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Abstract

A search-theoretic monetary DSGE model with capital and inventory investment
is estimated, and its implications on output and inflation dynamics are contrasted
with those of standard flexible price monetary models: a cash-in-advance and a
portfolio adjustment cost model. Model estimation and comparison is conducted
in a Bayesian way in order to account for possible model misspecification. The
search model can track inflation and output data better. It dominates the other
models in the ability to predict the autocorrelations of inflation, the
contemporaneous correlation between output growth and inflation, and in the
persistent (dis-)inflation process after a (technology) monetary shock. It generates a
hump-shaped but delayed output response to a monetary shock that matches the
data better than the other models.
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1. Introduction

Starting from Kiyotaki and Wright (1991), (1993) search theory has devel-
oped into the main paradigm of the micro-foundation of money. Giving
money an essential role - money augments the set of achievable allocations' - this
approach has become a useful tool for monetary theory. However, little quantitative
analysis has been undertaken so far with search models of money.”

This paper addresses quantitatively the implications of search frictions in
the goods market for inflation and output dynamics in three different
dimensions: Can a search-theoretic model track US output growth and inflation
data better than other standard flexible price monetary models like the cash-
in-advance (CIA) model or limited participation models? Can it create more
realistic contemporary and lagged correlations between output growth and
inflation? And: How well do dynamic responses to shocks to money growth
and technology match its empirical counterparts? The aim is to assess whether
search frictions in the goods market have the potential to improve substantially the
models used as laboratories to study the effects of monetary policy.

Search-theoretic monetary business cycle models explore the consequences of
search frictions in the goods market for aggregate variables in business cycle
frequencies, but are not tailored to fit the data. Thus, any version of this
model class is probably highly misspecified, i.e., we cannot believe that any of
these models comes close to the true data generating process (DGP). The same is
true for the standard CIA and limited participation models. Obviously, one
could try to enrich the models with many additional features like habit
formation, investment adjustment costs, etc. — so as to deal with less
misspecified models. But the question arises what one can really learn from a
comparison of highly complex models where many frictions interact with each
other. Here we take another road: to keep the models simple 1 follow
Schorfheide (2000) in applying a Bayesian methodology that allows comparing
potentially misspecified models by use of a highly parameterized reference model
that achieves a good fit to the data, namely a VAR.

" See Kocherlakota (1998) and Wallace (1998) on the issue of essentiality.

% In his lecture at the Canadian Economics Association Meetings (Hamilton 2005), published in Shi
(2006), Shi gives an overview of the literature, highlighting the quantitative contributions of Shi (1998),
Wang and Shi (2006), and Menner (2006), and urging for more quantitative analysis in the field of monetary
search-theory.



The model chosen from the class of search-theoretic monetary models (STM)
is based on the full fledged business cycle model of Menner (2006) that
combines search frictions in the goods market® and capital formation.* There are
several reasons for this choice. First, there are only few models of the search-
theoretic literature capable of addressing macroeconomic issues. To study the
effects of changes in money growth the early literature had to assume an upper
bound in money holdings.” Shi (1998) was the first to develop a tractable
search-theoretic Dynamic Stochastic General Equilibrium (DSGE) model
where prices are determined endogenously and money holdings are not bounded.
His model exhibits a persistent mechanism propagating monetary shocks that arises
from the interaction of search-intensity and inventory investment but lacks the
possibility of capital formation. Second, allowing for capital formation as in
Menner (2006) potentially helps the model to propagate shocks as it does in
standard business cycle models. Moreover, capital formation breaks the close link
between employment and output present in a model with fixed capital.® Since we
are interested in inflation and output dynamics it is better not to rely too heavily
on outcomes of the labor market in determining output responses and hence to
use a model with capital formation.

What about alternatives? Faig (2002) has developed a model where the
production sector is neoclassical and capital is accumulated by using the firm's
own product as investment. The commerce sector is separated from the
production sector. His model differs in many other details from the present
model and the analysis concentrates on welfare implications of money growth
across different steady states. It is not clear from the outset whether it can
generate such rich dynamics as the present model, since Faig studies only
monetary policies that keep the nominal interest rate constant.

* Although Menner (2006) assumes also search frictions in the labor market, I only consider model
versions with flexible labor markets in order to compare the models on equal grounds.

* In the model in Menner (2006) capital adjustment costs were necessary to render stable equilibrium
dynamics given the chosen calibration. A previous working paper version of the present work,
Menner (2007), documents that the capital adjustment cost parameter cannot be estimated properly
and that the estimation procedure is able to find parameters that imply stable dynamics also in the
absence of capital adjustment costs. Hence, we do not consider them here.

’ See Rupert et al. (2000) for an excellent overview of the literature on search-theoretic monetary
models before the year 2000.

® Log-linearizing the production function y = ko™ n¢! with ko fix, one sees immediately
the proportionality between log-deviations of output y, and employment n: y, = (1 - ek)n,.
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Recently, a different approach to avoid assuming bounded money holdings
was proposed by Lagos and Wright (2005). Their model, where agents alternate
in visiting decentralized and centralized goods markets has been used by many
researchers, recently. Although some extensions of the Lagos-Wright model allow
for capital formation, they assume that only matched sellers produce, so there
are no inventories. Together with the fact that all changes in money holdings
in the decentralized markets are undone in the following centralized market, this
presumably implies weak inter-temporal links and a weak propagation of monetary
shocks.” Comparing different types of search models is left for future research.

As stated above we will compare a search-theoretic monetary model with
other standard flexible price models, not with sticky price and/or sticky wage
models®. Costs of price adjustments on the firm level do not necessarily induce a
considerable degree of price stickiness on the aggregate level. Golosov and Lucas
(2007) estimate the real effects of menu costs on the firm level to be very small.
So, menu-costs do not seem to be a very convincing micro-foundation of price-
stickiness. The assumption of sticky prices is, thus, more-less ad-hoc. Therefore, one
might want to step back and ask what aspects of a monetary economy lead to real
effects of monetary surprises even when prices are flexible. Frictions in the goods
market and in the asset market are candidates examined here.’

To summarize, I contrast a modification of the search model of Menner
(2006) that features a Walrasian labor market instead of labor search with two
standard flexible price models: a cash-in-advance (CIA) model and a limited
participation model with portfolio-adjustment costs (PAC). The former has as
the only friction the constraint on the representative household to have enough
money on hand to pay for the purchased goods, while the latter assumes, in addition,
frictions in the portfolio adjustment.'’

Arouba and Wright (2003) find a dichotomy between the real and monetary sector, while
Aruoba, Waller and Wright (2007) propose different variations where the monetary trades in the
decentralized goods market have some influence on capital formation.

¥ Models with nominal rigidities are now widely used for policy evaluation. Most prominent
examples are Christiano, Eichenbaum and Evans (2005), and Smets and Wouters (2003).

° A different route is taken in a very recent preliminary and incomplete paper by Aruoba and
Schorfheide (2007) who introduce price stickiness into the centralized market of a Lagos-Wright
(2005) type model and estimate it in a Bayesian way. Their search theoretic micro-structure of the
decentralized market, however, is rejected by the marginal data density criterion in favor of a
money-in-the-utility specification.

% Since I use the same methodology and the same time series as Schorfheide (2000) - but with a
longer sample up to 2008 - this research updates his model comparison of the CIA and PAC model and
extends it to include search-theoretic monetary models.
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Estimation of model parameters is undertaken by use of Monte Carlo
Markov Chain methods that generate draws from the posterior parameter
distributions. According to the marginal data density the search-theoretic
model tracks the post-war time series of U.S. output growth and inflation better
than the portfolio adjustment cost model and the standard CIA model - coming
close to VAR's with 1 to 4 lags. Loss functions are used to compare the ability
of the models to account for current, lagged and leading cross correlations of
output growth and inflation, autocorrelations of inflation and impulse responses to
monetary and technology shocks. In each case expectations are calculated using a
mixture of VAR(1) to VAR(4) and the DSGE models, weighted by their posterior
probabilities.

The expected loss, or risk, a researcher incurs when choosing the STM model
is considerably lower for cross correlations at "lags" -1 and O than the ones he
incurs when choosing one of the alternative models. However, when looking at
other periods ahead and behind the STM model ranks least. Moreover, while the STM
model improves slightly on the CIA model in replicating the dynamic responses
of output to shocks to money growth, it is the PAC that minimizes the loss in this
dimension. The propagation mechanism of the STM model is not strong enough to
replicate fully the persistence present in output, and the magnitude of the response
in the first quarters. However, the imposed frictions on portfolio adjustment turn
out to be estimated too large and the response of the PAC model overshoots in
the medium and long run. The STM model can predict well the persistent
disinflation process after a technology shock and the autocorrelations up to lag
3 of inflation, which neither of the two other models can. Hence, search
frictions in the goods market add a new propagation mechanism to the CIA
model that behaves in some dimensions similar, but in other dimensions different
to the mechanism created by frictions in the portfolio management of consumers.

The rest of the paper is organized as follows: Section 2 contains an outline
of the three models, of the solution and detrending method and of how the
policy functions are transformed into state space form. Section 3 lays out the
empirical strategy of Bayesian estimation and model evaluation. The results of the
estimation process and the model comparison are presented in section 4, and section
5 concludes.



2. The Models

In the following I will present the three models to be compared. Since the
reader is probably less familiar with the search-theoretic monetary model than
with the portfolio adjustment cost model and the cash-in-advance model, I will
explain the former in more detail and restrict myself to a short exposition of the
others.

2.1 The Search-Theoretic Monetary (STM) Model

2.1.1 The Economy and its Matching Process

In the model of Menner (2006) there are two search frictions: costly search for
consumption and investment goods, as well as costly labor search. In the following,
however, I will consider only Walrasian labor markets.

The economy is populated by a continuum of households with measure one,
denoted by H. A continuum of goods with measure one, also denoted by H, can
be produced with labor and fixed capital as inputs to production. Each good is
storable only by its producer. Purchased investment goods can be installed as
capital by incurring an installation cost, i.e. there exists a (quadratic) capital
adjustment cost. Each household h € H produces good h and wants to consume a
subset of goods different from its own product, and only goods from this subset
can be used as capital for the production of good h. This induces a need for exchange
before consumption / investment is possible. In the absence of a centralized market
with a Walrasian auctioneer households have to search for trading partners with the
desired goods. Generally, there will be no double-coincidence of wants. The
literature following Kiyotaki and Wright (1991), (1993) established that in
random search models under certain parameterizations fiat money gets valuable and
is the only medium of exchange. To establish this in the present model would
require a more detailed consideration of the exchange patterns. Instead, here it is
simply assumed that fiat money is required in each transaction.

Because of random matching in the goods markets money holdings, inventories
of unsold goods and capital stocks would not be equally distributed among
households/firms. To avoid the need of tracking the distributions of these individual
state variables, it is assumed that the decision unit - the household-firm - consists itself
of a continuum of different agents. The members of the household share the purcha-
sed consumption-investment goods and regard the household's utility as the com-
mon objective. The household decides how much to consume and how much to invest.
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All the firms of a household are assigned the same amount of investment goods.
Hence, all start the next period with the same capital stock. They also equally
share workers and inventories. Finally, resource sharing of firms within a
household allows the payment of wages regardless of whether the firms had a
suitable match in the goods market. Under these assumptions the random matching
process does not create idiosyncratic risk.

The household consists of five groups: one group enjoys leisure, the other
four groups are active in markets: Entrepreneurs (set A4, with measure a,),
unemployed (4,, measure u) workers (4,,, measure: a,n,;), and buyers (4,, measure
ap). The values of a,, u and a, are assumed to be constant, while the number of
workers a,n, may vary over time. An entrepreneur consists of two agents: a producer
and a seller. A producer in household h hires workers from other households to
produce good h, which is sold by the seller. A buyer searches with search intensity
s, to buy the household's desired good. The sellers’ search intensity is normalized to
1. In the following a hat on a variable indicates that the household takes this
variable and all its future values as given when making the decisions at t.

The number of goods market matches is given by the matching function:

g(§)E zl(ab§)“ (ap )1-0, = za,8%, z= Zl(Z_Z)ail' (1)

Let B = a,/a, be the buyers/sellers ratio. The matching rate per unit of search
intensity is g, (§) =z§*"", so that buyers find a desirable seller at rate sg,, and sellers
meet a buyer at rate gs(§)EZB§a. Thus, the measure of the set of buyers with

suitable matches, 4;-, is sgya; and that of sellers with suitable matches, 4,., is ga,.
Each buyer j having found a seller -j with his desired good exchanges i, (])

units of money for th(— ]) units of good -j, implying a price in this match of
B(j)=m, ()/@,(~ j) and an average price of goods of P,.
Each producer j hires ntd (]) workers in a Walrasian labor market who can

work immediately. In a different version of the model discussed below, workers
can start working only in the next period, so employment is a predetermined
variable. Each of the a,n, workers of the HH supplies in-elastically one unit of labor

in the current period and receives a wage W, in units of money.

2.1.2 The Household's Decisions

At the beginning of period t each household receives a lump sum monetary transfer
7, from the central bank. The household distributes its money holdings M, evenly
9



among the buyers. Then the four active groups go to their respective markets and do
not meet until the end of the period. At the end of the period the members of the
household arrive at home carrying their trade receipts and residual balances and
profits, respectively. They consume together the fraction of the bought goods that
was dedicated for consumption and share the rest among the firms to increase each
firm's capital stock. Also, goods inventories and employees are shared among the
household's firms. Finally, the money not spent by buyers, the wages earned and
profits are added to the money balance of the household for next period's shopping.
Households decide at the beginning of each period about their consumption c,,
their total investment x, and next period's total capital stock K,.;, as well as on
next period’s money holdings M,.; The household treats the member of a group
all the like, assigning the same stocks of capital and money and the same decision
rules for each. Thus, each buyer receives m, = M,/a; units of money and each firm
holds a capital stock k,.; = K,i;/a,. Households choose the buyers' search
intensity s,, the desired inventory level in period ¢+1, i,.;, as well as current
employment n,. In the version with predetermined employment they choose
future employment n,.;. The depreciation rates of inventories J; and capital J;
are assumed to be constant. The individual firm's production function has the form

fink)=k*(¥n)* , wheree, < I.

For convenience denote the individual firm's production function in terms
of aggregate capital K as

f(n,K)= fi(n,l%p)z F,K,“(¥,n,)™, withF, = a, .

In their decision households take the sequence of the terms of trade {ét,ﬁl,} and

20
the wages as given, as well as {MO, K,, io}. Since both buyers and sellers have a
positive surplus from trade, it is optimal for households to choose M,.;, K;+; and
i,+; such that in period #+1 every buyer carries the required amount of money

t+1
and that every seller has ¢,,, units of good h to be sold. The assumptions M, > a, 7, and
i, + f, = g, ensure that buyers and sellers carry the necessary amounts of money

and goods also in period 0.
Regarding preferences it is assumed that the utility of consuming is logarithmic,

the disutility of working one unit of time is denoted by ¢ and the disutility of a
buyer's search intensity is @(s) = @(¢@, S)Hl/&p ‘

10



Households choose the sequence {c X, S, n n‘, M, K to maximize

to" t+1° t+1’ t+1 };>0
their expected lifetime utility:

max Eo{i B'lnc,]-|4, |p |4, |0, )} (PH - STM)
pr

st ¢ +x, S‘Ab[* q, (2)

1,y SH on 4, (3)

G,y <in+fnd.K,,) on A, (4)

M, <M, +7,-|4,.|m, + |4, |7, = |4, | B! (5)

K, <(1-6,)K, +x, (6)

4, )i < (1= 34| (i, + /(0 K,)) |4, |4 (7)

The first constraint states that a household’s consumption and investment has
to be bought by buyers that successfully meet a trading partner. The next condi-
tion represents the constraint for each suitably matched buyer in #+1 to have the
required money 71,,, on hand, while the fourth is a trading restriction for suitably
matched sellers: each should have a sufficient stock of inventory and newly
produced goods to satisfy a costumer’s demand ¢,,, in #+1. The law of motion of
money balances states that money holdings at the beginning of period #+1 are no
bigger than previous money holdings augmented by the monetary injection minus
the money spent plus wages earned and cash receipts from firms. Then there’s the
usual capital accumulation equation. Finally, inventories in period ¢t+1 consist of the
fraction of the excess supply of goods in period ¢ that has not depreciated.

2.1.3 Solution of the model

Optimality conditions can be derived which together with the laws of motion for
money balances, capital and inventories (5) - (7) determine the solution to this
decision problem, once the terms of trade are specified and the equilibrium
conditions are imposed. The terms of trade are determined by Nash bargaining." '
The equilibrium definition and the equations describing equilibrium are
documented in Appendix Al

'1 See Menner (2006) for details.
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2.2 The Portfolio Adjustment Cost (PAC) Model

The first flexible price monetary model I consider is a cash-in-advance model with
portfolio adjustment costs (PAC).'"> The model economy is populated by a
representative household, a firm and a financial intermediary. The household
starts period ¢ with an amount of money M, and has to decide how much money
to deposit as savings deposits D, at the bank and how much to hold as cash O, =
M, - D, before shocks are known. This timing convention is called "limited
participation" assumption, since the participation of the household in the asset
market is limited to the time span before shocks are realized. After the realization
of shocks no portfolio changes are allowed for the current period. In other words,
the household decides about his future portfolio (Q,, D,) after the realization of
the shocks in time ¢, not about its current portfolio. Cash does not pay interest
but is needed to buy consumption goods, while deposits earn an interest rate rtd.

The representative firm does not hold money at the beginning of the period. In
order to pay its wage bill it borrows money from the banks. The bank receives a
monetary injection 7, from the central bank and lends it together with the deposits
to the firm at an interest rate rtf. Since the household cannot change its deposits
after a surprise change in the monetary injection, the additional funds have to
be absorbed by the firm. But the firm will borrow a higher amount of funds
only at a lower interest rate.

Therefore, a monetary injection leads to a ‘liquidity effect’ because of the
‘limited participation’ of the household in the asset market. To render this
liquidity effect more persistent Christiano and Eichenbaum (1992) assume in
addition to limited participation that portfolio management is time consuming
and therefore reduces utility by foregone leisure to the amount of:

D, = a,| expl a{QQ’ —m*} + exp| —a{QQ’ —m*} -2 (8)

t-1 t-1

The household consists of a worker and a shopper. The worker supplies N/
hours of labor and receives wage payments of W,N, by the firm in the form of
cash before consumption goods are purchased. The buyer then goes to the goods
market where his purchases are prone to a cash-in-advance constraint, which means
that all consumption purchases must be paid for with cash at hand:

PC,<Q +WN; ()

"> This model is laid out in Christiano (1991), and Christiano and Eichenbaum (1992). Nason and
Cogley (1994) discuss in detail the optimality condition of the model, detrending and log-linearization.
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At the end of the period the household gets back its saving deposits together with
interest and receives the firm’s and the bank’s net cash inflow as dividends F; and
B,, respectively, all of that forming together with the unspent money the next
period's money stock M, ;.

So, in the beginning of period ¢ after shocks are known the household chooses

C,, N ,M,, and Q, , to maximize its discounted expected lifetime utility:
e, B[Sl oo )] (- p1c)
5. t. PC, <Q +WN* 9)
0 <M, (10)

Mt+lS(Qt—i—VI/tNtS_[)tct)+(1+rthMt_Qt)+E+Bt (11)

The firm accumulates capital and hires labour services from the household
and pays the wage bill out of the money borrowed from the bank. Then it

produces under a Cobb-Douglas technology F(N,,Kt)z K* (‘I’IN, )l_e" and uses

its sales receipts to repay the loan plus interest and to pay the resulting profits as
dividends to the household. Since the firm is owned by the household which values
a unit of nominal dividends in terms of the consumption it buys next period its
objective is to maximize the expected lifetime dividends discounted by date z+1
marginal utility of consumption. Hence the firm chooses next period’s capital

stock K .., , labour demand N td , loans L, and dividends F, to solve the problem:

t+1 2

, max Eo{io B % } (PF - PAC)
s.t. F <P|K“(¥Y,N,)™ —x,|-WN' —r'L, (12)
K, <(1-6,)K, +x, (13)
WN'<L (14)

13



The bank is also owned by the household and solves:

max E, {i Vil L} (PB-PAC)

B,.,L,,D, =0 CHII)HI
s.t. B < /L 1D, +1, (13)
L<Der (16)

Markets clear when N =N', PC, =M, +7,,and Y, =C, +K,,, —(1-5,)K,.

t

In equilibrium also rtf = rtd must hold.

2.3 The Cash-in-Advance (CIA) Model

For the purpose of model comparison it is convenient to use a version of the CIA
model that can be generated from the PAC model by changing just two

assumptions. First, there are no costs to adjust ones portfolio, i.e. p, = 0. Second,

there is no limited participation in asset markets because agents get to know the
realization of the money growth shock before they make their decision on
deposits. This leads to the modified maximization problem of the household:

_max {i Bli-¢)nC, +4n(1-N; )]} (PH - CIA)

subject to the same constraints as above. Additional funds from the Central Bank
do not alter the interest rate since the household can adjust its saving deposits in the
light of the observed monetary shock to neutralize the effect of the injection on

loanable funds. Note that since p, =0, the parameters ¢, and &, get obsolete.

2.4 Specification of Shocks and Detrending

We consider two exogenous shocks. The monetary injection takes place at the
beginning of the period such that money growth follows an AR(1) process:

Iny, =(1-p,, )Iny+p, Iny,, +é&y,, Wwherey, =M, M, (17)
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The production technology is prone to a technology shock. Recall, that the
production function was assumed to be f(n,,K,)=F,K,“(¥n,) “in the

search-theoretic model and to be f(N,,K,)=K,*(¥,N,)™ in the PAC model.
In both cases labour augmenting technological progress is assumed to follow a
random-walk with drift:

InY, =+ I, + &, (18)

The vector of innovations &, = [EMI,&‘%]' is assumed to be i.i.d. ~ N(O,Zg),
withZ | = diag(oy@ o, )

To get a stationary economy it is necessary to detrend all real variables by dividing
by ¥, . Nominal variables are handled as follows. In the CIA and the PAC model,

the price level has to be divided by ¥, /M, and other nominal variables (D,, L,
W,) have to be divided by M,. In the search model all the multipliers are detrended
by multiplying with'¥,. For the two former models the literature has shown that a
steady state equilibrium exists in the detrended variables. For the search model

we do not provide a formal proof of existence. However, we find a steady state by
construction in almost the entire parameter space.

2.5 State-Space Representation

Collecting the observable variables of interest, namely output growth and
inflation, in a vector y, the linear policy functions characterizing the solution of
the log-linearized model can be represented in state-space form by:

Y, =0, +0y, +0,¢, (19)

V, =8V, g,

where v, is a vector of percentage deviations of the state variables of the model

from their steady states. The second equation describes the evolution of the state
vector, while the first equation, the so called “observation equation” links the data
to the model solution characterized by the states and the current shocks.

As is well known, the system matrices ®, and =, are nonlinear functions of

the structural DSGE parameters 0, and the DSGE models generate a joint probability
distribution for the data Y, = [y,,...,y7] . Assuming normality of the shocks, the
state-space representation allows the use of the Kalman-Filter to evaluate the
likelihood of the different parameter draws for each model.
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3. Empirical Strategy

3.1 Dealing with Model Misspecification

When comparing the empirical fit of estimated DSGE models one has to be aware
of the potential misspecification of the models. Although their theoretical struc-
ture intends to capture various features of reality like capital formation and
frictions, they are highly stylized and probably not very close to the true data gene-
rating process (DGP) of our real world data. One way to deal with the problem of
misspecification is the Loss-function based Bayesian approach of Schorfheide (2000):
Using a highly-parameterized reference model that fits the data considerably well,
e.g. a VAR, a combined DGP is constructed by averaging the considered models and the
reference model. Deviations of model characteristics (e.g. second moments or
impulse response functions) from the ones implied by the constructed DGP are
then quantified via different loss functions.

3.2 Evaluation Procedure

Traditional Bayesian Model Comparison is based on the calculation of posterior
odds ratios. Following the arguments and the notation of Schorfheide (2000), and
assigning prior probabilities to the models M; under consideration, the posterior
model probability of model M; can be calculated by

nﬂ-iop(Y/Mi) , (20)
zﬂ-iop(Y/Mi)

i=0

ﬂ-i=p(Mi/Y)=

where p(Y/M;) is the marginal data density
p(Y/Mi)= J.p(Y/e(i)’Mi)p(g(i) /Mi)dg(i) : (21)

The latter is the integral over the parameter space of the posterior, i.e. the likelihood
p(Y /6, M i) times the prior p(H(i) /M, ) where 6, is the vector of parameters of

model i. Because of the following expression
T
Inp(Y,/M,)=>"Inp(y, /Y ,M,), (22)
=1

the log of the marginal data density can be interpreted as predictive score, i.e. as
the one-step-ahead forecasting performance of model M;.
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The posterior odds ratio is then the ratio of two posterior model probabilities.
Schorfheide stresses, that these odds do not change by the introduction of a
reference model since its effect on the denominator in (20) cancels out when
calculating the odds ratio. The model with the higher odds could be chosen as the
model that better fits the data in the above mentioned sense.
This corresponds to use a (0,1) loss function, that assigns a loss of 0 to the model
with higher odds and 1 to the others. When dealing with potentially misspecified
models this is probably not a good criterion, since it does not give the researcher
a measure of how much he looses in choosing one misspecified model over another.
The proposal of Schorfheide (2000) is to use different loss functions to quan-
tify the deviations of some characteristics, &, like a vector of moments or of

impulse responses of the model, with the ones obtained from the assumed
combined DGP. His methodology is characterized by 3 steps.

Step 1
Generate posterior distributions p(ﬁ(i) /Y, M i) for all the model parameters 6, by

simulating Monte-Carlo-Markov-Chains, then calculate marginal data densities by
Laplace-Approximation or Harmonic Mean estimators, and calculate the posterior
model probabilities as in (20).

Step 2
As the population characteristic £ is a function of the model parameters 6’(1.) one
can generate a posterior distribution of & conditional on model M; by drawing
from the posterior distribution of Q(i). The posteriors p(é/Y,Mi) of the models

are then combined to the overall posterior of & by the mixture

plE1Y) =X apl/Y. M), (23)
i=0
where the weights are determined by the posterior model probabilities.

Step 3
Choose appropriate loss functions that penalize deviations of DSGE model

predictions 4‘2 from population characteristics £ (i.e., characteristics generated by
the overall posterior distribution). Then, the optimal predictor of & - based

only on model M; —is
& =argmin;, [1(£,E)p(e /v . (24)
The three DSGE models are then judged according to the expected loss (risk) of the
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predictor ggi under the overall posterior p(f/YT ):
RE17)=[Llg.& plerryae. (25)

"The posterior risk R(éi /YT) provides an absolute measure of how well model M; pre-

dicts the population characteristic. Risk differences across DSGE models yield a relati-
ve measure of model adequacy that allows model comparison. For instance, one can

select the DSGE model M, that minimizes R(é;l. 1Y; ) (Schorftheide (2000), p. 652)"

3.3 Specification of the Priors

Most priors for common parameters are taken from Schorfheide (2000), for the
rest of common parameters a wider prior distributions is assumed, s.t. the prior
means used there and the calibrated values in Menner (2006) are equally likely.
Model-specific parameters of the STM model are centered around calibrated
values."” Table 1 provides a summary of the assumed prior distributions:

3.4 Data

Data on output, prices and population from 1950:1 to 2008:1 are taken from the
FRED database at the FRB of St. Louis. The output series is quarterly real GDP
in chained year 2000 $'s (A191RX1) divided by the NIPA population series
(B230RCO0), the implicit GDP deflator in year 2000 $'s (A191RD3) is used as
price index. To get quarterly growth rates, the resulting series are log-differenced.

4. Results

4.1 Parameter estimates

Since the posteriors of the DSGE models do not belong to a well-known class
of distributions, it is impossible to draw from the posterior directly. Instead one
can only evaluate numerically the product of prior and likelihood. Hence a random
walk Metropolis-Hastings algorithm is used to generate draws from the posterior
distributions. Technical details on how to generate draws and statistics from the
VAR and DSGE posteriors are thoroughly explained in the appendix of Schorf-
heide (2000). In what follows, I only state where I differed from his approach.

'3 Posterior reweighting does not indicate strong dependence of results on the prior. A Matlab reweighting
program and posterior files to perform sensitivity analysis on prior specifications can be obtained on request.
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To ensure convergence of the Metropolis-Hastings algorithm I generated 1
million draws from the posterior and discarded the first 500.000.'* To avoid serial
correlation I only used every hundredth draw. All results are based on these 5000
draws from the posterior parameter distribution. In the algorithm candidate
draws are drawn from a proposal (jumping) distribution. For the CIA and
PAC models I use the same jumping distribution as in Schorfheide (2000), i.e.
a Gaussian with mean at the current draw and variance of 0.2 times the inverse
Hessian at the posterior mode. In the case of the STM model I choose a uniform
distribution as jumping distribution. Since jumps are then bounded, it happens to
be easier to achieve convergence of the Metropolis- Hastings algorithm where
there are many parameters to estimate. The spread of the jump distribution was
chosen parameter by parameter to achieve an average acceptance rate of about
25-30%, which has found to be a good choice for models with many parameters.

Recursive mean plots and potential scale reduction factors (see Gelman et al.
(1995)) have been used to assess convergence. The potential scale reduction
factors were less than 1.005 for all models indicating that the number of draws
is large enough to achieve convergence of the transition kernel of the Markov chain
and that we arrived at the invariant posterior distribution of the parameters. To
assess robustness of the estimation results with respect to the choice of the
prior I conducted a “posterior reweighting” as suggested by Geweke (1999).
Reducing the variance of the prior distributions by 10% does not change the
posterior means significantly.'” Posterior means and standard errors are calcu-
lated from the output of the Metropolis-Hastings algorithm and shown in Table 2.

Note, that Table 2 presents the results of two different versions of the search-
theoretic monetary model: STM1 stands for the model with standard Walrasian
labor market. Alternatively, model STM2 makes the assumption that labor is
predetermined since workers hired in a period start to work in the fol-
lowing period. Negative adjustment by firing is not profitable when firing
costs at least as high as the marginal product are assumed. Then it pays
out to produce in excess and pile up inventories. This second model variant is
considered since in a model with search-frictions in the labor market, labor would be
predetermined, too. As shown in Menner (2007) the labor market variables in such a
search model cannot be estimated properly from the inflation and output data used in
Schorfheide (2000). But a version with parameters fixed at values implying very
flexible labor markets did a good job in matching the data. Here, we try to figure
out, if the assumption of predetermined labor is essential for these kinds of results.

"% CIA and PAC models are estimated using F. Schorfheide's GAUSS code, while for the search-
model I programmed the code in MATLAB making use of H. Uhlig's (1997) "Toolkit for analyzing
nonlinear dynamic stochastic models easily" to solve for the policy functions in the Kalman filter step.

'3 See footnote 13.
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Consider first the estimation of the common model parameters. All of them
are estimated quite precisely. For the CIA and PAC model we might expect
differences to the results in Schorfheide (2000), as the prior distribution for the
parameter f and & has been widened. Indeed, the discount factor is reduced,
implying an annualized real interest rate of 5% and 10% respectively. The capital
depreciation rate 8, however, does not change significantly; neither does the capital
share ex. The STM models' estimates are much lower for the real interest rate and
higher for 8, while the money growth rate and hence inflation is estimated lower. The
capital share is lower, especially in the STM1 model, and the autocorrelation of
money shocks is smaller in the STM2 model. The biggest difference is in the trend
of technology growth which is estimated 50% and 100% higher in the search
models. For the PAC model, the data assigns a high portfolio adjustment cost
parameter. Going from STM1 to STM2 leaves the other search-model specific
parameters apart from the scale in the matching function z almost untouched.

4.2 Model Comparison

4.2.1 Posterior Model Probabilities

The first row of Table 3 shows the assumed prior model probabilities. Because
of our ignorance about the best lag length for the VAR, a mixture of lags 1 to 4
is used. So, each model is assigned a prior probability of Y. The two versions of
the search-theoretic model are analyzed alternatively. STM1 stands for the model
with standard Walrasian labor market, in STM2 labor is predetermined.

Marginal data densities can only be calculated analytically for the VAR's. Row 3
shows therefore the Laplace-Approximation that uses the Hessian at the posterior
mode to calculate a penalty on the value of the posterior at the mode. The VARs
with 1 and 3 lags share more than 90% of the total posterior probability, the VAR(2)
has about 9% of posterior probability. The VAR(4) and the DSGE models contribute
very little to the overall DGP. Thus, in the following sections we take as referen-
ce model a mixture of VAR(1), VAR(2) and VAR(3) weighted by their margi-
nal densities and ignore the contribution of the VAR(4) and the DSGE models.

Once we have calculated posterior probabilities we can compare the odds of
different models although they cannot grasp well the data because of
misspecification. Computing standard posterior odds with respect to the CIA model
one sees that the latter outperforms the PAC model by a factor 732000.'°

' Notwithstanding, the PAC model performs slightly better than in the analysis of Schorfheide (2000),
which is in line with the robustness analysis he reports. Remember, that in calculating posterior odds the
VAR reference model does not interfere, since its contribution to the denominator of (20) cancels.
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Although their odds are still far from the odds of the VAR, the search models
outperform greatly the other two DSGE models: their predictive score comes a big
step closer to the one of the VAR's in the case of search model 1, and still
improves on the CIA model by a factor 8.2E+9 in case of model STM2.

How does it come that the search models do better? The broad answer is
that they capture better the dynamics of the data. The competitor models seem
to impose too strong restrictions on the model dynamics. The fact that the
search models are more highly parameterized cannot explain their better per-
formance per se. First, in the VAR case the VAR(4) has the highest number of
parameters and performs worst, and the VAR(1) does equally well than the
VAR(3) — so more parameters do not lead automatically to better fit. Second,
the penalty in the calculation of the Laplace Approximation is generally higher
the more parameters are estimated, so that an over-parameterization is
penalized. As we will see below, the search models outperform the other two
DSGE models in replicating dynamic correlations and autocorrelations of
output growth and inflation, and hence track the dynamics of the time series
better. The reason behind this is that the search-frictions in the goods market
lead to a propagation mechanism that works through search-inventory
feedbacks - as already highlighted by Shi(1998) and Menner(2006). As we will
see below, with respect to inflation and output dynamics this will do better in
many relevant aspects than the propagation only through capital as in the CIA
model or additionally through asset market frictions as in the PAC model.

4.2.2 Co-movement and Autocorrelation

Let's turn to the loss function analysis of second moments. Consider first the
cross-correlation of GDP growth and the inflation rate. Table 4 presents the results
for these correlations up to 2 leads and 2 lags. The first two rows show the
upper and lower bound of the 90% intervals of highest posterior density of the
overall posterior of the constructed DGP. Mode predictions of the CIA and PAC
models of the contemporaneous correlation fall outside this interval, which is
reflected in a very high L, risk, whereas the STM models predict the
contemporaneous correlation of output growth and inflation very well. The
predetermined labor STM does also better for 1 lag, followed by CIA and
PAC, but fails to hit the 90% interval for 2 lags. In the latter the ranking of
the models is CIA, PAC, STM2 and STMI1. For the leads the ranking between
CIA and PAC is reversed.
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The evidence favours the two STM models more clearly if we consider all
correlations together. Table 5 documents the statistic Cy2 that is used to calculate
the Ly2 risk, together with the latter and the L, risk of choosing one of the models
according to the behaviour of the joint dynamic correlations between output and
inflation. In all the cases the ranking is STM2, STM2, PAC, CIA although each of
the risks is very high.

The search-theoretic model is even more successful if we look at autocorrela-
tions of inflation up to 4 lags in Table 6. While the mode predictions of the PAC
and CIA models lie outside the 90% interval for the first two or three lags,
respectively, the ones of the search models lie all inside. This is reflected in L,
risks of roughly 1 for the CIA and PAC model and considerably lower L, risks for
the search models. Only at lag 4 the PAC model shows a lower L, risk than the
search models.

Looking at the joint fit of the autocorrelations in Table 7, we see that the PAC
does slightly better at matching all the autocorrelations together than the CIA
model, but the two search models show considerably lower Ly2 and L, risks.

Summarizing, search-frictions in the goods market can improve the fit of
contemporaneous and lagged correlations of output and inflation, and the auto-
correlations of inflation with regard to standard flexible price monetary models
with Walrasian goods markets.

4.2.3 Impulse Response Functions

This subsection compares impulse responses to a transitory and a permanent shock. In
the VAR, they are identified via a standard long-run identification scheme as in
Blanchard and Quah (1989). In the models, they correspond to a shock to money
growth and technology.'” Figure 1 plots the results. Dotted lines correspond to the
90% intervals of the impulse responses stemming from the assumed DGP, the solid
line is the corresponding mean response. The dash-dotted line represents the
responses of the CIA model, the dashed line the ones of the PAC model and the
dotted line with "+" shows impulse responses of the corresponding search model.

A monetary shock does not induce strong output responses in the CIA model,
and they go in the wrong direction. Assuming limited participation in asset
markets and portfolio adjustment costs, as the PAC model does, is sufficient to get
a hump shape output response. However, the response overshoots after some 8-
10 quarters and leaves the error bands at quarter 13.
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The estimation procedure chooses apparently a too high portfolio adjustment
cost parameter to get a suf-ficiently persistent propagation mechanism to fit the
data, but not enough to get a good fit of the marginal data density and too much
to fit the impulse responses. To get a hump shape output response search-
frictions in the goods market also do the job, although not on impact.
Predetermined labor can prevent a strong negative impact and delivers a more
pronounced hump. The output responses of both variants of the search model
show a delayed hump but remain then close to the mean response of the DGP.
Inflation shows considerable persistence in the data after a transitory shock.
While the CIA and the PAC model overpredict the impact response of inflation
lacking some persistence afterwards, the search models track considerably well
the inflation response over the whole horizon.

Turning to effects of a permanent shock in Figure 2, we see a large 90% inter-
val for the output responses. The response of the STM1 model lying outside the
upper bound for various periods and then entering the 90% interval again, while the
PAC and CIA models under-predict the mean response and leave the error bands
sooner or later, but still doing better than the standard search model STMI.
Assuming predetermined labor in STM2, however, makes the search model’s response
nearly coincide with the mean response of the DGP, although overshooting slightly at
the end of the 40 quarter horizon.

To quantify the ability of the models to predict dynamic responses let's turn
again to the loss function analysis. Table 8 presents the L, risk and the Ly2 risk for the
four different impulse responses. Part a) of the table considers jointly the
responses from 1 to 12 quarters after the shock, while part b) considers jointly
the responses from quarter 1 up to 32 after the shock.'® The L, and the Ly2
statistics confirm the visual impression from figures 1 and 2. Consider first the
medium horizon up to 12 quarters in Table 8.a. Looking at the first column we see
that the STM2 model improves slightly on the CIA model but is poorer than the
PAC model in predicting the impulse response of output to a monetary shock when
using the L criterion.

'7 Following Schorfheide (2000) magnitudes of structural shocks are normalized by their long-run
effects rather than by use of the estimated parameters oy and o4, that correspond to an estimation
resulting in insignificant posterior probability. Thus, I consider a transitory (monetary) shock that
increases the price level by 1% and a permanent (technology) shock that increases output by 1%.
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Things are different considering the Ly2 -risk. The STM2 does much worse, and in
contrast to the result in Schorfheide (2000) the CIA model performs better
than the PAC. This result seems to be sensitive to the precision of the
calculation of the inverted Hessian at the mode. With respect to responses of inflation
to a monetary shock the two criteria give both the ordering STM2 better than
STM1, and PAC better than CIA, but the L, criterion ranks STMI least, letting
the standard monetary models the places 2 and 3 in the ranking: the PAC model
dominates the CIA model, which outperforms the search model. Output effects
of technology shocks follow the same pattern, only CIA dominates PAC under
L, loss. A striking feature of column 4 is the large losses the latter models incur
when looking at the ability to predict inflation responses to a technology shock.
Here, the STM model clearly outperforms its competitors.

Considering the longer horizon of 8 years as documented in part b) of Table
8 the ranking changes in favour of the search-theoretic models after a monetary
shock. According to the L4 loss the output response is tracked best by STM2,
and both search models outperform the other models with respect to the inflation
response. Regarding technology shocks the ranking of output responses is the
same under L, loss, while now the PAC model improves and shares with the STM2
model the least Ly2 risk. The losses of the inflation responses after a technology shock
are now closer for the two search models, and the STM2 model does better under the Ly2
loss. But otherwise the ranking is the same as in the case of a 12 quarters’ horizon.

5. Conclusion

Search models of money put more structure to the goods market as models
with a Cash-in-Advance constraint by assuming bilateral trade and costly
search for trading partners in the goods market. Bayesian model comparison can
provide a quantitative assessment of the role of these goods market frictions: Both,
the standard search model (STM1) and the one with predetermined labor (STM2),
outperform their two competitor models by their predictive score measured by
the marginal data density. Moreover, the STM2 model improves on the standard
Cash-in-Advance model in nearly all of the considered dimensions.

'"® The weighting matrix W in the calculation of the Lq risk is the k x k identity matrix scaled by
the factor 1/k, where k is the number of quarters considered.
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Search in the goods market adds a propagation mechanism that results in
hump shaped output responses to a monetary shock that delivers a smooth reaction
of output on a technology shock and generates a persistent disinflation after a
technology shock. Contemporaneous and lagged correlations of inflation and
output growth can be predicted considerably better, although not for longer lags
and for leads. Finally, the search model predicts very well the autocorrelations of
inflation, while the CIA model can not. Thus, search frictions do make a
difference.

The additional frictions imposed on the portfolio choice of the consumers in
the PAC model also act as a mechanism to propagate monetary shocks
persistently - at least with respect to output. Its response to a monetary shock
is more pronounced and more persistent than the response of output in the
STM2 model but overshoots the empirical counterpart. The PAC model is not as
good as the STM2 model at predicting the persistent disinflation process after a
technology shock and the persistent inflation after a monetary shock. The pre-
dictions of the output response to technology shocks are considerably worse than
those of the STM2 model. The PAC model shares with the CIA model the
failure to predict the autocorrelations of inflation and the contemporaneous
correlations of inflation and output growth. So, with respect to the question
whether the frictions in the goods market or the frictions in the asset market
provide a better model to predict characteristics of the data, this analysis gives
more evidence for the former. Given that the search models gives a micro-
foundation of money and on the other hand portfolio adjustment cost are assumed
ad-hoc on an ad-hoc model of money, these quantitative results reiterate the
appeal of the former and the hope that future extensions of search models allow
the applied economist to address the sort of policy questions the ad hoc models
were built to answer in the first place.
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Appendix A.1. Equilibrium and Optimality Conditions

A.1.1 Search Model STM; (Standard Walrasian Labor Market)

After substituting (2) into the objective function, necessary conditions for an

optimum are the FOCs ( with respect to M,,,, i, K,,,, X,, s,, n,and n’ ):
i = BE @y + &, )50 A | (26)
o, = BENG, (.. )o,, +(1-6))o,., | (27)
= ENB(-6)og +a,0, [ (1. K, (28)
U'c,)=ay (29)
®'(s,) = g,(5,)[U'(c. )g, - @y, ] (30)
¢ =B, (31
BEW, = Elo,. f,(n, K, )} (32
with the slackness conditions associated with (3) and (4):
A =i =0 Vjed, (33)
Oy [ + F 1 K )= |= 0 Vied,., (34)
and the transversality equation:
lim~E {wg,. K, } = 0 (35)
Symmetric Nash-bargaining in the goods market implies
0, =0,-1-7)o, (36)
4, =U'@)-a, (37)

with o, = Pw,,, and A4, = P A, and the bars indicating the variables of the matched HH.

Definition: A symmetric search equilibrium is defined as a sequence of house-holds’

ChOiceS {th }120’ F - {C xt’ St’ nt’nt ’ Mz+l’ Kt+1’ t+1 )p o
trade {)A(t }120, Xt E(qt,m,), realized “terms of trade” {Xt}

wage rate W, and expected average search-intensity §, , such that

expected quantities in a

X, E(q,,m,), the

>0 °
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(i) these variables are identical across households and relevant individuals;

(ii) given {)?t }zzo , W, and {MO, K, io}, {F } solves (PH-STM) with s, = 5,;

t>0
(iii) X, is a solution to the Nash bargaining process;
(iv) X, =X, Vt>0.

Considering only symmetric equilibria, hats and bars can be suppressed.
Attention will be restricted to the case where 4 > 0 and w > 0 which is the

case around the steady state. It is now possible to reduce the system of
equations defining this equilibrium. See Menner (2006) for details.

Using the convention to date predetermined variables as of date ¢-1, this
leads to a system of static equations:

qt = it—l + f(nt’Kl—l) (38
x, =a,Bzs/q, —c,
U'(Ct): Wk, (

O'(s,)s, " =24, [U'(c,)- @]

Po=a,.f,(n.K,,) (42)

that jointly determines {gq,, ¢, X,, s,, n,} as functions of the states { i, ,, K, |}
and the co-states { @,, @,,, @, }.
Substituting (38)-(42) into (6)-(7) and (26)-(28) one gets the dynamic system:

l _(1 5)( t1+f( ))_BZStaqt (43)
K, = (1—6,()](',_1 +apBZS[“qt -c, (44)

o =ﬂEt{%+l (0,0 + 2570 (c,0) o, )} (4s)

tqt

w, = PE, {(1 S, )a’zm +BZSt+1( o) (1 S, )a)it+l )} (46)
_Ez{ﬂ(l_5 )a)Kt+l+ap tt ( s z)}

where (43) - (44) are the laws of motion of the state variables { 7, ,, K, , } and the

others are expectational equations for the jump variables {®,, ®,, @y, }
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A.1.2 Search Model STM, (Labor Market with Predetermined Labor):

In the model comparison we also consider a version of the search model with
predetermined labor. Think of a Walrasian labor market where you can hire and fire
without costs but the workers start to work only after one period. Then employ-
ment is a predetermined variable denoted by n,; at date t, and we replace (42) by

Pe=E\w,f,(n.K,) (48)

Appendix A.2. Loss functions

Loss functions
1. Quadratic loss function (Lg)

Lle.é)=e-Ewle-2). (49)

where W is a positive definite m x m weight matrix. As shown in Schorfheide (2000),
the posterior risk then depends only on the weighted distance between 52 and the

expectation of & with respect to the overall posterior, E[ £/Y], but not on higher

moments of the posterior distribution.'?
2. L, loss function
L,(&.8)=1{p(e/v)> plérY), (50)

where [{} denotes the indicator function that is equal to one if its argument is true, and
zero otherwise. This loss function penalizes point predictions that lie in regions
of low posterior probability. If the posterior is uni-modal, the expected L, loss
tells us how far the model prediction lies in the tails of the posterior distribution,
similar as are indicating usual p-values.

3. L,z loss function

L.(eé)=1ic .(e/v)<C (7)) (51)

where
C.(&1v)=(e-Ele/ Y]V (£-E[g /7)), (52)

and V, is the posterior covariance of & under p(&/Y).
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L.:> and L,-loss are identical, if the posterior distribution of & is Gaussian. In
general, under the L,-loss models are compared based on the height of the

posterior density at &, while under L, the comparison is based on the weighted

distance between é;i and the posterior mean E[ £/Y].

Optimal predictors:
The optimal predictor for L, is the posterior mean of & under model M;,

whereas for the other two loss functions éi depends on the shape of the posterior
distribution. Since the predictor ought to be calculated only by information
contained in p( &/Y; M,), the latter replaces p(&/Y) in (28), and it follows that the
optimal predictor é;l. for the L,-loss is the posterior mode of p(&/Y; M;) and for
the L,2-loss it is the posterior mean E[ £/Y].

'S In this paper I use an identity matrix as weight matrix, although one could give more or less

importance to some of the characteristics in the vector 6:, to mimic, e.g., the different importance RBC

researchers give to certain second moments in their informal comparison of simulated and actual data.
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Appendix A.3. TABLES

Prior Distributions:

Table 1 Name Range Density Mean SE

All Models: e [0, 1] Beta 0.3560 (0.0200)
B [0, 1] Beta 0.9930 (0.0030)
¢ R Gaussian 0.0085 (0.0030)
y R Gaussian 0.0100 (0.0025)
P [0, 1] Beta 0.6000 (0.2230)
8 [0, 1] Beta 0.0165 (0.0080)
o R" InvGamma* 0.712 %* (2.000")
Ou R" InvGamma* 0.600 %* (2.000")

CIA/PAC: ¢ [0, 1] Beta 0.6500 (0.0500)

Only PAC: K R" Gamma 50.000 (20.000)

Only STM: o [0, 1] Beta 0.5000 (0.1000)
B [0, 1] Beta 0.5263 (0.0500)
3i [0, 1] Beta 0.0072 (0.0010)
eo R" Gamma 0.5000 (0.2500)
z [0, 1] Uniform 0.5000 (0.2887)
ap 0.0069 fix 0.0069 (0.0000)
00 1 fix 1.0000 (0.0000)

* InvGamma stands for the Inverse Gamma (v,s) distribution and the documented values
in the columns "Mean" and "SE" correspond to its parameters S and Vv, respectively.
For v = 2 the SE is infinite.

Notes: CIA is the cash-in-advance model. PAC is the portfolio-adjustment-cost model.
STM1 is the search-theoretic monetary model with standard Walrasian labor market.
Model STM2 is the search- theoretic monetary model with predetermined labor in an
otherwise Walrasian labor market. The parameter ¢ of the STM’s is determined from
steady state conditions since n* is normalized to 100. Note also, that ex = 1- ey,
and 8 = Oy - (. Finally a, is fixed as in the calibrated model to match employment, and

@o is normalized to 1.
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Posterior Parameter Distributions:

Table 2 CIA Model PAC Model STM ; Model STM , Model
Mean SE Mean SE Mean SE Mean SE

ex 0.4257 (0.0216) 0.4317  (0.0218) 0.3433  (0.0193) 0.3879  (0.0171)
B 0.9871  (0.0032) 0.9724  (0.0055) 0.9983  (0.0007) 0.9989  (0.0018)
¢ 0.0041  (0.0009) 0.0044  (0.0010) 0.0065 (0.0007) 0.0080 (0.0013)
Y 1.0129  (0.0013) 1.0127  (0.0015) 1.0056  (0.0027) 1.0024  (0.0018)
Pu 0.8646  (0.0284) 0.8591  (0.0334) 0.8206 (0.0159) 0.8060 (0.0217)
) 0.0022  (0.0012) 0.0036  (0.0019) 0.0234  (0.0082) 0.0463 (0.0103)
Ga 0.0127  (0.0008) 0.0155  (0.0010)  0.0092  (0.0007) 0.0162  (0.0009)
Owu 0.0028  (0.0002)  0.0034  (0.0002) 0.0035 (0.0002) 0.0034 (0.0002)
) 0.6904  (0.0470) 0.6852  (0.0496) - - - -

K - - 71.942  (25.818) - - - -

o - - - - 0.4522  (0.0964) 0.4987  (0.0949)
B - - - - 0.4876  (0.0510) 0.5089  (0.0516)
0 - - - - 0.0066  (0.0009) 0.0066 (0.0010)
eo - - - - 0.2820  (0.1413) 0.3085  (0.1441)
z - - - - 0.0140  (0.0062) 0.0064  (0.0035)
ap - - - - 0.0069  (0.0000) 0.0069  (0.0000)
0o - - - - 1 (0.0000) 1 (0.0000)

Notes: Posterior means and standard errors. CIA is the cash-in-advance model. PAC is

the portfolio-adjustment-cost model. STM1 is the search-theoretic monetary model with

standard Walrasian labor market. Model STM2 is the search- theoretic monetary model

with predetermined labor in an otherwise Walrasian labor market.
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Model Comparison:

Table 3 CIA PAC STM 1 STM2
Prior Prob. mio 1/4 1/4 (1/4) (1/4)
Marginal Data Density In p(Y/Mi) N/A N/A N/A N/A
Laplace Approximation 1502.11  1492.59 1549.97 1524.94
Posterior. Probability xi 246E-025 1.8E-029 1.5E4 2.0E-015
Posterior Odds /T 1 7.32E-05 6.08E+020  8.20E+09
Table 3 continued VAR(1) VAR(2) VAR@B) VAR(4)
Prior Prob. mi,o 1/16 1/16 1/16 1/16
Marginal Data Density In p(Y/Mi) 155944  1557.73 1559.31 1553.75
Laplace Approximation N/A N/A N/A N/A
Posterior. Probability mi 0.4848 0.0877 0.4257 0.0016
Posterior Odds /T 1.97E+24 3.56E+23  1.73E+24  6.66E+21

Notes: The marginal data density In p(YT/Mi) is exact for the VARs. For the
DSGE models it is approximated by the Laplace Approximation. CIA is the cash-in-
advance model. PAC is the portfolio-adjustment-cost model. STM1 is the search-
theoretic monetary model with standard Walrasian labor market. Model STM2 is the
search-theoretic monetary model with predetermined labor in an otherwise
Walrasian labor market.
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Correlation (A GDP  , Inflation t+n)

Table 4 Model h=-2  h=-1 h=0 h=1  h=2
90% Interval (U) 0.0524  0.0709 -0.0407 0.1534  0.1925
90% Interval (L) 02465 -0.2156 -0.2440 -0.1375 -0.0899
Mode Prediction  CIA 0.0009  0.0018 -0.5612 -0.0286  0.0278
PAC 0.0132 00276 -0.4525 0.0137  0.0051
STM1  0.1000  0.1302 -0.0791 -0.0707 -0.0622
STM2  0.0696 -0.0049 -0.0439 -0.0596 -0.0629
L,-risk CIA 0.6706  0.4266  0.9992  0.0864  0.2202
PAC 0.7482  0.6228  0.9959  0.0000  0.0740
STM1 09772 09585  0.0000 0.2499  0.3832
STM2 09507 03666 02666 02141  0.3870

Notes: Dynamic correlations of output growth and inflation at leads and lags:
mode predictions and L, risk. CIA is the cash-in-advance model. PAC is the
portfolio-adjustment-cost model. STM1 is the search-theoretic monetary model
with standard Walrasian labor market. Model STM2 is the search-theoretic monetary
model with predetermined labor in an otherwise Walrasian labor market.

Table 5 Joint correlations
CIA PAC STM 1 STM 2
Cx? 254.6148 177.2644 24.2330 13.3853
Lx?- risk 1.000 1.000 0.9970  0.9649
Lq - risk 0.2312  0.1405  0.1005  0.0541

Notes: Joint dynamic correlations of output growth and inflation at leads and
lags: Statistic Cx?, Lx*risk and L, risk. CIA is the cash-in-advance model. PAC is
the portfolio-adjustment-cost model. STM1 is the search-theoretic monetary model
with standard Walrasian labor market. Model STM2 is the search-theoretic monetary
model with predetermined labor in an otherwise Walrasian labor market.
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Autocorrelation of Inflation: Corr (Inflation « , Inflation ¢-n)

Table 6 Model h=1 h=2 h=3 h=4
90% Interval (U) 0.8468 0.7652  0.7049 0.6310
90% Interval (L) 0.6781 0.4905  0.3424 0.2329

Mode Prediction CIA 0.4540 03931 0.3390 0.2944
PAC 0.4972 0.4308  0.3745 0.3267
STM,; 0.8202 0.6705 0.5486 0.4493
STM, 0.8173 0.6663  0.5457 0.4493

L,-risk CIA 0.9999 09899  0.7776 0.4363
PAC 0.9999 09720 0.6178 0.2336
STM, 0.7762 0.3569  0.3106 0.3469
STM, 0.7518 0.3130 0.3070 0.3470

Notes: Autocorrelations of inflation up to 4 lags. Mode predictions and
L, risk. CIA is the cash-in-advance model. PAC is the portfolio-adjustment-
cost model. STM1 is the search-theoretic monetary model with standard
Walrasian labor market. Model STM2 is the search-theoretic monetary model
with predetermined labor in an otherwise Walrasian labor market.

Table 7 Joint correlations
CIA PAC STM 1 STM 2
Cx? 106.3872 76.1335 2.4274  1.9537
Lx?- risk 1.0000  0.9998  0.4838  0.3959
Lq - risk 0.1943  0.1216  0.0070  0.0063

Notes: Joint autocorrelations of and inflation up to 4 lags: Statistic Cx?, Lx?
risk and L, risk. CIA is the cash-in-advance model. PAC is the portfolio-
adjustment-cost model. STM1 is the search-theoretic monetary model with standard
Walrasian labor market. Model STM2 is the search-theoretic monetary model with
predetermined labor in an otherwise Walrasian labor market.
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Impulse Responses

Table 8 Model dY/dey dm/dey dY/dey dn/de
a) 12 periods

Lg-risk CIA 0.2266  0.0048  0.0877 0.0710

PAC 0.0628 0.0025 0.4175 0.0438

STM; 0.3604 0.0083 0.5694 0.0004

STM, 0.1561 0.0006 0.0061 0.0108

Lx?-risk CIA 0.2440 0.8998  0.9686 0.9938

PAC 0.7284 0.8116  0.9302 0.9870

STM; 0.7758 0.6554  0.9882 0.2898

STM, 09120 0.2038  0.8908 0.7304
b) 32 periods

Lg-risk CIA 0.2346 0.0049 0.1214 0.0720

PAC 0.1953 0.0026  0.6043 0.0461

STM; 0.3377 0.0005 0.6670 0.0104

STM, 0.1607 0.0008 0.0186 0.0128

Lx2-risk CIA 0.2446 0.8326  0.9368 0.9796

PAC 0.8834 0.8222  0.8970 0.9678

STM; 0.7378 0.3278 09714 0.7878

STM, 0.8676 0.2592  0.8972 0.7706

Notes: Joint analysis of impulse responses (2 different horizons).
Table 8a: jointly considered are periods 1 to 12. Table 8b: jointly
considered are periods 1 to 32. Column 1-4 are respectively:
Output and Inflation response to (temporary) Monetary shock,
Output and Inflation response to (permanent) Technology shock.
Documented are L, risk and Lx*risk. CIA is the cash-in-advance
model. PAC is the portfolio-adjustment-cost model. STM1 is the
search-theoretic monetary model with standard Walrasian labor
market. Model STM2 is the search-theoretic monetary model with
predetermined labor in an otherwise Walrasian labor market.
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Appendix A4. FIGURES

Figure 1:
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Notes: Impulse Responses to a transitory monetary shock. In black are the posterior mean and the
90% probability bands of the posterior distribution of the constructed data generating process,
dash dotted and dashed blue lines represent responses at posterior means of the CIA and PAC
model parameters. The first row adds the mean response of model STM1 and the second of STM2,
both marked with “+”.
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Notes: Impulse Responses to a permanent technology shock. In black are the posterior mean and
the 90% probability bands of the posterior distribution of the constructed data generating process,
dash dotted and dashed blue lines represent responses at posterior means of the CIA and PAC
model parameters. The first row adds the mean response of model STM1 and the second of STM2,
both marked with “+”.
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