1   , use the assumed capital policy function 

+1 =

Xv
 to recursively calculate a sequence of capital stocks {k+1}=0

corresponding to a given sequence of productivity levels {a}=0 .
•  2. Given {kak+1}=0 , calculate {c `}=0 using a vec-
torized version of either iteration-on-allocation or precomputation or

their combination.

•  3. For each country  = 1   , compute the integrand of (19),



 ≡ 


¡


+1 


+1

¢




¡


  




¢




£


+1 + 


+1




¡


+1 


+1

¢¤


+1 (20)

for  = 0   − 1.
•  4. For each country  = 1   , run a linear regression of the

constructed variable 

 on a set of explanatory variables X using the

numerically stable approximation methods described in JMM (2009,

2010b),



 =Xv

 + 

  (21)

where 

 is a -period regression error corresponding to country . Let

the matrix of coefficients estimated on iteration  be called bv ().
•  5. Compute the matrix of coefficients for the subsequent iteration

+ 1 using fixed-point iteration:

v (+ 1) = (1− )v () + bv ()  (22)

where  ∈ (0 1) is a damping parameter.

21

Iterate on  1− 5 until a fixed point is found such that for   0:

1

 ·
X
=1

X
=1

¯̄̄̄
¯+1()− 


+1(+ 1)



+1()

¯̄̄̄
¯  10− (23)

where 

+1 () and 


+1 (+ 1) are the -th country’s capital stocks obtained

on iterations,  and + 1, respectively, and |·| denotes the absolute value.

5.2 Cluster-grid algorithm

CGA is a projection method that computes a solution on a grid constructed

from clusters of simulated points. It proceeds as follows: Make an initial guess

about the capital policy functions 

+1 = Xv

,  = 1   . Given initial

condition (k0a0), draw a sequence of productivity levels {a}=1 using
(3), and simulate the time series solution {k+1}=0 . Using simulated data,
construct  clusters and compute the centers of the clusters, {ka}=1 ,
to be used as a grid for projections; see JMM (2010a) for a description of

clustering methods and illustrative examples. In each grid point  = 1  ,

construct a function Γ (ka ε) that represents the integrand in (19),

Γ (ka ε) ≡ 


³¡




¢0

¡




¢0´




¡


  




¢


h¡




¢0
+
¡




¢0




³¡




¢0

¡




¢0´i ¡




¢0


(24)

where ε ≡ ¡1  ¢ is the next-period shock. Furthermore, if precompu-
tation is used, construct the intratemporal-choice manifolds of type (8) as

described in Section 4.3, and if precomputation is combined with iteration-

on-allocation, do so as described in Section 4.4.

•  1. On an iteration , fix a matrix of coefficients v (). For each

country , use the assumed capital policy function to calculate the end-

of-period capital stock in all grid points,
¡




¢0 ≡Xv
 for  = 1  .

•  2. Given {kak0}=1 , calculate {c `}=1 using a vector-
ized version of iteration-on-allocation, precomputation or their combi-

nation.

•  3. For each country  = 1   , use a numerical integration

method (such as non-product monomial rules or product Gauss-Hermite

22

rule) to approximate the conditional expectations of equation (24). Call

the result
³b´0, i.e., ³b´0 ≡ 

£
Γ (ka ε)

¤
 (25)

where the expectation is computed with respect to ε ≡ ¡
1  

¢
.

To calculate the next-period intratemporal choice {c0 `0}=1 , for
each integration node, use a vectorized version of either iteration-on-

allocation or precomputation or their combination as described in Sec-

tion 4.

•  4. For each country  = 1   , run a linear regression of the con-

structed variable
³b´0 on a set of explanatory variables X using the

numerically stable approximation methods described in JMM (2009,

2010b), ³b´0 =X v
 + 


  (26)

where 

 is an -grid-poind regression error corresponding to country .

Let the matrix of coefficients estimated on iteration  be called bv ().
•  5. Compute the matrix of coefficients for the subsequent iteration

+ 1 using fixed-point iteration (22).

Iterate on  1− 5 until a fixed point is found, such that for   0:

1

 ·
X

=1

X
=1

¯̄̄̄
¯̄̄
¡




¢0 − ³b´0¡




¢0
¯̄̄̄
¯̄̄  10− (27)

where
¡




¢0
and

³b´0 are the end-of-period capital stocks before and after
the iteration, respectively.

After achieving convergence, we should generally re-run CGA using the

obtained policy functions for capital as an initial guess for simulation. Do-

ing so controls for the possibility that the initial guess for the capital policy

functions was far from the true solution, and the simulated series (and con-

sequently, our cluster grid) did not adequately represent the true ergodic

set.

23

6 Implementation details

In Section 6.1, we describe the baseline implementation of SSA and CGA

that was used to generate the results presented in the comparison paper by

KMMP (2010). In Section 6.2, we discuss alternative implementations of

these algorithms that are not included in KMMP (2010). Calibration of the

models’ parameters is provided in Juillard and Villemot (2010).

6.1 Baseline implementation of SSA and CGA

Below, we describe the details of the baseline implementation of our methods,

as well as the solution-output, hardware, software and measures of accuracy

and cost.

Stochastic simulation algorithm SSA computes solutions using the first-

degree ordinary polynomial (9). To start the iterative process, we use an

(arbitrary) initial guess: 

+1 = 09


 + 01


 for all  = 1  . Since the

steady-state levels of capital and productivity are normalized to one, the

above guess matches the steady-state level of capital. In terms of the vector

of coefficients v, this guess implies that 

 = 09, 


+ = 01,  = 1  ,

and that the remaining coefficients in v are equal to zero. Initial capital

and productivity level are set at their steady-state values: 

0 = 1 and 


0 = 1

for all  = 1   . The simulation length is  = 10 000.

To estimate the coefficients in the linear regression (21), we use a least-

squares truncated QR factorization method; see JMM (2009) for a discussion.

We set the damping parameter in (22) to be the largest values of  that

lead to convergence:  = 005 for Models 1 and 5, and  = 003 for the

remaining models. We target seven digits of accuracy in the simulated data

by fixing  = 7 in convergence criterion (23). To rule out explosive and

implosive behavior on initial iterations, we restrict the simulated series for

capital using moving bounds as described in Maliar and Maliar (2003b); in

most cases, however, the artificial bounds were not necessary as the initial

guess led to a stationary simulated series.

Cluster-grid algorithm CGA computes solutions using a second-degree

ordinary polynomial. To start the iterative process, we use the first-degree

polynomial solution computed by SSA as an initial guess. The SSA solution

was used both to compute an initial guess for the matrix of coefficients v

24

and to construct 500 clusters. The clusters were constructed by applying an

hierarchical clustering algorithm with Ward’s linkage to the principal com-

ponents of the simulated data; see JMM (2010a) for a description of the

clustering methods and illustrative examples.

To estimate linear regression (26), we again use a least-squares truncated

QR factorization method. We set the damping parameter in (22) at  = 01

for Models 1 and 5, and  = 005 for all other models. We use  = 7 for

convergence criterion (27). We solve the model twice: first, we compute the

solution using a cheap non-product monomial rule 1 with 2 nodes, and

then, we recompute it using an expensive product Gauss-Hermite rule (2)

with two nodes in each dimension (2 nodes in total); see JMM (2010a) for

a description of these integration methods.

Iteration-on-allocation In the baseline versions of both SSA and CGA,

we solve for the intratemporal choice using the iteration-on-allocation ap-

proach. We use the damping parameter  = 001 in all cases except for

Models 1 and 5 under CGA in which case we use  = 005. To start itera-

tions under SSA, we assume that consumption and labor are equal to their

steady-state values. Under CGA, we compute an initial guess for consump-

tion and labor using the solution produced by SSA.

We would like to direct attention to an important aspect of the implemen-

tation of iteration-on-allocation. Finding consumption and labor allocations

with a high degree of accuracy on each iteration requires a high computa-

tional cost and is in fact of no use, since on the next iteration, we must

re-compute consumption and labor allocations for a different matrix of coef-

ficients v. We thus do not target any accuracy criteria in consumption and

labor allocations in each iteration on v, but instead perform 10 subiterations

on mapping (10) as described in Section 4 (except for Models 1 and 5 under

CGA in which we perform 3 subiterations). We store in memory consump-

tion and labor allocations obtained after each round of subiterations and use

these allocations as inputs for the next round of the iteration-on-allocation

process. Thus, as the policy functions for capital (characterized by v) are

refined along the iterations, so do our consumption and labor allocations.

To enhance the numerical stability on initial iterations when the solution

is inaccurate, we impose fixed lower and upper bounds (equal to 50% and

150% of the steady-state level, respectively) on consumption in Model 5 and

on labor in Models 6-8. This technique is similar to the moving bounds

25

used to restrict simulated series for capital under SSA. With the imposition

of bounds, the iteration-on-allocation procedure was numerically stable and

converged to a fixed point at a good pace in all of our experiments. In

convergence criterion (11), we use  = 7.

Solution-output delivered to the testing bench of Juillard and Ville-

mot (2010) Under the iteration-on-allocation approach, SSA and CGA do

not deliver explicit policy functions for consumption and labor. The only

solution-output they produce is a matrix of the polynomial coefficients for

the capital policy functions (laws of motion) of  heterogeneous countries,

v =
¡
v1 v v

¢
. Thus, in addition to the polynomial coefficients v, we

supply to the testing bench of Juillard and Villemot (2010) four iteration-

on-allocation routines (one per each asymmetric model and its symmetric

counterpart) that allow to find the intratemporal choice in simulation.13

The simulation of our solutions includes two steps: First, the capital laws

of motion, 

+1 = Ψ (ka;v

)   = 1  , are used to generate the capital

path {k+1}=0 . Then, given {kak+1}=0 , the corresponding in-
tratemporal choice {c `}=0 is filled in using the iteration-on-allocation
method described in Section 4.2 and Appendix A. To begin the iteration-on-

allocation process, we set consumption and labor equal to their steady-state

values; we use the damping parameter  = 001, and we perform iterations

until the results satisfy convergence criterion (11) with  = 10.

Software, hardware, accuracy and cost Our programs are written in

Matlab, version 7.6.0.324 (R2008a). We use a desktop computer with a

Quad processor Intel(R) Core(TM) i7 CPU920 @2.67GHz, RAM 6,00GB

and Windows Vista 64 bits. For each model studied, we report the running

time in seconds: for SSA, the running time is defined as the time needed to

compute a linear solution starting from a given initial guess, and for CGA, the

running time is defined as the time needed to compute a quadratic solution

starting from a linear SSA solution. Accuracy tests are performed using the

testing bench of Juillard and Villemot (2010), and the results of these tests

are described in KMMP (2010).

13Using the iteration-on-allocation routines in simulation plays a key role in the overall

accuracy of SSA and CGA because it allows us to solve for the intratemporal choice with

essentially zero errors; see Table 4.3 in KKMP (2010). This would not be possible if we

constructed and supplied the standard explicit consumption and/or labor policy functions

in terms of state variables.

26

6.2 Exploring alternative implementations

The current JEDC project was launched in 2003, and since then, we have

implemented many versions of the studied methods. We now compare our

baseline implementation of SSA and CGA to alternative implementations

explored, some of which are illustrated with numerical results in Section 7.

Stochastic simulation algorithm At an early stage of the project, Maliar

and Maliar (2004, 2007) implemented a stochastic simulation approach using

the simulation-based parameterized expectation algorithm (PEA) by Den

Haan and Marcet (1990). Under the PEA, policy functions are parame-

terized by an exponentiated polynomial and are estimated using non-linear

least-squares regression methods. The least-squares problem is typically ill-

conditioned, which leads to numerical problems.14 Moreover, non-linear re-

gression methods require a good initial guess and involve costly computations

of Jacobian and Heissian matrices. Also, such methods cannot be easily vec-

torized to estimate the policy functions of all countries simultaneously, which

is critical for speed in multi-country settings; see JMM (2010b) for an exten-

sive discussion. In the present paper, we rely on numerically stable stochastic

simulation approaches described in JMM (2009): we use a linear regression

model and employ a least-squares truncated QR factorization method suited

for use with ill-conditioned problems. This approximation method (imple-

mented in Matlab with the backslash operator) delivers the standard OLS

estimator in the absence of ill-conditioning but removes highly collinear prin-

cipal components in the presence of ill-conditioning.

We submitted for the comparison in KMMP (2010) the first-degree poly-

nomial approximation because under the chosen simulation length  = 10 000,

it was more accurate than the second-degree polynomial approximation. This

result is explained in JMM (2010b): The accuracy of Monte Carlo integration

employed by SSA depends on how large the simulation length  is relative

to the number of polynomial coefficients in v. The higher is the polyno-

mial degree and/or the dimensionality of the problem,  , the larger is the

number of the coefficients in v, and the larger simulation length is needed

to appropriately identify the coefficients. The simulation length assumed,

14To be specific, polynomial terms in the approximating polynomial function are highly

correlated (multicollinear), and the regression model cannot be estimated with the stan-

dard least-squares method; see Den Haan and Marcet (1990), Christiano and Fisher (2000)

and JMM (2009).

27

 = 10 000, is sufficient to accurately identify the coefficients of the first-

but not the second-degree polynomial. In a model similar to Model 1 of the

current JEDC project, JMM (2010b) find that  should be increased from

10 000 to 50 000 and to 100 000 to make the second-degree polynomial ap-

proximation more accurate than the first-degree polynomial approximation

for the model with up to  = 4 and with up to  = 6, respectively. Running

such a long simulation would be costly both in terms of time and memory.

As follows from the comparison in KMMP (2010), even the linear solutions

delivered by SSA are sufficiently accurate. This is because SSA fits a poly-

nomial exclusively in the relevant area of the state space (the ergodic set)

and also because it solves accurately for the intratemporal choice using the

iteration-on-allocation method.

Cluster-grid algorithm In the case of CGA, we submitted for the com-

parison in KMMP (2010) the second-degree polynomial approximation. CGA

relies on accurate numerical integration methods, and the second-degree poly-

nomial approximation is considerably more accurate than the first-degree

one. The third-degree polynomial approximation is even more accurate. In

particular, JMM (2010a) find that an increase in the polynomial degree used

in CGA increases accuracy roughly by an order of magnitude in the examples

considered. In Section 7, we compare the accuracy of the CGAmethod in the

context of the current JEDC project using the first-, second- and third-degree

ordinary polynomials, as well as using alternative Smolyak polynomials.

We also test how sensitive the CGA solutions are to the way in which the

cluster grid is constructed. First, we tried to initialize CGA using a linear

solution delivered by a log-linearization method instead of the one delivered

by SSA.15 Second, we tried to construct clusters using an alternative K-

means clustering algorithm and/or different linkage methods instead of the

baseline hierarchical algorithm with Ward’s linkage. These modifications

do not visibly affect the accuracy and speed of CGA. Finally, concerning

the number of clusters, JMM (2010a) find that oversampling (when there are

more grid points than the polynomial coefficients) increases the accuracy and

numerical stability of the CGA method compared to collocation (when the

number of grid points is the same as the number of polynomial coefficients).

15In JMM (2010a), CGA is initialized without help of other methods: time series are

simulated for an arbitrary initial guess and used to construct clusters on which a solution

is computed. The obtained solution serves as a more accurate initial guess.

28

In line with this finding, we choose to oversample and use 500 clusters to

identify between 15 to 231 polynomial coefficients in models with  ranging

from 2 to 10, respectively.

To perform numerical integration, we tried to choose the most accurate

integration strategy feasible for problems of given dimensionality,  ≤ 10.
To this purpose, we design a two-step integration procedure that combines

a low-cost monomial rule with 2 nodes (step one) and a costly monomial

(quadrature) rule with 2 nodes (step two). It turned out that, in the studied

models, gains from so accurate integration are minimal relative to less costly

integration alternatives. In Section 7, we investigate how accuracy and cost

of CGA depend on the specific integration method.

Intratemporal-choice approaches In addition to our baseline iteration-

on-allocation procedure, we explored other approaches for solving for the

intratemporal choice. For all eight models studied, we computed the con-

sumption and/or labor policy functions in terms of state variables within the

main iterative cycle as described in Section 4.1, and we implemented a general

version of the precomputation approach presented in Section 4.3. Also, for

Model 5, we implemented the precomputation approach as described in Ex-

ample 3, and for Models 6 and 7, we combined the precomputation approach

and a numerical solver as described in Section 4.4.

To generate the results used for comparison in KMMP (2010), we opt for

the most accurate method, which is iteration-on-allocation. However, our

precomputation approach is a useful alternative to consider as it is faster than

the iteration-on-allocation approach. In particular, it was adopted by Pichler

(2010) for his solution method. In Section 7, we compare the performance of

alternative intratemporal-choice approaches in the context of Model 5.

7 Additional numerical results

Accuracy and speed of SSA and CGA under the baseline implementation is

assessed in KMMP (2010). In this section, we provide additional numerical

results for CGA, which show how its accuracy and speed depend on the spe-

cific intratemporal-choice approach, approximating polynomial function and

integration method. To assess the accuracy of solutions, we implement a test

that computes the average and maximum solution errors along a stochas-

tic simulation of 10 000 observations as described in Juillard and Villemot

29

(2010).

7.1 Comparison of intratemporal choice approaches

To illustrate the role of the specific intratemporal-choice approach in deter-

mining the accuracy of solutions, we use a two-country version of Model 5.

We allow an intratemporal-choice approach used in the solution procedure

differ from that used in the simulation procedure. We report the results

obtained using the second-degree polynomial approximation; the regularities

under the first-order polynomial approximation are similar.

In the solution procedure, we consider four alternative intratemporal-

choice approaches: (i) parameterize the consumption policy functions of

both countries with a polynomial of the state variables and compute the

polynomial coefficients inside the main iterative cycle; (ii) parameterize and

compute only the consumption policy function of country 1 inside the main

iterative cycle and find consumption of country 2 from closed-form expres-

sion (12); (iii) precompute the consumption manifold of country 1 outside the

main iterative cycle in terms of aggregate consumption as described in Exam-

ple 3 and find consumption of country 2 from (12); (iv) solve for consumption

of both countries using the iteration-on-allocation approach, as described in

Example 1.

In the simulation procedure, we solve for the intratemporal choice using

four approaches that are parallel to those used in the solution procedure: (a)

use the computed solution to construct the consumption policy functions for

both countries in terms of the state variables (if not constructed by the solu-

tion method used); (b) use the solution to construct the consumption policy

function of country 1 in terms of the state variables (if not constructed by

the solution method used) and find consumption of country 2 from (12); (c)

find consumption of country 1 using the consumption manifold precomputed

by method (iii) and find consumption of country 2 from (12); (d) solve for

consumption of both countries using the iteration-on-allocation approach.

To implement precomputation in (iii), we consider an interval for aggre-

gate consumption equal to ±20% of the steady-state value, and we split this
interval into 300 equally spaced points. Outside the main iterative cycle,

for each value of aggregate consumption , we compute 
1
 numerically from

(16). Inside the main iterative cycle, we compute aggregate consumption 
from (2) and find the corresponding 1 using a piecewise linear polynomial

interpolation. We tried other interpolation schemes such as a global high-

30

order polynomial approximations, piecewise cubic polynomial interpolation,

splines, etc., and found that piecewise low-order polynomial interpolation

schemes lead to more accurate solutions (though are more costly) than global

high-order polynomial approximations.

In Table 1, we present the results of combining methods (i)-(iv) in the

solution procedure with methods (a)-(d) in the simulation procedure (all er-

rors that are less than 10−10 are replaced by −∞). As the table indicates,
if in both the solution and simulation procedures, we approximate a policy

function for consumption using a second-degree polynomial of state variables,

the resulting accuracy is low (namely, errors in the intratemporal-choice con-

ditions including the resource constraint are large). If in the solution proce-

dure, we solve for consumption very accurately (using precomputation and

iteration-on-allocation) but in simulation, we solve for consumption not so

accurately (using second-degree polynomials of state variables), the result-

ing accuracy is again low. Finally, if in the solution procedure, we solve for

consumption not very accurately (using second-degree polynomials of state

variables), but in simulation, we solve for consumption very accurately (us-

ing precomputation and iteration-on-allocation), the accuracy gets restored.

These tendencies lead us to conclude that it is not so important for accuracy

how we compute the intratemporal choice in the solution procedure but how

we compute it in simulation (when running accuracy tests).

We would like to highlight two additional findings about accuracy in Table

1. First, accuracy does not depend significantly on whether we approximate

one or more than one intratemporal-choice variable using second-degree poly-

nomials of state variables; in both cases, we suffer approximately the same

accuracy loss. Second, the methods solving for the intratemporal choice ac-

curately lead to considerably larger Euler-equation errors than those solving

for the intratemporal choice less accurately.

Finally, Table 1 also shows the time,  , needed to run the test on

a stochastic simulation of 10 000 observations. Under the precomputation

approach,  is only slightly larger than under the standard approach

constructing the consumption and labor policy functions in terms of state

variables, while under the iteration-on-allocation approach,  is almost

20 times larger. The iteration-on-allocation approach performs slowly in the

test because our testing procedure is not vectorized along the time dimension;

i.e., we use the iteration-on-allocation solver 10 000 times to compute 1 and

2 period by period.

31

Ta
bl

e
1.

 A
cc

ur
ac

y
an

d
tim

e
ne

ed
ed

 to
 ru

n
th

e
te

st
 fo

r t
he

 tw
o-

co
un

try
 v

er
si

on
 o

f M
od

el
 5

 u
nd

er
 a

lte
rn

at
iv

e
in

tra
te

m
po

ra
l-c

ho
ic

e

ap
pr

oa
ch

es
.

N
ot

e:
 ∆

m
ea

n
an

d
∆ m

ax
 a

re
, r

es
pe

ct
iv

el
y,

 t
he

 a
ve

ra
ge

 a
nd

 m
ax

im
um

 e
rr

or
s

in
 t

he
 c

or
re

sp
on

di
ng

 o
pt

im
al

ity
 c

on
di

tio
n

(in
 l

og
10

un

its
)

in
 t

he
 t

es
t

on
 a

 s
to

ch
as

tic
 s

im
ul

at
io

n
of

 1
0,

00
0

ob
se

rv
at

io
ns

;
TC

PU
 i

s
th

e
tim

e
ne

ed
ed

 t
o

ru
n

th
e

te
st

 (
in

 s
ec

on
ds

).
A

bb
re

vi
at

io
ns

 “
Eu

le
r”

, “
R

C
”

an
d

“I
nt

ra
t”

 d
en

ot
e

th
e

Eu
le

r e
qu

at
io

ns
, r

es
ou

rc
e

co
ns

tra
in

t a
nd

 in
tra

te
m

po
ra

l-c
ho

ic
e

co
nd

iti
on

s,
re

sp
ec

tiv
el

y.

In
tra

te
m

po
ra

l c
ho

ic
e

in
 th

e
si

m
ul

at
io

n
pr

oc
ed

ur
e

(a
) T

w
o

po
lic

y
fu

nc
tio

ns

(b
) O

ne
 p

ol
ic

y
fu

nc
tio

n
(c

) P
re

co
m

pu
ta

tio
n

(d

) I
te

ra
tio

n-
on

-
-a

llo
ca

tio
n

In
tra

te
m

po
ra

l
ch

oi
ce

 in

th
e

so
lu

tio
n

pr

oc
ed

ur
e

Eq
ua

tio
n

∆ m
ea

n
∆ m

ax

TC
PU

∆ m
ea

n
∆ m

ax

TC
PU

∆ m

ea
n

∆ m
ax

TC

PU
∆ m

ea
n

∆ m
ax

TC

PU

(i)

Eu
le

r
-6

.1
4

-4
.5

5
15

-6

.0
2

-4
.5

5
15

-5

.6
8

-4
.2

9
17

-5

.7
3

-4
.2

9
22

6

Tw
o

po
lic

y
R

C

-4
.9

3
-3

.4
8

-4

.5
4

-3
.0

9

-5
.8

9
-5

.6
1

- ∞

- ∞

fu
nc

tio
ns

In

tra
t

-4
.6

4
-3

.2
2

- ∞

- ∞

- ∞

- ∞

- ∞

- ∞

(ii
)

Eu
le

r
-5

.9
8

-4
.5

7
15

-6

.0
6

-4
.5

7
15

-5

.6
8

-4
.2

9
17

-5

.7
2

-4
.2

8
22

6

O
ne

 p
ol

ic
y

R
C

-4

.6
8

-3
.6

0

-4
.5

4
-3

.0
9

-5

.8
9

-5
.6

1

- ∞

- ∞

fu
nc

tio
n

In
tra

t
-4

.6
9

-3
.1

7

- ∞

- ∞

- ∞

- ∞

- ∞

- ∞

(ii
i)

Eu

le
r

-5
.9

8
-4

.4
2

14

-5
.9

1
-4

.4
2

14

-5
.6

9
-4

.3
5

16

-5
.7

4
-4

.3
5

23
1

Pr
ec

om
pu

ta
tio

n
R

C

-4
.6

6
-3

.6
3

-4

.4
3

-3
.1

7

-5
.8

9
-5

.6
1

- ∞

- ∞

In

tra
t

-4
.6

5
-3

.2
8

- ∞

- ∞

- ∞

- ∞

- ∞

- ∞

(iv
)

Eu
le

r
-5

.9
9

-4
.4

2
15

-5

.9
2

-4
.4

2
15

-5

.6
9

-4
.3

5
17

-5

.7
4

-4
.3

5
23

2

Ite
ra

tio
n-

on
-

R
C

-4

.6
6

-3
.6

3

-4
.4

2
-3

.1
8

-5

.8
9

-5
.6

1

- ∞

- ∞

al
lo

ca
tio

n

In
tra

t
-4

.6
5

-3
.2

8

- ∞

- ∞

- ∞

- ∞

- ∞

- ∞

7.2 Cost of iteration-on-allocation

We now quantify the benefits of vectorizing the iteration-on-allocation ap-

proach along the time dimension. In Table 2, we compare the time necessary

to simulate a time-series solution of length  under two alternative simula-

tion procedures: one in which the intratemporal choice is computed using the

standard policy functions represented by second-degree polynomials of state

variables (1) and the other in which the intratemporal choice is com-

puted using the iteration-on-allocation solver (2). As an initial guess

for allocations in the latter procedure, we use the allocations obtained in the

former procedure.

Since our simulation routines are written in a vectorized form, the cost of

iteration-on-allocation depends dramatically on the simulation length. When

we simulate only one period entry (i.e.,  = 1), the iteration-on-allocation

approach is about 67 and 362 times more costly for Models 1 and 4, respec-

tively, than the standard approach based on policy functions. However, as 

increases, the relative cost of iteration-on-allocation decreases; in particular,

for  = 10 000, the iteration-on-allocation approach is about 4% and 250%

more costly for Models 1 and 4, respectively, than the standard approach

based on policy functions. The latter value is an upper bound. In other

cases, the relative cost of iteration-on-allocation is even lower.

7.3 Approximating functions and integration methods

In Table 3, we assess the effect of the specific approximating function and

integration method on the accuracy of CGA in the context of two-country

versions of Models 5-8. For each model studied, we consider four alternative

approximating functions: the first-, second- and third-degree ordinary poly-

nomials, as well as the Smolyak polynomial used in MKK (2010). We also

consider five alternative integration methods: the product Gauss-Hermite

rule with 1, 2 , 3 nodes, denoted  (1),  (2) and  (3), respectively; and

the monomial formulas with 2 and 22 + 1 nodes, denoted 1 and 2,

respectively.

We observe the following regularities from the table. First, all of the inte-

gration rules considered, except for the one-node Gauss-Hermite rule  (1),

deliver solutions of virtually the same accuracy, with errors that are identical

to the fourth digit. The  (1) rule produces errors that are slightly larger;

however, this rule has a substantially lower cost than the other integration

32

Ta
bl

e
2.

 T
im

e
fo

r s
im

ul
at

in
g

M
od

el
s

5-
8

un
de

r t
w

o
al

te
rn

at
iv

e
si

m
ul

at
io

n
pr

oc
ed

ur
es

: o
ne

 u
si

ng
 p

ol
ic

y
fu

nc
tio

ns
 a

nd
 th

e
ot

he
r u

si
ng

ite

ra
tio

n-
on

-a
llo

ca
tio

n.

N

ot
e:

 C
PU

1
an

d
C

PU
2

ar
e,

 r
es

pe
ct

iv
el

y,
 t

he
 t

im
e

ne
ce

ss
ar

y
to

 s
im

ul
at

e
a

tim
e-

se
rie

s
so

lu
tio

n
of

 l
en

gt
h

T
un

de
r

th
e

si
m

ul
at

io
n

pr
oc

ed
ur

e
us

in
g

po
lic

y
fu

nc
tio

ns
 a

nd
 th

e
on

e
us

in
g

ite
ra

tio
n-

on
-a

llo
ca

tio
n

(in
 se

co
nd

s)
; N

 is
 th

e
nu

m
be

r o
f c

ou
nt

rie
s.

T=
1

T=
10

T=

10
0

T=
1,

00
0

T=
10

,0
00

N

C

PU
1

C
PU

2
C

PU
1

C
PU

2
C

PU
1

C
PU

2
C

PU
1

C
PU

2
C

PU
1

C
PU

2
M

od
el

 5

2
0.

00
01

0.

00
71

0.
00

04
0.

00
90

0.
00

30
0.

01
82

0.
04

15
0.

10
38

5.
48

93
5.

77
20

4
0.

00
01

0.

00
41

0.
00

04
0.

00
55

0.
00

37
0.

01
44

0.
06

45
0.

12
18

22
.1

59
7

22
.4

73
7

6
0.

00
01

0.

00
33

0.
00

04
0.

00
46

0.
00

45
0.

01
71

0.
24

83
0.

35
46

48
.7

94
8

49
.0

00
5

8
0.

00
01

0.

00
28

0.
00

05
0.

00
40

0.
00

55
0.

01
73

0.
58

70
0.

65
53

82
.8

17
7

83
.3

02
7

10

0.
00

01

0.
00

22
0.

00
06

0.
00

36
0.

00
72

0.
01

84
0.

94
90

1.
03

25
12

4.
59

69
12

4.
52

81
M

od
el

 6

2
0.

00
01

0.

00
35

0.
00

04
0.

00
56

0.
00

32
0.

02
19

0.
04

16
0.

17
54

5.
47

23
6.

06
10

4
0.

00
01

0.

00
19

0.
00

06
0.

00
38

0.
00

41
0.

02
04

0.
06

94
0.

19
41

22
.4

62
2

22
.9

42
4

6
0.

00
02

0.

00
11

0.
00

06
0.

00
27

0.
00

52
0.

01
67

0.
25

73
0.

37
30

49
.1

69
9

49
.5

51
2

8
0.

00
02

0.

00
15

0.
00

07
0.

00
33

0.
00

67
0.

02
05

0.
57

74
0.

73
85

83
.1

36
9

83
.7

33
3

M
od

el
 7

2

0.
00

01

0.
03

02
0.

00
03

0.
04

30
0.

00
33

0.
15

44
0.

04
10

1.
08

00
5.

50
69

9.
81

06
4

0.
00

01

0.
02

00
0.

00
04

0.
04

22
0.

00
38

0.
20

06
0.

06
45

1.
36

23
22

.4
29

6
28

.5
44

6
6

0.
00

01

0.
02

27
0.

00
04

0.
05

06
0.

00
48

0.
29

58
0.

25
25

2.
02

32
49

.0
93

7
58

.5
05

7
M

od
el

 8

2
0.

00
01

0.

03
81

0.
00

04
0.

06
22

0.
00

33
0.

27
30

0.
04

12
2.

19
03

5.
56

90
14

.0
94

9
4

0.
00

01

0.
05

55
0.

00
04

0.
10

76
0.

00
41

0.
63

96
0.

06
64

5.
15

89
22

.4
69

4
53

.7
22

9
6

0.
00

02

0.
06

94
0.

00
06

0.
15

95
0.

00
50

0.
97

18
0.

24
72

8.
50

13
49

.2
92

1
10

1.
21

22

Ta
bl

e
3.

 E
ff

ec
t o

f t
he

 sp
ec

ifi
c

po
ly

no
m

ia
l o

n
ac

cu
ra

cy
 o

f C
G

A
 u

nd
er

 fi
ve

 in
te

gr
at

io
n

ru
le

s i
n

th
e

tw
o-

co
un

try
 v

er
si

on
s o

f M
od

el
s 5

-8
.

N
ot

e:
 ∆

m
ea

n a
nd

 ∆
m

ax
 a

re
, r

es
pe

ct
iv

el
y,

 th
e

av
er

ag
e

an
d

m
ax

im
um

 a
bs

ol
ut

e
er

ro
rs

 a
cr

os
s

al
l o

pt
im

al
ity

 c
on

di
tio

ns
 (i

n
lo

g1
0

un
its

) i
n

th
e

te
st

 o
n

a
st

oc
ha

st
ic

 s
im

ul
at

io
n

of
 1

0,
00

0
ob

se
rv

at
io

ns
. A

bb
re

vi
at

io
ns

 “
1st

”,
 “

2nd
”,

 “
3rd

”
an

d
“S

M
O

L”
 d

en
ot

e
th

e
fir

st
-,

se
co

nd
-,

th
ird

-
de

gr
ee

 o
rd

in
ar

y
po

ly
no

m
ia

ls
 a

nd
 th

e
Sm

ol
ya

k
po

ly
no

m
ia

l,
re

sp
ec

tiv
el

y.

Q
(3

)
Q

(2
)

M
2

M
1

Q
(1

)
Po

ly
-

no
m

ia
l

∆ m
ea

n
∆ m

ax

∆ m
ea

n
∆ m

ax

∆ m
ea

n
∆ m

ax

∆ m
ea

n
∆ m

ax

∆ m
ea

n
∆ m

ax

M
od

el
 5

1st

-4

.9
01

95

-3
.1

31
94

-4
.9

01
94

-3
.1

31
94

-4
.9

01
93

-3
.1

31
94

-4
.9

01
93

-3
.1

31
94

-4
.8

88
23

-3
.1

33
96

2nd

-6
.3

89
76

-4

.3
47

42
-6

.3
89

76
-4

.3
47

35
-6

.3
89

74
-4

.3
47

30
-6

.3
89

74
-4

.3
47

30
-5

.8
68

35
-4

.3
00

24
3rd

-7

.1
59

21

-5
.1

55
28

-7
.1

56
96

-5
.1

55
17

-7
.1

59
66

-5
.1

56
00

-7
.1

57
09

-5
.1

55
56

-5
.8

94
80

-4
.9

60
21

SM
O

L
-7

.0
64

58

-5
.0

52
92

-7
.0

64
45

-5
.0

52
65

-7
.0

64
27

-5
.0

52
33

-7
.0

64
25

-5
.0

52
36

-5
.8

90
95

-4
.8

36
09

M
od

el
 6

1st

-4

.8
23

43

-3
.0

22
74

-4
.8

23
42

-3
.0

22
74

-4
.8

23
40

-3
.0

22
74

-4
.8

23
41

-3
.0

22
74

-4
.7

50
12

-3
.0

32
38

2nd

-6
.2

76
46

-4

.3
04

42
-6

.2
76

47
-4

.3
04

37
-6

.2
76

46
-4

.3
04

32
-6

.2
76

47
-4

.3
04

32
-5

.7
05

32
-4

.2
33

80
3rd

-7

.1
50

49

-5
.1

55
72

-7
.1

51
09

-5
.1

55
31

-7
.1

51
36

-5
.1

54
97

-7
.1

51
44

-5
.1

54
89

-5
.7

20
17

-4
.7

88
38

SM
O

L
-6

.9
84

59

-4
.9

80
77

-6
.9

84
41

-4
.9

80
53

-6
.9

84
14

-4
.9

80
26

-6
.9

84
09

-4
.9

80
26

-5
.7

16
19

-4
.7

02
82

M
od

el
 7

1st

-4

.7
77

65

-3
.0

30
91

-4
.7

77
65

-3
.0

30
91

-4
.7

77
63

-3
.0

30
91

-4
.7

77
64

-3
.0

30
91

-4
.7

31
23

-3
.0

36
68

2nd

-6
.0

75
33

-4

.2
47

81
-6

.0
75

37
-4

.2
47

74
-6

.0
75

38
-4

.2
47

71
-6

.0
75

39
-4

.2
47

70
-5

.6
59

46
-4

.2
08

06
3rd

-7

.0
69

64

-4
.9

90
23

-7
.0

70
30

-4
.9

90
64

-7
.0

70
40

-4
.9

90
73

-7
.0

70
57

-4
.9

90
98

-5
.6

73
46

-4
.7

50
51

SM
O

L
-6

.7
85

48

-4
.7

27
08

-6
.7

85
40

-4
.7

26
91

-6
.7

85
32

-4
.7

26
79

-6
.7

85
25

-4
.7

26
77

-5
.6

67
75

-4
.5

49
21

M
od

el
 8

1st

-4

.5
87

50

-2
.8

00
45

-4
.5

87
50

-2
.8

00
45

-4
.5

87
49

-2
.8

00
45

-4
.5

87
49

-2
.8

00
45

-4
.5

33
14

-2
.8

00
15

2nd

-5
.8

73
77

-3

.8
30

40
-5

.8
73

78
-3

.8
30

37
-5

.8
73

77
-3

.8
30

35
-5

.8
73

78
-3

.8
30

35
-5

.5
21

68
-3

.7
94

11
3rd

-6

.8
16

86

-4
.3

84
37

-6
.8

16
84

-4
.3

84
46

-6
.8

16
79

-4
.3

84
48

-6
.8

16
74

-4
.3

84
52

-5
.5

75
08

-4
.2

72
29

SM
O

L
-6

.6
98

08

-4
.5

69
10

-6
.6

97
94

-4
.5

68
98

-6
.6

97
82

-4
.5

68
89

-6
.6

97
77

-4
.5

68
89

-5
.5

71
73

-4
.4

00
82

methods and thus allows to solve problems of much higher dimensionality.

In particular, JMM (2010a) use the  (1) rule to compute first- and second-

degree polynomial solutions to a model (similar to Model 1 of the current

project) with up to  = 200 and  = 40 countries, respectively.

Second, when solutions are computed using ordinary polynomials, in-

creasing the polynomial degree from one to two raises accuracy (reduces

errors) by more than an order of magnitude; increasing the polynomial de-

gree from two to three does so by slightly less than an order of magnitude.

However, it is costly to increase the degree of a complete polynomial in high-

dimensional problems. As is seen from Table 3, the Smolyak polynomial is a

useful alternative for CGA: It leads to as nearly as accurate solutions as the

third-degree complete polynomial, but its number of terms grows quadrati-

cally instead of cubically with dimension (the Smolyak polynomial has only

four times more terms than the second-degree complete polynomial indepen-

dently of dimension); see MKK (2010) for a discussion and definition of the

Smolyak polynomial.

In Table 4, we investigate how the cost and accuracy of CGA depend

on the specific integration method used. To this purpose, we recompute the

solutions to Models 5-8 under four alternative integration methods: (1),

(2), 1 and 2. The accuracy measures in our Table 4 are analogous

to those reported in Table 5 of KMMP (2010); however, our testing proce-

dure uses random draws, which are different from those used by Juillard and

Villemot (2010). As Table 4 shows, the errors we found are very close to

those shown in Table 5 of KMMP (2010). Furthermore, all of the integra-

tion methods considered again lead to solutions of nearly the same accuracy,

with the exception of the (1) rule (which produces slightly less accurate

solutions).

The key finding in our Table 4 is that CGA can compute solutions of the

same accuracy as those submitted for the comparison in KMMP (2010), but

at a much lower cost. For example, we reduce the computational time for

Model 5 with  = 10 countries from about 35 hours (reported in Table 3 of

KMMP, 2010) to 7 minutes (reported in our Table 4) without a visible loss

in accuracy by replacing our costly, baseline two-step integration procedure

with just its first step based on the1 monomial rule with 2 nodes.16 Al-

16At the moment of submission of our solutions for the comparison in KMMP (2010), we

did not have a reliable accuracy test, and we submitted the solutions obtained under the

most accurate integration procedure feasible for CGA, which is a two-step combination of

the 1 and (2) rules.

33

Ta
bl

e
4.

 A
cc

ur
ac

y
an

d
sp

ee
d

of
 C

G
A

 fo
r M

od
el

s 5
-8

 u
nd

er
 fo

ur
 in

te
gr

at
io

n
ru

le
s.

N
ot

e:
 ∆

m
ea

n a
nd

 ∆
m

ax
 a

re
, r

es
pe

ct
iv

el
y,

 th
e

av
er

ag
e

an
d

m
ax

im
um

 a
bs

ol
ut

e
er

ro
rs

 a
cr

os
s

al
l o

pt
im

al
ity

 c
on

di
tio

ns
 (i

n
lo

g1
0

un
its

) i
n

th
e

te
st

 o
n

a
st

oc
ha

st
ic

 s
im

ul
at

io
n

of
 1

0,
00

0
ob

se
rv

at
io

ns
; C

PU
 is

 th
e

tim
e

ne
ce

ss
ar

y
to

 c
om

pu
te

 a
 s

ol
ut

io
n

(in
 se

co
nd

s)
; N

 is
 th

e
nu

m
be

r o
f

co
un

tri
es

.

Q
(2

)
M

2
M

1
Q

(1
)

N

∆ m
ea

n
∆ m

ax

C
PU

∆ m

ea
n

∆ m
ax

C

PU

∆ m
ea

n
∆ m

ax

C
PU

∆ m

ea
n

∆ m
ax

C

PU

M
od

el
 5

2

-6
.3

9
-4

.3
5

72
-6

.3
9

-4
.3

5
91

-6
.3

9
-4

.3
5

73
-5

.8
7

-4
.3

0
63

4
-6

.4
4

-4
.4

5
14

5
-6

.4
4

-4
.4

5
22

7
-6

.4
4

-4
.4

5
10

5
-5

.7
0

-4
.3

6
76

6
-6

.4
4

-4
.6

6
57

5
-6

.4
4

-4
.6

6
66

1
-6

.4
4

-4
.6

6
16

1
-5

.6
4

-4
.5

0
94

8
-6

.4
2

-4
.7

6
43

19
-6

.4
2

-4
.7

6
18

22
-6

.4
2

-4
.7

6
29

0
-5

.6
2

-4
.5

7
11

5
10

-6

.3
9

-4
.7

4
14

43
27

-6

.3
8

-4
.7

5
44

25
-6

.3
8

-4
.7

5
42

0
-5

.6
2

-4
.5

6
13

7
M

od
el

 6

2
-6

.2
8

-4
.3

0
12

31
-6

.2
8

-4
.3

0
14

17
-6

.2
8

-4
.3

0
12

34
-5

.7
1

-4
.2

3
96

3
4

-6
.3

1
-4

.4
5

26
87

-6
.3

1
-4

.4
5

38
04

-6
.3

1
-4

.4
5

17
81

-5
.5

2
-4

.3
5

11
04

6
-6

.3
2

-4
.6

2
85

56
-6

.3
2

-4
.6

2
81

28
-6

.3
2

-4
.6

2
22

07
-5

.4
6

-4
.4

0
10

52
8

-6
.3

1
-4

.6
6

38
39

2
-6

.3
1

-4
.6

6
19

63
5

-6
.3

1
-4

.6
6

38
64

-5
.4

4
-4

.4
6

14
44

M
od

el
 7

2

-6
.0

8
-4

.2
5

75
9

-6
.0

8
-4

.2
5

91
2

-6
.0

8
-4

.2
5

76
8

-5
.6

6
-4

.2
1

61
4

4
-6

.0
9

-4
.2

1
18

42
-6

.0
9

-4
.2

1
27

45
-6

.0
9

-4
.2

1
14

02
-5

.5
2

-4
.1

6
88

7
6

-6
.0

9
-4

.3
3

62
54

-6
.0

9
-4

.3
3

77
23

-6
.0

9
-4

.3
3

24
49

-5
.4

6
-4

.2
3

11
73

M
od

el
 8

2

-5
.8

7
-3

.8
3

11
85

-5
.8

7
-3

.8
3

14
00

-5
.8

7
-3

.8
3

11
77

-5
.5

2
-3

.7
9

89
4

4
-5

.9
3

-4
.1

3
38

07
-5

.9
3

-4
.1

3
56

31
-5

.9
3

-4
.1

3
29

13
-5

.3
8

-4
.0

5
17

90
6

-5
.9

6
-4

.2
2

13
41

4
-5

.9
6

-4
.2

2
14

38
5

-5
.9

6
-4

.2
2

38
69

-5
.3

2
-4

.0
9

17
56

ternatively, we can solve a ten-country version of Model 5 in about 2 minutes

using the(1) rule at the cost of a modest loss in accuracy. InModels 6-8, the

cheaper integration rules reduce the computational time in roughly the same

proportion as in Model 5. However, Models 6-8 are generally more costly

to solve than Model 5 because of higher costs of computing the intratem-

poral choice. The computational time for these models can be reduced (at

the cost of some accuracy loss) by combining the iteration-on-allocation and

precomputation approaches, as described in Section 4.3. In addition, we can

decrease the computational time for all models by reducing the number of

clusters; see JMM (2010a) for the corresponding experiments.

7.4 Hybrid of perturbation and accurate intratemporal-

choice methods

In Section 7.1, we show that using accurate intratemporal-choice approaches

in simulation can increase the accuracy of solution methods that compute the

intratemporal choice with insufficient accuracy. A prominent example of such

a method is perturbation, which in the studied models, produces small errors

in the Euler equations but large errors in the intratemporal-choice conditions

(especially, in the resource constraint); see Table 6 of KMMP (2010) for the

accuracy by equation for the first- and second-order perturbation methods

by Kollmann, Kim and Kim (2010) (referred to as PER1 and PER2, respec-

tively). Consequently, there are potential benefits from constructing a hybrid

of the standard perturbation method (used as a low-cost method for com-

puting capital policy functions), and accurate intratemporal-choice methods

(used to solve for consumption and labor after capital is computed).

To verify the above conjecture, we take the capital policy functions pro-

duced by the standard log-linearization method for two-country versions of

Models 5-8 and accurately solve for consumption and labor in simulation us-

ing the iteration-on-allocation method. In Table 5, we compare the accuracy

of the resulting hybrid method with that of the SSA, CGA, PER1 and PER2

methods, as reported in Table 5 of KMMP (2010).

As Table 5 indicates, our hybrid method is far more accurate (by more

than an order of magnitude) than PER1. It is even more accurate than

PER2 and is only slightly less accurate than SSA. The hybrid method is still

considerably less accurate than CGA. However, when comparing the hybrid

method against CGA, we should take into account that the latter uses the

34

 Ta
bl

e
5.

 A
cc

ur
ac

y
of

 th
e

hy
br

id
 p

er
tu

rb
at

io
n

m
et

ho
d

an
d

ot
he

r s
ol

ut
io

n
m

et
ho

ds
 fo

r t
he

 tw
o-

co
un

try
 v

er
si

on
s o

f M
od

el
s 5

-8
.

SS
A

C

G
A

PE

R
1

PE
R

2
H

yb
rid

M

od
el

∆ m

ea
n

∆ m
ax

∆ m

ea
n

∆ m
ax

∆ m

ea
n

∆ m
ax

∆ m

ea
n

∆ m
ax

∆ m

ea
n

∆ m
ax

5

-4
.7

9
-3

.2
0

-6
.3

9
-4

.5
3

-3
.6

9
-1

.7
0

-5
.1

3
-2

.6
0

-4
.5

0
-2

.8
8

6
-4

.7
9

-3
.1

2
-6

.3
8

-4
.5

0
-3

.5
3

-1
.4

5
-4

.8
4

-2
.3

0
-4

.5
6

-2
.8

4
7

-4
.0

8
-3

.0
8

-6
.1

5
-4

.1
9

-3
.0

5
-1

.2
0

-4
.2

1
-1

.9
0

-4
.5

7
-2

.8
7

8
-4

.6
2

-2
.9

0
-5

.9
8

-4
.0

7
-3

.1
1

-1
.2

5
-4

.3
5

-2
.0

9
-4

.3
6

-2
.6

4

N
ot

e:
 ∆

m
ea

n a
nd

 ∆
m

ax
 a

re
, r

es
pe

ct
iv

el
y,

 th
e

av
er

ag
e

an
d

m
ax

im
um

 a
bs

ol
ut

e
er

ro
rs

 a
cr

os
s

al
l o

pt
im

al
ity

 c
on

di
tio

ns
 (i

n
lo

g1
0

un
its

) i
n

th
e

te
st

 o
n

a
st

oc
ha

st
ic

 s
im

ul
at

io
n

of
 1

0,
00

0
ob

se
rv

at
io

ns
: T

he
 re

su
lts

 fo
r S

SA
, C

G
A

, P
ER

1
an

d
PE

R
2

ar
e

re
pr

od
uc

ed
 fr

om
 K

M
M

P
(2

01
0)

.

second-degree polynomial, while the former uses the first-degree polynomial.

The second-order hybrid perturbation method is likely to be more accurate

than the first-order one.

Finally, to construct the hybrid perturbation method, we can use any

numerical procedure that can accurately solve the system of intratemporal-

choice conditions with respect to consumption and labor; e.g., a standard

Newton-type solver. However, as we argued before, the iteration-on-allocation

solver has advantages over other solvers. It is a good candidate for a fusion

with perturbation.

8 Conclusion

In this paper, we offer a mix of techniques that taken together allows us to

address the challenges of high-dimensional problems. First, SSA and CGA

operate on ergodic-set domains which in high-dimensional problems, are nor-

mally just a tiny fraction of the standard hypercube domain used by other

methods. Second, we use efficient and numerically stable linear approxi-

mation approaches described in JMM (2009). Third, we rely on low-cost

integration methods, namely, a Monte Carlo integration method combined

with regression under SSA, and non-product monomial rules and the Gauss-

Hermite rule with one node under CGA. Fourth, we solve for the intratem-

poral choice using the accurate iteration-on-allocation and precomputation

methods. Fifth, we show that other polynomial families (such as Smolyak

polynomials studied in MKK, 2010) can help increase accuracy and speed of

our solution methods relative to our baseline family of ordinary polynomials.

Finally, we argue that proper coordination of the approximation, integra-

tion and intratemporal-choice strategies is critical for accuracy, speed and

numerical stability of our solution methods.

If one uses a standard desktop computer (as we do), it is crucial for speed

to vectorize computations. We iterate on policy functions of all countries si-

multaneously rather than country by country, and we solve for the intratem-

poral choice in all points at once rather than point by point. In contrast,

if one uses parallel computing tools, it is essential to separate computations

by country, grid point, integration node, etc. We should emphasize that the

methods described in the paper are naturally parallelizable.

In addition to our main SSA and CGA algorithms, we construct a hy-

brid solution algorithm that combines perturbation (used to compute policy

35

functions for capital) and accurate intratemporal-choice methods (used to

solve for consumption and labor allocations). We find that such a hybrid

method delivers solutions that are more than an order of magnitude more

accurate than those delivered by the pure perturbation method. This hy-

brid perturbation method can be useful for solving problems of much higher

dimensionality than those studied in the present paper.

9 Appendix

In this section, we present formulas used to implement the iteration-on-

allocation and precomputation methods, as well as those used to parame-

terize the capital policy functions.

9.1 Appendix A

This section describes howwe implement the iteration-on-allocation approach

in Models 6-8 (and their corresponding symmetric counterparts, Models 2-4).

Model 6 Conditions (4), (5) and (2) can be represented as

e =
"




¡




¢
 11

1 (
1
)


 



1+ ¡
1
¢(1+1)
1(1+)  = 2   (28)

e =
"
(1− ) 



¡




¢ ¡




¢−

¡




¢1
#

 with

½


 ≡ 1 ,  = 1



 ≡ e ,  = 2    (29)

e1 =
⎡⎢⎢⎢⎢⎣
P

=1

"e + 

+1 − 


 +



2




µ


+1





− 1
¶2#
−P

=2 


¡




¢ ³e´1−
1 (

1
)



⎤⎥⎥⎥⎥⎦
1

1−



(30)

where {  }=1 are the utility-function parameters, and  is the

share of capital in production. Condition (28) is obtained by combining (4)

and (5), and conditions (29) and (30) follow from (5) and (2), respectively.

For given k, a, k+1, equations (28)−(30) define a mapping e1 =  (1). We

36

iterate on labor of the first country, e1 , as follows: Assume some initial 1 ;
compute

neo=2 from (28); find
©eª=1 from (29); obtain e1 from

(30); if 1 6= e1 , compute the next-iteration input as (1− ) 1 + e1 . Iterate
until convergence.

Model 7 Conditions (5) and (4), respectively, are

e = 
¡
 − 




¢
1− 

(1− ) 


¡




¢ ¡




¢−
 (31)

e = −
"¡
 − 1

¢(1−)(1−11) (e1)(1−11)−1  1¡e¢(1−1)−1  
1

(1−)(1−1)

  = 2  

(32)

where  is the utility-function parameter, and  is the labor endowment

of the representative agent. The resource constraint is given by (30) and

determines e1 . For given k, a, k+1, equations (30), (31) and (32) define a
mapping

neo=1 = 
³©





ª=1´
. We iterate on labor of all countries,neo=1 , as follows: Assume some initial ©ª=1 , find ©eª=1

from (31); compute
neo=2 and e1 from (32) and (30), respectively; if



 6= e for  = 1   , calculate the next-iteration input as (1− ) 


 + e .

Iterate until convergence.

Model 8 Conditions (5), (4) and (2), respectively, are

e =
⎡⎢⎢⎣(1− ) 



¡




¢−1 ³

¡




¢
+ (1− )

¡




¢´1−1


⎤⎥⎥⎦
 ¡

 − 



¢


(33)

e =  −

⎡⎢⎣ 1


Ã
1

1¡e¢−1  
! 1−1

1−1

−
¡e¢1−1



⎤⎥⎦
1

1−1

  = 2  

(34)

37

e1 =
⎡⎣Ã 1

1 (1− )
11

!

−  (1)
1

1− 

⎤⎦ 1

1

 (35)

where { }=1 are the utility-function parameters;  for  = 1 and
1 are, respectively, the -period marginal utility of consumption and output

of country 1, defined as



 ≡

h¡




¢1−1
+ 

¡
 − 




¢1−1i 1−11−1 ¡




¢−1
 (36)

1 ≡
X
=1

⎡⎣e + 

+1 − 


 +



2




Ã


+1





− 1
!2⎤⎦ (37)

−
X
=2



+1

³

¡




¢
+ (1− )

¡




¢´1


For given k, a, k+1, equations (33)− (35) define a mapping
neo=1 =


³©





ª=1´
. We iterate on labor of all countries,

neo=1 , as fol-
lows: Assume some initial

©




ª=1
; find

©eª=1 from (33); computeneo=2 and e1 using (34) and (35), respectively; if  6= e for  = 1   ,
calculate the next-iteration input as (1− ) 


+

e . Iterate until convergence.
9.2 Appendix B

In this section, we show that in Model 2, the solution manifold for aggre-

gate consumption can be precomputed in terms of two composite arguments

independently of the number of agents. Since all agents are identical in pref-

erences and have identical welfare weights,   = 1 for  = 1   , the ratio

of marginal utilities of any two agents in (4) is equal across agents. As a

result, 

 =  for all . From the intratemporal FOC (5), we obtain



 =

"

1
 −1

(1− )



¡




¢
#− 

1+

 (38)

38

Substituting (38) into resource constraint (2), we obtain

 = 
− (1−)
(1+)

  +  (39)

with the composite variables  and  being defined as

 =

P

=1

h





¡




¢i1+(1−)
1+

h
−1
(1−)

i(1−)
1+

,  = −
2




Ã


+1





− 1
!2
+ 


 − 


+1

(40)

We can use equation (39) to precompute consumption  in terms of two

variables  and . (If welfare weights differ across agents and consequently,

individual consumption is not equal to average consumption, we can still

construct the intratemporal-choice manifolds in terms of the same composite

variables; see Maliar and Maliar, 2001, 2003b, for related results).

Outside the main iterative cycle, take a grid of  values for  and ,

i.e., { }=1 . For each grid point  = 1   , use a numerical solver
to find a solution for  from equation (39) represented in a form suited

for precomputation. Interpolate the constructed set function to the relevant

continuous domain to obtain the manifold b ( ). Inside the main iterative
cycle, given k, a, k+1, compute  and  from (40) for each , use the

precomputed manifold to find aggregate consumption,  = b ( ), and
compute individual labor 


 from (38) for  = 1   .

9.3 Appendix C

In this section, we provide Euler equation (19) corresponding to Models 5-8.

Model 5



+1 = 

⎧⎨⎩

¡


+1

¢−1¡




¢−1




h


+1 + 


+1

¡


+1

¢−1i


+1

⎫⎬⎭  (41)

Model 6



+1 = 

⎧⎨⎩

¡


+1

¢−1¡




¢−1




h


+1 + 


+1

¡


+1

¢−1 ¡


+1

¢1−i


+1

⎫⎬⎭  (42)

39

Model 7



+1 = 

⎧⎪⎪⎪⎨⎪⎪⎪⎩


(+1)


(−+1)

1−1−1


+1

()

(−)

1−1−1








h


+1 + 


+1

¡


+1

¢−1 ¡


+1

¢1−i


+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ 

(43)

Model 8



+1 = 

(



+1








∙


+1 + 


+1

¡


+1

¢−1 ³

¡


+1

¢
+ 

¡


+1

¢´1−1¸


+1

)


(44)

where 

 is defined as in (36).

40

References

[1] Christiano, L. and D. Fisher, (2000). Algorithms for solving dynamic

models with occasionally binding constraints. Journal of Economic Dy-

namics and Control 24, 1179-1232.

[2] Den Haan, W. (1990). The optimal inflation path in a Sidrauski-type

model with uncertainty. Journal of Monetary Economics 25, 389-409.

[3] Den Haan W., K. Judd and M. Juillard, (2010). Computational suite

of models with heterogeneous agents: Milti-country real business cycle

models. Journal of Economic Dynamics and Control, this issue.

[4] Den Haan, W. and A. Marcet, (1990). Solving the stochastic growth

model by parameterizing expectations. Journal of Business and Eco-

nomic Statistics 8, 31-34.

[5] Den Haan, W. and A. Marcet, (1994). Accuracy in simulations. Review

of Economic Studies 6, 3-17.

[6] Gaspar, J. and K. Judd, (1997). Solving large-scale rational-expectations

models. Macroeconomic Dynamics 1, 45-75.

[7] Judd, K., (1992). Projection methods for solving aggregate growth mod-

els. Journal of Economic Theory 58, 410-452.

[8] Judd, K., (1998). Numerical Methods in Economics. London, England:

The MIT Press, Cambridge Massachusetts.

[9] Judd, K., L. Maliar and S. Maliar, (2009). Numerically stable stochas-

tic simulation approaches for solving dynamic economic models, NBER

working paper 15296.

[10] Judd, K., L. Maliar and S. Maliar, (2010a). A cluster-grid projection

method: solving problems with high dimensionality, NBER working pa-

per 15965.

[11] Judd, K., L. Maliar and S. Maliar, (2010b). Numerically stable stochas-

tic simulation approaches for solving dynamic economic models. Manu-

script.

41

[12] Juillard, M. and S. Villemot, (2010). Multi-country real business cycle

models: accuracy tests and testing bench. Journal of Economic Dynam-

ics and Control, this issue.

[13] Kollmann, R., S. Kim and J. Kim, (2010). Solving the multi-country real

business cycle model using a perturbation method. Journal of Economic

Dynamics and Control, this issue.

[14] Maliar, L. and S. Maliar, (2001). Heterogeneity in capital and skills in

a neoclassical stochastic growth model. Journal of Economic Dynamics

and Control 25, 1367-1397.

[15] Maliar, L. and S. Maliar, (2003a). The representative consumer in the

neoclassical growth model with idiosyncratic shocks. Review of Eco-

nomic Dynamics 6, 362-380.

[16] Maliar, L. and S. Maliar, (2003b). Parameterized expectations algorithm

and the moving bounds. Journal of Business and Economic Statistics 21,

88-92.

[17] Maliar, L. and S. Maliar, (2004). Comparing numerical so-

lutions of models with heterogeneous agents (Model A): a

simulation-based parameterized expectations algorithm. Manuscript.

http://www.stanford.edu/~maliars/

[18] Maliar, L. and S. Maliar, (2005). Parameterized expectations algorithm:

how to solve for labor easily. Computational Economics 25, 269-274.

[19] Maliar, L. and S. Maliar, (2007). Comparing numerical so-

lutions of models with heterogeneous agents (Model A): a

simulation-based parameterized expectations algorithm. Manuscript.

http://www.stanford.edu/~maliars/

[20] Malin, B., D. Krueger, and F. Kubler, (2010). Solving the multi-country

real business cycle model using a Smolyak-collocation method. Journal

of Economic Dynamics and Control, this issue.

[21] Marcet, A., (1988). Solution of nonlinear models by parameterizing ex-

pectations. Carnegie Mellon University. Manuscript.

42

[22] Pichler, P., (2010). Solving the multi-country real business cycle model

using a monomial rule Galerkin method. Journal of Economic Dynamics

and Control, this issue.

[23] Stroud A., (1971). Approximate Integration of Multiple Integrals. Pren-

tice Hall: Englewood Cliffs, New Jersey.

[24] Taylor, J. and H. Uhlig, (1990). Solving nonlinear stochastic growth

models: a comparison of alternative solution methods. Journal of Busi-

ness and Economic Statistics 8, 1-17.

43

PUBLISHED ISSUES*

WP-AD 2010-20 “Direct pricing of retail payment methods: Norway vs. US”
 F. Callado, J. Hromcová, N. Utrero. June 2010.

WP-AD 2010-21 “Sexual orientation and household savings. Do homosexual couples save more?
 B. Negrusa, S. Oreffice. June 2010.

WP-AD 2010-22 “The interaction of minimum wage and severance payments in a frictional labor
 market: theory and estimation”
 C. Silva. June 2010.

WP-AD 2010-23 “Fatter attraction: anthropometric and socioeconomic matching on the marriage
 arket”
 P.A. Chiappori, S. Oreffice, C. Quintana-Domeque. June 2010.

WP-AD 2010-24 “Consumption, liquidity and the cross-sectional variation of expected returns”
 E. Márquez, B. Nieto, G. Rubio. July 2010.

WP-AD 2010-25 “Limited memory can be beneficial for the evolution of cooperation”
 G. Horváth, J. Kovárík, F. Mengel. July 2010.

WP-AD 2010-26 “Competition, product and process innovation: an empirical analysis”
 C.D. Santos. July 2010.

WP-AD 2010-27 “A new prospect of additivity in bankruptcy problems”
 J. Alcalde, M.C. Marco-Gil, J.A. Silva. July 2010.

WP-AD 2010-28 “Diseases, infection dynamics and development”
 S. Chakraborty, C. Papageorgiou, F. Pérez Sebastián. September 2010.

WP-AD 2010-29 “Why people reach intermediate agreements? Axiomatic and strategic justification”
 J.M. Jiménez-Gómez. September 2010.

WP-AD 2010-30 “Mobbing and workers’ health: an empirical analysis for Spain”
 M.A. Carnero, B. Martínez, R. Sánchez-Mangas. September 2010.

WP-AD 2010-31 “Downstream mergers in a vertically differentiated unionized oligopoly”

A. Mesa-Sánchez. October 2010.

WP-AD 2010-32 “Endogenous quality choice under upstream market power”
 B. Mesa-Sánchez. November 2010.

WP-AD 2010-33 “Itemised deductions: a device to reduce tax evasion”
 A. Piolatto. November 2010.

WP-AD 2010-34 “A unified theory of structural change”
 M.D. Guilló, C. Papageorgiou, F. Pérez-Sebastián. December 2010.

WP-AD 2011-01 “Solving the multi-country real business cycle model using ergodic set methods”
 S. Maliar, L. Maliar, K. Judd. January 2011.

WP-AD 2011-02 “Anti-piracy policy and quality differential in markets for information goods”
 J.M. López-Cuñat, F. Martínez-Sánchez. January 2011.

* Please contact Ivie's Publications Department to obtain a list of publications previous to WP-AD 2010-20.

Ivie
Guardia Civil, 22 - Esc. 2, 1º

46020 Valencia - Spain
Phone: +34 963 190 050
Fax: +34 963 190 055

Department of Economics
University of Alicante

Campus San Vicente del Raspeig
03071 Alicante - Spain

Phone: +34 965 903 563
Fax: +34 965 903 898

Website: www.ivie.es
E-mail: publicaciones@ivie.es

ad
serie

	Text1: 4
	Text2: 5
	Text3: 6
	Text4: 7
	Text5: 8
	Text6: 9
	Text7: 10
	Text8: 11
	Text9: 12
	Text10: 13
	Text11: 14
	Text12: 15
	Text13: 16
	Text14: 17
	Text15: 18
	Text16: 19
	Text17: 20
	Text18: 21
	Text19: 22
	Text20: 23
	Text21: 24
	Text22: 25
	Text23: 26
	Text24: 27
	Text25: 28
	Text26: 29
	Text27: 30
	Text28: 31
	Text29: 32
	Text30: 33
	Text31: 34
	Text32: 35
	Text33: 36
	Text34: 37
	Text35: 38
	Text36: 39
	Text37: 40
	Text38: 41
	Text39: 42
	Text40: 43
	Text41: 44
	Text42: 45
	Text43: 46
	Text44: 47
	Text45: 48
	Text46: 49
	Text47: 50
	Text48: 51
	Text49: 52
	Text50: (2010).
	Text51:
	Text52: 3
	Text53: 53

