Limited memory can be
d beneficial for the evolution of

cooperation

WP-AD2010-25  Gergely Horvath, Jaromir Kovarik and Friederike Mengel

Ivie

g papers




Los documentos de trabajo del Ivie ofrecen un avance de los resultados de las
investigaciones econémicas en curso, con objeto de generar un proceso de
discusion previo a su remision a las revistas cientificas. Al publicar este
documento de trabajo, el Ivie no asume responsabilidad sobre su contenido.

Ivie working papers offer in advance the results of economic research under way
in order to encourage a discussion process before sending them to scientific
journals for their final publication. Ivie’s decision to publish this working paper
does not imply any responsibility for its content.

La Serie AD es continuadora de la labor iniciada por el Departamento de
Fundamentos de Analisis Econémico de la Universidad de Alicante en su
coleccién “A DISCUSION” y difunde trabajos de marcado contenido tedrico.
Esta serie es coordinada por Carmen Herrero.

The AD series, coordinated by Carmen Herrero, is a continuation of the work
initiated by the Department of Economic Analysis of the Universidad de
Alicante in its collection “A DISCUSION”, providing and distributing papers
marked by their theoretical content.

Todos los documentos de trabajo estan disponibles de forma gratuita en la web
del Ivie http://www.ivie.es, asi como las instrucciones para los autores que
desean publicar en nuestras series.

Working papers can be downloaded free of charge from the Ivie website
http://www.ivie.es, as well as the instructions for authors who are interested in
publishing in our series.

Edita / Published by: Instituto Valenciano de Investigaciones Econémicas, S.A.
Deposito Legal / Legal Deposit no.: V-2924-2010

Impreso en Espana (julio 2010) / Printed in Spain (July 2010)



WP-AD 2010-25

Limited memory can be beneficial
for the evolution of cooperation’

Gergely Horvath, Jaromir Kovaiik
and Friederike Mengel”

Abstract

We study a dynamic process where agents in a network interact in a Prisoner’s
Dilemma. The network not only mediates interactions, but also information:
agents learn from their own experience and that of their neighbors in the
network about the past behavior of others. Each agent can only memorize the
last /2 periods. Evolution selects among three preference types: altruists, defectors
and conditional cooperators. We show - relying on simulation techniques - that
the probability of reaching a cooperative state does not relate monotonically to
the size of memory A. In fact it turns out to be optimal from a population
viewpoint that there is a finite bound on agents’ memory capacities. We also
show that it is the interplay of local interactions, direct and indirect reputation
and memory constraints that is crucial for the emergence of cooperation. Taken
by itself, none of these mechanisms is sufficient to yield cooperation.
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1 Introduction

1.1 Motivation

The evolution of human culture has presented some puzzle to evolutionists. Complex, cumulatively evolving
culture is rare in nature and in most species traditions are fairly simple. Human capacities to store and
transmit information about others, to communicate, share experiences, form beliefs or to teach others are
not common in other species. People living in human populations, though, are heirs to a pool of socially
transmitted information, for which there is little room in classical models of evolution. Studies of cultural
evolution have partially filled these gaps by acknowledging the social context in which human evolution
takes place. But still there are few studies modeling the coevolution of cognitive capacities and behavior.

In this study we are concerned with one important and well studied type of behavior namely cooperation
in social dilemma situations. Human cooperation differs from cooperation observed in other species through
the use of mechanisms such as direct or indirect reputation building. Direct reputation is built through own
experience, while indirect reputation is learned through communication with others. In fact human abilities,
such as (large) memories and language, which are needed for such mechanisms to develop, might be crucial
for the evolution of cooperation (Trivers 1971, Nowak and Sigmund, 1998). All reputation-based theories
implicitly assume that people remember past interactions. Indirect reputation-building is clearly facilitated
through language, but also has a larger demand for memory capacity than first-hand experience. Memory
capacity seems a key requirement for these mechanisms to work.

We model memory constraints explicitly and show that, maybe somewhat surprisingly, having a larger
memory is not always better for the evolution of cooperation. We abstract from the (energetic and reasoning)
costs of having larger memories and show that even if having larger memories were costless, such larger
memories need not favor cooperative outcomes. In fact we will show that some forgetting will typically help
cooperation in non-trivial ways.

To analyze the relevance of (limited) memory for prosocial behavior, our model combines two natural
features of real-life interactions. First, we assume that people’s beliefs about each other’s behavior are
determined through reputation. Second, both interactions of agents as well as the spread of information
are mediated through a social network. Reputation is created both directly, through repeated interactions
of the same individuals, and indirectly, through information from neighbors in the social network. Agents
also interact with their neighbors in the network, but which neighbor they meet is randomly determined
in each interaction.! This allows us to capture situations where people are simultaneously engaged in
various relationships, which are not clearly separated in time. This certainly realistic feature of the model
interacts with memory constraints in obvious and important ways. Both longer time intervals between
potential cooperative encounters and having to recall the past play of multiple opponents are challenges for
reputation-based mechanisms.? Our agents have limited memory and remember only their last h interactions.

Our model is set in the tradition of the indirect evolutionary approach.? In these models, evolution
selects among preference types, rather than strategies. There are three types of agents in our model:
altruists, defectors and conditional cooperators. We are interested in which of the three types survive
evolutionary selection, when cooperation will survive and how this depends on memory constraints.

Our main findings are the following. Firstly we find that the optimal memory level is often interior,
i.e. it is optimal for a population if its members have strong bounds on their memory constraints. In fact
in (almost all) our simulations the optimal memory level is around 6-11 periods. Quite amazingly, this is
consistent with Miller’s (1956) "magical number seven + /- two" from psychology, where it is widely accepted
that human long term memory is limited to storing seven + /- two items simultaneously. Our model provides
one possible story for why such memory constraints might have emerged.

Secondly we show that the twofold role of network is crucial for the emergence of cooperation. If meetings

'In the appendix we we show that our results extend to a situation, where there is a positive probability (decreasing in
distance) to interact with anyone in the same connected component of the network.

*Milinski and Wedekind (1998) provide experimental evidence on the effects of memory constraints on cooperative behavior,
reporting that these constraints challenge cooperative behavior. See also Stevens and Hauser (2004).

3See, for instance, Bester and Giith (1998).



are random, then cooperation cannot survive. If information is not transmitted through the network and the
reputation-building is exclusively based on ones own experience, then cooperation is only residual. Hence,
the spatial structure is essential for both matching and information transmission.

We also observe an interesting interplay between direct and indirect reputation-building. The long-run
level of cooperation is maximal when agents rely equally on the their own and their neighbors’ experience.
However, the level of cooperation in the population is asymmetric with respect to the weights put on
each type of information. If people rely on both direct and indirect experience, cooperation is more likely to
stabilize when direct experience is weighted more heavily (than second-hand information). This may provide
some indication for why people tend to exhibit a bias toward their own experience, while counterweighting
such first- and second-hand information (Weizsaecker, 2009)

In order to check whether the limited levels of memory are optimal from the individual point of view,
we inject into the model agents with different memory spans. Defectors have hard time surviving in these
environments, as long as the network exhibit small-world property (Watts and Strogatz, 1998). On the
contrary, conditional cooperators tend to survive, irrespective of their memory level. Hence in terms of
individual selection there are no strong evolutionary pressures favoring any of the memory sizes, while from
a population viewpoint bounded memory emerges as clearly being optimal.

These results add few new interesting viewpoints to the discussion of why evolution did not endow us
with unlimited brain capacity or, more loosely speaking, did not make us "infinitely" smart. Not only is it
the case that larger brain or memory capacity involves a direct cost (from which we abstract), our results
also show that it can be optimal at least from a population viewpoint to be endowed with finite memory in
strategic situations. In line with the group selection literature (see e.g. Boyd and Richerson, 1990), limited
memory in our model can emerge from the conflict of two populations endowed with different memory
capacity.! This is enhanced by the fact that within-groups there are no strong evolutionary pressures on
larger memories to develop as our analysis will make precise.

The paper is organized as follows. Next we will discuss related literature. In Section 2 we will present the
model, in Section 3 explain our simulation strategy and Sections 4 and 5 present our main results. Section
6 concludes. In Appendix, we provide some extensions of the model and some additional figures.

1.2 Related Literature

Cooperative behavior based on reputation has been studied for decades especially in repeated bilateral
interactions. So called tit-for-tat players cooperate if and only if their partner has cooperated in all past
interactions. Studies include Trivers (1971), Rubinstein (1979), Axelrod and Hamilton (1981), Kreps et al.
(1982) or Fudenberg and Maskin (1986). Kreps et al. (1982) for example show that if for any agent there is
a small probability to interact with such a tit-for-tat agent cooperation can be sustained even in the finitely
repeated Prisoner’s Dilemma.

However, cooperative behavior is also observed in one-shot interactions with unknown individuals. As
a result, literature, which explores the role of reputation in non-regular encounters, has emerged. This led
researchers to include indirect reputation building in their models (Nowak and Sigmund, 1998; Leimer and
Hammerstein, 2001; Wedekind and Milinski, 2000; Seinen and Schram, 2004; Milinski et al., 2001). The
drawback of these studies is that the history of each player’s actions is public knowledge. Hence, there needs
to be an institution, which will disseminate information. An exception are Nowak and Sigmund (1998) who
simulate a situation, where just a subset of the population learns the play in past bilateral encounters and
show that public knowledge is not necessary for cooperation to establish.

In our paper there is a natural mechanism to disseminate information. Agents are located on a network
and obtain information either through their own experience or through their direct neighbors in the network.

1At first, there may seem to be a link between our result and the evolution of "forgiveness" (Axelrod, 1984, Nowak and
Sigmund, 1992), which argue that forgiveness can help cooperation: to punish early defection for too long time easily traps
the individuals in everlasting mutual retaliation. Our argument is fundamentally different though. In our case, people do not
forgive. Limited memory affects both defectors and cooperators in the same way and is independent of changes in actions or

types.



Direct reputation-building within simple network architectures, such as circles and lattices has been
studied by Boyd and Richerson (1989), Eshel et al. (1998), or Nakamaru et al. (1997,1998). More recently,
Ohtsuki et al. (2006) and Ohtsuki and Nowak (2007) have proceeded analytical results for regular graphs and
simulation results for random and scale-free networks. Mohtashemi and Mui (2003) explicitly focus on the
effect of social information that travels through network on cooperation. More precisely, direct links mutually
share information in their model, spreading reputation of past encounters across neighbors. They rule out
repeated interactions and show that non-direct assessment of reputation itself can stabilize cooperative
behavior. However, they model a growing network, in which everybody ends up knowing everybody, which
is crucial for the survival of cooperation in their setting.” Recently, Roberts (2008) introduced both direct
and indirect reputation into one model. In contrast to our model though, he makes them compete in the
evolutionary process to see, which one will survive in which conditions. The focus of our study is different.
We allow agents to rely on both direct and indirect reputation building and are interested in optimal memory
bounds.

There is very little research on the role of bounded memory for cooperation. A famous study from
psychology is Miller (1956) mentioned above. He found that humans typically can remember seven objects
of the same kind. Since then numerous studies have repeatedly reconfirmed this finding in a great variety of
contexts, for a great variety of recalling objects, and across different age categories. Cowan (2001) presents
a recent exhaustive review of this topic.

In the framework of the repeated prisoner’s dilemma, the role of memory has already drawn some atten-
tion. Hauert and Schuster (1997) for example directly test the effect of memory in a simulated environment
and conclude that larger memories promote cooperation. In a different setting, the role of memory for the
emergence of cooperation has been analyzed by Kirchkamp (2000) and Sheng et al. (2008). In their ap-
proach, people play the same action against all their network neighbors. Agents imitate their neighbors and
the memory length determines on how many past rounds the imitation is based. Kirchkamp (2000) observes
that infinite memory in learning promotes cooperation. Sheng et al. (2008) provide a more complex relation
between memory and cooperation. Lastly Cox et al. (1999) explore whether memory about past interactions
can compensate the fact that people do not have information about others. As in our model, memory serves
for discriminating among opponents, but neither information flows nor interactions are mediated through a
network. Overall their findings suggest that there is no strong selection pressure on memory span in such
an environment.

2 The Model

Our population consists of a finite number of agents interacting in a bilateral Prisoner’s Dilemma through
a given network. Agents are of three different types, having different preferences over the outcomes of the
game (Subsection 2.1). Agents interact exclusively with their first-order neighbors in the network (Subsection
2.2). Given their type and their beliefs about the opponent agents choose their preferred action. Beliefs are
determined explicitly through the reputation this opponent enjoys with the agent in question (Subsection
2.3). Ultimately, we assume that evolution selects among preference types (Subsection 2.4).

2.1 Game and Payoff Types

There is a population of individuals, ¢ € {1,2,..., N}, who are repeatedly matched to play a prisoner’s
dilemma game. The payoff of an agent of type 7 when choosing action a; and his opponent chooses a; is
given by

CLi\CL]' C D
c a 0 (1)
D 1—w; | d—w;

’They themselves remark that without the network growth cooperators are easily defeated by defectors (Mohtashemi and
Mui, 2003, p. 527).



with 1 > a > d > 0. We also assume that d > 1 — a or equivalently a + d > 1. This implies that joint
cooperation (yielding a payoff of a to both players) is efficient and exploitation undesirable for the society.

Payoffs are obtained from material payoffs as well as from psychological payoffs w, (resulting from shared
views or moral norms of behavior). For example, if w; = 0 this matrix represents a (standard) Prisoner’s
Dilemma for agents of type 7. Different values of w; can induce different types of behavior. We assume
that there are three types in the population.

e D: Defectors (wp < 1 — a) whose optimal strategy is always defect.

e CC: Conditional cooperators (wcc € [1 — a,d]). Conditional Cooperators cooperate whenever their

belief o that their interaction partner cooperates is larger than the critical value 7,°
.. d—wce
o= —"—.
a+d-—1

e A: Altruists (wa > d) who will always cooperate.

2.2 Interaction Structure

Agents are organized on a fixed undirected network, which mediates who meets whom. In each period, one
agent is chosen randomly (with uniform probability) to play the Prisoner’s Dilemma game (1). This player
is matched with one of her direct neighbors in the network. To distinguish between the player that has
been chosen uniformly from the population and her neighbour with whom she has been matched, we call
the former player and the latter match.

For each player, there is an equal probability to meet each of her neighbors. Denote the degree of node
1, i.e. the number of neighbours ¢ has by d;. Then the probability for ¢ to interact with j given that ¢ has
been chosen as a player is the following:

P = { d%, if 7 is a neighbour of i
j

0 otherwise

Note that with this function generally P;; # Pj;, that is players with more neighbors might be matched
more frequently. Hence to avoid confounding effects of the degree (i.e. number of neighbours) of a player
on evolutionary fitness, our definition of fitness only considers the payoffs from interactions, in which the
agent plays as player.

When playing the game, altruists (A) always choose cooperate and defectors (D) always choose defect.
For conditional cooperators (CC), though, action choice depends on their beliefs on what their match will
choose, as we have seen above. These beliefs in turn depend on the reputation their match enjoys with
them.

2.3 Reputation and beliefs

Agents have bounded memory and can remember only the last h periods. Hence they form beliefs about the
behavior of their match using their experience from these last h periods. In addition, they can use information
they get from their direct neighbors in the network. Hence the network also channels information flow.

Denote by «,;;(h) the proportion of times that j cooperated in an interaction with i in the last h periods,
where i was player and j her match.” If there was no such interaction between i and j in the last h periods,
then we set 7,;(h) < 0 as a matter of convention.

8This can be understood as follows. The expected payoff of cooperating is ga and that of defecting is o(1 — wee) + (1 —
0)(d — wee). Now the former is higher than the latter whenever o > G.

"Hence if ¢ was a match of j then she does not store j ’s behavior in her memory. This is certainly not realistic. We make
this assumption because we are not interested in the effect of the degree of a player (i.e. her number of neighbors) on fitness.
Hence to control for such effects we want to avoid that better connected players have more precise information about others.
(Again let us emphasize that we do believe that this is realistic and worthwhile studying, but in this study we are interested in
the undistorted effect of memory on cooperation).



There is no global "reputation" in the model. Some players will think badly about a given player
and others good. Denote by Bij(h) the proportion of times j cooperated in an interaction with any of i’s
neighbours in the last h periods. Hence (3 refers to information from neighbours (where all neighbours are
weighted equally) and v refers to own experience. Again we set Bij(h) < 0 if none of i’s neighbours has
interacted with j in the last h periods. The reputation that player j has for player i (what 7 thinks about
j) at time ¢ is then given by

M (h) + (1= X)By;(h) if v5(h) = 0 A By;(h) =0
rt. = lz’j(h) if v;;(h) >0 /\éij(h) <0
Bij(h) if v;;(h) <OAB;(h) >0
In words, the reputation that j enjoys with ¢ is a weighted average of her direct reputation with ¢ (’yij(h))
and her indirect reputation communicated from i’s neighbours (sz(h)) A high value of A means that she
relies mostly on her own experience and low A that she forms judgements, based on the information from
others. Naturally, if ¢ has not met j in last h periods but at least one of her neighbors has she relies on
neighbors’ experience, and vice versa.®
If nothing is known about j (i.e. if neither ¢ nor any of her neighbors have information about j) there is
"no reputation". In this case the agents use the average rate of cooperation in period ¢t — 1 (the state of the
population), which is assumed to be always known to all players ('~!). In other words the default belief
about others (when nothing is known about them) is the population average.
In sum, the belief that ¢ has about the likelihood that j cooperates at t is given by

¢ :{ Ti; if 7;;(h) >0V B;;(h) >0

oL Y .
K gt—1 otherwise

Our set up relates the network structure to the information accumulation in a natural way. Given the
locally biased matching process, the more tightly knit communities are, i.e. the more likely it is that any
two neighbors of an agent know each other themselves, the more effective should reputation building be.

Two remarks are at order. First, one may ask why we interpret bounded memory as being able to
remember the last h periods rather than remembering any h periods. The reason is simply that in a
changing environment this is the best thing an agent can do. Secondly one may wonder whether it may be
in a neighbours interest to withhold information about other players. This is an interesting question and it
might sometimes be the case. Remember, though, that at least in the short run agents have no incentives to
lie since they don’t receive payoffs from others’ interactions. Hence incentives for lying only arise if agents
are very forward looking or are anticipating the consequences of cultural evolution. This seems to speak
against the basic idea of evolution and we rule out such effects for the moment. Furthermore our model as
it stands applies also to situations where information is not explicitly communicated but simply observed.

2.4 Selection process

Ultimately, we are interested in which of the three types survive in an evolutionary model. Evolutionary
success (fitness) is measured by per interaction material payoffs of the agents (disregarding w, ), as we want
to know which preferences will be selected.? As mentioned above, we use the last interaction payoffs agents
get as players, such that more connected agents and agents who were chosen to play more than once do not
per se enjoy higher fitness.'”

The selection process is modeled as follows. Every N periods, i.e. once each agent had the chance
to play the Prisoner’s Dilemma exactly once in expectation, k agents are selected randomly for selection.
For each of these agents another agent is randomly chosen from the whole population and their fitness is

80ne may think that an optimal A would be to weigh the information proportional to how much experience i and her
neighbours have with j. We will see below, though, that this is not true.

9This is the objective measure for fitness. If we did not disregard the w,, then agents with a value of w, tending to minus
infinity would be the most fit in our population, which is clearly an absurd conclusion.

10Tn terms of preference selection our results are robust to considering more periods for fitness.



Figure 1: Network structures for p = 2 and different values of rewiring probability. Left: § = 0, middle:
0 = ¢, right: 6 = 1. Taken from Vega-Redondo (2007) p. 59.

compared.!! If the randomly chosen agent has higher fitness, the agent adopts her type. This process could
be interpreted as cultural evolution, which could take place e.g. via imitation learning. In this case the
randomly chosen agent could be thought of as a cultural role model for our agent. (See e.g. Mengel, 2008).
Note also that since types are in general not observable (other than through reputation), type changes can
also not be observed, but only be learned over time.'?

3 Computational Analysis

In this section, we present the conditions used for the numerical analysis. Whenever possible, conditions are
chosen such that they match interaction patterns typically observed in reality.

3.1 The Networks

The network structure used in the simulations is a well-known small world network (Watts and Strogatz,
1998). Small-world networks are known to display very similar characteristics to most networks observed in
real life. In our network there are N = 100 nodes/agents.'® The network is generated from a one-dimensional
lattice where the agents have links to their neighbors of up to distance p. Let us call p the connection radius.
Starting from this network, each link is rewired with probability € in the following way: the link between
agents ¢ and j is destroyed and then agent i is connected to a randomly chosen other agent who is not
already connected to ¢. Figure 1 shows an example of such networks for rewiring probabilities § = 0, small
€, and 1. The resulting networks are regular lattice, small-world and random networks, respectively.

The rewiring procedure has an important impact on network measures, such as the average clustering
coefficient and the average distance. The clustering coefficient of a network refers to the average of individual
clustering coefficients of nodes, which is the fraction of pairs of neighbors of a given node that are neighbors
themselves.'* In connected networks, the average distance is the average of the length of the shortest path
between any two nodes. When the network is disconnected, the average distance is infinite according to the
conventions.

With 6 = 0, we have a local network which is characterized by high clustering and high average distances,
and each node has exactly 2p neighbors. Local neighborhoods are relatively isolated in such a case. With
small positive 0, the average distance decreases dramatically: few shortcuts interconnect local neighborhoods,
which makes it easier to reach all nodes in the network from a particular one. On the other hand, this does

"I An alternative approach would be to compare the payoff to a payoff of a randomly chosen neighbor (Ohtsuki and Nowak,
2007). In such a case, cooperation can stabilize thanks to local clusters of cooperators. Our model of local interaction, but global
selection makes it harder for cooperation to survive. In Appendix 7.1 we parametrize the degree of local vs global interaction
(maintaining global selection) and show that our results are robust.

121n the Appendix we also consider an alternative model where this is not the case.

13Simulations are programmed and carried out using the program RePast.

11 Gee, for instance, Vega-Redondo (2007, Chapter 2) for a formal definition.



p =2
0 Cluster. Av. Dist.
0 0.500 13.009
0.01 | 0.475 8.808
0.05 | 0.384 5.219
1.00 | 0.037 3.488

p=4
0 Cluster. Av. Dist.
0 0.643 6.765
0.01 0.611 4.391
0.05 | 0.498 3.144
1.00 | 0.080 2.450

Table 1: Measures of the networks (averaged over 10.000 observations of the network for each value of the
network parameters). Average distance computed for connected graphs.

not affect the clustering of the network. This "small-world" phenomenon has been observed in many real
social networks (Watts and Strogatz, 1998; Goyal, 2007). When the rewiring probability is high, the local
neighborhoods get dissolved. As a result, both the average clustering coefficient and distances are small,
and the degree distribution becomes heterogeneous.

3.2 Parameters for the Numerical Analysis

In the simulations, we use two values for the connection radius, p = 2 and 4; that is, each node has on
average 4 and 8 neighbors, respectively. We focus on four values of the rewiring probability: 6 = 0,0.01,0.05,
and 1.1% In order to illustrate the impact of # and p on the network architecture, Table 1 reports the average
clustering coefficients and average distances for various simulated networks.

In each simulation, there is one third of agents of each type in the beginning and the types are distributed
randomly over the whole network. The starting default belief is set to 2/3 (the sum of the shares of altruists
and conditional cooperators in the population).¢

In the numerical analysis, the game parameters are a = 0.8, d = 0.5, woc = 0.35 and A = 0.5 for the
benchmark simulations. After NV = 100 periods of interaction, each agent had the chance to move once on
expectation. Then, k = 20 agents are selected to update their type, according to the described selection
procedure. The default belief is also updated to the actual average number of cooperations in the last IV
periods. Agents "forget" the information about the A" oldest interaction in their memory. Afterwards, the
process repeats. All the parameter values are summarized in Table 2.

We simulated the system for up to 3000000 periods (implying that each agent has moved 30000 times,
on average) and we run each parameter constellation 100 times.!” In the following section, we look at
the number of cooperating agents and at the type distribution, after the system has converged. Particular
interest is put on the effect of (i) memory (h), (ii) the weights put on own and neighbors’ experience (), and
(iii) the network structure (6) on cooperation and the resulting type distribution. Later, in the sensitivity
analysis, we analyze the effect of the other parameters of the model (k, woe and p).

15We also performed all the analysis for # = 0.1 and 0.5. Since all the effects of the rewiring probability occur with the
small-world transition (that is, when 6 changes from 0 to 0.05), we do report these results here. These simulation results are
available upon request.

16Tt is worth mentioning that these initial conditions creates a great initial advantage for defectors, because initially others
believe that they will cooperate with probability 2/3. This makes it easy for them to exploit cooperators and makes the survival
of cooperative traits very difficult in early rounds.

17 All the simulations have converged to a steady state before the 3000000*" period.
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Parameter Value

N 100

a 0.80

d 0.50
wee 0.35

A 0.50

k 20

P 2,4

h {1,2,...,20}

0 0,0.01,0.05,1

Table 2: Parameters in basic runs.

4 Results

In this section, we study the long-run frequency of cooperation in the population and how it relates to the
memory constraint. Before we describe our main result on bounded memory we will first show that all three,
direct and indirect reputation as well as local interaction (the network) are needed to ensure cooperation.

4.1 Reputation and Local Interaction

We are aware that the incorporation of three mechanisms, direct reputation, indirect reputation and spatial
matching, creates a rather complex model. Still all three mechanisms are observed in reality. In this subsec-
tion, we show that if we remove any of the three mechanisms the cooperation either decreases drastically or
disappears completely. The definition of the model allows us to test these issues in a very straightforward
way.

To this aim, we compare four following scenarios:

1. Benchmark. In this case, network matching, direct and indirect (A = 0.5) reputation are all present
in the model.

2. Direct and indirect reputation (A = 0.5). In this scenario, people are matched to play randomly with
anybody in the population, rather than meeting exclusively their neighbors, while both reputation
mechanisms are maintained.

3. Network matching and direct reputation (A = 1). People do not base their reputation estimates on the
experience of their neighbors. Only own experience is considered.

4. Network matching and indirect reputation (A = 0). In this case, only the experience of neighbors
matter for the reputation agents consider for their matches.

Figures 2 and 3 shows the long-run levels of cooperative behavior under the above four scenarios for
different lengths of memory, separated for connection radius p = 2 and 4, respectively. The z- and y-axes
respectively reflects the length of memory and the level of cooperation in the steady state. The green
(highest) plot represent the benchmark case, where all the mechanisms are present.

We do not include Scenario 2 into the graph, since cooperation never survives under random matching.
Network matching is clearly crucial for cooperation to stabilize. The red (lowest) graph plots Scenario 3,
where reputation is built exclusively on basis of own experience. We see in the graphs that the levels of
cooperation decline dramatically. For p = 2, cooperation is only residual and it almost never survives if
p = 4, despite network matching.

There is slightly larger cooperation under the conditions of Scenario 4 (network matching and indirect
reputation). The fact that removing indirect reputation impacts cooperation more than removing direct
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reputation is very intuitive, since neighbours as a group typically have more information than any single
agent. This is confirmed by the difference between the red and blue plots in Figures 2, where each agent
collects second-hand information from four neighbors, and 3, where there are eight neighbours.

In sum, we find that locally-biased matching is crucial for the stability of cooperative behavior in the
population. The role of networks for matching has already been recognized in the literature. However, in
the present model, the network also performs an important role as an information-transmission device. If
we abstract from this role of the network cooperation breaks down under most parameter constellations.
Nevertheless, the multiple role of social networks, being both channels of interaction and information, has
only earned minor attention in the literature so far.'®

4.2 Bounded Memory and Cooperation

In this section, we focus on how memory affects the proliferation of cooperation. Note from Figures 2 and
3 that there seems to be a non-monotonic relation between memory length and cooperation. In Result 1,
we first describe the case, where agents have few connections.

Result 1 For p = 2, there exist values of memory h1 and hy > h1, both non-decreasing in 6,9 s.t.

e for h < hi, a cooperative state is never reached;
e for h € [h1,hg), the frequency of cooperative states is increasing in h and

e for Yh > ho, the frequency is non-increasing in h.

Figure 4 illustrates these findings. Each plot corresponds to the average frequencies of cooperative states
(over 100 simulation runs) for a given value of rewiring probability 6 in function of memory (z-axis). Note
that, in order to have positive frequency of cooperation in the steady state, memory has to be at least two
for # = 0, larger than two for for 6 = .01 and .05, but larger than four if # = 1, confirming the first part of
Result 1.

Regarding the maximal level of cooperation, it is reached for h = 9, 11 and 15 when 6 = 0, .05 and 1,
respectively. For § = .01, the maximal level is achieved with h = 16. Overall, though, the results suggest
that the maximal average values are around h = 9 and that afterwards cooperation decreases with h. Still,
in Result 1 we prefer to state that the share of cooperative outcomes is non-decreasing in h as h > ho,
because of the outliers seen in the graph. For p = 4, though, results are much clearer and there is a strictly
decreasing trend after the optimal memory level is reached.

Figure 5 gives a more detailed account of Result 1. Each panel in the figure reports the final distribution
of types in the population and each line plots one of the following final distributions: (1) Zero cooperation
(blue), where conditional cooperators and defectors coexist, but always defect, (2) Full cooperation (green),
where conditional cooperators and altruists survive, and always cooperate, (3) "CC survive” (red), in which
only conditional cooperators survive and cooperate. The graphs show how the shares of these scenarios
change with different values of memory, z-axes, and rewiring probability, panels. The results go in line with
the analysis from Figure 4. There is no cooperation in the population for extremely low values of memory,
independently of other parameters. Conditional cooperators can actually survive in these cases, but never
cooperate. As memory increases, defectors extinct more frequently, but as memory gets very large, the
scenario with only conditional cooperators present in the long run increases steadily.

Finally, Figure 6 plots the time to convergence as a function of memory and the rewiring probabilities for
p = 2.20 Interestingly, irrespective of whether cooperation survives or not the time to convergence increases
monotonically in memory. Hence there is an additional sense in which larger memory can be detrimental to
achieving cooperative outcomes.

8 Mohtashemi and Mui (2003) stress the information-channeling capacity of social structures, but they completely abstract
from its matching role.

Y Obviously, h; and hs are also functions of the other parameters of the model. We analyze the remaining effects below.

20The convergence result are very similar for all the parameter constellations.
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Result 2 describes how things change when agents have more connections. The simulation results are
plotted in Figure 7.

Result 2 When p = 4, there exist hy and h* > hy, both increasing in the rewiring probability, 0, and
memory, h, such that

o if h < hi, a cooperative state is never reached,
o if h € [h1,h*], the frequency of cooperative states is increasing in h, and

e if h > h*, cooperation monotonically decreases with h.

The main difference between the p = 2 and the p = 4 case is that, in the latter, the optimality of bounded
memory is more evident, since the share of cooperative regimes drastically declines for h > h*. As before
clustering (or low 0) is essential for reaching high levels of cooperation.

Figure 8 focuses on the final type distribution. As in Figure 5, we classify the steady-state type distri-
bution into the three categories: Zero cooperation, Full cooperation, and CC survive. Most importantly,
scenarios with full defection start to decrease for a certain value of memory, but as h reaches the optimal
memory level they start to gain ground over cooperative scenarios.

Overall bounded memory clearly emerges as optimal from a population viewpoint. Loosely speaking
one may say that 'Holding grudges forever’ turns out to be non-optimal. But the underlying intuition
is a bit more complicated. The first thing to note is that bounded memory leads agents to forget both
‘cooperative’ and 'non-cooperative’ behavior. Hence in which direction the overall effect will go will depend
on the population dynamics.

Let us discuss the intuition behind this result in some more detail. First if memory is very low (h <
hi), conditional cooperators cannot effectively learn the type of their opponents and hence are prone to
exploitation by defectors as long as their share is not too large. Altruists can be exploited by defectors in
any case and in addition they receive the same treatment from conditional cooperators as defectors since
h is too small for CC types to effectively memorize cooperative behaviors. Hence for small h the share of
altruists will decrease steadily. Defectors outperform conditional cooperators as long as they cooperate (i.e.
as long as the share of defectors in the overall population is quite small). Once there are more defectors,
conditional cooperators will also start defecting and hence the system will converge to a state where everyone
defects.
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Figure 7: Frequency of cooperative outcomes as a function of memory for different values of rewiring
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For intermediate levels of memory (h; < h < hg), conditional cooperators can prevent the extinction
of altruists. After an initial decrease in the share of altruists, defectors are mostly matched with defectors
and conditional cooperators. Defectors defect against each other and - due to larger memory - CCs are
able to differentiate easier between D-types and types who display cooperative behavior. This effect can
counterbalance the previous effect and even reverse it leading to the expansion of altruists in the society
and to the extinction of defectors. The rate of cooperation in Figure 4 increases steeply with h.

Additionally, note that the length of memory necessary to establish cooperation depends on the network
structure, represented by the rewiring probability . When the probability is low, clustering is high in
the network and shorter memory is sufficient to stabilize cooperation. Clustering leads to convergence of
opinions. Since neighbours interact more among each other, neighbors opinions become more similar to ones
own experience. Due to this convergence of opinions shorter memory suffices to stabilize cooperation.

As memory gets larger (h > hg), cooperation is sustained by conditionally cooperative (CC) agents who
are more often the only survivors. Long memory enables conditional cooperators to distinguish between
altruists and defectors, but now there is a drawback. Remember that initially defectors have a selective
advantage over altruists because before reputations are established they are treated equally by conditional
cooperators. This means that there is a point in which the system consists of quite many defectors. This
temporary selective advantage of defectors has long-lasting consequences now. The reason is that if there
are many defectors which are identified as such, conditional cooperators will quite often defect against such
defectors. But since memory is very long this will never get forgotten and hence cooperation has a tough
time emerging in this environment. But this means that many conditional cooperators will earn themselves
a bad reputation among each other and will start defecting among themselves.

It is hence the interaction between reputation building and long memory which is detrimental to co-
operation. Reputation building takes time and hence initially defection can spread. But in this ’hostile’
environment conditional cooperators will see themselves forced to defect quite often which then (together
with long memory) acts against them as a group, even if they now enjoy a selective advantage over defectors.

Another important observation we make here is that the lack of clustering cannot be offset by longer
memory. When the rewiring probability is large (§ = 1), for h > hg the average cooperation is still
dramatically lower than with low 6, and cooperation monotonically decreases as clustering decreases (Figure
4)'21

4.3 Direct and Indirect Reputation Building

We can analyze how the weight put on (in)direct reputation affects cooperation, by varying A in our sim-
ulations. We have already shown above, that cooperation decreases significantly if we remove (in)direct
reputation from the model entirely.

Here, we focus on the intermediate cases, where both matter at least a little. Figure 9 shows the levels of
cooperation for different values of A and 0 = 0,.01,.05,1 (from the top-left-most to the bottom-right-most
panel) for p = 4.

The largest levels of cooperative behavior are reached when equal weight is put on both direct and
indirect reciprocity, irrespective of the values of other parameters. Hence, relying equally on both types of
information promotes cooperative behavior in our model.

This is interesting because ex ante one might expect that the best A should be smaller than 1/2 since
neighbours in the aggregate have more experience with j than any player herself. On the other hand of
course j’s behavior towards me also depends on my reputation with j, making my own experience with j
more informative. The latter effect would suggest A > 1/2. On balance the two effects seem to cancel each
other out as our evidence suggests.

We can observe in the real life though that people tend to rely more on their own experience than on the
gossip or experiences of others. The question hence is whether relying more on own experience promotes

21 partial support for this can actually be found in an experimental study by Cassar (2007). She shows that people tend to
cooperate more in a local network (when 6 = 0) than in a small world network. However, the effect of rewiring seems to be
non-monotone in her experiments, as on random graphs (when 6 = 1) individuals cooperate more than on small-world networks.
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Figure 9: Frequency of cooperative outcomes as a function of memory for different values of # and A when
p =2

cooperation from the evolutionary perspective. As Figure 9 shows there is an asymmetry. Giving more
weight to own experience enhances cooperation more than weighting experience of others more heavily, as
long as both direct and indirect reciprocity are considered. This is reflected by the violet and light blue
plots (A = .8 and .6, respectively), which lie above the green and dark blue lines basically for any parameter
specification when 6 is low.??> Hence, there is a non-trivial role of the weights put on each type of information
in our model.

On the other hand of course A = 1/2 means already that an agent is weighting her own experience more
than that of others, since the aggregate information obtained from neighbours is typically based on many
more interactions. Overall, this allows us to conjecture that the fact that people generally rely more on
their own experience may have emerged as natural adaptation and as a by-product toward the evolution of
cooperative traits in the society.

4.4 Robustness

In this section, we analyze how robust the findings from previous sections are to changes of other conditions
of the model. In particular, we perform two types of robustness checks. First, we introduce the possibility
of mutations into the selection process. Second, we change some parameters held fixed until now such as the
number of imitating agents (k), the preference bias of CC type for cooperation (wcc) and the connection
radius p. The corresponding graphs are reported in Appendix.

Regarding the possibility of mutations, we modify the selection process such that with a probability
0.02 the randomly chosen agent’s fitness is not compared to the fitness of someone else, but she adopts a
type randomly. In this way every behavioral type has the chance to be reintroduced to the population.
Figure 13 shows the average frequency of cooperation in this case.?> We may see that we obtain the same
non-monotonic relationship between memory and the level of cooperation.

As for the sensitivity analysis, using the original model without mutations we hold most of the parameters

22For § = 1, the cooperation is very low in general and it is hard to make conclusions from Figure 9. However, we can still
appreciate that equal share enhances cooperation well above cases and high values of A still seem to lead to more cooperative
societies than lower values.

%3 Note that when mutations are possible, the system never settles down. Hence we take the average level of cooperation over
30000 periods of run. The reported values are the averages of these over 100 runs.
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fixed as indicated in each plot and only change the variable of interest on a grid.

Figure 14 graphs the frequency of cooperative outcomes for different values of k. We can clearly observe
that as k increases the cooperation monotonically decreases. In case of higher k, social overturn is higher,
i.e. in a given round more agents update their type, which means that types change more frequently and
hence reputation becomes less effective. On the other hand, the minimal memory necessary to reach positive
cooperation seems to be unchanged for different values of k.

In the previous analysis the preference bias of CC type for cooperation has been set to woo = .35, which
is the value for which CC agents cooperate with opponents, who have cooperated in 50% of last meetings,
about which information is available. If we increase the value of woe, CC types cooperate more easily
whereas for small woc they will defect most of the time. As it can be seen in Figure 15, below a certain
level of woe cooperation does not arise. As expected, for larger values of woe, cooperation is monotonically
rising with wee.

In Figure 16, we also illustrate the effect of the connection radius more extensively. For p larger than
one, there is a monotonic effect of increasing the number of neighbors on cooperation as seen before. The
more neighbors agents have the more complicated is to have information about a particular neighbor and
more difficult is to establish cooperative regimes. The only exception is p = 1, where the cooperation is
actually lower than with p = 2.

Generally we conclude that our results are qualitatively robust to changes in parameter values.

5 Evolution of Memory

The previous section has shown that limited memory can be optimal from a population viewpoint. Using
group selection arguments, societies where optimal memory prevails will cooperate more and hence outper-
form less cooperative societies. The natural question that arises now is whether limited memory is also
optimal at the individual level, i.e. within groups. Hence, in this section we explore this hypothesis. To this
aim, we enrich our environment introducing heterogenous memory levels and let selection works on types
and memory simultaneously.

The model has exactly the same features as the original specification, except for the number of behavioral
types. In particular we introduce three types of conditional cooperators differing in their memory levels.
We introduce three levels of memory: h = 2, 7 and 15. Hence, there are five types of agents initially, each
representing 20% of the population.

These memory levels were carefully selected for the purpose of this section. We rarely observe cooperative
states with two-period memory. Hence h = 2 types. The largest memory, h = 15, lies on the decreasing
part of the frequencies of cooperative regimes, but still close to the optimal memory span. It therefore
represents the case of too long memory. Since in the simulations, the optimal memory is around h = 7, we
introduce this level as a representation of optimal memory. The main objective of this section is to verify
whether h = 7 will outperform other types and memory levels. The selection process still works at the level
of behavioral types, but each memory level is treated as a different type in this section. Table 3 summarizes
the average steady state distributions over 100 runs of each parameter specification.

>From the macro perspective, we observe that the average survival probabilities of defectors are very low,
as long as 6 is low.?? Conditional cooperators, on the other hand, prevail in the population. Interestingly,
there seems to be no clear evolutionary advantage for a particular memory level. The exception is 0 = 1,
where the large memory types survive systematically more often than other conditional cooperators, but do
not cooperate and coexist with defectors.

These results may not be very surprising. Larger memory types are suitable for the protection of the
society against defectors. However, once cooperating types reach a larger proportion of the population,
the cooperating types in principle cooperate mutually and memory levels play a role neither for successive
cooperation nor for evolutionary fitness. In such situations evolution does not select among memory types

24This again confirms that clustering is essential for the proliferation of cooperative traits.
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p:

0 Coop. A D CCy CC; CCys
0 92.00 1237 .0308  .2910 .3149 .2396
.01 90.26 1230 .0303  .2463 .2952 .3052
.05 79.40 1154 .0355  .2291  .3603 .2597
1 6.13 .0202  .2490 .1382 .1960 .3966
p=4
0 Coop. A D CCy CC; CCys
0 90.00 1338 .0533 .3004 .2474 .2651
.01 92.00 1180 .0361  .2863 .2532 .3064
.05 89.00 .0991 .0690 .2824 .3046 .2770
1 2.39 .0040 .3314 .1702 .1897 .3043

Table 3: Simulation results with heterogenous memory levels.

and they coexist in the population. This also holds for altruists, who indeed have relatively large shares
after convergence. The undiscriminating nature of their behavior actually confirms the above intuition.

Table 4 gives a more detailed account of the simulation results.?® In analogy with the previous analysis,
it lists the percentages of scenarios that appear in the long run. This time, the classification is much more
complex since more combinations arise in steady states.?

0

Scenarios 0 .01 .05
CC,,CC7,CCy5 7 5 4
CCy5 2 0 7
A,CCy,CC7,CC15 71 64 39
A,CCy,CCy5 7 5 6
A,CC,y,CCr 1 6 3
A,CCr,CCy5 3 10 18
A,CCy 0 0 3
D,CC5,CC7,CC15 2 1 11
D,CCy,CCq5 1 1 4
D,CCy,CCr 2 4 1
Others 4 4 4

Table 4: Particular Scenarios with heterogenous memory levels. rho=2

In sum, within group selection does not lead to a clear evolutionary advantage of either memory level,
at least as long as ’all’ types of memory are present. Populations, where at least some agents have (optimal)
bounded memory will do better than populations where all agents have very long memory. Hence, the
optimal memory level provides an advantage across groups, but is not evolutionary costly within groups.
Since there is no real trade-off between within- and between-group forces, optimal memory may be an
outcome of evolutionary conflicts across groups.

%We do not report the 8 = 1 case in the table, because full defection mostly arise after convergence, characterized mainly by
the coxistence of defectors and conditnional cooperators. It is easily visible in Table 3.

20Tn the table, Others refers to non-listed low-frequency final distributions. No type but CCys ever survives on its own. Other
scenarios that survive at least once and are not explicitly stated are: (CC2,CCy5), (A,CCr), and (A,CCjs).
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6 Conclusion

We analyzed the evolution of cooperation in a setting that comes very close to actual human interactions.
Agents with limited memory interact and share information through a given social network. We have seen
that cooperation can but need not evolve in such a setting. Our results show that there exists an interior
memory size maximizing the rate of cooperation in the long run. Moreover, we observe a non-trivial relation
between the degree of reliance on direct and indirect reputation.

These results add an interesting new viewpoint to the discussion of why evolution did not endow us with
unlimited brain capacity or, more loosely speaking, did not make us "infinitely" smart. Firstly, of course,
larger memory capacities imply larger cognitive costs. However, our results also show that it can be optimal
(at least from a population viewpoint) to be endowed with finite memory in strategic situations. In line with
the group selection literature limited memory in our model can emerge from the conflict of two populations
endowed with different memory capacity in the brain.
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7 Appendix

7.1 Meeting strangers: Can cooperation still survive?

In the main text, people only interact with their first-order neighbors. This assumption can be too extreme,
since in real life people meet more socially distant individuals or even complete strangers. In this section,
we explore an alternative setup, concerning the matching mechanism. More precisely, we relax the extreme
locality of matching and rather assume that people can meet anybody in their component. The probability
to interact with a particular player is proportional to the shortest " geodesic distance" that separates the
two players.27

Again, denote the shortest distance between ¢ and j by d;; (d;; = d;;). The probability for ¢ to interact

with j is the following:

e—adij
Pl(dz_j): kéie oGk
0 ifdijzoord,;j:oo

Note that with this function P;;(d;j) # Pji(dj;), more central players in the network can still be matched
more frequently, as in the original speficiation of the model in the main text, and we define the evolutionary
fitness as before.?8

Observe that the higher o the more likely it is to meet neighbors and the more unlikely to meet distant
individuals. Hence, o parametrizes the effect of the network for matching. As a — oo, everybody meets
exclusively her neighbors. This is the original model. If a = 0 matching is completely random and this
would represent Scenario 2 in Section 4.1. Finally, note that if d;; = oo (agents in disconnected components)
then p(di]‘) = 0.

First, let us illustrate the effect of o on the matching probabilities for different networks. Imagine a
regular lattice network of 20 individuals, where p = 2. For 6§ = 0, each agent has four direct, second—order,
third-order and fourth-order neighbors, and three neighbors of distance five. Table 5 lists the matching
probabilities for an individual to meet each ¢'"- order neighbor (columns) for different values of o (rows).

d; 1 2 3 4 5
«
0.5 109 .066 .040 .0240 .0150
1 160 059 .022 .0080 .0030
1.5 194 043 .010 .0020 .0005
2 216 .029 .004 .0005 .0007
2.5 229 .019 .002 .0001 .0001

Table 5: Effect of alpha on matching probabilities.

Rewiring the links introduces heterogeneity, such that agents have different number of neighbors of any
order. This obviously generates heterogeneity in the matching probabilities.

Intuitively, as « gets higher agents are matched most frequently with agents from the neighborhood
which limits the number of possible opponents and facilitates the learning about their types. For a given
values of h and 6, the cooperation increases monotonically in «. The value of memory necessary to have
some cooperation also rises with a.

Generally, the overall pattern of cooperation as a function of memory is robust to changes in the locality
of matching for both p =2 and p = 4.

2T Geodesic distance between any two nodes is the minimum number of links that connects the two nodes.

28 Note that if 7 is chosen as row player, the probability that 7 is matched with somebody else still adds up to 1: Zj# Pi;(dij) =
e*adij
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Figure 10: Effect of locality of encounters (p = 4). Larger a’s corresonds to more local encounters.

Figure 10 presents the simulation results for differnt degrees of locality of matching. It generally confirms
the theoretical results and the basic intuitions. Allowing for less frequent encounters of more distant individ-
uals, about whom ones is less likely to have information, does not eradicate cooperation. The cooperation
increases in «, but its levels are already very high for relatively low a.

These finding show that if we embed our model into a more realistic environment, where people engage
in both regular contacts with their neighbors and more rare encounters with more distant individuals,
cooperation still proliferates, despite limited memory capacity, which obviously interact negatively with the
possibility to have information about all potentional encounters. Moreover, qualitatively the results from
the main text still show up here.

7.2 Observability of Type Changes

What happens to our results if type changes are observable, i.e. if agents’ reputations and memories are
reset once they have changed their types. Note that since an agent’s type is not observable it makes not
much sense to assume that type changes are observable. Still let us be generous with modeling and explore
this possibility as well.

Broadly speaking one could interpret the two cases as situations with and without "stigma". "Stigma"
refers to situations, in which an agent after changing her type is still burdened by her "old" reputation
and memory. This case can reflect cultural evolution among humans and is certainly the correct model if
changes of type are not completely observable. The "No-Stigma" case refers to the case where an agent after
changing her type enjoys a "clean" reputation and memory. The non-stigma case could also be interpreted
as genetic evolution, but keep in mind that our model is essentially a model of human (cultural) evolution.
This evolutionary setup should, in principle, help the proliferation of cooperation, since with large memory
levels, agents are not burdened with the reputation of their ancestors.

Figure 11 shows that the average cooperation monotonically increases with memory, even for very large
memory capacities for p = 2. However, even under such evolutionary specification, we observe that cooper-
ation rises markedly in the begining, but after a certain memory level there seems to be a stagnation of the
effect of memory lenght on cooperation. Cooperation still increases, but the advantages of larger memories
are very low as h grows large. A careful comparison of Figures 4 and 11 also reveals that, for small values
of memory there is no difference between the two cases. Figure 12 again provides the picture of the final
type distribution for different parameter constellations.
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Figure 11: Average cooperation as a function of memory for different rewiring probability values when p = 2.
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Figure 12: Shares of scenarios as a function of memory for different rewiring probabilities for p = 2. No-
Stigma Case. Blue line: zero cooepration. Green line: full cooperation. Red line: CC survive.
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7.3 Robustness checks: Figures
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Figure 13: Average level of cooperation as a function of memory when mutations are introduced for p = 4.
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Figure 14: Frequency of cooperative outcomes as a function of memory for different values of k (6 = .05 and
p=4).
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