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ABSTRACT 

 This paper studies, both theoretically and experimentally, frame effects in the 
context of a public good game in which players have to make a costly contribution 
either i) to achieve or ii) not to lose a non excludable monetary prize. Our protocol 
leads to public good provision (not deterioration) only if a certain contribution level 
is achieved. Since both frames differ with respect to the reference point, we use 
Prospect Theory to derive testable predictions. In particular, Prospect Theory 
predicts more contribution in the second frame. Our evidence suggests that a) 
subjects’ behavior is highly sensitive to frames and b) the theoretical prediction is 
confirmed except when the threshold is low. We also estimate the parameters which 
better suit our experimental evidence, partly confirming previous results in the 
literature. 
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1 Introduction

Free-riding is a pervasive problem in situations where societies have to de-
cide the level of provision of some public good. This is so because public
goods have the feature of being non-excludable. In particular, when we talk
about pure public goods, it is assumed that excludability is only feasible
at an infinite cost. Then governments cannot use rationing by price which
implies that a competitive market cannot generate a Pareto efficient level
of the public good. This is the reason of the so-called free rider problem.
Since any individual perceives that she will benefit from the public good
irrespective of her contribution to finance it, she will have no incentives to
contribute voluntarily. If the public good is to be financed by voluntary
contributions, its level will fall short its efficient level. This conclusion is
somehow mitigated by the extensive, and extremely robust across a wide va-
riety of treatment conditions, experimental evidence on the classic Voluntary
Contribution Mechanism protocol. Here we find that subjects initially set a
contribution which is halfway between the Pareto-efficient level and the free-
riding level. If the same protocol is repeated for a finite number of times,
average contribution declines over time, but stays always above the Nash
equilibrium level. More efficient results are usually obtained in experiments
in which the mechanism is modified by introducing a threshold in the total
contribution, below which the public good is not provided (the lower this
threshold, the higher the incentives to free ride).1 These experimental pro-
tocols, usually termed as Voluntary Contribution Threshold Games, have,
usually, multiple equilibria. Precisely, all strategy profiles where exactly the
threshold is reached are equilibria of the underlying game.
Consider now a slightly different frame, in which there is a set of individ-

uals who are already enjoying some public good. However, they realize that
at some point in the future the existing public good can deteriorate, or even
disappear. To prevent this possibility they need, somehow, to cooperate. We
shall refer to this frame as prevention of public good deterioration (PPGD),
as opposed to the most classical case of public good provision (PGP). The
crucial difference between the two cases of PGP and PPGD is just whether
individuals have initially the public good or not.
Focusing on threshold games, the aim of the paper is to answer, both

theoretically and experimentally, to this very simple question:

Do people contribute more in PPGD, rather than in PGP?

Different cognitive biases could induce individuals to contribute more in
one setting, rather than in the other. Under the endowment effect, individuals

1See, for example, Ledyard (1995).
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value more a good that they own rather than the same good when they do
not own it [see Thaler (1980)]. If this effect would arise with public goods,
it would imply that individuals value the public good more in PPGD than
in PGP. Under the omission bias, individuals have the tendency to judge
harmful actions as worse than equally harmful omissions [see Baron (1988)].
In our set-up, this could imply again more contribution in PPGD, since
not contributing can be seen as an harmful action (as it can lead to the
destruction of the public good), while in PGP not contributing can be seen
as an harmful omission. However, and due to strategic considerations, the
predictions of these effects are not clear. For example, it could be the case
that individuals contribute less in PPGD if they believe that their mates
are prone to suffer from either one of those biases and, thus, are going to
contribute more. It seems that we need a careful theoretical analysis in order
to draw predictions.
The aim of this paper is to analyze, theoretically and experimentally, a

Voluntary Contribution Threshold Game under both frames. As it turns out,
under VNM (Von Neumann-Morgenstern) preferences, both frames yield the
same equilibrium prediction, which only depends on the contribution thresh-
old, as the (symmetric) Bayesian Nash equilibrium takes the form of a cutoff
rule, such that an individual will contribute if and only if her individual cost
of contributing is below some threshold value c∗[see Palfrey and Rosenthal
(1991)]. However, given that both frames differ in terms of the initial posi-
tion, it seems natural to use Prospect Theory to derive testable predictions,
because this approach takes explicitly into account that individuals’ prefer-
ences depend on the reference point they use to evaluate costs and benefits
of different alternatives. In this respect, our paper can be seen as a crossing
between Prospect Theory and Bayesian Nash equilibrium in Public Goods
provision. To the best of our knowledge, this is the first paper which applies
Prospect Theory to strategic uncertainty.
One key element of Prospect Theory is loss aversion, that is, the be-

havioral assumption that postulates that individuals, from their reference
viewpoint, value losses more than gains. Again, this should imply more con-
tribution in case of PPGD. The starting point of this paper is exactly to check
this preliminary conjecture by carefully evaluating the “Prospect Equilibria”
of our model, for the widest range of relevant parameters. In this respect, our
detailed analysis discloses a complex set of conditions, both on the relevant
parameters of Prospect Theory and the thresholds, for which more contribu-
tion is expected under one frame, rather than the other. This consideration
notwithstanding, for the parameter range usually considered by this litera-
ture, our original conjecture is validated, predicting more contribution in the
case of PPGD, for all thresholds. This is the theoretical conjecture we bring
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into the lab, for its empirical validation.
Our evidence partially confirms our theoretical conjecture, as we find that

PPGD yields higher contribution when the threshold is sufficiently high. By
contrast, when the threshold is set to its minimum, the opposite holds. In
this respect, our results contrast very much with previous experiments on
classic voluntary contribution mechanisms that find more contribution when
the problem is framed as a positive externality (like in our PGP treatment),
rather than when it is framed as a negative externality (PPGD).2 Finally,
we also estimate (by maximum likelihood) the basic parameters of Prospect
Theory which better adjust to our experimental evidence, getting point esti-
mates which confirm previous studies on similar experimental frameworks.
The remainder of the paper is arranged as follows. In Section 2, we

set up the public good problem under the two frames: PGP and PPGD.
We show that, under VNM preferences, the cutoff cost value c∗ which iden-
tifies symmetric Bayesian Nash equilibrium is constant across players and
frames. Section 3 looks at our theoretical framework from the point of view
of Prospect Theory. We see that different frames yield different equilibria,
which we characterize in a sequence of propositions as functions of all refer-
ence points and contribution thresholds. In Section 4 we calibrate the model
using point estimates borrowed from related articles to provide theoretical
predictions for our experiment, whose basic design is described in Section 5.
In Section 6 we present our experimental results and we study which fac-
tors affect the decision to contribute. We also estimate the parameters of
Prospect Theory. Finally, Section 7 concludes.

2 The basic model

There is a group of N individuals. An individual is indexed by i ∈ {1, .., N}.
Each individual has one unit of input that she can either consume privately
or contribute. The public good is provided if and only if at least k individuals
contribute, where 1 ≤ k ≤ N. The input of individual i has a privately known
value ci that can be interpreted as the cost of contributing. We assume that
ci is uniformly distributed within the interval [0, 1] (to simplify notation we
will skip the index whenever possible and we will write only c). We further
assume that all individuals value equally the public good and we call this
common value g ≤ 1.
Table 1 describes player i0s monetary payoffs when the number of indi-

viduals other than i that are contributing is n and the contribution threshold
is k. We denote by C (NC) the action of (non-) contributing,

2See Andreoni (1995), Sonnemans et al. (1998) and Dufwenberg et al. (2006).
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States of the world n > k − 1 n = k − 1 n < k − 1
Probabilities p q r

C g g 0
NC g + c c c

(1)

Table 1: Voluntary Contribution Threshold Game

where p = Pr(n > k − 1), q = Pr(n = k − 1), and r = Pr(n < k − 1). State
probabilities are determined in equilibrium. A symmetric Bayesian Nash
equilibrium (BNE) has the form of a cutoff rule: Individual i contributes
if and only if her cost c is below some threshold value c∗, common to all
individuals. To solve for c∗, we note that it is that value that makes an
individual to be indifferent between C and NC. Then, it must satisfy:

g(p+ q) = p(g + c∗) + qc∗ + rc∗. (2)

From (2) we get:
c∗ = qg = Pr(n = k − 1)g. (3)

In a BNE of the game of Table 1, a given player contributes whenever c < c∗,
and does not contribute whenever c > c∗. Then, c∗ is defined implicitly by
the following condition:

c∗ =
µ

N − 1
k − 1

¶n
(c∗)k−1 (1− c∗)N−k

o
g. (4)

By analogy with our experimental conditions, consider that N = 3 and
g = 10/11. If k = 1 the unique BNE is c∗ = 0.32. If k = 2 there are two
equilibria, one with c∗ = 0 and another one with c∗ = 0.45. Finally, if k = 3
the only equilibrium is c∗ = 0. Notice that the above BNE are valid not only
for the case of PGP, but also for the case of PPGD.3

3 Prospect theory

A substantial body of evidence shows the failure of expected utility theory to
predict actual behavior in simple choice problems under uncertainty. Starmer
(2000) reviews this evidence as well as many of the theories that have been
proposed to account for it.

3The monetary payoffs in the case of PPGD can be obtained by subtracting g from
every cell of Table 1.
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Among these theories, the best known is Prospect Theory proposed by
Kahneman and Tversky (1979) and Tversky andKahneman (1992).4 Prospect
Theory distinguishes two phases in the decision process: editing and evalua-
tion. In the editing phase a number of operations may be applied to organize
and reformulate the options in order to facilitate subsequent evaluation and
choice. In particular, the various options are formulated as distributions of
gains and losses with respect to some reference point. In the evaluation
phase the decision maker evaluates each option and chooses the one with the
highest value.
The overall value of an edited prospect, denoted V , is expressed in terms

of two functions: a probability weighting function w and a subjective value
function v applied to gains and losses.
Let (x, π; y, 1−π) denote a prospect that gives a π chance at x and a 1−π

chance at y, where x and y are gains or losses with respect to some reference
point taken by the decision maker (usually her current asset position). If the
prospect involves only gains or only losses, x > y > 0 or x < y < 0, then it
can be represented as involving a sure gain (loss) y and an additional gain
(loss) with probability π, and its value is

V (x, π; y, 1− π) = v(y) + w(π) [v(x)− v(y)] . (5)

If xy ≤ 0, the prospect is evaluated simply as

V (x, π; y, 1− π) = w(π)v(x) + w(1− π)v(y). (6)

Note that both expressions are identical if w(π)+w(1−π) = 1, which is not
assumed in Prospect Theory.
An essential feature of Prospect Theory is that the carriers of value are

gains and losses rather than final states. Capturing loss aversion–“losses
loom larger than corresponding gains”–the value function v is assumed to
be steeper in losses than in gains, v0(−x) > v0(x) > 0, for x > 0. Reflecting
the principle of diminishing sensitivity also observed in psychology –“the
impact of a change diminishes with the distance from the reference point”–
it is assumed that the value function v is concave in gains and convex in
losses, v00(x) ≤ 0 ≤ v00(−x), for x > 0. For x > 0 we define the coefficient
of loss aversion as λ(x) := −v(−x)/v(x). In many applications it is assumed
a constant coefficient. Furthermore, existing empirical evidence suggests a
value of around 2. No loss aversion corresponds to the case λ = 1.
The weighting function w is assumed to be increasing in probabilities,

with w(0) = 0 and w(1) = 1. However, departing from Expected Utility

4Camerer (2000) reviews the ability of Prospect Theory to explain empirical evidence.
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Theory, the weighting function is generally nonlinear in probabilities. While
the natural reference point for outcomes is the current asset position x = 0,
for probabilities there are two natural reference points: certainty π = 1 and
impossibility π = 0. The principle of diminishing sensitivity applied to the
weighting of probabilities gives rise to a probability weighting function that
is concave for small probabilities and then convex for larger ones, resulting
in an (inverted) S-shaped function. Kahneman and Tversky (1979) provide
evidence that for small probabilities π the weighting function w is subadditive,
w(rπ) > rw(π) for 0 < r < 1 and overweights probabilities w(π) > π.
However, there is evidence that suggests that for all 0 < π < 1, w(π)+w(1−
π) < 1, a property called subcertainty by Kahneman and Tversky (1979).
In addition, the evidence also suggests that the weighting function is

regressive, intersecting the diagonal from above, asymmetric, with fixed point
at about 1/3, and reflective, assigning equal weights to an equal probability
of a gain or a loss (Prelec, 1998).

3.1 Frames

If players evaluate risky prospects in terms of gains and losses with respect
to a reference point, the game of provision of the public good can be framed
into four natural forms. The successful provision of the public good can be
seen as the realization of a gain (PGP) or, instead, as the elimination of
a loss (PPGD). Because of loss aversion, the value of the provision of the
public good will be larger if it is put in the latter framing. Similarly, the
cost of contributing can be put as a loss or, instead, as a lack of realizing a
gain. Because of loss aversion, the former will tend to be more discouraging of
contributing. These two dimensions can be combined into four configurations
that can be seen as the game perceived from four natural reference points:
x0 = 0, x0 = c, x0 = g, and x0 = g + c, where g is the common value of
the public good and c is the individual cost of contributing. As it will be
seen below, the effect of the change in the reference point will not be due
only to loss aversion but also to the nonlinearity of the probability weighting
function as well as to the curvature of the value function in gains and losses.
In the sequel we focus only on two reference points, namely x0 = c and

x0 = g. The reason is that with reference point x0 = 0 (respectively, x0 =
g+ c), the individual faces a choice between two prospects that involve only
gains (respectively, losses) and, thus, loss aversion plays no role.5

5The interested reader can find an analysis with all four reference points in a previous
version of the paper published as University of Ferrara Working paper 15/2008. It is
available at:
http://www.unife.it/dipartimento/economia/pubblicazioni/collana-quaderni-
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Reference point x0 = c (Game Gc). In Gc the provision of the public
good is seen as a gain. However, contributing to the public good involves
a loss. This is the standard way of presenting a problem of public good
provision. In Table 2, the payoff matrix of Table 1 is modified by subtracting
c from every cell.

n > k − 1 n = k − 1 n < k − 1
Probabilities p q r

C g − c g − c −c
NC g 0 0

(7)

Table 2: Game Gc

Player i has to choose between two prospects:

C = (g − c, p+ q;−c, r) or NC = (g, p). (8)

Notice that the payoff g − c, corresponding to contributing when sufficient
number of others also contribute, may be a gain or a loss, since it may be
the case that c > g. In this latter case, C is strictly dominated.

Reference point x0 = g (Game Gg). If x0 = g, the provision of the
public good is not seen as a gain, but instead, as eluding a loss. On the other
hand, the cost of contributing is not seen as a loss but, instead, it is seen as
not realizing a gain. As a consequence, payoffs in this situation are obtained
by subtracting from Table 1 the value of the public good g, as Table 3 shows.

n > k − 1 n = k − 1 n < k − 1
p q r

C 0 0 −g
NC c −(g − c) −(g − c)

(9)

Table 3: Game Gg

Here player i has to choose between two prospects,

C = (−g, r) or NC = (c, p;−(g − c), q + r), (10)

where C involves a risky loss, while NC may result in a gain or a loss, in the
non-trivial case where g > c.
We now turn to analyzing how equilibria are affected by framing. In the

next section, we study public goods whose provision requires only a single
individual contribution, k = 1. In subsequent sections we turn to consider
first the case k = N and then the case 1 < k < N .

dipartimento/
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3.2 One contribution is enough (Γ1)

In this section we consider the polar case where the public good is provided
whenever there is at least one contribution, that is, k = 1. As we shall see,
this is a simple case where it is clear both the relevance of the reference point
and the contrast with the predicted behavior under Expected Utility.
We focus on symmetric pure strategy equilibria with g = 1, and c ∈ [0, 1].

Let s be a cutoff strategy profile where each individual i contributes if her
cost ci < c = c∗ and she does not contribute if her cost ci > c. Let q(c) be
the probability that no individual other than i contributes, that is,6

q(c) = (1− c)N−1. (11)

Note that q is decreasing in c, going from 1 at c = 0 to 0 at c = 1.
We analyze equilibria for the reference points x0 = c and x0 = 1.

(a) Reference Point x0 = c : The equilibrium condition is:

v(1− c) = w(1− q(c))v(1),

or:

v(1− c)

v(1)
= w(1− q(c)). (12)

Since the left-hand side is decreasing from v(1)
v(1)

= 1 to v(0)
v(1)

= 0, and the right-
hand side is increasing from 0 to 1, there is a unique symmetric equilibrium
c∗c ∈ (0, 1).
(b) Reference Point x0 = 1 : The equilibrium condition is:

0 = w(1− q(c))v(c) + w(q(c))v(c− 1). (13)

Since the right-hand side is an increasing function of c that goes from v(−1) <
0 to v(1) > 0, it follows that there is a unique symmetric equilibrium c∗1 ∈
(0, 1).
We summarize previous results in the following:

Proposition 1 Suppose the public good is provided as long as at least one
individual contributes, i.e. k = 1. Under Prospect Theory, for both reference
points x0 = c and x0 = 1, there exists a unique symmetric equilibrium. These
equilibria are interior to (0, 1) and are the unique solution to Equations (12)
and (13), respectively.

6Note that when k = 1, the third column in Tables 1-3 plays no role.
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3.2.1 Ranking the probability of contribution by reference point

In this section, we shall rank the probabilities of contribution under both
reference points (all proofs can be found in the Appendix). Note first that,
if we take g = 1, all prospects at choice with reference point x0 = c are
nonnegative and, thus, loss aversion plays no role. Also note that if the value
of the public good is relatively small, as it is likely to be in an experimental
setting, the value function can be taken as linear in gains and linear in losses.

Proposition 2 Suppose k = 1. Under Prospect Theory, at the symmetric
equilibrium, there is more contribution with reference point x0 = 1 than with
reference point x0 = c if and only if loss aversion is high enough. That is:

c∗1 > c∗c if and only if λ(1− c∗c) > λc, (14)

where the threshold λc is defined by (37).
When the value function v is linear in gains, the threshold λc can be

written as:
λc =

c∗c
w(q)

, (15)

where q = q(c∗c).
If in addition, the probability weighting function is linear, then λc= 1, so

that c∗1 > c∗c as long as there is loss aversion, i.e., λ > 1.

3.2.2 Comparison with expected utility

Let ceu be the symmetric equilibrium probability of individual contribution
for linear VNM utility in the game where a single contribution is enough for
the public good to be provided. Clearly, ceu is the unique solution to the
equilibrium condition:

ceu = q(ceu) = (1− ceu)
N−1. (16)

Since q is decreasing both in c and N , Condition (16) implies that ceu is
decreasing in N : the larger the group, the smaller the equilibrium probabil-
ity of contribution for each individual. In particular, by analogy with our
experimental setting where N = 3, we have ceu = .382.
Let cf be the interior fixed point of the probability weighting function,

i.e., w(cf) = cf , 0 < cf < 1. Prelec (1998) reports estimates of the fixed
point cf that range from .30 to .39. In the next proposition we compare c∗c
and c∗eu for the case in which, as all empirical estimates suggest, cf < 1/2.

10



Proposition 3 Suppose k = 1. Under Prospect Theory, at the symmetric
equilibrium, the probability of contribution with reference point x0 = c is
greater than according to Expected Utility Theory if the fixed point of the
weighting function cf is less than 1/2. That is:

c∗c > ceu if cf < 1/2. (17)

This result also holds if the probability weighting function w is linear but
the value function v is strictly concave in gains.

Now we compare c∗1 with ceu.

Proposition 4 Suppose k = 1. Under Prospect Theory, at the symmet-
ric equilibrium the probability of contribution with reference point x0 = 1 is
greater than according to Expected Utility Theory if and only if loss aversion
is high enough. That is:

c∗1 > ceu if and only if λ(1− ceu) > λeu, (18)

where the threshold λeu is defined as:

λeu =

µ
w(1− ceu)

v(1− ceu)

¶µ
v(ceu)

w(ceu)

¶
. (19)

In particular, for N = 2, λeu = 1. For N > 2, λeu < 1, if v is linear in gains
and ceu ≤ cf .

3.3 All contributions required (ΓN)

Now we turn to the other polar case, where the provision of the public good
requires that all players contribute.
So far, we have considered that the value of the public good is g = 1, the

same as the supremum of the support of the distribution of private costs.
As it will be apparent later, it is convenient to allow g to take values below
1. When g < 1 the strategy of contributing regardless of the cost is clearly
dominated. In this way, we get a sharper contrast between EUT and PT
that can be tested experimentally. We focus our analysis in the limit of the
equilibrium as g goes to 1.
As in the previous section, let q(c) be the probability that a player is

decisive (i.e., pivotal), given that all other players contribute if and only if
their cost is less than c. Then, q(c) = cN−1. Clearly, q is an increasing
function in c going from 0 at c = 0 to 1 at c = 1, and decreasing in N .

11



We start with the equilibrium analysis in the reign of Expected Utility
Theory with linear VNM utility function. According to Expected Utility
Theory, the equilibrium ceu is characterized by g(ceu)

N−1 = ceu. Then, if
g < 1 the unique equilibrium is ceu = 0. If g = 1 and N = 2, there is
a continuum of equilibria [0, 1]. If g = 1 and N > 2, there are only two
equilibria, one at ceu = 0 and one at ceu = 1.
We now turn to analyzing the equilibrium under Prospect Theory for our

two reference points.

(a) Reference point x0 = g

The equilibrium condition at the reference point x0 = g is:7

w(1− q)v(−g) = v(c− g). (20)

Clearly, c = 0 is always an equilibrium and c = 1 is also an equilibrium if
and only if g = 1. However, these equilibria are not stable in the sense that
the best reaction to a small deviation results in a further deviation. Besides,
the equilibrium c = 1 is not robust in the sense that it is not the limit of
any equilibria as g goes to 1. That is, even though it is an equilibrium when
g = 1, there is no equilibrium close to it when g is slightly smaller than 1.
Proposition 5 builds upon these facts to establish a number of properties for
the symmetric equilibria at reference point x0 = g.

Proposition 5 Suppose the public good is provided as long as all players
contribute, i.e. k = N . Under Prospect Theory with linear value function
in losses, the set of symmetric equilibria for reference point x0 = g includes
c = 0, and c = 1 if and only if g = 1. In addition:
(i) For N = 2, at g = 1 and in the limit as g → 1, the only interior

equilibrium is:
c∗1 = 1− cf . (21)

(ii) For N > 2, at g = 1 and in the limit as g → 1, there is no interior
equilibrium greater than or equal to (1− cf).
(iii) More generally, for g = 1 and in the limit as g → 1, if c1,m is the

maximum interior equilibrium for N = m > 1, then the maximum interior
equilibrium for N = m+ 1, if it exists, satisfies:

c1,m+1 < c1,m. (22)

7When k = N the first column in Tables 1-3 plays no role.
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(iv) For N > 2 there can be a continuum of equilibria in [0, 1− cf), no
interior equilibrium, or any number of them in that interval.
(v) For g = 1 and in the limit as g → 1, if for N = m > 2 there is no

interior equilibrium, then there is no interior equilibrium for any N > m.

(b) Reference point x0 = c

The equilibrium condition at the reference point x0 = c is:

w(q)v(g − c) + w(1− q)v(−c) = 0. (23)

Clearly, c = 0 is always an equilibrium and c = 1 is also an equilibrium if
and only if g = 1.

Proposition 6 Suppose k = N . Under Prospect Theory the set of symmet-
ric equilibria for reference point x0 = c includes c = 0, and c = 1 if and only
if g = 1. In addition:
(i) With loss aversion but linear value functions in gains and losses, and

linear weighting function, there is no additional equilibrium.
(ii) With loss aversion but linear value functions in gains and losses, there

is no interior equilibrium greater than or equal to (1− cf).
(iii) For g = 1 and in the limit as g → 1, if cc,m is the maximum interior

equilibrium for N = m > 1, then the maximum interior equilibrium for
N = m+ 1, if it exists, satisfies:

cc,m+1 < cc,m. (24)

It follows from Proposition 6 that for N = 2 and g close to 1, the most
efficient equilibrium involves more contribution for reference point x0 = g
than for reference point x0 = c. In particular, c∗c < c∗g ≤ 1−cf .When N > 2,
and provided that c∗g ≥ cf , we also have that c∗c < c∗g, that is, there is more
contribution with x0 = g rather than with x0 = c.

3.4 Intermediate contribution requirements: 1 < k <
N

Finally, we consider the case when the number of contributions required for
the provision of the public good is greater than 1 and less than N .
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Three probabilities are important to determine the symmetric equilibria.
Suppose every player j 6= i is following the strategy of contributing whenever
her cost is less than a threshold c. As above, let q(c) be the probability that
i is decisive for the provision of the public good, i.e., q(c) is the probability
that exactly k − 1 players other than i have a cost less than c. Similarly,
let p(c) be the probability that the public good is provided regardless of
what i does, i.e., p(c) is the probability that at least k players other than i
contribute. Finally, let r(c) be the probability that the public good is not
provided regardless of i’s choice. We have:

q(c) =

µ
N − 1
k − 1

¶
ck−1(1− c)N−k, (25)

p(c) =
N−1X
j=k

µ
N − 1

j

¶
cj(1− c)N−1−j, (26)

and:
r(c) = 1− p(c)− q(c). (27)

These facts will be useful in the following

Lemma 7 (i) p and p+ q are increasing in c.
(ii) r and q + r are decreasing in c.
(iii) q is increasing in c for c < k−1

N−1 , and decreasing thereafter. Moreover,
q(0) = q(1) = 0.

Under Expected Utility Theory, the symmetric equilibrium condition is:

q(ceu) = ceu. (28)

>From (25) it follows that c = 0 is an equilibrium and c = 1 is not an
equilibrium. Any other equilibrium has to satisfy:µ

N − 1
k − 1

¶
ck−2(1− c)N−k − 1 = 0. (29)

For k = 2 < N the only equilibrium other than 0 is ceu = 1−1/(N−1)1/(N−2).
Since the left-hand side of (29), L(c), is an increasing affine transformation of
q(c) it follows from Lemma 11 that L(c) is increasing in c if c < (k−2)/(N−2)
and it is decreasing thereafter. It is then clear that for 2 < k < N there are
at most two positive equilibria, one of them greater than (k − 2)/(N − 2)
and the other one smaller than (k − 2)/(N − 2).
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It can also be shown that for any k > 2, if N is large enough there are
two positive equilibria, and that if N is small enough there is no positive
equilibrium.
In particular, for N = 4 and N = 5 there is no positive equilibrium with

N > k > 2. For N = 6 there are positive equilibria only if k = 2 and k = 3.
In the next proposition we compare the prediction of Expected Utility

Theory with that of Prospect Theory for both reference points.

Proposition 8 Suppose the public good is provided as long as k players con-
tribute. Under Prospect Theory with loss aversion but linear value functions
in gains and losses, and linear weighting function, the maximum equilibria
satisfy:

c∗c < c∗eu < c∗1, (30)

with weak inequality whenever the maximum is zero.

Note that the maximum equilibrium is the most efficient. Note also that
if the weighting function is not linear, for sufficient loss aversion then the
efficient equilibrium is lowest at reference point x0 = c and largest at reference
point x0 = 1.
It can also be seen that for k = 2 and N > k but small, given a degree

of loss aversion λ ≥ 1, if the probability weighting function is sufficiently
regressive, then the equilibrium under Expected Utility Theory is larger than
any of the equilibria under Prospect Theory, whatever the reference point.

4 Calibration

Table 4 summarizes the theoretical findings of Section 3, as far as contri-
bution cost thresholds across frames are concerned, in a more compact way,
comparing equilibrium vales for the Bayesian Equilibria (which, as we know,
are constant across frames) and for Prospect Theory. In line with our exper-
iment, we focus on the case N = 3.

As Table 4 shows, in general we have:

c∗c < c∗1, (31)

that is, the highest equilibrium contribution results at reference point x0 =
g = 1. Except in the case when k = 3, for the result to hold λ must be
sufficiently high. As for the comparison with contribution levels predicted by
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Equilibrium threshold Requirements
k = 1 c∗eu < c∗c < c∗g Loss aversion high enough
k = 2 c∗c < c∗g < c∗eu Loss aversion high enough

Weighting function sufficiently regressive
k = 3 0 = c∗eu ≤ c∗c < c∗g c∗g ≥ cf

Table 4: Summary of theoretical results

λ = 1.25 λ = 1.5 λ = 2 EUT
k x0 = c x0 = g x0 = c x0 = g x0 = c x0 = g
1 .458 .419 .458 .444 .458 .484 .366
2 .204 .315 .176 .325 .132 .338 .450
3 0 0.269 0 .269 0 .269 0

Table 5: Framing Effects on the Equilibrium Probability of Contribution
Public good value g = .91. Weighting function parameter δ = .56

δ = 0.56 δ = 0.61 δ = 0.71 EUT
k x0 = c x0 = g x0 = c x0 = g x0 = c x0 = g
1 .458 .444 .435 .439 .403 .429 .366
2 .176 .325 .190 .335 .217 .362 .450
3 0 .269 0 0 0 0 0

Table 6: Framing Effects on the Equilibrium Probability of Contribution
Public good value g = .91. Loss aversion parameter λ = 1.5

k = 1 k = 2 k = 3 Obs
Frequency of Tc 406 (35.68) 452 (39.48) 351 (30.76) 3,424
contribution Tg 319 (27.69) 528 (45.83) 664 (57.64) 3,456

Frequency of Tc 846 (74.34) 399 (34.85) 45 (3.94) 3,424
provision Tg 726 (63.02) 510 (44.27) 243 (21.09) 3,456

Observations 2,290 2,297 2,293 6,880

Table 8: Frequency of contribution and provision across treatments
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the Bayesian equilibrium, ceu, this is the highest when k = 2, and the lowest
otherwise.
We now proceed in the analysis by reporting calibrations for the equilibria

under Prospect Theory from the two reference points and under Expected
Utility Theory. We assume that the value function (5-6) is linear both in gains
and losses, with constant coefficient λ(x) ≡ −v(−x)/v(x) = 2 > v0(x) = 1,
for x > 0. For the weighting function w(π), we shall employ the specification
proposed by Tversky and Kahneman (1992):

w(π) =
πδ

(πδ + (1− π)δ)1/δ
. (32)

Table 5 presents equilibrium probabilities of contribution with, by analogy
with the experimental conditions, N = 3 and g = .91, and for all possible
levels of contribution requirements, k, from 1 to 3. Using a maximum like-
lihood estimation procedure, Camerer and Ho (1994) get an estimate for δ
of .56, which we use for our calibration exercise, using different values for λ,
1.25, 1.5 and 2, respectively. When there are multiple equilibria, the efficient
interior equilibrium is reported. The number of interior equilibria is reported
in brackets when it is greater than 1.

When k = 1, the numbers in Table 5 confirm our theoretical analysis: the
equilibrium probabilities when x0 = g are greater than those when x0 = c if
and only if the degree of loss aversion is high enough. It should be noticed
that the reason why the equilibrium proportion corresponding to x0 = c is
not affected by λ is because, since players experience only gains with respect
to their reference point, loss aversion plays no role. When k = 2, we obtain
that the probability of contribution is always higher when x0 = g. Finally,
when k = 3 we also obtain a higher proportion of contribution when x0 = g.
Again, we must remark that when k = 3 and x0 = g, given our linear
specification for v(.), loss aversion plays no role. Comparing the predictions
of Prospect Theory with those of Expected Utility we find more contribution
with Prospect Theory when k = 1 and k = 3, and the opposite when k = 2.
Finally, we obtain a clear prediction with Prospect Theory for the effect of
increasing k. In all cases we find that the probability of contribution reduces
with k.
In Table 6 we fix λ = 1.5, letting δ in the probability weighting function

(32) take values which have been found by the relevant literature: δ = .56
estimated by Camerer and Ho (1994), δ = .61 estimated by Tversky and
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Kahneman (1992), and δ = .71 estimated by Wu and Gonzalez (1996), re-
spectively.

From Table 6 we see that the case in which the prediction seems more
robust to changes in the relevant parameters is when k = 2,where we always
find more contribution in x0 = g. As in Table 5, when k = 1, which frame
yields more contribution appears to be highly sensitive to the level of δ :
when δ is low, we find more contribution in x0 = c, but the result reverses
when δ is high. Finally, when k = 3, we see that for sufficiently high values
of δ, contribution is 0 under either frame.

5 Experimental design

In what follows, we describe the features of the experiment in detail.

5.1 Subjects

The 6 experimental sessions were run at the Laboratory for Theoretical and
Experimental Economics (LaTEx) of the Universidad de Alicante. A total
of 144 students (24 per session) were recruited among the undergraduate
student population of the Universidad de Alicante -mainly, undergraduate
students from the Economics Department with no (or very little) prior expo-
sure to game theory. In all sessions, subjects were divided into two matching
groups of 12. Subjects from different matching groups never interact with
each other throughout the session. The sessions lasted approximately 60’
each.

5.2 Treatments

All the experimental sessions were run in a computer lab.8 Instructions were
provided by a self-paced, interactive computer program that introduced and
described the experiment. Subjects were also provided with a written copy
of the experimental instructions, identical to what they were reading on the
screen. In each session, subjects played 24 rounds of two treatments, for
a total of 48 rounds. As explained in Section 2, a treatment is uniquely

8The experiment was programmed and conducted with the software z-Tree (Fis-
chbacher, 2007).
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defined by a reference point. We focus only in two cases: x0 = c and x0 = g,
the reason being that for the two remaining reference points x0 = 0 and
x0 = 1 + c, all prospects are either nonnegative or non-positive, and loss
aversion plays no role.
Let call Tc and Tg the contribution game in which the reference point is

equal to c and g respectively and D1 (D2) be the design in which treatment
Tc (Tg) is played first (see Table 7).

D1 D2

Sessions 1 to 3 Sessions 4 to 6
Rounds 1-24 Tc Tg
Rounds 25-48 Tg Tc

Table 7: Experimental sessions

In each session, the 24 subjects were divided into 2 cohorts of 12, with
subjects from different cohorts never interacting with each other throughout
the session. We shall therefore read our experimental data under the assump-
tion that the history of each individual cohort (4 for each design, D1 and D2)
corresponds to an independent observation of our experimental environment.
Within each round t = 1, ..., 48, in each cohort, 4 groups of 3 subjects were
randomly determined.
All monetary payoffs in the experiments were expressed in Spanish Pe-

setas (1 euro worth approximately 166 Pesetas).9 The value of the prize
g was fixed to 50 pesetas at all times. Consistently with our theoretical
framework, the cost for contributing was, for all subjects and rounds, an
independent draw c ∼ U [0, c], with c = 55 pesetas. Let time interval
τ i = {3(i − 1) < t ≤ 3(i)}, i = 1, ..., 8, be the subsequence of the i − th
3 rounds of each treatment. Within each time interval τ i, subjects experi-
enced each and every possible k ∈ {1, 2, 3}, with the order being randomly
determined within each τ i.We did so to keep under control the time distance
between two rounds characterized by the same value of k. After being told
the current level of k and c, each subject had to:

1. Choose whether to contribute or not for that round;

9It is standard practice, for all experiments run in Alicante, to use Spanish Pesetas.
as experimental currency. The reason for this design choice is twofold. First, it mitigates
integer problems, compared with other currencies (USD or Euros, for example). On the
other hand, although Spanish Pesetas are no longer in use (substituted by the Euro in
the year 2002), Spanish people still use Pesetas to express monetary values in their every-
day life. In this respect, by using a “real” (as a opposed to an artificial) currency, we
avoid the problem of framing the incentive structure of the experiment using a scale (e.g.
“Experimental Currency”) with no cognitive content.
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2. Elicit their belief on the number of contributors in their group (exclud-
ing herself). Every correct guess would be paid 5 pesetas at the end of
that round.10

After each round each agent was informed of the contribution decision
of the other group members (i.e. the outcome for that round), together
with her payoff (on both dimensions: belief and contribution game) and the
average payoff of her group members (only as for the contribution decision
was concerned). The same information was also given in the form of a History
table, so that subjects could easily review the results of all the rounds that
had been played so far.
At the beginning of each treatment, subjects received 1.000 pesetas (1

euro is approximately 166 pesetas) as initial endowment. A particular care
was devoted in explaining the two different treatments (i.e. the two frames).
As for Tc, subjects would gain g = 50 pesetas if the number of contributors in
their group reached the target k (with c being subtracted from their initial
endowment; in Tg subjects would loose g from their initial endowment if
the numbers of contributors did not reach target, gaining c in case of non
contribution. Subjects received, on average, 15 euros for a 45’ session. At the
end of the sessions, subjects were asked to answer a detailed questionnaire
on their socio-demographic characteristics, together with standard questions
to estimate their pro-social behavior.11

6 Experimental Results

In what follows, we shall report our experimental results in detail. In Section
6.1 we present some descriptive statistics; while in Section 6.2 we estimate
some (panel) logit regressions which take more carefully into account the
impact of all our experimental conditions on outcome and behavior distribu-
tions. In reading the experimental evidence, our first concern will be to test
the theoretical conjectures of Section 2, which have been calibrated, by anal-
ogy with our experimental conditions, in Tables 5 and 6. Let pkx denoting the
equilibrium probability under Prospect Theory when N = 3, the reference
point is x and the contribution threshold is equal to k (with pkeu denoting the
corresponding BNE probability). The results from our simulations provide
us with the following testable hypotheses.

10We borrow this design feature from Nyarko and Schotter (2002). See also Gachter and
Renner (2006).
11The complete set of instructions and a copy of the questionnaire can be downloaded

from http://merlin.fae.ua.es/iturbe/experiments.html.
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1 H0 : p
1
c = p1g (H1 : p

1
c 6= p1g). When k = 1, we know from Tables 5

and 6 that which frame dominates in term of overall contribution is
highly sensitive to the level of the relevant parameters, so that, it is
not clear how to formulate the alternative. Also notice that, in this
case, p1eu = .366.

2 H0 : p
2
c = p2g (H1 : p

2
c < p2g). As we already noticed, k = 2 is the case in

which prediction seems more robust to changes in the parameters, with
higher contribution for x0 = g. In this case, we also have p2eu = .450.

3 H0 : p
3
c = p3g (H1 : p

3
c 6= p3g). When k = 3, prediction seems highly sen-

sitive to the choice of δ, predicting 0 contribution (like in the Expected
Utility model) under either frame when the latter is high enough.

6.1 Descriptive Statistics

In the upper part of Table 8 we show the number of subjects who contribute
across different treatments, while in the lower part we show the number of
cases in which the public good is provided (or its deterioration is prevented).
We also report percentages in bold face.

As we explained earlier, interpreting our results, we shall consider treat-
ment Tc (Tg) as the standard case of PGP (PPGD). In this respect, we observe
that, for Tc, the frequency of contribution is higher for the intermediate level
of k = 2, than for the low and high levels. By contrast, in Tg the frequency
of contribution rises with k. If we compare both treatments for a given value
of k, we observe a higher frequency of contribution in Tc when k = 1, while
the result reverses when k = 2 or k = 3.
When k = 1, we observe p1c = .36 and p1g = .28. Looking at the calibrations

in Table 5 we see that Prospect Theory could predict this pattern if the
coefficient of loss aversion is low. When k = 2, we observe p2c = .39 and p2g
= .46, with both values significantly higher than the prediction of Prospect
Theory. Nevertheless, Prospect Theory predicts correctly that contribution
is higher in treatment Tg. We also notice that, when k = 2, the probability
of contribution predicted by Expected Utility (.45) is remarkably close to
actual behavior.
When k = 3, we get p3c = .31 and p3g = .58. This is the case in which the

difference is largest. Also notice that the frequency of contribution is much
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higher than what was predicted by both Prospect Theory and Expected
Utility. This is particularly true in treatment Tc, where the prediction is no
contribution at all.
As we already noticed, our results contrast very much with other previous

experiments (such as Andreoni (1995) and Sonnemans et al. (1998)) that find
more contribution when the problem is framed as a positive externality (Tc)
than when it is framed as a negative externality (Tg). By contrast, we obtain
such a result only when k = 1.
In the bottom part of Table 8 we report the frequency of public good

provision (not deterioration). Here we see that these frequencies decline
with k, with a much stronger effect in Tc, where public good provision is
basically null when k = 3.
In Figure 1 we refine this evidence, by disaggregating contribution fre-

quencies for treatment, contribution thresholds k and cost levels, c.

The two diagrams report, one for each treatment (Tc and Tg), the relative
frequency of contribution for each possible threshold level k.We partition the
cost levels into 11 subintervals of size 5 in the x axis, averaging out contri-
bution frequencies for each subinterval. Not surprisingly, average frequency
of contribution is decreasing in the cost level, and this effect is much more
pronounced in Tc. On the other hand, while in Tg average contribution in-
creases with k, the same does not happen for Tc.We also notice that, for any
given k, contribution schedules display very similar patterns between Tc and
Tg (except for the case k = 3, in which subjects contribute uniformly more
for all cost intervals).
Does contribution follow any time trend? In Figure 2 we plot relative

frequencies of contribution across the 8 time intervals (see section 5.2).

As Figure 2 shows, relative frequencies basically stay constant over time.
We observe some “endgame effects” only when k = 3. In Tc, we observe
a moderately decreasing time trend in contribution, while in treatment Tg
the trend displays an inverted U-shape, as contribution frequency rises until
the middle of the session, declining later on. The overall impression we get
from Figures 1 and 2 is that contribution is highly sensitive to c in both
treatments, while in Tg it is also sensitive to k, with only marginal changes
over time for both cases.
We also check the evolution of group behavior in Figure 3), where we

track the relative frequencies with which a) the public good was successfully
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achieved, and b) it was achieved efficiently. Figure 3) also reports, conditional
on the frame and contribution threshold, the frequency of plays in which
nobody contributed.

First notice that, for k = 1, higher contribution in Tc is mainly due to
“inefficient overprovision”, since the frequency of outcomes where only one
group member contributes is basically constant across frames (around 50%
of total observations). As for k > 1, we also see that in Tc the number of no-
contribution outcomes is substantially higher, even when as time proceeds,
neither frame seems capable to sustain unanimous cooperation.
We now turn our attention to the extent to which contributing is individ-

ually rational, that is, whether it corresponds to a best-reply to the current
strategic situation. We can look at this question from two complementary
viewpoints: an ex-ante or an ex-post perspective, that is, consistency of
contribution decision with the elicited belief of Stage 2, or consistency of
contribution decision with the actual opponents’ behavior, respectively.
As for the former interpretation, Table 9 looks at the extent to which

elicited beliefs in Stage 2 depend on k.

Each row (column) in Table 9 corresponds to one particular k (point
belief). We also report the value of mean beliefs. In both treatments, when
k = 1 and k = 2 the modal belief is 1. However, when k = 3 the modal
belief is 0 in Tc and it is 2 in Tg. We also find that the mean belief in
treatment Tg is higher than in Tc for k = 2 and (especially) k = 3, and it
is lower for k = 1. More precisely, when k = 3, there is a striking difference
between the frequency of subjects forecasting that 2 group members are
contributing (28.73% in Tc vs. 55.12% in Tg) rather than 0 (41.15% and
20.75%, respectively).
When the belief is equal to k − 1, we say that the subject believes that

she is pivotal, or decisive. Overall, the frequency with which subjects feel
that they are pivotal is much higher in Tg. This is in clear contrast with
the VNM prediction, as the unique Bayesian Nash Equilibrium should imply
beliefs concentrated at 0 in both treatments. In general, we find a positive
and highly significant correlation between the probability of cooperating and
the belief of being pivotal (.2987 and .4418 in Tc and Tg respectively, p-value
of 0 in both cases). This result coincides with the one obtained in similar
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Beliefs in treatment Tc
0 1 2 Mean

k = 1 268 681 203 0.94
23.26 59.11 17.62

k = 2 234 667 251 1.01
20.31 57.90 21.79

k = 3 474 347 331 0.87
41.15 30.12 28.73

Total 976 1,695 785 0.94
28.24 49.05 22.71

Beliefs in treatment Tg
0 1 2 Mean
304 688 160 0.87
26.39 59.72 13.89
166 651 335 1.15
14.41 56.51 29.08
239 278 635 1.34
20.75 24.13 55.12

709 1,617 1,130 1.12
20.52 46.79 32.70

Table 9: Elicited beliefs in Stage 2

Beliefs in treatment Tc
Others 0 1 2 Total
0 449 689 306 1,444

31.09 47.71 21.19
1 425 745 372 1,542

27.56 48.31 24.12
2 102 234 102 438

23.29 53.42 23.29

Total 976 1,668 780 3,424
28.50 48.71 22.78

Beliefs in treatment Tg
0 1 2 Total
283 565 306 1,154
24.52 48.96 26.52
297 771 514 1,582
18.77 48.74 32.49
129 281 310 720
17.92 39.03 43.06

709 1,617 1,130 3,456
20.52 46.79 32.70

Table 10: Contribution in Stage 1 and elicited beliefs in Stage 2
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experiments by Offerman et al. (1996). However, it should be noticed that
this evidence is not constant across contribution thresholds, k. In particular,
when k = 1, in treatment Tc these two variables are negatively correlated
(-0.0502 with p = 0.0905), while correlation is positive and significant in all
other cases.
Table 10 analyses whether there is consistency between elicited beliefs

and actual behavior in both treatments. Each row (column) of Table 10
corresponds to a particular contribution level of i’s teammates, n, (i’s point
belief).

The cells in the main diagonal correspond to those situations in which
beliefs turn out to be correct. We observe that subjects tend to be over-
optimistic in both treatments. As an example, consider treatment Tc, the
table on the left. The total number of cases in which subjects believe that 0,
1, and 2 of their group members are cooperating are 976, 1,668 and 780, re-
spectively. However, the true numbers are 1,444, 1,542 and 438, respectively.
Subjects believe that 0 is less likely than what it really is, and they believe
that 1 and 2 are more likely than what they really are. This result is in line
with those obtained by Palfrey and Rosenthal (1991). We also find that in
treatment Tc, for any contribution level n, modal (point) belief is always 1.
Do elicited beliefs change over time? In Figure 4 we look at the evolution

of subjects mean beliefs along the experimental time line.

In Figure 4 we observe that in Tg mean beliefs increase with k, confirming
the evidence shown in Table 9. We also see that beliefs remain basically
constant over time. In Tc we see that beliefs are less dispersed over k, and
only in the case k = 3 we find a decreasing trend.
We conclude this section by tracking best-reply dynamics in Figure 5,

disaggregated by treatment and threshold contribution, both taking into ac-
count the ex-ante and the ex-post interpretation.

Each diagram of Figure 5 reports the relative frequency of best-replies
across time. The top two diagrams refer to our ex-ante interpretation (i.e.
best-reply to elicited beliefs), the two bottom diagrams refer to our ex-post
perspective (i.e. best-reply to the current opponents’ strategy profile). As
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Figure 5 shows, subjects’ average frequency of best-responses to their beliefs
is higher than with respect to the actual behavior of the others. Also notice
that learning effects seem negligible, as the average frequency of best-replies
stays basically constant through time (the only noticeable exception is Tc
when k = 3).

6.2 Panel regressions

To fully exploit the panel structure of our data set, in this section we shall run
some regressions in which individual heterogeneity is controlled for. Our aim
is to study with more detail which are the main factors that affect subjects’
decision to contribute. In particular, we estimate a logit model in which the
dependent variable is the probability of contribution. Here we present some
of the explanatory variables that we will consider:

• belief pivotal: This dummy variable takes value 1 if the subject be-
lieves she is pivotal, and 0 otherwise;

• forecast precision: This variable takes value 1 (-1) [0] if the differ-
ence between elicited beliefs and actual contribution of the other group
members was positive (negative) [zero]. That is, this variable equals 1
(-1) in case of over-optimistic (over-pessimistic) beliefs;

• cost: This is individual cost. It is a discrete variable that takes values
(uniformly distributed) between 1 and 55;

• treatment: This is a binary variable that takes value 0 (1) in Tc (Tg).
To capture any possible interaction between cost and treatment we
construct the variable cost×treat;

• k1×treat1, k2×treat1, k2×treat2, k3×treat1, k3×treat2 are
dummy variables to control possible interactions between treatments
and thresholds. For example k1×treat2 is equal to 1 when k = 1 and
the treatment is Tg, and 0 otherwise. The default case is, therefore,
treatment Tc and k = 1;

• sequence: Again a binary variable that is 0 (1) if the observation is
taken from a treatment played first (second) in the sequence;

• period: This variable refers to the number of the round within each
treatment. It goes from 1 to 24;
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• forecast previous: We construct this variable as the difference be-
tween elicited beliefs and the actual behavior of the others one time
interval behind. It can take values −2,−1, 0,+1, and +2. For example,
if one subject reports a belief of 2, but no one of the other two subjects
have contributed, then this variable takes the value 2 − 0 = +2. Pos-
itive values represent over-optimistic beliefs and negative values over-
pessimistic beliefs.

• outcome previous: This variable tells us whether the public good
was provided or not in the previous period. It takes value 1 if the
public good was (not) provided/not deteriorated and 0 otherwise;

• contribution previous: A binary variable equal to 1 if the subject
has contributed in the previous period and 0 otherwise;

• forecast previous k: This variable is constructed like forecast pre-
vious, but it refers to what happened the last time played with the
same k;

• contribution previous k: Similar to contribution previous, but it
refers to whether the subject decided to contribute in the last period
in which k was the same than in the current period.

We also include as explanatory variables the information of individual
characteristics that we obtained from the questionnaire. We present sum-
mary statistics of a selection of our variables in Table 11.

Mean contribution is .395. That is, subjects contribute in almost 40% of
the cases. The positive values of forecast precision, forecast previous, and
forecast previous k reflect the fact that, on average, subjects believe than the
others are contributing more than what they are actually doing.
In Table 12 we present the main results from our regression on the prob-

ability of contribution. The second and third columns show the estimated
coefficients and the standard errors, respectively. Since the logit model is
nonlinear, from this information we can interpret only the sign and the sig-
nificance of the coefficients. To give an idea of the size of the effects of the
different regressors, in Column 4 we report the odds ratios. Odds are ratios
of two probabilities, the probability of contribution and the probability of not
contribution. While probabilities vary with the value of the regressors, odds
ratios remain constant. They are calculated by exponentiating the regres-
sion coefficients. That is, for the case of the first regressor (belief pivotal),
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Variable Mean St dev Min Max Obs

forecast precision .190 .761 -1 1 6,912
contribution .395 .489 0 1 6,880
belief pivotal .413 .492 0 1 6,912
cost 27.60 16.041 0 55 6,912
forecast previous .242 .961 -2 2 6,738
outcome previous .402 .490 0 1 6,738
contribution previous .394 .489 0 1 6,738
forecast previous k .242 .959 -2 2 6,737
outcome previous k .409 .492 0 1 6,737
cost previous k .396 .489 0 1 6,737

gender .403 .490 0 1 6,912
year course 1.9 1.294 1 9 6,720
education 2.937 .995 1 5 6,912
family size 4.049 1.030 1 7 6,912
rooms 6.771 1.499 1 9 6,912
weekly budget 36.049 34.956 0 300 6,912
risk tolerance .1667 .373 0 1 6,912
work 3.285 .620 1 4 6,912
family 3.833 .408 1 4 6,912
politics 2.326 .744 1 4 6,912
religion 1.937 .813 1 4 6,864
trust .180 .385 0 1 6,912
inequality .875 .331 0 1 6,912

Table 11: Summary Statistics of selected variables
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Variable Coefficient St error Odds Prob change
0→ 1 Min→max

belief pivotal∗∗∗ 1.457 .116 4.29 .331
belief pivotal×treat .293 .202 1.34 .068
cost∗∗∗ −.075 .006 .93 −.012 −.745
cost×treat∗∗∗ .028 .007 1.03 .006 .363
k1×treat2∗∗∗ −1.153 .229 .32 −.225
k2×treat1 −.211 .145 .81 −.047
k2×treat2∗∗∗ −.738 .184 .48 −.154
k3×treat1 −.274 .199 .76 −.061
k3×treat2 .007 .231 1.01 −.002
sequence∗∗ −.270 .109 .76 −.062
period∗∗∗ −.017 .005 .98 −.004 −.092
forecast previous k∗∗ .109 .051 1.12 .025 .099
contribution previous k∗∗ .183 .077 1.20 .042
gender .078 .081 1.08 .018
rooms −.028 .037 .97 −.007 −.051
weekly budget .001 .001 1.00 .000 .102
risk tolerance −.069 .151 .93 −.016
work .032 .110 1.03 .007 .015
family .135 .129 1.15 .026 .060
politics .066 .049 1.07 .015 .046
religion .047 .053 1.05 .011 .033
inequality∗∗ .285 .141 1.33 .063
constant .102 .751

Level of significance: ∗∗∗ : 1%; ∗∗ : 5%. Number of observations 5,858.
Pseudo R2 = .2474

Table 12: Logit regression on the decision to contribute
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we have that 4.29 = exp(1.457), and so on. Odds ratios are equal to 1 if
the regressor has no effect on the dependent variable, are larger than 1 if the
effect is positive and are smaller than 1 if the effect is negative. In Column 5
we compute the effect on the absolute value of the probability of contribution
when the regressor increases 1 unit. This is particularly interesting for those
regressors that are dummy variables. For those that are not, we also report
in Column 6 the change in the probability of contribution when the regressor
moves from its minimum to its maximum value.

To highlight a couple of interesting results from Table 12, we observe
the huge impact that the belief of being pivotal has on the probability of
contribution. When a subject believes she is pivotal, compared to when she
believes she is not, her odds ratio multiplies by more than 4. In absolute
value, the probability of contribution rises in 1/3, going from .1 to .43. The
positive effect of the belief of being pivotal seems to be larger in Tg, as
implied by the fact that the coefficient of belief pivotal×treatment is positive,
although this effect is not significantly different from zero (p value .147). As
we should expect, the individual cost has a negative effect, but this effect is
somehow mitigated in treatment Tg, since the interaction between cost and
treatment is positive and significant. To see the different effect of a change
in cost in each treatment, we calculate that an increase in c of one standard
deviation (approximately 16) changes the odds of contributing by a factor
of 0.3006 in Tc, while the change in Tg is by a factor of 0.4722. We also
see that our dummy variables for treatment and k depress the probability
of contribution. Finally order effects seem to matter, as the probability of
contribution is lower in treatments played last in the sequence. We also
observe a decreasing time trend in contribution. From the first to the last
period, the probability of contribution reduces by as much as -.1.
To summarize we see that even after controlling for all our experimental

conditions, the basic message we get from Section 6.1 remains. Prevention
is better than cure when k is high (i.e. when is relatively difficult for the
public good to be achieved/not deteriorated). When public good provision
is relatively easier the opposite holds.

6.3 Estimating Prospect Theory

In this section we use the data we have obtained in our experiment to estimate
the parameters of Prospect Theory. We will outline briefly our empirical
strategy in which we use a similar approach to that of Harrison and Rutström
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(2006) and Harrison (2007).
We use a simple stochastic specification to specify likelihoods conditional

on our model. Every time that an agent has to choose between contributing
and not contributing, we assume that the subject uses Prospect Theory to
evaluate the two alternatives. Call V (C) and V (NC) the values that the
subject assigns to the two alternatives under Prospect Theory, and call∆V =
V (C)−V (NC), the difference between these two values. For each individual
decision we calculate this difference. Using ∆V we define the cumulative
probability of the choice that we observe using the logistic function Λ(∆V )
as:

Λ(∆V ) =
exp(∆V )

1 + exp(∆V )
. (33)

Now the likelihood, given Prospect Theory, depends on the estimates of the
parameters of the model and the observed choices. We will restrict ourselves
to the simplest version of Prospect Theory where the value function is linear
for gains and losses. Then, we need to estimate just two parameters, the pa-
rameter λ that captures the degree of loss aversion and the parameter δ that
determines the shape of the probability weighting function. The conditional
log-likelihood is, therefore:

lnL(λ, δ; y,X) =
X
i

[(lnΛ(∆V ) | yi = 1) + (ln(1− Λ(∆V )) | yi = 0)] ,
(34)

where yi = 1 (respectively, yi = 0)means that the agent decides to contribute
(not to contribute), and X are individual characteristics.
However, it remains to describe how we compute the values V (C) and

V (NC) for each individual decision. Suppose, for example, that a given sub-
ject faces the problem described in Table 1. To compute V (C) and V (NC),
we need not only the values assigned to the different payoffs and the refer-
ence point from which to compute gains and losses, but also the probabilities
that the subject assigns to how many of the other subjects she believes are
contributing. That is to say, we treat each decision within the frame of indi-
vidual choice under uncertainty, where uncertainty is only strategic. In the
notation of Table 1, we need to assign values to p and q. Unfortunately, we
do not have that information. The only information we have is what we call
the “elicited beliefs” on the number of other group members contributing for
that round. Here we explain how we derive the values of p and q using these
beliefs.
Consider the viewpoint of individual i and call π the (iid) probability

that she assigns to the fact that anyone of the others will contribute. Given
that group size is 3 in our experimental setup, the probabilities that i assigns
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to the events that 0, 1, or 2 subjects are contributing are then (1 − π)2,
2π(1 − π), and π2, respectively. When we ask about beliefs, subjects can
only answer 0, 1, or 2. If the belief is 0, this means that (1 − π)2 is higher
than both 2π(1−π) and π2. This implies that π < 1/3. If her beliefs are that
exactly 1 subject will contribute, then 1/3 < π < 2/3, and if her beliefs are
that 2 subjects will contribute, then π > 2/3.
Given these restrictions imposed on π for the different beliefs elicited from

subjects, we need to go a step further in order to estimate our model. In par-
ticular, we need to fix the values of π for the different stated beliefs. Among
the various possibilities, we shall assume that π takes the values 0, 1/2, and
1 when the stated beliefs are 0, 1, and 2, respectively.12 This implies that
when an subject declares a belief 0, she believes that the events that 0, 1, or
2 subjects are contributing have probabilities 1, 0, and 0, respectively. If her
belief is 1, these probabilities are 1

4
, 1
2
, and 1

4
, respectively. When her belief

is 2, probabilities are 0, 0, and 1.13 Table 13 reports estimates for λ and δ
given our estimation strategy. The reported estimated standard errors of the
parameters of λki and θi take also into account matching group clustering.

Coefficient Std. error 95% conf. intervalbλ 1.29 .2103 [.878, 1.702]bδ 1.30 .0783 [1.151, 1.458]
Number of observations 6,880
Table 13: Estimated Prospect Theory parameters

The result that we get for the shape of the probability weighting function
is not as usually assumed, since we get an estimation of δ higher than 1.
This is similar to the result in Harrison (2007) where he gets a value of 1.27.
Our estimation of λ suggest that the degree of loss aversion is quite low,
something we already inferred from our descriptive statistics.
In Table 14, we report (equilibrium) probabilities of contribution (as in

Tables 5 and 6), given our estimated parameters.

We get similar results to those of Tables 5 and 6. Given the large estimate
for δ, we find no contribution at all when k = 3. This exercise should be taken
with a lot of caution, given the simple procedure we use to construct the
probabilities that individuals assign to the fact that others are contributing.

12This corresponds to the value of π that maximizes the likelihood function associated
to each case.
13Another possibility would be to use, as proxies of the value of π induced by each stated

belief, the midpoint of each interval, 16 ,
1
2 and

5
6 , respectively.
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x0 = c x0 = g EUT
k = 1 .366 .378 .366
k = 2 .531 .574 .450
k = 3 0 0 0

Table 14: Framing Effects on the Equilibrium Probability of Contribution
Public good value g = .91; λ = 1.29; δ = 1.30.
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7 Conclusions

Inspired by the seminal works of Kahnemann and Tversky (dated more than
30 years from now), economists have learned that frames matter since they
affect the way in which people understand problems and plan to solve them.
In our paper, we study frame effects in the classic problem of public good
provision, a problem which has important policy implications. To this aim,
we applied Prospect Theory to get different equilibrium distributions in the
four possible different problems that differ with respect to the reference point.
Our basic theoretical conjecture would call for: a) Different contribution
probabilities in the two frames Tc and Tg tested in the lab with b) more
contribution in Tg (basically, because of loss aversion). In this respect, our
experimental evidence backs definitely up the first working hypothesis. In
particular, we find that the biggest difference happens when k = 3; as for
the second, this is true when k, the threshold below which public good is not
provided/not maintained, is high.
One lesson from our experimental evidence is that, if unanimity is needed,

it is better to frame the problem as prevention of a bad than as provision of a
public good. On the contrary, when the threshold is low and the temptation
to free ride is highest, it is better to frame the problem as public good
provision.
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8 Appendix

8.1 Proof of Proposition 2

To save notation we call b = c∗c . Evaluating the right-hand side of (13) at
b = c∗c and using (12):

R(b) = w(1− q(b))v(b) + w(q(b))v(b− 1) = v(1− b)v(b)

v(1)
+ w(q(b))v(b− 1).

(35)
Since λ(1− b) = −v(b− 1)/v(1− b),

R(b) =
v(1− b)v(b)

v(1)
− λ(1− b)w(q(b))v(1− b). (36)

Since the expression above is linear and decreasing in λ(1 − b) and R(b) is
increasing in b, it follows that for λ(1− b) greater than the threshold:

λc =
v(c∗c)

v(1)w(q(c∗c))
, (37)

we have R(b) < 0 so that c∗1 > b = c∗c , while the inequality is reversed if
λ(1− b) is less than λc.¥

8.2 Proof of Proposition 3

To compare c∗c with ceu, we evaluate the left- and right-hand sides of the
equilibrium condition of the former at the latter:

L(ceu) =
v(1− ceu)

v(1)
≥ 1− ceu, (38)

by concavity of v in gains, and with equality if v is linear in gains:

R(ceu) = w(1− ceu). (39)

If cf < 1/2, then cf < 1 − ceu for all N > 1, so that 1 − ceu > w(1 − ceu).
Thus, L(ceu) > R(ceu), which implies c∗c > ceu.¥

8.3 Proof of Proposition 4

At ceu, the right-hand side of the equilibrium condition for c∗1, Expression
(13) becomes:

R(ceu) = w(1− ceu)v(ceu) + w(ceu)v(ceu − 1). (40)
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Then (18) follows since R is increasing.
For N = 2, since ceu = 1/2 = 1− ceu, clearly λeu = 1.
For N > 2, if v is linear in gains,

λeu =

µ
w(1− ceu)

v(1− ceu)

¶µ
v(ceu)

w(ceu)
)

¶
=

µ
w(1− ceu)

1− ceu

¶µ
ceu

w(ceu)
)

¶
, (41)

is less than ceu/w(ceu) since 1 − ceu > 1/2 > cf , by regressiveness and sub-
certainty of w at cf . Thus, if ceu ≤ cf then λeu < 1 since ceu ≥ w(ceu).¥

8.4 Proof of Proposition 5

To prove (i) we observe that when N = 2, the equilibrium condition becomes:

w(1− c) = 1− c, (42)

which is satisfied only at c = 1− cf .
When N > 2, we see that w(1 − cN−1) > w(1 − c) since w(1 − cN−1) is

an increasing function of N. So, we have that w(1 − (1 − cf)
N−1) > w(1 −

(1 − cf)) = 1 − (1 − cf) = cf . Any c ∈ (0, 1) can be an equilibrium only if
c < 1− cf , as stated in (ii).
Note that (ii) and (i) imply (iii) for the case m = 2.
To show (iii) for m > 2, let cn ∈ (0, 1) be the supremum interior equi-

librium for N = n > 3. Let xn = 1 − cn and GN(z) = fN(z) − w−1(z)
be the left-hand side minus the right-hand side of the equilibrium condition
(42). Let m be an integer such that n > m > 2. Note that Gm(1 − cf) =
fm(1 − cf) − cf > 0. Note also that because fN , and consequently GN , are
increasing in N for any x ∈ (0, 1), Gm(xn) < Gn(xn) = 0. Then, by continu-
ity of Gm(x) in x ∈ (0, 1), it follows that there exists xm ∈ (1− cf , xn) such
that Gm(xm) = 0. Thus cm = 1− xm is an interior equilibrium for N = m,
satisfying cm < cn. This proves (iv).
To show (v) note that if there is no interior equilibrium for N = m > 2,

then Gm(x) > 0 for all x ∈ (1 − cf , 1) and Gm(1 − cf) > 0. Now since GN

is increasing in N , the same inequality holds for any larger N > m, and no
interior equilibrium exists either.
To show (iv), for any given integer n > 2, take a weighting function such

as for 1 > p > p
n
is defined by:

wn(p) := f−1n (p) = 1− (1− p)1/(n−1) if p ∈
h
p
n
, 1
i
, (43)

where p
n
> fn(cf). For p < p

n
wn(p) can be defined to have a fixed point

p = cf and have all the properties assumed in Prospect Theory. With such
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a weighting function, it is clear from the equilibrium condition (??) that for
N = n, the set of equilibria is

£
p, 1
¤∪{0}, while for N > n there is no interior

equilibrium. Similarly it can be shown that for any subset S ⊂ (cf , 1] with
S being a union of closed intervals included in (cf , 1], there is a weighting
function satisfying the properties stated in Prospect Theory and with fixed
point cf , such that S is the set of equilibria for some N > 2.¥

8.5 Proof of Proposition 6

(i) With linear value functions in gains and losses, and linear weighting func-
tion, the equilibrium condition becomes:

q(g − c)− λc(1− q) = 0. (44)

Since q = cN−1:

λ =
g − c

c

cN−1

1− cN−1
. (45)

The term on the right is an increasing function of g and it is a decreasing
function of N, then we have:

λ =
g − c

c

cN−1

1− cN−1
≤ 1− c

c

c

1− c
= 1, (46)

which is a contradiction with the fact that there is loss aversion.
(ii) With linear value functions in gains and losses the equilibrium condi-

tion becomes:

λ =
g − c

c

w(cN−1)
w(1− cN−1)

. (47)

Since again the term on the right is increasing with g and decreasing with
N, we have that:

λ ≤ w(c)

c

1− c

w(1− c)
. (48)

Then, if the term in the right is less than one, we get a contradiction with
loss aversion. We see that this will be the case if c ≥ 1 − cf . First, for any
c ≥ 1 − cf , 1 − c ≤ cf and w(1 − c) ≥ 1 − c, which implies w(1−c)

1−c ≥ 1.
Secondly, as cf < 1/2 we know that c ≥ 1− cf > cf and, therefore, w(c) < c

and w(c)
c

< 1. To sum up, we get:

w(c)

c
<

w(1− c)

1− c
, (49)

which implies λ < 1.

(iii) This is immediate since the term w(cN−1)
w(1−cN−1) is a decreasing function

of N.
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8.6 Proof of Proposition 8

Recall that the equilibrium condition under Expected Utility (28) is:

q(c) = c. (50)

(i) We show the first inequality of the proposition. For reference point x0 =
c the equilibrium condition making indifferent the prospects at choice (8),
becomes:

w(p+ q)v(1− c) + w(r)v(−c) = w(p)v(1). (51)

With linear value function both in gains and in losses and linear probability
weighting function, the equilibrium condition (51) becomes:

(p+ q)(1− c)− λrc = p, (52)

so:
q(c) = [1 + (λ− 1)r(c)] c. (53)

Suppose that there exists a solution cc ∈ (0, 1) to (53). Then, since for k > 1,
r(cc) > 0, and by loss aversion λ > 1:

q(cc) = [1 + (λ− 1)r(cc)] cc > cc. (54)

So that at cc the left-hand side of the equilibrium condition (50) is greater
than the right-hand side L0(cc) > R0(cc). Since at c = 1, for that equilibrium
condition the inequality is the opposite, L0(1) = 0 < R0(1) = 1, and both
sides are continuous, it follows that there exists an equilibrium ceu > cc.
(ii) We finally show the second inequality of the proposition. For reference

point x0 = 1 the equilibrium condition making indifferent the prospects at
choice (10), becomes:

w(r)v(−1) = w(p)v(c) + w(q + r)v(−1 + c). (55)

With linear value function both in gains and in losses and linear probability
weighting function, the equilibrium condition (55) becomes:

−λr = pc− λ(q + r)(1− c). (56)

So:

q(c) = c

∙
1−

µ
1− 1

λ

¶
p(c)

¸
. (57)

Suppose that there exists a solution c0 ∈ (0, 1) to (50). Then, since for
k < N , p(ceu) > 0, and by loss aversion λ > 1:

q(ceu) = ceu > ceu

∙
1−

µ
1− 1

λ

¶
p(ceu)

¸
. (58)
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So that at ceu the left-hand-side of the equilibrium condition (57) is greater
than the right-hand side L1(ceu) > R1(ceu). Since at c = 1, for that equilib-
rium condition the inequality is the opposite, L1(1) = 0 < R1(1), and both
sides are continuous, it follows that there exists an equilibrium c1 > ceu.¥
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