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Abstract 

A search-theoretic monetary DSGE model with capital and inventory investment 
is estimated, and its implications on output and inflation dynamics are contrasted 
with those of standard flexible price monetary models: a cash-in-advance and a 
portfolio adjustment cost model. Model estimation and comparison is conducted 
in a Bayesian way in order to account for possible model misspecification. The 
search model can track inflation and output data better. It dominates the other 
models in the ability to predict the autocorrelations of inflation, the 
contemporaneous correlation between output growth and inflation, and in the 
persistent (dis-)inflation process after a (technology) monetary shock. It generates a 
hump-shaped but delayed output response to a monetary shock that matches the 
data better than the other models. 
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1.  Introduction 
       Starting from Kiyotaki and Wright (1991), (1993) search theory has devel-
oped into the main paradigm of the micro-foundation of money. Giving 
money an essential role - money augments the set of achievable allocations1 - this 
approach has become a useful tool for monetary theory. However, little quantitative 
analysis has been undertaken so far with search models of money.2

This paper addresses quantitatively the implications of search frictions in 
the goods market for inflation and output dynamics in three different 
dimensions: Can a search-theoretic model track US output growth and inflation 
data better than other standard flexible price monetary models like the cash-
in-advance (CIA) model or limited participation models? Can it create more 
realistic contemporary and lagged correlations between output growth and 
inflation? And: How well do dynamic responses to shocks to money growth 
and technology match its empirical counterparts? The aim is to assess whether 
search frictions in the goods market have the potential to improve substantially the 
models used as laboratories to study the effects of monetary policy. 

Search-theoretic monetary business cycle models explore the consequences of 
search frictions in the goods market for aggregate variables in business cycle 
frequencies, but are not tailored to fit the data. Thus, any version of this 
model class is probably highly misspecified, i.e., we cannot believe that any of 
these models comes close to the true data generating process (DGP). The same is 
true for the standard CIA and limited participation models. Obviously, one 
could try to enrich the models with many additional features like habit 
formation, investment adjustment costs, etc. – so as to deal with less 
misspecified models. But the question arises what one can really learn from a 
comparison of highly complex models where many frictions interact with each 
other. Here we take another road: to keep the models simple I follow 
Schorfheide (2000) in applying a Bayesian methodology that allows comparing 
potentially misspecified models by use of a highly parameterized reference model 
that achieves a good fit to the data, namely a VAR. 

1  See Kocherlakota (1998) and Wallace (1998) on the issue of essentiality. 
2 In his lecture at the Canadian Economics Association Meetings (Hamilton 2005), published in Shi 

(2006), Shi gives an overview of the literature, highlighting the quantitative contributions of Shi (1998), 
Wang and Shi (2006), and Menner (2006), and urging for more quantitative analysis in the field of monetary 
search-theory. 
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The model chosen from the class of search-theoretic monetary models (STM) 
is based on the full fledged business cycle model of Menner (2006) that 
combines search frictions in the goods market3 and capital formation.4  There are 
several reasons for this choice. First, there are only few models of the search-
theoretic literature capable of addressing macroeconomic issues. To study the 
effects of changes in money growth the early literature had to assume an upper 
bound in money holdings.5  Shi (1998) was the first to develop a tractable 
search-theoretic Dynamic Stochastic General Equilibrium (DSGE) model 
where prices are determined endogenously and money holdings are not bounded. 
His model exhibits a persistent mechanism propagating monetary shocks that arises 
from the interaction of search-intensity and inventory investment but lacks the 
possibility of capital formation. Second, allowing for capital formation as in 
Menner (2006) potentially helps the model to propagate shocks as it does in 
standard business cycle models. Moreover, capital formation breaks the close link 
between employment and output present in a model with fixed capital.6  Since we 
are interested in inflation and output dynamics it is better not to rely too heavily 
on outcomes of the labor market in determining output responses and hence to 
use a model with capital formation. 

What about alternatives? Faig (2002) has developed a model where the 
production sector is neoclassical and capital is accumulated by using the firm's 
own product as investment. The commerce sector is separated from the 
production sector. His model differs in many other details from the present 
model and the analysis concentrates on welfare implications of money growth 
across different steady states. It is not clear from the outset whether it can 
generate such rich dynamics as the present model, since Faig studies only 
monetary policies that keep the nominal interest rate constant.  

3  Although Menner (2006) assumes also search frictions in the labor market, I only consider model 
versions with flexible labor markets in order to compare the models on equal grounds. 

4  In the model in Menner (2006) capital adjustment costs were necessary to render stable equilibrium 
dynamics given the chosen calibration. A previous working paper version of the present work, 
Menner (2007), documents that the capital adjustment cost parameter cannot be estimated properly 
and that the estimation procedure is able to find parameters that imply stable dynamics also in the 
absence of capital adjustment costs. Hence, we do not consider them here. 

5  See Rupert et al. (2000) for an excellent overview of the literature on search-theoretic monetary 
models before the year 2000. 

6  Log-linearizing the production function y =  k0
e k  nt

1- e k
 w i th  k 0  f i x ,  o n e  s e e s  i m m e d i a t e ly  

t h e  p r o portionality between log-deviations of output yt and employment nt: yt = (1 - ek)nt. 
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       Recently, a different approach to avoid assuming bounded money holdings 
was proposed by Lagos and Wright (2005). Their model, where agents alternate 
in visiting decentralized and centralized goods markets has been used by many 
researchers, recently. Although some extensions of the Lagos-Wright model allow 
for capital formation, they assume that only matched sellers produce, so there 
are no inventories. Together with the fact that all changes in money holdings 
in the decentralized markets are undone in the following centralized market, this 
presumably implies weak inter-temporal links and a weak propagation of monetary 
shocks.7  Comparing different types of search models is left for future research. 

As stated above we will compare a search-theoretic monetary model with 
other standard flexible price models, not with sticky price and/or sticky wage 
models8. Costs of price adjustments on the firm level do not necessarily induce a 
considerable degree of price stickiness on the aggregate level. Golosov and Lucas 
(2007) estimate the real effects of menu costs on the firm level to be very small. 
So, menu-costs do not seem to be a very convincing micro-foundation of price-
stickiness. The assumption of sticky prices is, thus, more-less ad-hoc. Therefore, one 
might want to step back and ask what aspects of a monetary economy lead to real 
effects of monetary surprises even when prices are flexible. Frictions in the goods 
market and in the asset market are candidates examined here.9  

To summarize, I contrast a modification of the search model of Menner 
(2006) that features a Walrasian labor market instead of labor search with two 
standard flexible price models: a cash-in-advance (CIA) model and a limited 
participation model with portfolio-adjustment costs (PAC). The former has as 
the only friction the constraint on the representative household to have enough 
money on hand to pay for the purchased goods, while the latter assumes, in addition, 
frictions in the portfolio adjustment.1 0

7  Arouba and Wright (2003) find a dichotomy between the real and monetary sector, while 
Aruoba, Waller and Wright (2007) propose different variations where the monetary trades in the 
decentralized goods market have some influence on capital formation. 

8  Models with nominal rigidities are now widely used for policy evaluation. Most prominent 
examples are Christiano, Eichenbaum and Evans (2005), and Smets and Wouters (2003). 

9  A different route is taken in a very recent preliminary and incomplete paper by Aruoba and 
Schorfheide (2007) who introduce price stickiness into the centralized market of a Lagos-Wright 
(2005) type model and estimate it in a Bayesian way. Their search theoretic micro-structure of the 
decentralized market, however, is rejected by the marginal data density criterion in favor of a 
money-in-the-utility specification. 
     1 0  Since I use the same methodology and the same time series as Schorfheide (2000) - but with a 
longer sample up to 2008 - this research updates his model comparison of the CIA and PAC model and 
extends it to include search-theoretic monetary models. 
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Estimation of model parameters is undertaken by use of Monte Carlo 
Markov Chain methods that generate draws from the posterior parameter 
distributions. According to the marginal data density the search-theoretic 
model tracks the post-war time series of U.S. output growth and inflation better 
than the portfolio adjustment cost model and the standard CIA model - coming 
close to VAR's with 1 to 4 lags. Loss functions are used to compare the ability 
of the models to account for current, lagged and leading cross correlations of 
output growth and inflation, autocorrelations of inflation and impulse responses to 
monetary and technology shocks. In each case expectations are calculated using a 
mixture of VAR(1) to VAR(4) and the DSGE models, weighted by their posterior 
probabilities. 

The expected loss, or risk, a researcher incurs when choosing the STM model 
is considerably lower for cross correlations at "lags" -1 and 0 than the ones he 
incurs when choosing one of the alternative models. However, when looking at 
other periods ahead and behind the STM model ranks least. Moreover, while the STM 
model improves slightly on the CIA model in replicating the dynamic responses 
of output to shocks to money growth, it is the PAC that minimizes the loss in this 
dimension. The propagation mechanism of the STM model is not strong enough to 
replicate fully the persistence present in output, and the magnitude of the response 
in the first quarters. However, the imposed frictions on portfolio adjustment turn 
out to be estimated too large and the response of the PAC model overshoots in 
the medium and long run. The STM model can predict well the persistent 
disinflation process after a technology shock and the autocorrelations up to lag 
3 of inflation, which neither of the two other models can. Hence, search 
frictions in the goods market add a new propagation mechanism to the CIA 
model that behaves in some dimensions similar, but in other dimensions different 
to the mechanism created by frictions in the portfolio management of consumers.  

The rest of the paper is organized as follows: Section 2 contains an outline 
of the three models, of the solution and detrending method and of how the 
policy functions are transformed into state space form. Section 3 lays out the 
empirical strategy of Bayesian estimation and model evaluation. The results of the 
estimation process and the model comparison are presented in section 4, and section 
5 concludes. 
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2.  The Models 

      In the following I will present the three models to be compared. Since the 
reader is probably less familiar with the search-theoretic monetary model than 
with the portfolio adjustment cost model and the cash-in-advance model, I will 
explain the former in more detail and restrict myself to a short exposition of the 
others. 

2.1 The Search-Theoretic Monetary (STM) Model 

2.1.1 The Economy and its Matching Process 

In the model of Menner (2006) there are two search frictions: costly search for 
consumption and investment goods, as well as costly labor search. In the following, 
however, I will consider only Walrasian labor markets. 

The economy is populated by a continuum of households with measure one, 
denoted by H. A continuum of goods with measure one, also denoted by H, can 
be produced with labor and fixed capital as inputs to production. Each good is 
storable only by its producer. Purchased investment goods can be installed as 
capital by incurring an installation cost, i.e. there exists a (quadratic) capital 
adjustment cost. Each household h∈H produces good h and wants to consume a 
subset of goods different from its own product, and only goods from this subset 
can be used as capital for the production of good h. This induces a need for exchange 
before consumption / investment is possible. In the absence of a centralized market 
with a Walrasian auctioneer households have to search for trading partners with the 
desired goods. Generally, there will be no double-coincidence of wants. The 
literature following Kiyotaki and Wright (1991), (1993) established that in 
random search models under certain parameterizations fiat money gets valuable and 
is the only medium of exchange. To establish this in the present model would 
require a more detailed consideration of the exchange patterns. Instead, here it is 
simply assumed that fiat money is required in each transaction. 

Because of random matching in the goods markets money holdings, inventories 
of unsold goods and capital stocks would not be equally distributed among 
households/firms. To avoid the need of tracking the distributions of these individual 
state variables, it is assumed that the decision unit - the household-firm - consists itself 
of a continuum of different agents. The members of the household share the purcha-
sed consumption-investment goods and regard the household's utility as the com-
mon objective. The household decides how much to consume and how much to invest.  



 
All the firms of a household are assigned the same amount of investment goods. 
Hence, all start the next period with the same capital stock. They also equally 
share workers and inventories. Finally, resource sharing of firms within a 
household allows the payment of wages regardless of whether the firms had a 
suitable match in the goods market. Under these assumptions the random matching 
process does not create idiosyncratic risk. 

The household consists of five groups: one group enjoys leisure, the other 
four groups are active in markets: Entrepreneurs (set Ap  with measure ap), 
unemployed (An, measure u) workers (Ant, measure: apnt), and buyers (Ab, measure 
ab). The values of ap, u and ab are assumed to be constant, while the number of 
workers apnt may vary over time. An entrepreneur consists of two agents: a producer 
and a seller. A producer in household h hires workers from other households to 
produce good h, which is sold by the seller. A buyer searches with search intensity 
st  to buy the household's desired good. The sellers’ search intensity is normalized to 
1. In the following a hat on a variable indicates that the household takes this 
variable and all its future values as given when making the decisions at t. 

The number of goods market matches is given by the matching function: 

 ( ) ( ) ( ) ( ) ( )1.,ˆˆˆ 1
1

1
1

−− ≡=≡
αααα

p

b
a
a

bpb zzsazasazsg  

Let B = a b /a p  be the buyers/sellers ratio. The matching rate per unit of search 
intensity is , so that buyers find a desirable seller at rate sg( ) 1ˆˆ −≡ αszsgb b , and sellers 

meet a buyer at rate . Thus, the measure of the set of buyers with 
suitable matches, A

( ) αszBsgs ˆˆ ≡
b *, is sgbab and that of sellers with suitable matches, Ap *, is gsap .  

Each buyer j  having found a seller - j  with his desired good exchanges  

units of money for  units of good - j , implying a price in this match of 

( )jmtˆ
( jqt −ˆ )

( ) ( ) ( )jqjmjP ttt −= ˆˆˆ  and an average price of goods of . tP̂
Each producer j  hires ( )jnd

t  workers in a Walrasian labor market who can 

work immediately. In a different version of the model discussed below, workers 
can start working only in the next period, so employment is a predetermined 
variable. Each of the apnt workers of the HH supplies in-elastically one unit of labor 
in the current period and receives a wage  in units of money. tW

2.1.2 The Household's Decisions 
At the beginning of period t each household receives a lump sum monetary transfer 
τ t  from the central bank. The household distributes its money holdings Mt   evenly 
 9 



among the buyers. Then the four active groups go to their respective markets and do 
not meet until the end of the period. At the end of the period the members of the 
household arrive at home carrying their trade receipts and residual balances and 
profits, respectively. They consume together the fraction of the bought goods that 
was dedicated for consumption and share the rest among the firms to increase each 
firm's capital stock. Also, goods inventories and employees are shared among the 
household's firms. Finally, the money not spent by buyers, the wages earned and 
profits are added to the money balance of the household for next period's shopping. 

Households decide at the beginning of each period about their consumption c t ,  
their total investment x t  and next period's total capital stock Kt + 1 ,  as well as on 
next period’s money holdings Mt +1 .  The household treats the member of a group 
all the like, assigning the same stocks of capital and money and the same decision 
rules for each. Thus, each buyer receives mt = Mt/ab units of money and each firm 
holds a capital stock kt +1 = Kt +1/ap .  Households choose the buyers' search 
intensity st, the desired inventory level in period t+1, i t + 1 , as well as current 
employment nt . In the version with predetermined employment they choose 
future employment nt +1 . The depreciation rates of inventories δ i  and capital δ k  
are assumed to be constant. The individual firm's production function has the form 

( ) ( ) kk e
tt

e
t

i nkknf −Ψ= 1,      , where ek  <  1 . 

     For convenience denote the individual firm's production function in terms 
of aggregate capital K  as  

( ) ( ) ( ) kk

p
t e

tt
e

ta
Ki nKFnfKnf −Ψ=≡ 1

0,, ,  with .  ke
paF −=0

In their decision households take the sequence of the terms of trade  and 

the wages as given, as well as

{ } 0ˆ,ˆ ≥ttt mq
{ }000  , i, KM . Since both buyers and sellers have a 

positive surplus from trade, it is optimal for households to choose Mt+1, Kt+1  and  
i t+1 such that in period t+1 every buyer carries the required amount of money  

and that every seller has  units of good h to be sold. The assumptions and 

 ensure that buyers and sellers carry the necessary amounts of money 
and goods also in period 0. 

1ˆ +tm

1ˆ +tq 00 m̂aM b≥

000 q̂fi ≥+

 
Regarding preferences it is assumed that the utility of consuming is logarithmic, 

the disutility of working one unit of time is denoted by φ  and  the disutility of a 
buyer's search intensity is . Φ1/+1

0 ) ( = )(Φ εϕϕ ss
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Households choose the sequence { } 0111, ≥+++ tttt
d
ttttt , i, K, Mn, n, s, xc  to maximize 

their expected lifetime utility: 

[ ] ( ) ( )STMPHsA AcE tbn
t

t
t

t
−

⎭
⎬
⎫

⎩
⎨
⎧

Φ−−∑
∞

=

ϕβ
0

0 lnmax  

         s.t.:      ( )2ˆ* tbtt qAxc
t

≤+  

( )3ˆ *
1

11 ++
+≤ tba

M
t Aonm

b

t  

( ) ( )4,ˆ *11111 +++++ +≤
tpt

d
ttt AonKnfiq  

( )5ˆˆˆˆˆˆ **1
d
tttptpttntbttt nWPAmAWPAmAMM

ttt
−++−+≤+ τ  

( ) (611 ttkt xKK )+−≤+ δ  

( ) ( )( ){ } ( )7ˆ,1 *1 tpt
d
ttpitp qAKnfiAiA

t
−+−≤+ δ  

The first constraint states that a household’s consumption and investment has 
to be bought by buyers that successfully meet a trading partner. The next condi-
tion represents the constraint for each suitably matched buyer in t+1 to have the 
required money  on hand, while the fourth is a trading restriction for suitably 
matched sellers: each should have a sufficient stock of inventory and newly 
produced goods to satisfy a costumer’s demand 1+t  in t+1. The law of motion of 
money balances states that money holdings at the beginning of period t+1 are no 
bigger than previous money holdings augmented by the monetary injection minus 
the money spent plus wages earned and cash receipts from firms. Then there’s the 
usual capital accumulation equation. Finally, inventories in period t+1 consist of the 
fraction of the excess supply of goods in period t that has not depreciated. 

1ˆ +tm

q̂

2.1.3 Solution of the model 
Optimality conditions can be derived which together with the laws of motion for 
money balances, capital and inventories (5) - (7) determine the solution to this 
decision problem, once the terms of trade are specified and the equilibrium 
conditions are imposed. The terms of trade are determined by Nash bargaining.11 

The equilibrium definition and the equations describing equilibrium are 
documented in Appendix A.1. 
 

11 See Menner (2006) for details. 
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2.2 The Portfolio Adjustment Cost (PAC) Model 
The first flexible price monetary model I consider is a cash-in-advance model with 
portfolio adjustment costs (PAC).12 The model economy is populated by a 
representative household, a firm and a financial intermediary. The household 
starts period t  with an amount of money Mt  and has to decide how much money 
to deposit as savings deposits Dt  at the bank and how much to hold as cash Qt = 
Mt  -  Dt  before shocks are known. This timing convention is called "limited 
participation" assumption, since the participation of the household in the asset 
market is limited to the time span before shocks are realized. After the realization 
of shocks no portfolio changes are allowed for the current period. In other words, 
the household decides about his future portfolio (Qt,  Dt)  after the realization of 
the shocks in time t ,  not about its current portfolio. Cash does not pay interest 
but is needed to buy consumption goods, while deposits earn an interest rate .  d

tr
    The representative firm does not hold money at the beginning of the period. In 
order to pay its wage bill it borrows money from the banks. The bank receives a 
monetary injection from the central bank and lends it together with the deposits 
to the firm at an interest rate . Since the household cannot change its deposits 
after a surprise change in the monetary injection, the additional funds have to 
be absorbed by the firm. But the firm will borrow a higher amount of funds 
only at a lower interest rate. 

tτ
f
tr

Therefore, a monetary injection leads to a ‘liquidity effect’ because of the 
‘limited participation’ of the household in the asset market. To render this 
liquidity effect more persistent Christiano and Eichenbaum (1992) assume in 
addition to limited participation that portfolio management is time consuming 
and therefore reduces utility by foregone leisure to the amount of: 

( )82*exp*exp~
1

2
1

21
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−=

−−

m
Q
Q

m
Q
Q

p
t

t

t

t
t ααα  

The household consists of a worker and a shopper. The worker supplies  
hours of labor and receives wage payments of  by the firm in the form of 
cash before consumption goods are purchased. The buyer then goes to the goods 
market where his purchases are prone to a cash-in-advance constraint, which means 
that all consumption purchases must be paid for with cash at hand: 

s
tN

s
tt NW

( )9s
ttttt NWQCP +≤  

1 2  This model is laid out in Christiano (1991), and Christiano and Eichenbaum (1992). Nason and 
Cogley (1994) discuss in detail the optimality condition of the model, detrending and log-linearization.
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At the end of the period the household gets back its saving deposits together with 
interest and receives the firm’s and the bank’s net cash inflow as dividends Ft  and 
Bt ,  respectively, all of that forming together with the unspent money the next 
period's money stock Mt + 1 . 
 

So, in the beginning of period t  after shocks are known the household chooses 
 to maximize its discounted expected lifetime utility: 11 and,, ++ tt

s
tt QMNC

( ) ( )[ ] ( )PACPHpNCE
t

t
s
tt

t

QMNC tt
s
tt

−
⎭
⎬
⎫

⎩
⎨
⎧

−−+−∑
∞

=++ 0
0

,,,

~1lnln1max
11

φφβ  

     s. t.                 ( )9s
ttttt NWQCP +≤

( )10tt MQ ≤  

( ) ( )( ) (1111 tttt
d

ttt
s
tttt BFQMrCPNWQM ++−++−+≤+ )  

 

The firm accumulates capital and hires labour services from the household 
and pays the wage bill out of the money borrowed from the bank. Then it 
produces under a Cobb-Douglas technology ( ) ( ) kk

ttttt NKKNF Ψ=, ee −1

d

 and uses 
its sales receipts to repay the loan plus interest and to pay the resulting profits as 
dividends to the household. Since the firm is owned by the household which values 
a unit of nominal dividends in terms of the consumption it buys next period its 
objective is to maximize the expected lifetime dividends discounted by date t+1 
marginal utility of consumption. Hence the firm chooses next period’s capital 
stock , labour demand , loans L1+tK tN t and dividends Ft to solve the problem: 

( )PACPF
PC

F
E

t tt

tt

KFNL tt
d
tt

−
⎭
⎬
⎫

⎩
⎨
⎧
∑

∞

= ++

+

+ 0 11

1
0

,,, 1

max β

 
 s . t .   ( ) ( )121

t
f

t
d
ttt

e
tt

e
ttt LrNWxNKPF kk −−−Ψ≤ −  

 
( ) (1311 ttkt xKK )+−≤+ δ  

 
( )14t

d
tt LNW ≤   

 13 



 

 

The bank is also owned by the household and solves: 

( )PACPB
PC

B
E

t tt

tt

DLB ttt

−
⎭
⎬
⎫

⎩
⎨
⎧
∑

∞

= ++

+

0 11

1
0,,

max β  

 
s . t .    ( )15tt

d
tt

f
tt DrLrB τ+−≤

( )16ttt DL τ+≤  

Markets clear when      

In equilibrium also must hold. 

( ) .1and,, 1 tkttttttt
s
t

d
t KKCYMCPNN δτ −−+=+== +

d
t

f
t rr =

2.3 The Cash-in-Advance (CIA) Model 
For the purpose of model comparison it is convenient to use a version of the CIA 
model that can be generated from the PAC model by changing just two 
assumptions. First, there are no costs to adjust ones portfolio, i.e. 0~ =tp . Second, 
there is no limited participation in asset markets because agents get to know the 
realization of the money growth shock before they make their decision on 
deposits. This leads to the modified maximization problem of the household: 
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subject to the same constraints as above. Additional funds from the Central Bank 
do not alter the interest rate since the household can adjust its saving deposits in the 
light of the observed monetary shock to neutralize the effect of the injection on 
loanable funds. Note that since 0~ =tp , the parameters 1α  and 2α  get obsolete.  

2.4 Specification of Shocks and Detrending 

We consider two exogenous shocks. The monetary injection takes place at the 
beginning of the period such that money growth follows an AR(1) process: 

( ) (17/wherelnln1ln 11 ttttMtMMt MM +− )=++−= γεγργργ  
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The production technology is prone to a technology shock. Recall, that the 

production function was assumed to be ( ) ( ) kk ee −1
ttttt nKFKnf Ψ= 0, in the 

search-theoretic model and to be ( ) ( )ttttt NKKNf Ψ=, kk ee −1  in the PAC model. 

In both cases labour augmenting technological progress is assumed to follow a 
random-walk with drift: 

( )18lnln 1 ttt Ψ− +Ψ+=Ψ εζ  

The vector of innovations [ ]', ttMt Ψ= εεε  is assumed to be i.i.d. , 

with

( )εΣ,0~ N
( )22 , Ψ=Σ σσε Mdiag . 

To get a stationary economy it is necessary to detrend all real variables by dividing 
by . Nominal variables are handled as follows. In the CIA and the PAC model, 

the price level has to be divided by 
tΨ

tt M/Ψ  and other nominal variables (Dt,  Lt ,  
Wt)  have to be divided by Mt. In the search model all the multipliers are detrended 
by multiplying with . For the two former models the literature has shown that a 
steady state equilibrium exists in the detrended variables. For the search model 
we do not provide a formal proof of existence. However, we find a steady state by 
construction in almost the entire parameter space. 

tΨ

2.5 State-Space Representation 
Collecting the observable variables of interest, namely output growth and 
inflation, in a vector yt  the linear policy functions characterizing the solution of 
the log-linearized model can be represented in state-space form by: 

,211

210

ttt

ttty
ενν

εν
Ξ+Ξ=

Θ+Θ+Θ=

−

                      (19)                                   

where tν  is a vector of percentage deviations of the state variables of the model 

from their steady states. The second equation describes the evolution of the state 
vector, while the first equation, the so called “observation equation” links the data 
to the model solution characterized by the states and the current shocks.  

As is well known, the system matrices iΘ  and iΞ  are nonlinear functions of 
the structural DSGE parameters θ, and the DSGE models generate a joint probability 
distribution for the data YT = [y1 , . . . ,yT] ' . Assuming normality of the shocks, the 
state-space representation allows the use of the Kalman-Filter to evaluate the 
likelihood of the different parameter draws for each model. 
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3.  Empirical Strategy 

3.1 Dealing with Model Misspecification 
When comparing the empirical fit of estimated DSGE models one has to be aware 
of the potential misspecification of the models. Although their theoretical struc-
ture intends to capture various features of reality like capital formation and 
frictions, they are highly stylized and probably not very close to the true data gene-
rating process (DGP) of our real world data. One way to deal with the problem of 
misspecification is the Loss-function based Bayesian approach of Schorfheide (2000): 
Using a highly-parameterized reference model that fits the data considerably well, 
e.g. a VAR, a combined DGP is constructed by averaging the considered models and the 
reference model. Deviations of model characteristics (e.g. second moments or 
impulse response functions) from the ones implied by the constructed DGP are 
then quantified via different loss functions.  

3.2 Evaluation Procedure 
Traditional Bayesian Model Comparison is based on the calculation of posterior 
odds ratios. Following the arguments and the notation of Schorfheide (2000), and 
assigning prior probabilities to the models Mi  under consideration, the posterior 
model probability of model Mi  can be calculated by 

( ) ( )

( )
( )20,

/

/
/

0
0

0

∑
=

== n

i
ii

ii
ii

MYp

MYp
YMp

π

π
π  

where p(Y/Mi)  is the marginal data density 

( ) ( )( ) ( )( ) ( ) ( )21./,// iiiiii dMpMYpMYp θθθ∫=  

The latter is the integral over the parameter space of the posterior, i.e. the likelihood 
(
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( ) )ii (MYp ,/θ  times the prior ( ) )ii Mp /θ , where ( )iθ  is the vector of parameters of 
model i. Because of the following expression 

( ) ( ) (22,,/ln/ln
1

1∑
=

−=
T

t
iTtiT MYypMYp )  

the log of the marginal data density can be interpreted as predictive score, i.e. as 
the one-step-ahead forecasting performance of model Mi .  



The posterior odds ratio is then the ratio of two posterior model probabilities. 
Schorfheide stresses, that these odds do not change by the introduction of a 
reference model since its effect on the denominator in (20) cancels out when 
calculating the odds ratio. The model with the higher odds could be chosen as the 
model that better fits the data in the above mentioned sense. 
This corresponds to use a (0,1) loss function, that assigns a loss of 0 to the model 
with higher odds and 1 to the others. When dealing with potentially misspecified 
models this is probably not a good criterion, since it does not give the researcher 
a measure of how much he looses in choosing one misspecified model over another. 

The proposal of Schorfheide (2000) is to use different loss functions to quan-
tify the deviations of some characteristics, ξ , like a vector of moments or of 
impulse responses of the model, with the ones obtained from the assumed 
combined DGP. His methodology is characterized by 3 steps. 

   Step 1 

Generate posterior distributions ( )( )ii MYp ,/θ  for all the model parameters ( )iθ  by 

simulating Monte-Carlo-Markov-Chains, then calculate marginal data densities by 
Laplace-Approximation or Harmonic Mean estimators, and calculate the posterior 
model probabilities as in (20). 

   Step 2 

As the population characteristic ξ  is a function of the model parameters ( )iθ  one 
can generate a posterior distribution of ξ  conditional on model Mi by drawing 
from the posterior distribution of ( )iθ . The posteriors ( )iMYp ,/ξ  of the models 

are then combined to the overall posterior of ξ  by the mixture 

( ) ( ) (23,,//
0

∑
=

=
n

i
ii MYpYp ξπξ )  

where the weights are determined by the posterior model probabilities. 

    Step 3 
Choose appropriate loss functions that penalize deviations of DSGE model 

predictions  from population characteristics ξ̂ ξ  (i.e., characteristics generated by 
the overall posterior distribution). Then, the optimal predictor of ξ  - based 
only on model Mi  – is 

( ) ( ) (24./ )~,minargˆ ~ ξξξξξ ξ dYpLi ∫=  

The three DSGE models are then judged according to the expected loss (risk) of the 
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predictor iξ̂   under the overall posterior ( )TYp /ξ : 

( ) ( ) ( ) (25./ˆ,/ˆ ξξξξξ dYpLYR ii )∫=  

"The posterior risk ( )Ti YR /ξ̂  provides an absolute measure of how well model Mi pre-
dicts the population characteristic. Risk differences across DSGE models yield a relati-
ve measure of model adequacy that allows model comparison. For instance, one can 

select the DSGE model Mi that minimizes ( )Ti YR /ξ̂ . (Schorfheide (2000), p. 652)" 

3.3 Specification of the Priors 
Most priors for common parameters are taken from Schorfheide (2000), for the 
rest of common parameters a wider prior distributions is assumed, s.t. the prior 
means used there and the calibrated values in Menner (2006) are equally likely. 
Model-specific parameters of the STM model are centered around calibrated 
values.13 Table 1 provides a summary of the assumed prior distributions: 

3.4 Data 
Data on output, prices and population from 1950:1 to 2008:1 are taken from the 
FRED database at the FRB of St. Louis. The output series is quarterly real GDP 
in chained year 2000 $'s (A191RX1) divided by the NIPA population series 
(B230RC0), the implicit GDP deflator in year 2000 $'s (A191RD3) is used as 
price index. To get quarterly growth rates, the resulting series are log-differenced. 

4.  Results 

4.1 Parameter estimates 
Since the posteriors of the DSGE models do not belong to a well-known class 
of distributions, it is impossible to draw from the posterior directly. Instead one 
can only evaluate numerically the product of prior and likelihood. Hence a random 
walk Metropolis-Hastings algorithm is used to generate draws from the posterior 
distributions. Technical details on how to generate draws and statistics from the 
VAR and DSGE posteriors are thoroughly explained in the appendix of Schorf-
heide (2000). In what follows, I only state where I differed from his approach. 
1 3  Posterior reweighting does not indicate strong dependence of results on the prior. A Matlab reweighting 
program and posterior files to perform sensitivity analysis on prior specifications can be obtained on request. 
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To ensure convergence of the Metropolis-Hastings algorithm I generated 1 
million draws from the posterior and discarded the first 500.000.14 To avoid serial 
correlation I only used every hundredth draw. All results are based on these 5000 
draws from the posterior parameter distribution. In the algorithm candidate 
draws are drawn from a proposal (jumping) distribution. For the CIA and 
PAC models I use the same jumping distribution as in Schorfheide (2000), i.e. 
a Gaussian with mean at the current draw and variance of 0.2 times the inverse 
Hessian at the posterior mode.  In the case of the STM model I choose a uniform 
distribution as jumping distribution. Since jumps are then bounded, it happens to 
be easier to achieve convergence of the Metropolis- Hastings algorithm where 
there are many parameters to estimate. The spread of the jump distribution was 
chosen parameter by parameter to achieve an average acceptance rate of about 
25-30%, which has found to be a good choice for models with many parameters. 

Recursive mean plots and potential scale reduction factors (see Gelman et al. 
(1995)) have been used to assess convergence. The potential scale reduction 
factors were less than 1.005 for all models indicating that the number of draws 
is large enough to achieve convergence of the transition kernel of the Markov chain 
and that we arrived at the invariant posterior distribution of the parameters. To 
assess robustness of the estimation results with respect to the choice of the 
prior I conducted a “posterior reweighting” as suggested by Geweke (1999). 
Reducing the variance of the prior distributions by 10% does not change the 
posterior means significantly.15 Posterior means and standard errors are calcu-
lated from the output of the Metropolis-Hastings algorithm and shown in Table 2.  

Note, that Table 2 presents the results of two different versions of the search-
theoretic monetary model: STM1 stands for the model with standard Walrasian 
labor market. Alternatively, model STM2 makes the assumption that labor is 
predetermined since workers hired in a period start to work in the fol-
lowing period. Negative adjustment by firing is not profitable when firing 
costs at least as high as the marginal product are assumed. Then it pays 
out to produce in excess and pile up inventories. This second model variant is 
considered since in a model with search-frictions in the labor market, labor would be 
predetermined, too. As shown in Menner (2007) the labor market variables in such a 
search model cannot be estimated properly from the inflation and output data used in 
Schorfheide (2000). But a version with parameters fixed at values implying very 
flexible labor markets did a good job in matching the data. Here, we try to figure 
out, if the assumption of predetermined labor is essential for these kinds of results. 

1 4  CIA and PAC models are estimated using F. Schorfheide's GAUSS code, while for the search-
model I programmed the code in MATLAB making use of H. Uhlig's (1997) "Toolkit for analyzing 
nonlinear dynamic stochastic models easily" to solve for the policy functions in the Kalman filter step. 

1 5  See footnote 13. 
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Consider first the estimation of the common model parameters. All of them 
are estimated quite precisely. For the CIA and PAC model we might expect 
differences to the results in Schorfheide (2000), as the prior distribution for the 
parameter β and δ has been widened. Indeed, the discount factor is reduced, 
implying an annualized real interest rate of 5% and 10% respectively. The capital 
depreciation rate δ, however, does not change significantly; neither does the capital 
share εK. The STM models' estimates are much lower for the real interest rate and 
higher for δ, while the money growth rate and hence inflation is estimated lower. The 
capital share is lower, especially in the STM1 model, and the autocorrelation of 
money shocks is smaller in the STM2 model. The biggest difference is in the trend 
of technology growth which is estimated 50% and 100% higher in the search 
models. For the PAC model, the data assigns a high portfolio adjustment cost 
parameter. Going from STM1 to STM2 leaves the other search-model specific 
parameters apart from the scale in the matching function z almost untouched. 

4.2 Model Comparison 

4.2.1 Posterior Model Probabilities 

The first row of Table 3 shows the assumed prior model probabilities. Because 
of our ignorance about the best lag length for the VAR, a mixture of lags 1 to 4 
is used. So, each model is assigned a prior probability of ¼. The two versions of 
the search-theoretic model are analyzed alternatively. STM1 stands for the model 
with standard Walrasian labor market, in STM2 labor is predetermined. 

Marginal data densities can only be calculated analytically for the VAR's. Row 3 
shows therefore the Laplace-Approximation that uses the Hessian at the posterior 
mode to calculate a penalty on the value of the posterior at the mode. The VARs 
with 1 and 3 lags share more than 90% of the total posterior probability, the VAR(2) 
has about 9% of posterior probability. The VAR(4) and the DSGE models contribute 
very little to the overall DGP. Thus, in the following sections we take as referen-
ce model a mixture of VAR(1), VAR(2) and VAR(3) weighted by their margi-
nal densities and ignore the contribution of the VAR(4) and the DSGE models.  

Once we have calculated posterior probabilities we can compare the odds of 
different models although they cannot grasp well the data because of 
misspecification. Computing standard posterior odds with respect to the CIA model 
one sees that the latter outperforms the PAC model by a factor 732000.1 6  

  
1 6  Notwithstanding, the PAC model performs slightly better than in the analysis of Schorfheide (2000), 
which is in line with the robustness analysis he reports.  Remember, that in calculating posterior odds the 
VAR reference model does not interfere, since its contribution to the denominator of (20) cancels. 
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Although their odds are still far from the odds of the VAR, the search models 
outperform greatly the other two DSGE models: their predictive score comes a big 
step closer to the one of the VAR's in the case of search model 1, and still 
improves on the CIA model by a factor 8.2E+9 in case of model STM2.  

How does it come that the search models do better? The broad answer is 
that they capture better the dynamics of the data. The competitor models seem 
to impose too strong restrictions on the model dynamics. The fact that the 
search models are more highly parameterized cannot explain their better per-
formance per se. First, in the VAR case the VAR(4) has the highest number of 
parameters and performs worst, and the VAR(1) does equally well than the 
VAR(3) – so more parameters do not lead automatically to better fit. Second, 
the penalty in the calculation of the Laplace Approximation is generally higher 
the more parameters are estimated, so that an over-parameterization is 
penalized. As we will see below, the search models outperform the other two 
DSGE models in replicating dynamic correlations and autocorrelations of 
output growth and inflation, and hence track the dynamics of the time series 
better. The reason behind this is that the search-frictions in the goods market 
lead to a propagation mechanism that works through search-inventory 
feedbacks - as already highlighted by Shi(1998) and Menner(2006). As we will 
see below, with respect to inflation and output dynamics this will do better in 
many relevant aspects than the propagation only through capital as in the CIA 
model or additionally through asset market frictions as in the PAC model.  
 

4.2.2 Co-movement and Autocorrelation 
Let's turn to the loss function analysis of second moments. Consider first the 
cross-correlation of GDP growth and the inflation rate. Table 4 presents the results 
for these correlations up to 2 leads and 2 lags. The first two rows show the 
upper and lower bound of the 90% intervals of highest posterior density of the 
overall posterior of the constructed DGP. Mode predictions of the CIA and PAC 
models of the contemporaneous correlation fall outside this interval, which is 
reflected in a very high Lp risk, whereas the STM models predict the 
contemporaneous correlation of output growth and inflation very well. The 
predetermined labor STM does also better for 1 lag, followed by CIA and 
PAC, but fails to hit the 90% interval for 2 lags. In the latter the ranking of 
the models is CIA, PAC, STM2 and STM1. For the leads the ranking between 
CIA and PAC is reversed.  
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The evidence favours the two STM models more clearly if we consider all 
correlations together. Table 5 documents the statistic Cχ2 that is used to calculate 
the Lχ2 risk, together with the latter and the Lp risk of choosing one of the models 
according to the behaviour of the joint dynamic correlations between output and 
inflation. In all the cases the ranking is STM2, STM2, PAC, CIA although each of 
the risks is very high. 

The search-theoretic model is even more successful if we look at autocorrela-
tions of inflation up to 4 lags in Table 6. While the mode predictions of the PAC 
and CIA models lie outside the 90% interval for the first two or three lags, 
respectively, the ones of the search models lie all inside. This is reflected in Lp 
risks of roughly 1 for the CIA and PAC model and considerably lower Lp risks for 
the search models. Only at lag 4 the PAC model shows a lower Lp risk than the 
search models. 

Looking at the joint fit of the autocorrelations in Table 7, we see that the PAC 
does slightly better at matching all the autocorrelations together than the CIA 
model, but the two search models show considerably lower Lχ2 and Lq risks. 

Summarizing, search-frictions in the goods market can improve the fit of 
contemporaneous and lagged correlations of output and inflation, and the auto-
correlations of inflation with regard to standard flexible price monetary models 
with Walrasian goods markets. 
 
4.2.3 Impulse Response Functions 

This subsection compares impulse responses to a transitory and a permanent shock. In 
the VAR, they are identified via a standard long-run identification scheme as in 
Blanchard and Quah (1989). In the models, they correspond to a shock to money 
growth and technology.17 Figure 1 plots the results. Dotted lines correspond to the 
90% intervals of the impulse responses stemming from the assumed DGP, the solid 
line is the corresponding mean response. The dash-dotted line represents the 
responses of the CIA model, the dashed line the ones of the PAC model and the 
dotted line with "+" shows impulse responses of the corresponding search model. 

A monetary shock does not induce strong output responses in the CIA model, 
and they go in the wrong direction. Assuming limited participation in asset 
markets and portfolio adjustment costs, as the PAC model does, is sufficient to get 
a hump shape output response. However, the response overshoots after some 8-
10 quarters and leaves the error bands at quarter 13.  

 



The estimation procedure chooses apparently a too high portfolio adjustment 
cost parameter to get a suf-ficiently persistent propagation mechanism to fit the 
data, but not enough to get a good fit of the marginal data density and too much 
to fit the impulse responses. To get a hump shape output response search-
frictions in the goods market also do the job, although not on impact. 
Predetermined labor can prevent a strong negative impact and delivers a more 
pronounced hump. The output responses of both variants of the search model 
show a delayed hump but remain then close to the mean response of the DGP. 
Inflation shows considerable persistence in the data after a transitory shock. 
While the CIA and the PAC model overpredict the impact response of inflation 
lacking some persistence afterwards, the search models track considerably well 
the inflation response over the whole horizon. 

Turning to effects of a permanent shock in Figure 2, we see a large 90% inter-
val for the output responses. The response of the STM1 model lying outside the 
upper bound for various periods and then entering the 90% interval again, while the 
PAC and CIA models under-predict the mean response and leave the error bands 
sooner or later, but still doing better than the standard search model STM1. 
Assuming predetermined labor in STM2, however, makes the search model’s response 
nearly coincide with the mean response of the DGP, although overshooting slightly at 
the end of the 40 quarter horizon.  

To quantify the ability of the models to predict dynamic responses let's turn 
again to the loss function analysis. Table 8 presents the Lq  risk and the Lχ2 risk for the 
four different impulse responses. Part a) of the table considers jointly the 
responses from 1 to 12 quarters after the shock, while part b) considers jointly 
the responses from quarter 1 up to 32 after the shock.18 The Lq and the Lχ2 
statistics confirm the visual impression from figures 1 and 2. Consider first the 
medium horizon up to 12 quarters in Table 8.a. Looking at the first column we see 
that the STM2 model improves slightly on the CIA model but is poorer than the 
PAC model in predicting the impulse response of output to a monetary shock when 
using the Lq  criterion. 

 
1 7  Following Schorfheide (2000) magnitudes of structural shocks are normalized by their long-run 
effects rather than by use of the estimated parameters σM  and σA ,  that correspond to an estimation 
resulting in insignificant posterior probability. Thus, I consider a transitory (monetary) shock that 
increases the price level by 1% and a permanent (technology) shock that increases output by 1%. 
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Things are different considering the Lχ2 -risk. The STM2 does much worse, and in 
contrast to the result in Schorfheide (2000) the CIA model performs better 
than the PAC. This result seems to be sensitive to the precision of the 
calculation of the inverted Hessian at the mode. With respect to responses of inflation 
to a monetary shock the two criteria give both the ordering STM2 better than 
STM1, and PAC better than CIA, but the Lq  criterion ranks STM1 least, letting 
the standard monetary models the places 2 and 3 in the ranking: the PAC model 
dominates the CIA model, which outperforms the search model. Output effects 
of technology shocks follow the same pattern, only CIA dominates PAC under 
Lq loss. A striking feature of column 4 is the large losses the latter models incur 
when looking at the ability to predict inflation responses to a technology shock. 
Here, the STM model clearly outperforms its competitors.  

Considering the longer horizon of 8 years as documented in part b) of Table 
8 the ranking changes in favour of the search-theoretic models after a monetary 
shock. According to the Lq loss the output response is tracked best by STM2, 
and both search models outperform the other models with respect to the inflation 
response. Regarding technology shocks the ranking of output responses is the 
same under Lq loss, while now the PAC model improves and shares with the STM2 
model the least Lχ2 risk.  The losses of the inflation responses after a technology shock 
are now closer for the two search models, and the STM2 model does better under the Lχ2 
loss. But otherwise the ranking is the same as in the case of a 12 quarters’ horizon. 
 

5.  Conclusion 
        Search models of money put more structure to the goods market as models 
with a Cash-in-Advance constraint by assuming bilateral trade and costly 
search for trading partners in the goods market. Bayesian model comparison can 
provide a quantitative assessment of the role of these goods market frictions: Both, 
the standard search model (STM1) and the one with predetermined labor (STM2), 
outperform their two competitor models by their predictive score measured by 
the marginal data density. Moreover, the STM2 model improves on the standard 
Cash-in-Advance model in nearly all of the considered dimensions.  
 
1 8  The weighting matrix W in the calculation of the Lq risk is the k x k identity matrix scaled by 
the factor 1/k, where k is the number of quarters considered. 
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      Search in the goods market adds a propagation mechanism that results in 
hump shaped output responses to a monetary shock that delivers a smooth reaction 
of output on a technology shock and generates a persistent disinflation after a 
technology shock. Contemporaneous and lagged correlations of inflation and 
output growth can be predicted considerably better, although not for longer lags 
and for leads. Finally, the search model predicts very well the autocorrelations of 
inflation, while the CIA model can not. Thus, search frictions do make a 
difference. 

The additional frictions imposed on the portfolio choice of the consumers in 
the PAC model also act as a mechanism to propagate monetary shocks 
persistently - at least with respect to output. Its response to a monetary shock 
is more pronounced and more persistent than the response of output in the 
STM2 model but overshoots the empirical counterpart. The PAC model is not as 
good as the STM2 model at predicting the persistent disinflation process after a 
technology shock and the persistent inflation after a monetary shock. The pre-
dictions of the output response to technology shocks are considerably worse than 
those of the STM2 model. The PAC model shares with the CIA model the 
failure to predict the autocorrelations of inflation and the contemporaneous 
correlations of inflation and output growth. So, with respect to the question 
whether the frictions in the goods market or the frictions in the asset market 
provide a better model to predict characteristics of the data, this analysis gives 
more evidence for the former. Given that the search models gives a micro-
foundation of money and on the other hand portfolio adjustment cost are assumed 
ad-hoc on an ad-hoc model of money, these quantitative results reiterate the 
appeal of the former and the hope that future extensions of search models allow 
the applied economist to address the sort of policy questions the ad hoc models 
were built to answer in the first place.   



Appendix A.1.  Equilibrium and Optimality Conditions 

A.1.1 Search Model STM1 (Standard Walrasian Labor Market) 
After substituting (2) into the objective function, necessary conditions for an 
optimum are the FOCs ( with respect to  ): d
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with the slackness conditions associated with (3) and (4): 
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and the transversality equation: 
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Symmetric Nash-bargaining in the goods market implies 
( ) (361 ititqt )ωδωω −−=  
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with tttMttt PP Λ≡≡ λωω and , and the bars indicating the variables of the matched HH. 

 
Definition: A symmetric search equilibrium is defined as a sequence of house-holds´ 
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(i) variables are identical across households and relevant individuals; 

(ii)   given

   these 

{ } 0
ˆ { } , i, KM { } 0≥Γ tht  ≥ttX , W , and 000 , t  solves (PH-STM) with 

 t a solution to the Nash bargaining process; 

(iv)   tXX tt  

Considering only symmetric equilibria, hats and bars can be suppressed. 
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(iii) X  is 
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ention will be restricted to the case where λ  >  0  and ω  >  0  which  i s  the  
case  a round the  s teady  s ta te . It is now possible to reduce the system of 
equations defining this equilibrium. See Menner (2006) for details. 

Using the convention to date predetermined variables as of date 
ds to a system of static equations: 
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( ) (42, 11 −−= ttnit Knf )ωβϕ  

that jointly determines {  as functions of the states { } ttttt n, sx, cq ,, } 11, −− tt  Ki

and the co-states { Ktitt ωωω ,,
Substituting (3  (6

}. 

8)-(42) into )-(7) and (26)-(28) one gets the dynamic system: 

( ) ( )( ),1 1t qBzsKnfii αδ −+−= − ( )1 ttttti −  

)
43

( ) (441 1 tttptkt cqBzsaKK −+−= −
αδ  

( )( ) ( )45' 1111
1

⎭
⎬
⎫

⎩
⎨
⎧

−+= ++++
+

tttt
tt

t
tt cUzs

q
q

E ωω
γ

βω α  

( ) ( )( ){ } ( )4611 1111 ++++ −−+−= itittititit BzsE ωδωωδβω α  

( ) ( ){ } ( )47,1 11 ttKitpKtKtKt KnfaE ++ +−= ωωδβω  

where (43) - (44) are the laws of motion of the state variables { and the 11, −− tt  Ki }

others are expectational equations for the jump variables { Ktitt ωωω , } ,
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determine Labor): 
In the model comparison we also consider a version of the search model with 

ire 
wi

A.1.2 Search Model STM2 (Labor Market with Pre d 

predetermined labor. Think of a Walrasian labor market where you can hire and f
thout costs but the workers start to work only after one period. Then employ-

ment is a predetermined variable denoted by nt-1 at date t ,  and we replace (42) by 

( ){ } ( )48, ttnitt KnfE ωβϕ =  

 

Appendix A.2.  Loss functions 

1.  Quadratic  loss  funct ion (Lq) 

Loss functions 

( ) ( ) ( ) ( )49,ˆ'ˆˆ,ξξ =Lq ξξξξ −− W  

where W is a positive definite m × m weight matrix. As shown in Schorfheide (2000)

the posterior risk then depends only on the weighted distance between  and the 

, 

ξ̂
expectation of ξ  with respect to the overall posterior, E[ ξ /Y], but not on higher 
moments of the posterior distribution.1 5

2. Lp loss func ion  t

( ) ( ) ( ){ } ( )50,/ˆ/ˆ, YpYpILp ξξξξ >=  

where I{} denotes the indicator function that is equal to one if its argument is true, and
zero otherwise. This loss function penalizes point predictions that lie in regions

 
 

of low posterior probability. If the posterior is uni-modal, the expected L p  loss 
tells us how far the model prediction lies in the tails of the posterior distribution, 
similar as are indicating usual p-values. 

3. L x 2  loss function  

) ( ) ( ){ } ( )51,/ˆ/ˆ, 22(2L
χ

YCYCI ξξξξ
χχ

<=  

where 
( ) [ ]( ) [ ]( ) (52,/// 1'

2 YEVYEYC ξξξξξ ξχ
−−= −  )  

 is the posterior covariance of and Vξ ξ  under p( ξ /Y). 
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x2  ution of ξ  
on the he

L  and Lp-loss are identical, if the posterior distrib is Gaussian. In 
general, under the Lp-loss models are compared based ight of the 
posterior density at ξ̂ ,  while under Lx 2 the comparison is based on the weighted 

distance between iξ̂  and the posterior mean E[ ξ /Y]. 

 

Optimal predictors: 
ctor for L q  is the posterior mean of ξThe optimal predi  under model Mi , 

p
distr
whereas for the other two loss functions i  depends on the sha e of the posterior 

ibution. Since the predictor ought to be calculated only by information 
contained in p(

ξ̂

ξ /Y;  Mi), the latter replaces p( ξ /Y) in (28), and it follows that the 

optimal predictor iξ̂  for the Lp-loss is the posterior mode of p( ξ /Y; Mi) and for 
the Lx 2-loss it is the posterior mean E[ ξ /Y]. 

 

 

 

 

 

 

 

 

 

 

 

 
 1 5 In this paper I use an identity matrix as weight matrix, although one could give more or  less 

impo tance to  some of  the characteris t ics  in  the vector ξ ,r  to  mimic,  e .g . ,  the different importance RBC 

researchers give to certain second moments in their informal comparison of simulated and actual data. 
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Appendix A.3. TABLES 

   Prior Distributions: 

 
Table 1 Name Range Density Mean SE 
All Models: eK [0, 1] Beta 0.3560 (0.0200) 

 β [0, 1] Beta 0.9930 (0.0030) 
 ζ R Gaussian 0.0085 (0.0030) 
 γ R Gaussian 0.0100 (0.0025) 
 ρM [0, 1] Beta 0.6000 (0.2230) 
 δ [0, 1] Beta 0.0165 (0.0080) 
 σA R+ InvGamma* 0.712 %* (2.000*) 
 σM R+ InvGamma* 0.600 %* (2.000*) 

CIA / PAC: φ [0, 1] Beta 0.6500 (0.0500) 
Only PAC: κ R+ Gamma 50.000 (20.000) 
Only STM: α [0, 1] Beta 0.5000 (0.1000) 

 B [0, 1] Beta 0.5263 (0.0500) 
 δi [0, 1] Beta 0.0072 (0.0010) 
 eΦ R+ Gamma 0.5000 (0.2500) 
 z [0, 1] Uniform 0.5000 (0.2887) 
 ap 0.0069 fix 0.0069 (0.0000) 
 φ0 1 fix 1.0000 (0.0000) 

 
* InvGamma stands for the Inverse Gamma (ν,s) distribution and the documented values 
in the columns "Mean" and "SE" correspond to its parameters s  and ν , respectively. 
For ν = 2  the SE is infinite. 

Notes: CIA is the cash-in-advance model. PAC is the portfolio-adjustment-cost model. 
STM1 is the search-theoretic monetary model with standard Walrasian labor market. 
Model STM2 is the search- theoretic monetary model with predetermined labor in an 
otherwise Walrasian labor market. The parameter φ of the STM’s is determined from 
steady state conditions since n *  is normalized to 1 0 0 . Note also, that e K  =  1 -  e N ,  
and δ =  δk  - ζ. Finally ap is fixed as in the calibrated model to match employment, and 
φ0  is normalized to 1.  
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Posterior Parameter Distributions: 
 

Table 2 CIA Model 
Mean SE 

PAC Model 
Mean SE 

STM 1 Model 
Mean SE 

STM 2 Model 
Mean SE 

eK 0.4257 (0.0216) 0.4317 (0.0218) 0.3433 (0.0193) 0.3879 (0.0171) 
β 0.9871 (0.0032) 0.9724 (0.0055) 0.9983 (0.0007) 0.9989 (0.0018) 
ζ 0.0041 (0.0009) 0.0044 (0.0010) 0.0065 (0.0007) 0.0080 (0.0013) 
γ 1.0129 (0.0013) 1.0127 (0.0015) 1.0056 (0.0027) 1.0024 (0.0018) 
ρM 0.8646 (0.0284) 0.8591 (0.0334) 0.8206 (0.0159) 0.8060 (0.0217) 
δ 0.0022 (0.0012) 0.0036 (0.0019) 0.0234 (0.0082) 0.0463 (0.0103) 
σA 0.0127 (0.0008) 0.0155 (0.0010) 0.0092 (0.0007) 0.0162 (0.0009) 
σM 0.0028 (0.0002) 0.0034 (0.0002) 0.0035 (0.0002) 0.0034 (0.0002) 
φ 0.6904 (0.0470) 0.6852 (0.0496) - - - - 
κ - - 71.942 (25.818) - - - - 
α - - - - 0.4522 (0.0964) 0.4987 (0.0949) 
B - - - - 0.4876 (0.0510) 0.5089 (0.0516) 
δi - - - - 0.0066 (0.0009) 0.0066 (0.0010) 
eΦ - - - - 0.2820 (0.1413) 0.3085 (0.1441) 
z - - - - 0.0140 (0.0062) 0.0064 (0.0035) 
ap - - - - 0.0069 (0.0000) 0.0069 (0.0000) 
φ0 - - - - 1 (0.0000) 1 (0.0000) 

 
Notes: Posterior means and standard errors. CIA is the cash-in-advance model. PAC is 
the portfolio-adjustment-cost model. STM1  is the search-theoretic monetary model with 
standard Walrasian labor market. Model STM2  is the search- theoretic monetary model 
with predetermined labor in an otherwise Walrasian labor market. 
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Model Comparison: 

Table 3 CIA PAC STM 1 STM2 

Prior Prob. π i , 0  1/4 1/4 (1/4) (1/4) 
Marginal Data Density l n  p ( Y / M i ) N/A N/A N/A N/A 
  Laplace Approximation 1502.11 1492.59 1549.97 1524.94 

Posterior. Probability π i  2.46E-025 1.8E-029 1.5E-4 2.0E-015 
Posterior Odds π i /π1  1 7.32E-05 6.08E+020 8.20E+09 

     

Table 3 continued VAR(1) VAR(2) VAR(3) VAR(4) 
Prior Prob. π i , 0  1/16 1/16 1/16 1/16 
Marginal Data Density l n  p ( Y / M i ) 1559.44 1557.73 1559.31 1553.75 
  Laplace Approximation N/A N/A N/A N/A 

Posterior. Probability π i  0.4848 0.0877 0.4257 0.0016 
Posterior Odds π i/π1 1.97E+24 3.56E+23 1.73E+24 6.66E+21  

Notes:  The marginal  data  densi ty  l n  p(Y T / M i )  is  exact  for  the  VARs.  For  the  
DSGE models  i t  i s  approximated by the Laplace Approximation. CIA is the cash-in-
advance model. PAC is the portfolio-adjustment-cost model. STM1  is the search-
theoretic monetary model with standard Walrasian labor market. Model STM2  is the 
search-theoretic monetary model with predetermined labor in an otherwise 
Walrasian labor market. 
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 Correlation (ΔGDP t  , Inflation t + h ) 

Table 4 Model h=-2  h=-1 h = 0 h = 1 h = 2 

90% Interval (U)  0.0524 0.0709 -0.0407 0.1534 0.1925 
90% Interval (L)  -0.2465 -0.2156 -0.2440 -0.1375 -0.0899 

Mode Prediction CIA 0.0009 0.0018 -0.5612 -0.0286 0.0278 
 PAC 0.0132 0.0276 -0.4525 0.0137 0.0051 
 STM 1 0.1000 0.1302 -0.0791 -0.0707 -0.0622 
 STM 2 0.0696 -0.0049 -0.0439 -0.0596 -0.0629 

Lp-risk CIA 0.6706 0.4266 0.9992 0.0864 0.2202 
 PAC 0.7482 0.6228 0.9959 0.0000 0.0740 
 STM 1 0.9772 0.9585 0.0000 0.2499 0.3832 
 STM 2 0.9507 0.3666 0.2666 0.2141 0.3870 

       
 
Notes:  Dynamic correla t ions  of  output  growth and inf la t ion at  leads  and lags:   
mode predic t ions  and Lp  r isk.  CIA is the cash-in-advance model. PAC is the 
portfolio-adjustment-cost model. STM1  is the search-theoretic monetary model 
with standard Walrasian labor market. Model STM2  is the search-theoretic monetary 
model with predetermined labor in an otherwise Walrasian labor market. 
 
 
 

Table 5 Joint cor relations     
  CIA PAC STM 1 STM 2  

Cx2  254.6148 177.2644 24.2330 13.3853  
Lx2 - risk  1.000 1.000 0.9970 0.9649  
Lq - risk  0.2312 0.1405 0.1005 0.0541  

 
Notes:  Joint  dynamic correla t ions  of  output  growth and inf la t ion a t  leads  and 
lags:   Sta t is t ic  Cx2,  Lx2 r i sk  and L q  r isk .  CIA is the cash-in-advance model. PAC is 
the portfolio-adjustment-cost model. STM1  is the search-theoretic monetary model 
with standard Walrasian labor market. Model STM2  is the search-theoretic monetary 
model with predetermined labor in an otherwise Walrasian labor market. 
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Autocorrelation of Inflation: Corr (Inflation t  , Inflation t - h ) 
 
Table 6 Model h = 1 h = 2 h = 3 h = 4 

90% Interval (U)  0.8468 0.7652 0.7049 0.6310 
90% Interval (L)  0.6781 0.4905 0.3424 0.2329 

Mode Prediction CIA 0.4540 0.3931 0.3390 0.2944 
 PAC 0.4972 0.4308 0.3745 0.3267 
 STM 1 0.8202 0.6705 0.5486 0.4493 
 STM 2 0.8173 0.6663 0.5457 0.4493 
      
Lp-risk CIA 0.9999 0.9899 0.7776 0.4363 

 PAC 0.9999 0.9720 0.6178 0.2336 
 STM 1 0.7762 0.3569 0.3106 0.3469 
 STM 2 0.7518 0.3130 0.3070 0.3470 
 
 
Notes:  Autocorrela t ions  of  inf la t ion up to  4  lags .  Mode predict ions  and 
L p r isk.  CIA is the cash-in-advance model. PAC is the portfolio-adjustment-
cost model. STM1  is the search-theoretic monetary model with standard 
Walrasian labor market. Model STM2  is the search-theoretic monetary model 
with predetermined labor in an otherwise Walrasian labor market. 
 
 

Table 7 Joint cor relations     
  CIA PAC STM 1 STM 2  

Cx2  106.3872 76.1335 2.4274 1.9537  
Lx2 - risk  1.0000 0.9998 0.4838 0.3959  
Lq - risk  0.1943 0.1216 0.0070 0.0063  

 
Notes:  Joint  autocorrela t ions  of  and inf la t ion up to  4  lags:   Sta t is t ic  Cx2,  Lx2 

r isk  and Lq  r isk .  CIA is the cash-in-advance model. PAC is the portfolio-
adjustment-cost model. STM1  is the search-theoretic monetary model with standard 
Walrasian labor market. Model STM2  is the search-theoretic monetary model with 
predetermined labor in an otherwise Walrasian labor market. 
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Impulse Responses 
 

Table 8 Model dY/dεM dπ/dεM dY/dεA dπ/dεA 

      
  a)   12 periods        

Lq-risk CIA 0.2266 0.0048 0.0877 0.0710 
 PAC 0.0628 0.0025 0.4175 0.0438 
 STM 1 0.3604 0.0083 0.5694 0.0004 
 STM 2 0.1561 0.0006 0.0061 0.0108 

      
Lx2-risk CIA 0.2440 0.8998 0.9686 0.9938 

 PAC 0.7284 0.8116 0.9302 0.9870 
 STM 1 0.7758 0.6554 0.9882 0.2898 
 STM 2 0.9120 0.2038 0.8908 0.7304 
      
  b)   32 periods        

Lq-risk CIA 0.2346 0.0049 0.1214 0.0720 
 PAC 0.1953 0.0026 0.6043 0.0461 
 STM 1 0.3377 0.0005 0.6670 0.0104 
 STM 2 0.1607 0.0008 0.0186 0.0128 

      
Lx2-risk CIA 0.2446 0.8326 0.9368 0.9796 

 PAC 0.8834 0.8222 0.8970 0.9678 
 STM 1 0.7378 0.3278 0.9714 0.7878 
 STM 2 0.8676 0.2592 0.8972 0.7706 

 
Notes:  Joint  analysis  of  impulse  responses  (2  dif ferent  hor izons) .  
Table  8a:  jo int ly  considered are per iods  1  to  12.  Table  8b:  jo int ly  
considered are  per iods  1  to  32.  Column 1-4 are  respect ively :  
Output  and Inf la t ion response to  ( temporary)  Monetary  shock,  
Output  and Inf la t ion response to  (permanent)  Technology shock.  
Documented  are  Lp  r isk  and Lx2-r isk .  CIA is the cash-in-advance 
model. PAC is the portfolio-adjustment-cost model. STM1  is the 
search-theoretic monetary model with standard Walrasian labor 
market. Model STM2  is the search-theoretic monetary model with 
predetermined labor in an otherwise Walrasian labor market. 



Appendix A.4. FIGURES 

Figure 1: 
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Notes:  Impulse  Responses  to  a  t ransi tory monetary  shock.  In  black are  the poster ior  mean and the               
90% probabil i ty  bands of  the  poster ior  dis t r ibut ion of  the  constructed data  generat ing process ,  
dash dot ted and dashed blue l ines  represent  responses  a t  poster ior  means of  the  CIA and PAC 
model  parameters .  The f irs t  row adds the  mean response of  model  STM1 and the second of  STM2,  
both marked with  “+”.   
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Figure 2: 

0 5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

OUTPUT / PERM SHOCK

Posterior Mean
90% Interval (U)
90% Interval (L)
CIA    (Bayes)
PAC    (Bayes)
STM

1
  (Bayes)

0 5 10 15 20 25 30 35 40
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

INFLATION / PERM SHOCK

Posterior Mean
90% Interval (U)
90% Interval (L)
CIA    (Bayes)
PAC    (Bayes)
STM

1
  (Bayes)

 

0 5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

OUTPUT / PERM SHOCK

Posterior Mean
90% Interval (U)
90% Interval (L)
CIA    (Bayes)
PAC    (Bayes)
STM

2
  (Bayes)

0 5 10 15 20 25 30 35 40
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

INFLATION / PERM SHOCK

Posterior Mean
90% Interval (U)
90% Interval (L)
CIA    (Bayes)
PAC    (Bayes)
STM

2
  (Bayes)

 
Notes:  Impulse  Responses  to  a  permanent  technology shock.  In  black are  the  poster ior  mean and 
the 90% probabi l i ty  bands of  the  poster ior  dis t r ibut ion of  the  constructed data  generat ing process ,  
dash dot ted and dashed blue l ines  represent  responses  a t  poster ior  means of  the  CIA and PAC 
model  parameters .  The f irs t  row adds the  mean response of  model  STM1 and the second of  STM2,  
both marked with  “+”.   
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