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ABSTRACT 

 We estimate the return to education using a sample drawn from the National 
Longitudinal Survey of Youth 1979 (NLSY79). Rather than accounting for the 
endogeneity of schooling through the use of instrumental variables we employ a 
parametric version of the Klein and Vella (2006a) estimator. This estimator bypasses 
the need for instruments by exploiting features of the conditional second moments of 
the errors. As the Klein and Vella (2006a) procedure is semi-parametric it is 
computationally demanding. We illustrate how to greatly reduce the required 
computation by parameterizing the second moments. Accounting for endogeneity 
increases the estimate of the return to education by 5 percentage points, from 7.6% 
to 12.7%. 
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1 Introduction

Perhaps the most commonly explored "treatment e¤ect" in the empirical economics

literature is the impact of an individual�s educational attainment level on his/her

level of earnings. The popularity of these investigations re�ects two considerations.

First, and most importantly, the implications of human capital investment, at both

the individual and aggregate level, are of signi�cant economic interest and impor-

tance. Second, the endogeneity of educational choices to wages is clearly understood

to bias the OLS estimates of the return to education due to the possibility of reverse

causation, unobservable factors and/or measurement error. To account for the endo-

geneity of education in the estimation of wage equations a number of strategies have

been employed. While they are too great in number to allow a detailed description

here, they are generally based on instrumental variables estimation (see, for exam-

ple, Angrist and Krueger 1991, Du�o 2001, Lochner and Moretti 2004, and Carneiro,

Heckman and Vytlacil 2005).1

A feature of the more interesting of the various IV approaches is that they exploit

some innovative variation in the conditional mean of the education level which is ex-

ogenous to wages. An alternative strategy is to impose restrictions on the conditional

second moments. The �rst paper to employ such a methodology is Vella and Verbeek

(1997) who provide a rank order IV procedure. Rummery et al (1999) employ this

strategy to estimate the returns to schooling for Australian youth. The rank order IV

procedure �rst allocates observations into di¤erent subsets de�ned by some observed

characteristics. Within each of these subsets observations are ordered on the basis of

some measure of unobserved heterogeneity responsible for the endogeneity of school-

1For a detailed survey see Card (1999).
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ing. The e¤ect of education on wages is identi�ed by comparing individuals in one

subset with the individuals in similar areas of the distribution of the unobserved het-

erogeneity in other subsets. The rank order IV procedure requires heteroskedasticity

in at least one equation and requires that it is not related to the heteroskedasticity in

the other equation. Hogan and Rigobon (2002) also study the returns to education

and use the identifying moments proposed by Rigobon (1999). Although the Rigobon

procedure is a GMM estimator, the approach is similar to rank order IV in that it

assumes the heteroskedasticity is a function of a particular variable(s) but that the

covariance of the errors across equations is not.

While the Vella and Verbeek (1997) and Rigobon (1999) estimation strategies

are attractive in that they provide an identifying source in the absence of exclusion

restrictions, their value to empirical work is limited by the limited error structures

they can account for. A far more general error structure is allowed for in Klein and

Vella, hereafter KV, (2006a) in that the heteroskedasticity in both equations can be

functions of the same variables provided the correlation coe¢ cient for the unscaled

unobservables in the model is constant. This identi�cation strategy is a potentially

useful device for many models in which exclusion restrictions are not available and the

assumptions of the alternative heteroskedasticity based estimators are not satis�ed.

The identi�cation results in KV (2006a) are based on non parametric and semi

parametric representations of the heteroskedasticity. This �exible treatment of the

heteroskedasticity is theoretically attractive as it indicates that identi�cation is not

reliant on very speci�c forms of heteroskedasticity. KV (2006a) also provide an esti-

mation strategy which is consistent with this �exibility and this is employed in the

simulation evidence in KV (2006a) and the empirical investigation of the returns of
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schooling for Australian youth reported in KV (2006b). While the estimation strat-

egy employed in those papers is attractive for its treatment of heteroskedasticity, this

lack of structure creates computational demands which complicate estimation. In

this paper we parameterize the KV (2006a) estimator thereby making it simpler to

implement and thus more readily applied to problems with a large number of explana-

tory variables. Note however, that while we parameterize the estimator to simplify

estimation we rely on the identi�cation results in the more general setting discussed

in KV (2006a).

We estimate the return to education using a sample of individuals from the Na-

tional Longitudinal Survey of Youth 1979 (NLSY79). This survey contains infor-

mation on individuals living in the US aged 15 to 22 years in 1979. Data on these

respondents were annually collected until 1994 and biannually subsequently. We es-

timate the return to education for the most recent wave of the survey in 2004. These

data represent an interesting object of study as they have been used in other empirical

investigations of the return to schooling and this allows a comparison of our estimates

with those using alternative identifying restrictions. Our results suggest that school-

ing is endogenous and the adjusted impact of schooling is 12.7% in contrast to the

OLS estimate of 7.6%.

In the next section we describe the KV identi�cation strategy and the associ-

ated estimation procedure. Section 3 describes the data and estimation results and

conclusions follow in Section 4. Concluding comments are provided in Section 5.
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2 The Model

2.1 Model and Identi�cation

In presenting the model of interest and to motivate the estimation procedure we

closely follow the discussion of KV (2006a). Consider the following triangular model

for wages and education:

Wi = Xi�0 + �1Ei + ui; i = 1; :::; N (1)

Ei = Xi�0 + vi; (2)

whereWi and Ei denote the wage and education level of individual i; and Xi denotes

a vector of exogenous variables such that E[ujX] = E[vjX] = 0. Endogeneity of Ei

arises through the possible correlation between ui and vi: This correlation renders the

OLS estimates of the �0s inconsistent. As the same X 0s appear in (1) and (2); and

we impose no restrictions on the parameter vectors � and �; there are no available

instruments.

To identify the model KV assume the presence of heteroskedasticity and impose

an additional restriction. More explicitly, let S2u(X) and S
2
v(X) denote the conditional

variance functions for u and v and assume:

u = Su(X)u
� and v = Sv(X)v

�;

where u� and v� are homoskedastic error terms. The additional imposed restriction is

that the conditional correlation coe¢ cient between these homoskedastic error terms
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is constant.2 That is:

E[u�v�] = E[u�v�jX] = �: (3)

KV note that �1 can be consistently estimated using a control procedure which

removes the component of u which is correlated with v: This is done by including a

consistent estimate of v in equation (1) making the new error term in (1):

" = u� �v;

where � = cov(u; v)=var(v): Note, critically, that in the absence of heteroskedasticity

� is not a function of X. Thus the inclusion of vi without exclusion restrictions does

provide any variation which cannot be fully explained by E and X and the model is

not identi�ed: However, KV note that when the distribution of the error terms does

depend on X, we can condition on X making the new error term in (1):

" = u� A(X)v;

where A(X) = �0Su(X)=Sv(X) and �0 = [cov(u; vjX)=(Sv(X)Su(X))]: A(X) is now

a non linear function of X and this non linearity in A(X) is a source of identi�cation

provided one can impose the appropriate structure in estimation. KV show that this

can be done by imposing (3). This gives the following controlled regression:

Wi = Xi�0 + �1Ei + �0
Su(X)

Sv(X)
vi + "i; i = 1; :::; N (4)

2KV (2006a) show that this constant conditional correlation assumption is consistent with a num-
ber of data generating processes. While the economic implications of the assumption are dependent
on the circumstance under investigation it is useful to note that the assumption is generated by a
range of processes.
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where "i is a zero mean error term. Note that the main features of this estimation

equation are the following. First, with either or both Su and Sv non constant the

model is identi�ed. Second, identi�cation requires Su(X)
Sv(X)

is not a constant implying

that the form of heteroskedasticity must vary across equations. Finally, as both vi

and Sv(X) are straightforward to estimate, the di¢ culty arises in the estimation of

Su(X):

KV (2006a) show that for several error structures it is possible to consistently

estimate A(X). In the return to schooling context it may arise if, for instance,

both wages and education depend on unobserved ability a�. For example, assume

the impact of a� di¤ers in the two equations. Moreover, assume the impact of a�

depends on a component that is a function of X; and a random component. Denote

the components dependent on X as a1(X) and a2(X); for the wage and education

equations respectively, and let "1 and "2 be the corresponding random components.

If we assume that unobserved ability enters the wage and education equations as a

multiplicative function of these components we get:

u = a1(X)a
�"1 and v = a2(X)a

�"2:

With this form of error structure the appropriate control function has the form in

(4).

2.2 Estimation

KV (2006a) provide an estimator for the above model without making any assump-

tions regarding Su and Sv: While KV (2006b) employ that proposed estimator the

computational di¢ culties associated with estimating these functions, particularly Su;
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reduces the attractiveness of the procedure. Accordingly, we now outline how to esti-

mate the model while treating the S functions as known functions but with unknown

parameters. To do this we specify the following forms:3

S2ji = exp(�1j(Zji�j)); j = u; v

where Zj is the vector of variables considered to be responsible for the heteroskedas-

ticity in the respective equations.4 Although we employ the above functions in esti-

mation it is straightforward to explore alternative forms. We also experimented in

the empirical work with:

S2ji = exp(�1j(Zji�j) + �2j(Zji�j)
2); j = u; v

but found that the two approaches gave almost identical estimates for the unknown

coe¢ cients in (1).

Given this parameterization of S the estimation procedure we employ is the fol-

lowing:

i) Regress E on X to get bv (i.e. a consistent estimate of v):
ii) Estimate �1v and �jv through non linear least squares using ln(bv2) as the

dependent variable. With these estimates we compute the standard error of the

reduced form as bSvi=qexp(b�1v(Zvib�v):
3For the sake of exposition we present the speci�cations of the S0js that were used in the empirical

work. Note that one could use alternative parameterizations of these functions.
4KV (2006a) allow for X = Z and this is the speci�cation employed in KV (2006b). However,

while there might be overlap between X and Z it seems reasonable in practice to allow them to di¤er.
Note, however, including variables in Z which do not appear in X is not a source of identi�cation.
That is, while we allow for the error distribution to be a function of Z we maintain the assumption
that E[ujZ] = E[vjZ] = 0:
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iii) With these estimates we proceed to the �nal step. This can be conducted in

two ways.

a) First given that we assume a form for Su we can estimate the model parameters

as the solution to following non linear least squares problem:

min
�;�;�1u;�u

NX
i=1

�
Wi �Xi�0 � �1Ei � �

�p
exp�1u(Zui�u)

�
� bvibSvi

�2
: (5)

b) While the approach in (a) produces consistent estimates it requires the estima-

tion of Su through the minimization of a least squares problem related to W . This is

somewhat problematic as one is trying to uncover Su by examining variations in u: An

alternative to (a) is to estimate �1u and �u in Su in the similar manner as is done for

the education equation. For a given value of �; say �c; we de�ne the residual u(�c):

Using this value of u(�c) we regress u(�c)
2 on Zui�cu where we also use candidate

values for �cu. From this regression we compute Ŝu(�c) as
pc�1u(Zui�cu) and estimate

�c as:

min
�c

X
u(�c)� �c

Ŝu(�c)bSv bvi:
We search over �c; �cu and �c to get the �nal estimates.

While this latter procedure worked very well in this context we found that in

general it is useful to employ one additional step. With the �nal estimates of �;

which we denote �f ; from this last optimization problem we de�ne the residual uif =

Wi �Xi�0f � �1fEi: We then use u2if to get Ŝu(�f ) in precisely the same way as in

step (ii) above. Once we have Ŝu(�f ) we can regress Wi on Xi; Ei and
Ŝu(�f )bSv bvi to get

the estimates. This �nal step has the advantage that it separates the estimation of

the �0s from the estimation of Su: Note, however, that in this particular example it
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gave almost identical estimates.

3 Results

We estimate the e¤ect of education on earnings using a sample of male and female

respondents in the National Longitudinal Survey of Youth (NLSY79). We estimate

the return to education on the most recent (2004) wave noting that the respondents

are 40 and 47 years old. In the core sample of the survey 4161 individuals satisfy our

sample selection criteria.5

The NLSY79 is an attractive data source for estimating the return to schooling

as it contains detailed family background information and a large array of cognitive

ability tests. Card (1999) argues that adding such controls in the wage equation

substantially reduces the ability bias in the measured return to education. However,

despite the wealth of information contained in the survey it is di¢ cult to �nd ex-

ogenous sources of variation for schooling to employ as instruments. For example,

an identi�cation strategy based on changes in the minimum school-leaving age is not

valid due to the lack of educational reforms while the sample was enrolled at high

school (Oreopoulos 2008).

Some studies have used various proxies of the costs of school attendance (e.g.

distance to the nearest school, average local tuition and the local unemployment rate

in the area of residence of the respondent at the school going age) to identify the e¤ect

of education on earnings. Carneiro and Lee (2006) and Chen (2008) using samples of

5The NLSY79 contains 3 subsamples. A core sample aimed to be representative of the US
population. A second subsample that contains a disproportionally large percentage of disadvantage
non-black and non-hispanic respondents. The third subsample contains individuals in the military
service.
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male respondents from the NLSY79 obtain IV estimates of the return to education

between 13 and 15 percent. While the resulting IV estimates are larger than the

OLS estimates, which is consistent with the general consensus regarding the impact

of endogeneity, some authors argue against the validity of such instruments due to

the non random assignment of households to schools (see, for example, Cameron and

Taber 2004).

The extensive set of family background measures collected in the NLSY79 have

also been employed as instruments. However Card (1999) argues that IV estimates

based on family background characteristics are systematically higher than the cor-

responding OLS estimates and probably contain a bigger upward ability bias. This

is supported by Blackburn and Neumark (1995) which reports an IV estimate (9.6

percent) notably higher than the OLS estimate (4.2 percent).

We now focus on our approach. Our measure of earnings, W , is the log of the

hourly wage and our schooling measure, E, is the years of education. The variables

contained in X are as shown below. We discuss below our choice of the variables

that enter the heteroskedastic index, Z. The model is the following:

ln(wagei) = �0 + �1Schooli + �2marriedi + �3NE + �4W + �5NC + �6city +

�7siblings+�8Mwork14+�9Hispanici+�10Blacki+�11male+�12Feduc+�13Meduc+

�14South14 + �15city14 + �16age+ �17IQ+ ui = �X
W + ui

Schooli = �0 + �1siblings + �2Mwork14 + �3Hispanici + �4Blacki + �5male +

�6Feduc+ �7Meduc+ �8South14 + �9city14 + �10age+ �11IQ+ vi = �X
S + vi

Table 1 describes the variables employed and Table 2 provides their summary
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statistics. Note that the wage equation contains variables, namely the geographical

indicators in 2004 and the individual�s marital status, which do not appear in the ed-

ucation equation. These variables do not identify the model as IV requires variable(s)

in the education equation which do not appear in the wage equation.

Table 3 displays the OLS estimates and standard errors from the estimation of the

education model. The estimates are consistent with those in the existing schooling

literature. Parental education and ability (as measured by the AFQT standardized by

age and gender) have an important positive e¤ect on years of education. In contrast,

respondents in larger families accumulate less human capital. There is also evidence

of a schooling gap in favor of females. Consistent with Cameron and Heckman (2001)

we also �nd a small positive education gap for the minority groups after controlling

for family background.

The KV procedure requires that at least one of the equations� error terms are

heteroskedastic. Using the estimates from Table 3 we examine the presence of het-

eroskedasticity in the schooling equation. The statistic for the White test is 264:21

and that for the Breusch-Pagan, using all the explanatory variables in the model, is

86:75. These values reject the null hypothesis of homoskedastic errors.

We now focus on the estimation of S2v . An examination of the results for the

heteroskedasticity tests suggested that the variables responsible for the heteroskedas-

ticity are the Hispanic indicator, some of the geographical indicators and the IQ

measure. The regional result is consistent with that of Rummery, Vella and Verbeek

(1999) where it is argued that if distance to school in�uences the likelihood of school

attendance, as suggested by Card (1995a), then di¤erences in the distribution of ed-

ucational institutions within regions can produce also pronounced di¤erences in the
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variances of regional educational attainment. The result related to Hispanics captures

the heterogenous nature of the group which identi�es itself as Hispanic while the IQ

e¤ect captures that the level of education varies within individuals who have similar

levels of ability. Though we suspect that some of the variables in the schooling model

may a¤ect the error variance we do not have strong arguments to exclude others

from the heteroskedastic index. Accordingly in estimating the determinants of the

conditional variance for the education equation we use all variables which appeared

in the conditional mean (i.e. Zv = X).6

The non linear least squares estimates of S2v are reported in Table 4. The standard

errors alongside the estimated coe¢ cients are calculated from 1000 bootstrap replica-

tions with random replacement. Given that we have assumed an exponential form for

S2v and that the coe¢ cient on the index is positive and statistically signi�cant, we can

directly interpret the sign of the coe¢ cients in the table. The coe¢ cient on the IQ

measure is positive and statistically signi�cant. This re�ect that more able students

have a larger set of educational alternatives and thus the variance of schooling levels

increases along the ability distribution. The estimate for the living in the South at age

14 indicator is also statistically signi�cant and negative suggesting a lower dispersion

in schooling levels among individuals living in the South of the country during their

early teens.

We now turn to the estimation of the wage equation. In addition to the variables

which appear in the education equation we include some additional variables, such

as the geographical indicators in 2004 and the individual�s marital status, which are

6We estimated the model for alternative forms of heteroskedasticity. In particular we estimated
S2v including a quadratic term for the heteroskedastic index. In an alternative speci�cation we
included in the index only the geographic indicators, the IQ measure and the Hispanic indicator.
Our main results were una¤ected by these alternative speci�cations.
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considered to in�uence wages. Before considering the adjusted estimates we report

the OLS estimates, and their standard errors, in columns (1) and (2) in Table 5. The

primary feature of interest in these columns is the estimated impact of education on

earnings which is .076. The magnitude of this coe¢ cient is in line with the previously

reported OLS estimates of Kane and Rouse (1995), Cameron and Taber (2004) and

Chen (2008), which use the NLYS.

In implementing the strategy described above to estimate equation (4) it is neces-

sary to specify the variables entering the index Zui�u: Although we experimented with

di¤erent choices for the variables in Zui, including one speci�cation which uses all the

variables that enter the conditional mean of the wage, we focus our most detailed

discussion on our preferred speci�cation which included only a few variables in the

index. To allow for di¤erences in the variance of wages due to economic conditions

across regions the index underlying the heteroskedasticity in the wage equation in-

cludes the geographic indicators in 2004. We also include the age of the respondent

to account for the disparity across individuals in terms of wage growth.7

Table 5 presents the estimates of the coe¢ cients in the wage equation obtained

from estimating (4) using the method denoted (iiib) in section 2:2. We refer to

these �gures as CF estimates and they, along with their reported standard errors,

are displayed in columns (3) and (4).8 Before we focus on the estimated impact of

education on wages we highlight a number of the interesting features of this table.

First, the estimates for the exogenous variables for the OLS and the CF procedures

7The main results are unafected under alternatives speci�cations of S2u. However when all the
exogenous variables in the wage equation enter the heteroskedastic index the coe¢ cients inside the
index are erratically estimated.

8The reported standard errors for all the parameters estimated in the second step of the CF
procedure are based on 1000 bootstrapped replications of the estimator.
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are generally quite similar. Both estimates provide evidence of a small marriage

premium and a gender di¤erential of almost 30% in favor of males. Some of the

regional variables such as the indicator for living in a city and in the North Eastern

region in 2004 are positive and statistically signi�cant. Also, the indicator for living

in a city at age 14 years is statistically signi�cant and positive while living in the

South of the country at age 14 years has a negative e¤ect on the 2004 level of wages.

The two speci�cations also provide evidence of a wage penalty for blacks. Finally

there seems to be evidence of an ability premium as captured by the positive and

statistically signi�cant coe¢ cient on the ability measure.

The key feature of the columns of this table, however, is the di¤erence in the

estimate of the education coe¢ cient. While the OLS estimate was 7.6 percent the

CF estimate is 12.7 percent. Moreover while there is some loss in statistical signif-

icance, in comparison to the OLS estimate, the coe¢ cient is statistically signi�cant

at conventional levels of testing. Finally the estimate of the correlation coe¢ cient,

�, is negative and statistically signi�cant, indicating that education is clearly not

exogenous.

Our results suggest, as is frequently found in this literature, that the OLS esti-

mate tends to be below the estimate obtained after controlling for the endogeneity of

education. This may re�ect the sizeable measurement error in the education variable

or the heterogeneity in the return to education in the population (see for example An-

grist and Krueger, 1991; Card 1995a and 1999; Harmon and Walker, 1995; Kling 2001

and Cameron and Taber 2004). While measurement error is partially responsible for

the downward bias in the OLS estimate the negative sign of the estimated correlation

coe¢ cient, �0:190, may also capture a negative relationship between unobserved fac-
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tors across equations. For example, workers with higher levels of earnings ability have

a higher opportunity cost of attending school and might leave school sooner to take

up a job. The OLS estimate may also be subject to discount-rate bias if individuals

who leave school earlier have higher returns to schooling but discount their future

earnings more than individuals who stay longer (see Lang, 1993 and Card, 1994).

Accordingly the observed average return to education is lower than the true value.

Thus our �ndings are in line with the results in previous studies. Our estimate of

the return to education falls within the range of estimates reported in the surveys by

Card (1999, 2001), where most estimates of the return to schooling after adjusting for

the endogeneity of education are between 8 percent and 13 percent per school year.

The non linear least squares estimates of S2u and corresponding standard errors

are in Table 6. These estimates indicates that the variance of wages is signi�cantly

larger in the Western states of the country. The other variables included in the index

do not seem to a¤ect the variance of the unobservables in the model. Note that the

absence of heteroskedasticity in the wage equation does not threaten our identi�cation

strategy as this requires heteroskedasticity in either equation.

4 Conclusions

This paper uses a parametric version of the Klein and Vella (2006a) control function

estimator for triangular systems with no exclusion restrictions to study the impact

of endogenous schooling levels on wages. In this particular setting there is su¢ cient

heteroskedasticity to identify the schooling e¤ect and the identifying restriction ap-

pears reasonable. The results suggest that schooling is endogenous and the adjusted

impact of schooling is 12.7 percent in contrast to the OLS estimate of 7.6 percent.
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Appendix

Table 1: Variable de�nition:

ln(wage) ln of hourly wage

school years of education completed

married indicator for being married in 2004

NE indicator for living in a North Eastern state in 2004

West indicator for living in a Western state in 2004

NC indicator for living in a North Central state in 2004

city indicator for living in a city in 2004

siblings number of siblings

Mwork14 indicator for whether the mother of i works when i is 14

Hispanic indicator for being Hispanic

Black indicator for being Black

male indictor for being male

Feduc years of education completed by the father

Meduc years of education completed by the mother

S14 indicator for living in the South at age 14

city14 indicator for living in a city at age 14

Age age of i

IQ Score obtained in the Armed Forces Qualifying Test (a measure of cognitive ability)
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Table 2: Summary Statistics:

mean S.D.

ln(wage) 2:767 0:662

school 13:515 2:347

married 0:593

NE 0:161

West 0:265

NC 0:186

city 0:746

siblings 3:563 2:496

Mwork14 0:564

Hispanic 0:170

Black 0:265

male 0:500

Feduc 11:129 3:026

Meduc 11:085 3:829

S14 0:342

city14 0:795

Age 43:255 2:183

IQ 0:195 0:915

Nobs 4161
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Table 3: Schooling Equation (OLS estimates):

estimates S.D.

siblings �0:049 (0:013)

Mwork14 0:021 (0:060)

Hispanic 0:737 (0:093)

Black 1:168 (0:084)

male �0:261 (0:059)

Feduc 0:063 (0:011)

Meduc 0:083 (0:014)

S14 0:114 (0:065)

city14 0:056 (0:075)

age 0:009 (0:013)

IQ 1:302 (0:037)

constant 11:270 (0:606)

Test for Heteroskedasticity (statistics)

White 263:21

Breush-Pagan 86:75
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Table 4: Estimating the form of heteroskedasticity (Education)

estimates S.D.�

siblings �0:020 (0:021)

Mwork14 0:101 (0:092)

Hispanic 0:043 (0:158)

Black 0:023 (0:133)

male 0:108 (0:091)

Feduc �0:024 (0:016)

Meduc �0:029 (0:022)

S14 �0:187 (0:093)

city14 0:115 (0:105)

age 0:020 (0:019)

IQ 0:670 (0:064)

constant �0:332 (0:787)

alpha0 �0:043 (0:067)

alpha1 0:801 (0:041)
*The standard errors are obtained from 1000 bootstrap rep lications w ith random rep lacem ent
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Table 5: Wage Equation (OLS and CF estimates)

OLS S.D. CF S.D.�

married 0:087 (0:018) 0:087 (0:020)

NE 0:070 (0:034) 0:069 (0:034)

West 0:050 (0:033) 0:051 (0:034)

NC �0:046 (0:032) �0:045 (0:030)

City 0:037 (0:022) 0:038 (0:020)

siblings 0:001 (0:003) 0:004 (0:004)

Mwork14 0:019 (0:018) 0:019 (0:018)

Hispanic 0:072 (0:030) 0:033 (0:033)

Black �0:043 (0:027) �0:103 (0:037)

male 0:274 (0:018) 0:285 (0:018)

Feduc 0:001 (0:006) �0:003 (0:004)

Meduc 0:009 (0:004) 0:005 (0:005)

S14 �0:051 (0:030) �0:058 (0:028)

city14 0:052 (0:023) 0:047 (0:023)

age 0:006 (0:004) 0:006 (0:004)

IQ 0:146 (0:013) 0:075 (0:029)

educ 0:076 (0:005) 0:127 (0:020)

�0 �0:190 (0:066)

constant 1:112 (0:190) 0:532 (0:289)
*The standard errors are obtained from 1000 bootstrap rep lications w ith random rep lacem ent
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Table 6: Estimating the form of heteroskedasticity (Wages)

estimates S.D.�

age 0:016 (0:018)

NE 0:187 (0:119)

West 0:278 (0:108)

NC 0:080 (0:100)

constant �3:227 (0:761)

alpha0 �0:359 (0:024)

alpha1 0:919 (0:008)
*The standard errors are obtained from 1000 bootstrap rep lications w ith random rep lacem ent
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