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SPECIFICATION TESTS FOR THE DISTRIBUTION OF ERRORS  

IN NONPARAMETRIC REGRESSION: A MARTINGALE APPROACH 
 

Juan Mora and Alicia Pérez-Alonso  
 

ABSTRACT 

 We discuss how to test whether the distribution of regression errors belongs to a 

parametric family of continuous distribution functions, making no parametric assumption 

about the conditional mean or the conditional variance in the regression model. We propose 

using test statistics that are based on a martingale transform of the estimated empirical 

process. We prove that these statistics are asymptotically distribution-free, and two Monte 

Carlo experiments show that they work reasonably well in practice. 
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1. INTRODUCTION

Specification tests for the distribution of an observable random variable have

a long tradition in Statistics. However, there are many situations in which the

random variable of interest for the researcher is a non-observable regression error.

For example, in Economics, the productivity of a firm is defined as the error term

of a regression model whose dependent variable is firm profits; and, in Finance, the

return of an asset over a period is usually defined as the error term of a dynamic

regression model. In contexts such as these, knowing whether the distribution of

the error term belongs to a specified parametric family or not may be crucial to

achieve efficient estimation, to determine certain characteristics of interest (such

as percentiles or number of modes) of the error term, or to design an efficient

bootstrap procedure. This is the problem that we study in this paper.

Let (X,Y ) be a bivariate continuous random vector such that E(Y 2) is finite,

and denote m(x) ≡ E(Y |X = x) and σ2(x) ≡Var(Y |X = x). We can consider

then the error term ε ≡ {Y −m(X)}/σ(X), which is, by definition, a zero-mean

unit-variance random variable. The objective of this paper is to describe how to

test a parametric specification of the cumulative distribution function (c.d.f.) of

ε, while making no parametric assumptions about the conditional mean function

m(·) or the conditional variance function σ2(·). Specifically, if Fε(·) denotes the

c.d.f. of ε and F ≡ {F (·, θ), θ ∈ Θ ⊂ Rm} denotes a parametric family of

zero-mean unit-variance continuous c.d.f.’s, each of them known except for the

parameter vector θ, we propose a testing procedure to face the hypotheses

H0 : ∃ θ0 ∈ Θ such that Fε(·) = F (·, θ0), vs.

H1 : Fε(·) /∈ F ,
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when independent and identically distributed (i.i.d.) observations {(Xi, Yi)}ni=1,

with the same distribution as (X,Y ), are available. The testing procedure that

we propose here could also be used, with appropriate changes, if the family F

reduces to one known c.d.f. (i.e. when there is no unknown parameter θ), or if

the error term that is to be analyzed is defined by removing only the conditional

mean (i.e. when we consider the error term Y −m(X)). The specific test statistics

that should be used in these more simple contexts are discussed below.

The testing problem that we study in this paper can also be considered as

an extension of the classical goodness-of-fit problem. Suppose that a parametric

specification for the c.d.f. of an observable continuous variable Y is rejected us-

ing a traditional nonparametric goodness-of-fit statistic, such as the Kolmogorov-

Smirnov one; one of the drawbacks of these statistics is that the rejection of the

null hypothesis gives no intuition about the cause of the rejection. In this situa-

tion, it would be of interest to examine if the only reason why the null hypothesis

has been rejected is because the parametric family fails to capture appropriately

the behaviour in mean of Y ; if we want to check whether this is the case, then we

would have to analyze if the parametric specification is appropriate for Y −m(X).

If the null hypothesis were rejected again, we might be interested in going one step

further and testing whether the parametric family fails to capture appropriately

the behaviour in mean and variance of Y ; thus, we would have to analyze if the

parametric specification is appropriate for {Y −m(X)}/σ(X), and this is precisely

the testing problem that we consider here.

The test statistics that we propose in this paper can be motivated by studying

the relationship between our problem and the classical goodness-of-fit problem.

If the error term ε were observable and parameter θ0 were known, our test would
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be the classical goodness-of-fit test. In our context, the unobservable errors must

be replaced by residuals, which must be derived using nonparametric estimations

of m(·) and σ2(·) since no parametric form for these functions is assumed, and

parameter θ0 must be replaced by an appropriate estimator, say bθ. Thus, any of
the traditional nonparametric goodness-of-fit statistics could be used as a statis-

tic for our test and computed using nonparametric residuals and the estimator bθ.
However, it is well-known in the literature that the consequence of replacing errors

by parametric residuals and parameters by estimators in goodness-of-fit tests is

that the resulting statistics are no longer asymptotically distribution-free (see e.g.

Durbin, 1973 or Loynes, 1980); furthermore, the asymptotic null distributions usu-

ally depend on unknown quantities and, hence, asymptotic critical values cannot

be tabulated. In this paper we prove that this is also the case when nonparamet-

ric residuals are used, and we discuss how this problem can be circumvented in

our testing problem. Specifically, by using the results derived in Akritas and Van

Keilegom (2001), we derive the asymptotic behaviour of goodness-of-fit statistics

based on nonparametric residuals and estimators; and then, following the method-

ology introduced in Khmaladze (1993), we derive the martingale-transformed test

statistics that are appropriate in our context.

The rest of the paper is organized as follows. In Section 2 we introduce the

empirical process on which our statistics are based and derive its asymptotic

properties. In Section 3 we describe the martingale transformation that leads to

asymptotically distribution-free test statistics. In Section 4 we report the results

of a set of Monte Carlo experiments that illustrate the performance of the statistics

with moderate sample sizes. Some concluding remarks are provided in Section 5.

All proofs are relegated to an Appendix.
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2. STATISTICS BASED ON THE ESTIMATED EMPIRICAL

PROCESS

If we had observations of the error term {εi}ni=1 and parameter θ0 were known,

we could use as a statistic for our test the asymptotic Kolmogorov-Smirnov

statistic Kn ≡ n1/2 supz∈R |Fn(z)− F (z, θ0)| or the Cramér-von Mises statistic

Cn ≡
Pn

i=1{Fn(εi) − F (εi, θ0)}2, where Fn(·) denotes the empirical c.d.f. based

on {εi}ni=1. Both Kn and Cn are functionals of the so-called “empirical process”

Vn(·), defined for z ∈ R by

Vn(z) ≡ n−1/2
Pn

i=1{I(εi ≤ z)− F (z, θ0)},

where I(·) is the indicator function; hence, the asymptotic properties of Kn and

Cn can be derived by studying the weak convergence of the empirical process

Vn(·). In our context, the test statistics must be constructed replacing errors

by residuals and the unknown parameter by an estimator. Since no parametric

assumption about the conditional mean m(·) or the conditional variance σ2(·)

is made, the residuals {bεi}ni=1 must be constructed using nonparametric esti-
mates of these functions. Specifically, we consider Nadaraya-Watson estimators,

i.e. bm(x) ≡ Pn
i=1Wi(x, hn)Yi and bσ2(x) = Pn

i=1Wi(x, hn)Y
2
i − bm(x)2, where

Wi(x, hn) ≡ K{(x − Xi)/hn}/
Pn

j=1K{(x − Xj)/hn}, K(·) is a known kernel

function and {hn} is a sequence of positive smoothing values. With these esti-

mates we construct the nonparametric residuals bεi ≡ {Yi− bm(Xi)}/bσ(Xi). On the

other hand, the unknown parameter must be replaced by an appropriate estimator

bθ, usually also based on the residuals bεi. Thus, the test statistics that can be used
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are

bKn ≡ n1/2 sup
z∈R

¯̄̄ bFn(z)− F (z,bθ)¯̄̄ and bCn ≡
Pn

i=1{ bFn(bεi)− F (bεi,bθ)}2,
where bFn(·) denotes the empirical c.d.f. based on {bεi}ni=1. Both bKn and bCn are

functionals of the process bVn(·), defined for z ∈ R by

bVn(z) = n−1/2
Pn

i=1{I(bεi ≤ z)− F (z,bθ)}.
Hence, the asymptotic behaviour of bKn and bCn is derived studying the asymp-

totic properties of the process bVn(·), which will be hereafter referred to as the

“estimated empirical process”.

First of all we discuss the asymptotic relationship between the empirical process

Vn(·) and the estimated empirical process bVn(·), since this relationship will be

crucial to establishing the asymptotic behaviour of bKn and bCn. The following

assumptions will be required:

Assumption 1: The support of X, hereafter denoted SX , is bounded, convex

and has a non-empty interior.

Assumption 2: The c.d.f. of X, denoted FX(·), admits a density function fX(·)

that is twice continuously differentiable and strictly positive in SX .

Assumption 3: The conditional c.d.f. of Y | X = x, hereafter denoted F (·|x),

admits a density function f(·|x). Additionally, both F (y|x) and f(y|x) are

continuous in (x, y), the partial derivatives ∂
∂y
f(y|x), ∂

∂x
F (y|x), ∂2

∂x2
F (y|x)

exist and are continuous in (x, y), and supx,y |yf(y|x)| <∞, supx,y |y ∂
∂x
F (y|x)|

<∞, supx,y |y2 ∂
∂y
f(y|x)| <∞, supx,y |y2 ∂2

∂x2
F (y|x)| <∞.

Assumption 4: The functions m(·) and σ2(·) are twice continuously differen-

tiable. Additionally, there exists C > 0 such that infx∈SX σ2(x) ≥ C.
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Assumption 5: The kernel function K(·) is a symmetric and twice continu-

ously differentiable probability density function with compact support andR
uK(u)du = 0.

Assumption 6: The smoothing value hn satisfies that nh4n = o(1), nh5n/ log h
−1
n =

O(1) and log h−1n /(nh3+2δn ) = o(1) for some δ > 0.

Assumption 7: The c.d.f F (·, θ) admits a density function f(·, θ) which is pos-

itive and uniformly continuous in R. Additionally, f(·, ·) is twice differen-

tiable with respect to both arguments, F (·, ·) has bounded derivative with

respect to the second argument and supz∈R |zf(z, θ)| <∞ for every θ ∈ Θ.

Assumption 8: For a certain metric d(·, ·), there is a unique value θ0 in Θ sat-

isfying that F (·, θ0) ≡ arg infF∈F d(Fε, F ).

Assumption 9: The estimator bθ satisfies that bθ− θ0 = op(1). Additionally, if H0

holds then n1/2(bθ − θ0) = n−1/2
Pn

i=1 ψ(Xi, εi, θ0) + op(1), where the func-

tion ψ(·, ·, ·) is twice continuously differentiable with respect to the second

argument and is such that supz∈R | ∂
2

∂z2
ψ(x, z, θ0)| < ∞, E{ψ(X, ε, θ0)} = 0

and Ω ≡ E{ψ(X, ε, θ0)ψ(X, ε, θ0)
0} is finite.

Assumptions 1-6, which are similar to those introduced in Akritas and Van

Keilegom (2001), guarantee that the nonparametric estimators of the conditional

mean and variance behave properly. Assumption 7 allows us to use mean-value

arguments to analyze the effect of introducing the estimator bθ. Assumption 8
ensures that the true parameter θ0 is identified under H0. The metric that is

introduced in this assumption depends on the procedure that is used to estimate

θ0; note that a natural estimation procedure in this context would be residual-

6



based maximum-likelihood, but other procedures such as minimum distance or

method of moments might be preferred for robustness or computational reasons.

Assumption 9 implies that, under H0, the estimator bθ is root-n-consistent; note
also that the asymptotic expansion that is assumed for n1/2(bθ − θ0) is satisfied,

under suitable smoothness assumptions, by most estimators.

Our first proposition states an “oscillation-like” result between the empirical

process and the estimated empirical process in our context.

Proposition 1: If H0 holds and assumptions 1-9 are satisfied then

sup
z∈R

¯̄̄ bVn(z)− {Vn(z) +A1n(z) +A2n(z)−A3n(z)}
¯̄̄
= op(1),

where

A1n(z) ≡ f(z, θ0)n
−1/2Pn

i=1{(ϕ1(Xi, Yi) + β1n},

A2n(z) ≡ zf(z, θ0)n
−1/2Pn

i=1{ϕ2(Xi, Yi) + β2n},

A3n(z) ≡ Fθ(z, θ0)
0n1/2(bθ − θ0),

Fθ(z, θ) ≡ ∂
∂θ
F (z, θ), ϕ1(x, y) ≡ −σ(x)−1

R
{I(y ≤ v)−F (v|x)}dv, ϕ2(x, y) ≡

−σ(x)−2
R
{v − m(x)}{I(y ≤ v) − F (v|x)}dv and, for j = 1, 2, βjn ≡

1
2
h2n{

R
u2K(u)du}{

R
ϕ∗j(x, x)fX(x)dx}, ϕ∗j(u, x) ≡ ∂2

∂u2
E[ϕj(u, Y )|X = x].

Note that processesA1n(·) andA2n(·) arise as a consequence of the nonparamet-

ric estimation of the conditional mean and variance, respectively, whereas A3n(·)

reflects the effect of estimating θ0. The following theorem states the asymptotic

behaviour of bKn and bCn.

Theorem 1: Suppose that assumptions 1-9 hold. Then:

a) If H0 holds then

bKn
d→ sup

t∈R
|D(t)| and bCn

d→
Z
{D(t)}2dt,
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where D(·) is a zero-mean Gaussian process on R with covariance structure

Cov{D(s),D(t)} = F (min(s, t), θ0)− F (s, θ0)F (t, θ0) +H(s, t, θ0),

and

H(s, t, θ0) ≡ f(s, θ0)[E{I(ε ≤ t)ε}+ s
2
E{I(ε ≤ t)(ε2 − 1)}]

+f(t, θ0)[E{I(ε ≤ s)ε}+ t
2
E{I(ε ≤ s)(ε2 − 1)}]

+f(s, θ0)f(t, θ0)[1 +
s+t
2
E(ε3) + st

4
{E(ε4)− 1}]

−Fθ(s, θ0)
0E{I(ε ≤ t)ψ(X, ε, θ0)}

−Fθ(t, θ0)
0E{I(ε ≤ s)ψ(X, ε, θ0)}

−f(s, θ0)Fθ(t, θ0)
0[E{ψ(X, ε, θ0)ε}+ s

2
E{ψ(X, ε, θ0)(ε

2 − 1)}]

−f(t, θ0)Fθ(s, θ0)
0[E{ψ(X, ε, θ0)ε}+ t

2
E{ψ(X, ε, θ0)(ε

2 − 1)}]

+Fθ(s, θ0)
0ΩFθ(t, θ0).

b) If H1 holds then, ∀ c ∈ R,

P ( bKn > c)→ 1 and P ( bCn > c)→ 1.

Since the covariance structure of the limiting process depends on the underlying

distribution of the errors and the true parameter, it is not possible to obtain

asymptotic critical values valid for any situation. To overcome this problem, it

would be possible to approximate critical values by bootstrap methods. This is the

approach that is followed in Neumeyer et al. (2005) in a closely related context.

However, following Khmaladze (1993) and Bai (2003), it is also possible to propose

test statistics based on a martingale transform of the estimated process; this is the

alternative approach that we explore in the next section. The advantage of this

alternative approach is that it usually leads to test statistics with better power

properties (see e.g. Koul and Sakhanenko 2005 and Mora and Neumeyer 2008)

with much less computational effort, since no resampling is required.
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3. STATISTICS BASED ON A MARTINGALE-TRANSFORMED

PROCESS

As Proposition 1 states, three new processes appear in the relationship between

the estimated empirical process bVn(·) and the true empirical processVn(·). These

three additional processes stem from the estimation of the conditional mean, the

conditional variance and the unknown parameter. If we follow the methodology

described in Bai (2003), this relationship leads us to consider the martingale-

transformed process

Wn(z) ≡ n1/2{ bFn(z)−
Z z

−∞
q(u, θ0)

0C(u, θ0)
−1dn(u, θ0)f(u, θ0)du}, (1)

where

q(u, θ) ≡ (1, fu(u, θ)/f(u, θ), 1 + ufu(u, θ)/f(u, θ), fθ(u, θ)
0/f(u, θ))0,

C(u, θ) ≡
R +∞
u

q(τ , θ)q(τ , θ)0f(τ , θ)dτ ,

dn(u, θ) ≡
R +∞
u

q(τ , θ)dbFn(τ) = n−1
Pn

i=1 I(bεi ≥ u)q(bεi, θ),
and fu(u, θ) ≡ ∂

∂u
f(u, θ), fθ(u, θ) ≡ ∂

∂θ
f(u, θ). Since process Wn(·) depends

on the unknown parameter θ0, we cannot use it to construct test statistics; ob-

viously, the natural solution is to replace again θ0 by bθ. Thus, we consider

the estimated martingale-transformed process cWn(·), defined in the same way

as Wn(·) but replacing θ0 by bθ. With this estimated process we can derive a
Kolmogorov-Smirnov or a Cramér-von Mises statistic as above. However, in this

case, the supremum (in the Kolmogorov-Smirnov case) and the integral (in the

Cramér-von Mises case) are not taken with respect to R, because the asymptotic

equivalence betweenWn(·) and cWn(·) is only proved at intervals (−∞, z0], with

z0 ∈ R (see Theorem 4 in Bai, 2003). Thus, the statistics that we consider are

Kn,z0 ≡ F (z0,bθ)−1/2 supz∈(−∞,z0]

¯̄̄cWn(z)
¯̄̄
and Cn,z0 ≡ F (z0,bθ)−2n−1Pn

i=1 I(bεi ≤
9



z0)cWn(bεi)2, where z0 is any large enough fixed real number; note that the factor
that depends on F (z0,bθ) is introduced in order to obtain an asymptotic distribu-
tion that does not depend on z0.

The asymptotic behaviour of the martingale-transformed statistics are derived

studying the convergence of cWn(·). Given θ ∈ Θ and M > 0, denote Nn(θ,M) ≡

{v ∈ Θ; ||v − θ|| ≤Mn−1/2} and qθ(u, θ) ≡ ∂
∂θ
q(u, θ). The following assumptions,

which ensure that the martingale transformation behaves properly, are required.

Assumption 10: C(u, θ) is a non-singular matrix for every u ∈ [−∞,+∞) and

for every θ ∈ Θ.

Assumption 11: There exists M0 such that

sup
v∈Nn(θ0,M0)

R +∞
−∞ ||qθ(u, v)||

2f(u, θ0)du = O(1).

Assumption 10 ensures that the martingale transformation can be performed.

This assumption, which is not satisfied in some cases, might be relaxed at the

cost of some more technical complexity; in this case, generalized inverse matrices

would have to be used (see Tsigroshvili 1998).

Theorem 2: Suppose that assumptions 1-11 hold.

a) If H0 holds and F (z0, θ0) ∈ (0, 1), then:

Kn,z0
d→ sup

t∈[0,1]
|W(t)| and Cn,z0

d→
Z
[0,1]

{W(t)}2dt,

where W(·) is a Brownian motion.

b) If H1 holds, E(ε3) < ∞,
R
u4fu(u, θ0)du < ∞ and f(·, θ) satisfies the

Fréchet-Cramér-Rao regularity conditions (see e.g. Rohatgi and Saleh 2001,
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p. 391) then there exists z ∗ ∈ R such that, if z0 ≥ z∗, ∀ c ∈ R:

P
¡
Kn,z0 > c

¢
→ 1 and P

¡
Cn,z0 > c

¢
→ 1.

It follows from this theorem that a consistent asymptotically valid testing pro-

cedure with significance level α is to reject H0 if Kn,z0 > kα, or to reject H0 if

Cn,z0 > cα, for a large enough z0, where kα and ca denote appropriate critical val-

ues derived from the c.d.f.’s of supt∈[0,1] |W(t)| and
R
[0,1]
{W(t)}2dt. Specifically,

the critical values with the usual significance levels are k0.10 = 1.96, k0.05 = 2.24,

k0.01 = 2.81 for Kn,z0 (see Shorack and Wellner 1986, p.34), and c0.10 = 1.196,

c0.05 = 1.656, c0.01 = 2.787 for Cn,z0 (see Rothman and Woodroofe 1972). Also

note that we only include here results under a fixed alternative; it would also be

possible to derive results under local alternatives, and this might be the starting

point for a power-based comparison between Kn,z0 or Cn,z0 and bootstrap-based

tests based on bKn or bCn. However, the asymptotic results that would obtained

in this way depend on various unknown quantities and do not lead to any clear

conclusion (see Mora and Neumeyer 2008).

The statistics Kn,z0 and Cn,z0 are designed to test whether the c.d.f. of the

error term ε = {Y − m(X)}/σ(X) belongs to a parametrically specified family

of zero-mean unit-variance continuous c.d.f.’s. If we were interested in testing

whether the c.d.f. of the error term ε = {Y −m(X)}/σ(X) is a known zero-mean

unit-variance c.d.f. F0(·), then the test statistics should be based on the process

Wn(·) defined as in (1), but considering

q(u) ≡ (1, f0,u(u)

f0(u)
, 1 +

uf0,u(u)

f0(u)
)0, (2)

where f0(·) and f0,u(·) denote the first and second derivative of F0(·).
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If we were interested in testing whether the c.d.f. of the error term Y −m(X)

belongs to a parametrically specified family of zero-mean continuous c.d.f.’s, then

the test statistics should be based on the process cWn(·) as defined above, but

considering q(u, θ) ≡ (1, fu(u, θ)/f(u, θ), fθ(u, θ)
0/f(u, θ))0. Finally, if we were

interested in testing whether the c.d.f. of the error term Y −m(X) is a known zero-

mean c.d.f. F0(·), then the test statistics that we would use should be based again

on the processWn(·) defined as in (1), but considering q(u) ≡ (1, f0,u(u)/f0(u))0.

4. SIMULATIONS

In order to check the behaviour of the statistics, we perform two sets of Monte

Carlo experiments. In all experiments, independent and identically distributed

{(Xi, Yi)}ni=1 are generated as follows: Xi has uniform distribution on (0, 1) and

Yi = 1+Xi+εi, whereXi and εi are independent, and the distribution of εi changes

across experiments. In the first set of experiments we test the null hypothesis that

the error term ε ≡ {Y −m(X)}/σ(X) is standard normal, when in fact it follows a

standardized Student’s t distribution with 1/δ degrees of freedom, and we consider

δ = 0, 1/12, 1/9, 1/7, 1/5 and 1/3; thus, in our first set of experiments H0 is true

if and only if δ = 0, and the other values of δ allow us to examine the ability of the

testing procedure to detect deviations from the null hypothesis caused by thick

tails. In the second set of experiments we test the null hypothesis that the error

term ε is distributed as a standardized Student’s t distribution with θ (unknown)

degrees of freedom, when in fact ε = [U − E(U)]/Var(U)1/2 and U is a skewed

Student’s t5 distribution (see Fernandez and Steel, 1998) with density function

fγ(x) = 2(γ+1/γ)
−1[f(γx)I(x < 0)+f(x/γ)I(x ≥ 0)], where f(·) is the Student’s

t5 density, and we consider γ = 1, 1.25, 1.50, 1.75 and 2; thus, in our second set
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of experiments H0 is true if and only if γ = 1, and the other values of γ allow

us to examine the ability of the testing procedure to detect deviations from the

null hypothesis caused by asymmetries. Note that the error U can be generated

from a uniform random variable on (0, 1), say Z,by considering U = γ−1Q5((γ
2+

1)Z/2)I(Z < (γ2 + 1)−1) + γQ5([(1 − γ−2) + (1 + γ−2)Z]/2)I(Z ≥ (γ2 + 1)−1),

where Q5(·) is the inverse of the c.d.f. of a Student’s t5 distribution; also note that

E(U) = 4
√
5(γ−1/γ)/(3π) and Var(U) = [80+(γ2+1/γ2−1)(15π2−80)]/(9π2).

In the first set of experiments, since there is no θ parameter under the null

hypothesis, the test statistics are based on the process Wn(·) defined as in (1),

but nowwith the function q(·) that appears in (2), which in this specific case proves

to be (1, −u, 1− u2)0. In the second set of experiments parameter θ is estimated

by the method of moments using the fourth order moment and assuming that the

null hypothesis is true, i.e. bθ = (4bm4 − 6)/(bm4 − 3), where bm4 ≡ n−1
Pn

i=1bε4i ;
in these experiments the test statistics are based on the process cWn(·) and, in

this case, since f(u, θ) is the density of a standardized Student’s tθ density, then

fu(u, θ)/f(u, θ) = −u(θ + 1)(u2 + θ − 2)−1 and

fθ(u, θ)

f(u, θ)
=
1

2
[ψ(

θ + 1

2
)− ψ(

θ

2
)− θ − 2− θu2

(θ − 2)(θ − 2 + u2)
− ln(1 + u2

θ − 2)],

where ψ(·) is the digamma function. The computation of the statistics requires the

use of Nadaraya-Watson estimates of the conditional mean and variance functions.

We have used the standard normal density function as a kernel function K(·),

and various smoothing values to analyze how this selection influences the results;

specifically, we consider h(j) = C(j)bσXn−1/5, for j = 1, ..., 4, where bσX is the

sample standard deviation of {Xi}ni=1 and C(j) = j/2. The integrals within the

martingale-transformed process have been approximated numerically. Finally, we
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consider z0 = 1.645 in experiment 1 and z0 = 2.015 in experiment 2; thus, when

H0 is true approximately the top 5% residuals are discarded.

In Tables 1 and 2, we report the proportion of rejections of the null hypothesis

for n = 100 and n = 500 with various significance levels; these results are based

on 1000 replications. We only report the results for the Cramer-von Mises type

statistics, since the results that are obtained with the Kolmogorov-Smirnov type

statistic are quite similar. The results that we obtain show that the statistic works

reasonably well for these sample sizes, though the empirical sizes are always below

the nominal ones. In addition, the performance of the statistics does not seem to

be very sensitive to the choice of the smoothing value, especially in the second

experiment.

5. CONCLUDING REMARKS

In this paper we discuss how to test if the distribution of errors from a nonpara-

metric regression model belongs to a parametric family of continuous distribution

functions. We propose using test statistics that are based on a martingale trans-

form of the estimated empirical process. These test statistics are asymptotically

distribution-free, and our Monte Carlo results suggest that they work reasonably

well in practice.

The present research could be extended in several directions. First of all, it

would be interesting to extend our results to the case of testing symmetry of

the error distribution in a nonparametric regression model. We should take into

account that the null hypothesis is no longer a parametric one; thus, the martingale

transformation cannot be estimated parametrically and the usual problems with

nonparametric convergence rates may arise. Related references in this context are
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Dette el al. (2002) and Neumeyer and Dette (2007), where a simple symmetric

wild bootstrap is proposed to mimic the distribution of the statistic. Comparison

of level and power properties for finite samples with the new martingale approach

would be interesting.

A generalization to models with higher dimensional covariates would be de-

sirable, but it is not straightforward to extend the results of Akritas and Van

Keilegom (2001) due to the so-called curse of dimensionality. However, these re-

sults should suffice to derive asymptotic properties in additive models. To that

end, we should first provide an “oscillation like result” for the empirical distri-

bution function of residuals in additive regression models. Thus, the proof for

our martingale transformed process could be generalized to this sort of models,

because we do not use the specific form of the model here.

In addition to this, it would be also interesting to extend the results we have

already obtained to dynamic models. The main point here is to extend Theorem

1 of Akritas and Van Keilegom (2001), which proposes a consistent estimator of

the distribution of the error term ε based on nonparametric regression residuals

when ε is independent of X in an i.i.d. context, to a context with dependent data.

Recently, Hansen (2008) provides uniform convergence rates for kernel estimators

of density functions and regression functions when the observations come from

a stationary β-mixing sequence. Furthermore, Franke et al. (2002) prove the

consistency of bootstrap kernel estimators in a nonparametric model of nonlinear

autoregression when {Yi}ni=1 is a strictly stationary and ergodic process. Using

their results, a bootstrap version of the test could be proposed in a context of

dependence.
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APPENDIX: PROOFS

Proof of Proposition 1: Assume that H0 holds and let bθ be an appropriate
estimator of θ0. If we add and subtract F (z, θ0) to bVn(·), we obtain

bVn(z) = n−1/2
nX
i=1

[I(bεi ≤ z)− F (z, θ0)]− n1/2[F (z,bθ)− F (z, θ0)] (3)

= (I)− (II).

By Taylor expansion, the second term admits the approximation

(II) = Fθ(z, θ0)
0n1/2(bθ − θ0) + Fθθ(z, θ)

0n1/2(bθ − θ0)
2/2, (4)

where Fθθ denotes the second partial derivative of F (·, ·) with respect to the second

argument and θ denotes a mean value between bθ and θ0. Apply assumption 9 to

show that the last term is Op(n
−1/2).

From Theorem 1 in Akritas and Van Keilegom (2001), we obtain the following

expansion of the empirical c.d.f. based on the estimated residuals bεi:
bFn(z) = n−1

nX
i=1

I(bεi ≤ z)

= n−1
nX
i=1

I(εi ≤ z) + n−1
nX
i=1

ϕ(Xi, Yi, z) + βn(z) +Rn(z), (5)

where ϕ(x, y, z) = −f(z, θ0)σ−1(x)
R
[I(y ≤ v)− F (v|x)](1 + z v−m(x)

σ(x)
)dv, βn(z) =

1
2
h2n{

R
u2K(u)du}{

R
ϕ∗(x, x, z)fX(x)dx}, ϕ∗(u, x, z) ≡ ∂2

∂u2
E[ϕ(u, Y, z)|X = x],

and supz∈R |Rn(z)| = op(n
−1/2) + op(h

2
n) = op(n

−1/2). Note that

ϕ(x, y, z) = f(z, θ0)ϕ1n(x, y) + zf(z, θ0)ϕ2n(x, y),

βn(z) = f(z, θ0)β1n + zf(z, θ0)β2n

where ϕ1n(·, ·), ϕ2n(·, ·), β1n and β2n are as defined above. The proposition follows

immediately by appealing to (4) and (5) in (3). ¥
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Proof of Theorem 1: First we prove the theorem for bKn. Note that, under

H0, bKn = supz∈R

¯̄̄ bDn(z)
¯̄̄
+ o(1), where we define

bDn(z) ≡ n−1/2
nX
i=1

{I(bεi ≤ z)− F (z,bθ)− βn(z)}, (6)

and βn(·) is defined above. To derive the asymptotic distribution of bKn, it suffices

to prove that bDn(·) converges weakly to D(·), and then apply the continuous

mapping theorem. From Proposition 1 and (6), it follows that bDn(·) has the same

asymptotic behaviour as Dn(z) ≡ n−1/2
Pn

i=1[I(εi ≤ z)− F (z, θ0) + ϕ(Xi, Yi, z)]

− Fθ(z, θ0)
0n1/2(bθ − θ0), where the function ϕ(·, ·, ·) is defined above.

To analyze the process Dn(·), we follow a similar approach to that used in the

proof of Theorem 3.1 in Dette and Neumeyer (2007), though now an additional

term turns up due to the estimation of parameter θ0. We can rewrite ϕ(·, ·, ·) as

follows:

ϕ(x, y, z) = −f(z,θ0)
σ(x)

(1− zm(x)
σ(x)

){
∞R
y

(1− F (v|x))dv −
yR

−∞
F (v|x)dv}

−zf(z,θ0)
σ2(x)

{
∞R
y

v(1− F (v|x))dv −
yR

−∞
vF (v|x)dv}

= −f(z,θ0)
σ(x)

(1− zm(x)
σ(x)

)(m(x)− y)− zf(z,θ0)
2σ2(x)

(σ2(x) +m2(x)− y2).

For y = m(x) + σ(x)ε, we have

ϕ(x, y, z) = ϕ(x,m(x) + σ(x)ε, z) = f(z, θ0)(ε+
z

2
(ε2 − 1)). (7)

We also have for the bias part

βn(z) = −h2n{
Z

k(u)u2du} × {f(z, θ0)
Z

1

σ2(x)
[(m00σfX)(x)

+2(m0σf 0X)(x)− 2(σ0m0fX)(x)]dx+ zf(z, θ0)

Z
1

σ2(x)
[2(σ0σf 0X)(x)

+(σ00σfX)(x)− (m0(x))2fX(x)− 3(σ0(x))2fX(x)]dx}/2,
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where we use the prime and the double prime to denote the first and second order

derivatives of the corresponding function, respectively. Observe that the bias can

be omitted if nh4n = o(1). By assumption 9 and replacing (7) in Dn(z), we obtain

Dn(z) = n−1/2
nX
i=1

[I(εi ≤ z)− F (z, θ0) + f(z, θ0)(εi +
z

2
(ε2i − 1))

−Fθ(z, θ0)
0ψ(Xi, εi, θ0)] + op(1)

= eDn(z) + op(1),

where the last line defines the process eDn(·). Obviously, under our assumptions,

E[eDn(z)] = 0. For s, t ∈ R, straightforward calculation of the covariances yields

that Cov{eDn(s), eDn(t)} = F (min(s, t), θ0) − F (s, θ0)F (t, θ0) +H(s, t, θ0), where

H(·, ·, ·) is defined in Theorem 1. Hence, the covariance function of eDn(·) converges

to that of D(·).

To prove weak convergence of process Dn(·), it suffices to prove weak conver-

gence of eDn(·). Let ∞(G) denote the space of all bounded functions from a

set G to R equipped with the supremum norm kvkG = supg∈G |v(g)|, and define

G = {δz(·), z ∈ R} as the collection of functions of the form

δz(ε) = I(ε ≤ z) + f(z, θ0)(ε+
z

2
(ε2 − 1))− Fθ(z, θ0)

0ψ(X, ε, θ0). (8)

With this notation, observe that

eDn(z) = n−1/2
nX
i=1

(δ(εi)− E[δ(εi)])

is a G-indexed empirical process in ∞(G). Proving weak convergence of eDn(·) in

∞(G) entails that the class G is Donsker. Following Theorem 2.6.8 of van der

Vaart and Wellner (1996, p.142), we have to check that G is pointwise separable,

is a Vapnik-Červonenkis class of sets, or simply a VC-class and has an envelope
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function ∆(·) with weak second moment1. Using the remark in the proof of the

aforementioned theorem, the latter condition on the envelope can be promoted to

the stronger condition that the envelope has a finite second moment. Pointwise

separability of G follows from p. 116 in van der Vaart and Wellner (1996). More

precisely, define the class G1 = {δz(·), z ∈ Q}, which is a countable dense subset

of G (dense in terms of pointwise convergence). For every sequence zm ∈ Q with

zm & z asm −→∞, which means that zm decreasingly approaches z asm −→∞,

and δz(·) ∈ G, we consider the sequence δzm(·) ∈ G1. First, for each ε ∈ R, the

sequence δzm(·) fulfils that δzm(ε) −→ δz(ε) pointwise as m −→ ∞, since δz(·) is

right continuous for every ε ∈ R. Second, δzm(·) −→ δz(·) in L2(P )-norm, where

P is the probability measure corresponding to the distribution of ε,

kδzm(ε)− δz(ε)k2P,2 ≡
R
|δzm(ε)− δz(ε)|2f(v, θ0)dv ≤

3[F (zm, θ0)− F (z, θ0) + (f(zm, θ0)− f(z, θ0))
2E(ε2)

+(zmf(zm, θ0)− zf(z, θ0))
2E(ε2 − 1)2/4]

+(Fθ(zm, θ0)− Fθ(z, θ0))
0Ω(Fθ(zm, θ0)− Fθ(z, θ0))

−2(Fθ(zm, θ0)− Fθ(z, θ0))
0E{(I(ε ≤ zm)− I(ε ≤ z))ψ(X, ε, θ0)}

−2(f(zm, θ0)− f(z, θ0))(Fθ(zm, θ0)− Fθ(z, θ0))
0E{ψ(X, ε, θ0)ε}

−2(zmf(zm, θ0)− zf(z, θ0))(Fθ(zm, θ0)− Fθ(z, θ0))
0E{ψ(X, ε, θ0)(ε

2 − 1)}

−→ 0 as m −→∞.

1Consider an arbitrary collection Xn = {x1, ..., xn} of n points in a set X and a collection

C of subsets of X . We say that C picks out a certain subset A of Xn if A = C ∩Xn for some

C ∈ C. Additionally, we say that C shatters Xn if all of the 2n subsets of Xn are picked out by

the sets in C. The VC-index V (C) of the class C is the smallest n for which no set Xn ⊂ X is

shattered by C. We say that C is a VC-class if V (C) is finite. Finally, a collection G is a VC-class

of functions if the collection of all subgraphs {(x, t), g(x) < t}, where g ranges over G, forms a

VC-class of sets in X ×R. See van der Vaart and Wellner (1996, chapter 2.6) for further details.
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For z ∈ R, we may rewrite (8) as δz(ε) = g1(ε) + g2(ε), where g1(ε) = I(ε ≤ z)

and g2(ε) = f(z, θ0)(ε +
z
2
(ε2 − 1)) − Fθ(z, θ0)

0ψ(X, ε, θ0). Let us now define

the class of all indicator functions of the form C1 = {ε 7−→ I(ε ≤ d), d ∈ R}

such that g1(·) ∈ C1. Consider any two point sets {ε1, ε2} ⊂ R and assume,

without loss of generality, that ε1 < ε2. It is easy to verify that C1 can pick

out the null set and the sets {ε1} and {ε1, ε2} but cannot pick out {ε2}. Thus,

the VC-index V (C1) of the class C1 is equal to 2; and hence C1 is a VC-class.

Note that ψ(·, ·, ·) = (ψ1(·, ·, ·), ..., ψm(·, ·, ·)). We define the class of functions

C2 = {ε 7−→ aε+b(ε2−1)+c1ψ1(X, ε, θ0)+...+cmψm(X, ε, θ0)| a, b, c1, ..., cm ∈ R}

such that g2(·) ∈ C2. By Lemma 2.6.15 of van der Vaart and Wellner (1996)

and assumption 9, for fixed X ∈ R, the class of functions C2 is a VC-class with

V (C2) ≤ dim(C2) + 2. Finally, by Lemma 2.6.18 of van der Vaart and Wellner

(1996), the sum of VC-classes builds out a new VC-class. This yields the VC

property of G. Recall that an envelope function of a class G is any function

x 7→ ∆(x) such that |δz(x)| ≤ ∆(x) for every x and δz(·). Using that f(·, θ)

is bounded away from zero, supε∈R |εf(ε, θ)| < ∞ and that F (·, ·) has bounded

derivative with respect to the second argument, it follows that G has an envelope

function of the form

∆(ε) = 1 + α1ε+ α2(ε
2 − 1)− α03ψ(X, ε, θ0),

where α = (1, α1, α2, α03)
0 is a (3 +m)× 1 vector of constants. Finally, note that

our assumption 9 readily implies that this envelope has a finite second moment,

which completes the proof of part a.

On the other hand, under our assumptions, supz∈R | bFn(z)−Fε(z)| = op(1). Also,

by applying the mean-value theorem, F (z,bθ) = F (z, θ0) + Fθ(z, θ
∗∗)(bθ − θ0) for
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θ∗∗ a mean value between bθ and θ0. From assumption 8, under H0, θ0 is the true

parameter, while under H1, θ0 corresponds to the best approximation F (·, θ0) of Fε

in the class F with respect to the relevant metric d(·, ·). From assumption 9, under

H0, the last term is Op(n
−1/2), while under the alternative the last term is op(1).

Thus, irrespective of whether H0 holds true or not, supz∈R |F (z,bθ) − F (z, θ0)| =

op(1). Therefore supz∈R | bFn(z)−F (z,bθ)| p−→ supz∈R |Fε(z)−F (z, θ0)|. Under H1,

supz∈R |Fε(z)− F (z, θ0)| > 0 and this concludes the proof of part b.

For the second test statistic observe that bCn =
R
{ bFn(v)− F (v,bθ)}2d bFn(v). As

before, the asymptotic distribution of this statistic can be obtained from Propo-

sition 1 and the uniform convergence of bFn(·). ¥

The following two propositions are required in the proof of Theorem 2.

Proposition A1: Suppose that assumptions 1-11 hold. Then,
+∞Z
−∞

||q(u,bθ)− q(u, θ0)||2f(u, θ0)du = op(1).

Proof: Under assumption 7, q(·, ·) is continuously differentiable with respect to

θ. Thus, by a Taylor expansion we obtain q(u,bθ) = q(u, θ0) + qθ(u, θ
∗)(bθ − θ0)/2,

where θ∗ lies between bθ and θ0. Observe that
+∞R
−∞

||q(u,bθ)− q(u, θ0)||2f(u, θ0)du ≤ 1
4
||bθ − θ0||2

+∞R
−∞

||qθ(u, θ∗)||2f(u, θ0)du

≤ 1
4
||bθ − θ0||2 sup

v∈N(θ0,M0)

+∞R
−∞

||qθ(u, v)||2f(u, θ0)du = op(1),

where the first inequality follows using ||q(u,bθ) − q(u, θ0)||2 ≤ ||qθ(u, θ∗)||2||bθ −
θ0||2/4, and the last equality follows using assumptions 9 and 11. More precisely,

using assumption 9, it is straightforward to show that (bθ− θ0) = Op(n
−1/2) under

H0. Then, ||bθ − θ0||2 = Op(n
−1), and we get 1

4
Op(n

−1)O(1) = op(1). Under

the alternative hypothesis H1, from assumption 9, bθ − θ0 = op(1), and we get

1
4
op(1)O(1) = op(1). ¥
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Proposition A2: Suppose that assumptions 1-11 hold. Then,

sup
z∈R
||n−1/2

Pn
i=1[I(εi ≥ z){q(εi,bθ)− q(εi, θ0)}

−
+∞R
z

{q(u,bθ)− q(u, θ0)}f(u, θ0)du]|| = op(1).

Proof: As above, under assumption 7, q(·, ·) is continuously differentiable

with respect to θ. Thus, by a Taylor expansion we obtain q(u,bθ) = q(u, θ0) +

qθ(u, θ
∗)(bθ − θ0)/2, where θ∗ lies between bθ and θ0. Therefore,

n−1/2
Pn

i=1[I(εi ≥ z){q(εi,bθ)− q(εi, θ0)}−
+∞R
z

{q(u,bθ)− q(u, θ0)}f(u, θ0)du]

= n−1/2
Pn

i=1[I(εi ≥ z){q(εi,bθ)− q(εi, θ0)}−E(I(ε ≥ z){q(ε,bθ)− q(ε, θ0)})]

= n−1
Pn

i=1[I(εi ≥ z)qθ(εi, θ
∗)−E(I(ε ≥ z)qθ(ε, θ

∗)]n1/2(bθ − θ0)/2.

By assumption 9, it is straightforward to show that, under H0, n1/2(bθ−θ0) is Op(1)

and the remaining term is op(1) using some uniform strong law of large numbers.

On the other hand, under H1, bθ−θ0 = op(1) and the remaining term is Op(1) using

some Central Limit Theorem. The result holds given that Op(1)op(1) = op(1). ¥

Proof of Theorem 2: In the following reasoning we assume that the null hy-

pothesis holds. Let t = F (z, θ0), then z = F−1(t, θ0). Interchanging the variables,

we shall first show thatWn(·) ≡Wn(F
−1(·, θ0)) converges weakly to a standard

Brownian motion. Let D[0, b] (b > 0) denote the space of cadlag functions on

[0, b] endowed with the Skorohod metric. Furthermore, define the linear mapping

Γ : D[0, 1]→ D[0, 1] as follows

Γ(α(·))(t) ≡
tZ
0

q(F−1(s, θ0), θ0)
0C(F−1(s, θ0), θ0)

−1[

1Z
s

q(F−1(r, θ0), θ0)dα(r)]ds.

LetQ(t) = (Q1(t), Q2(t), Q3(t), Q4(t))
0 = (t, f(F−1(t, θ0)), f(F

−1(t, θ0))F
−1(t, θ0),

Fθ(F
−1(t, θ0))

0)0; so q(F−1(·, θ0)) is the derivative of Q(·). Then it follows that

Γ(Ql(·)) = Ql(·), for l = 1, 2, 3, 4. (9)
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From C(F−1(s, θ0))
−1C(F−1(s, θ0)) = I4, we have C(F−1(s, θ0))−1{

1R
s

q(r)dQ1(r)}

= (1, 0, 0, 0)0. Thus Γ(Q1(·))(t) =
tR
0

q(s)0(1, 0, 0, 0)0ds = Q1(t). A parallel analysis

establishes similar results for the remaining components of Q(·).

Let bt = F (F−1(t),bθ). Thus bVn(t) = n1/2[ bFn(t)−t]+n1/2[t−bt]. Note that bVn(·)

can be rewritten as follows

bVn(·) = n1/2[ bFn(F
−1(·, θ0))−Q1(·)] + n1/2[Q1(·)− F (F−1(Q1(·), θ0),bθ)].

Using the linearity of Γ(·), (6) and (7), routine calculations yield that Wn(·) =bVn(·)−Γ(bVn(·)). Using Proposition 1, the linearity of Γ(·) and (6), it follows that

Γ(bVn(z)) = Γ(Vn(z)) + n−1/2
Pn

i=1[f(z, θ0)(ϕ1n(Xi, Yi) + β1n)

+zf(z, θ0)(ϕ2n(Xi, Yi) + β2n)]− Fθ(z, θ0)
0n1/2(bθ − θ0) + op(1).

Notice that the bias term βn(·) = f(z, θ0)β1n + zf(z, θ0)β2n can be omitted if

nh4n = o(1). Using Proposition 1 again, we have Wn(·) = Vn(·) − Γ(Vn(·)) +

op(1)+o(1). Thus, as Vn(·) converges weakly to a standard Brownian bridge B(·)

on [0, 1],Wn(·) converges weakly to B(·)−Γ(B(·)), which is a standard Brownian

motion on [0, 1] (see Khamaladze, 1981 or Bai, 2003, p. 543).

Let us now define fWn(·) ≡ cWn(F
−1(·, θ0)). Observe that propositions A1

and A2 imply that assumption D1 of Bai (2003) holds. Hence, to prove thatfWn(·) = Wn(·) + op(1), we follow exactly the lines of the proof of Theorem 4

of Bai (2003). Introduce C(u) =
R +∞
u

q(τ ,bθ)q(τ ,bθ)0f(τ , θ)dτ . Thus, for every

23



t0 ∈ (0, 1), it follows that

supt∈[0,t0] |
fWn(t)−Wn(t)| ≤

supz∈(−∞,F−1(t0,θ0)) n
1/2|

R z
−∞ q(u,bθ)0C(u,bθ)−1dn(u,bθ){f(u,bθ)− f(u, θ0)}du| +

supz∈(−∞,F−1(t0,θ0)) n
1/2|

R z
−∞ q(u,bθ)0{C(u,bθ)−1 − C(u)−1}dn(u,bθ)f(u, θ0)du| +

supz∈(−∞,F−1(t0,θ0)) n
1/2|

R z
−∞[q(u,

bθ)0C(u)−1dn(u,bθ)
−q(u, θ0)0C(u, θ0)−1dn(u, θ0)]f(u, θ0)du| ≡ (I) + (II) + (III).

We next show that (I), (II) and (III) are all small under H0. We first prove

that (III) is op(1). For ease of notation we write bq ≡ q(F−1(·, θ0),bθ), bC ≡
C(F−1(·, θ0),bθ), C ≡ C(F−1(·, θ0)), q ≡ q(F−1(·, θ0), θ0), C ≡ C(F−1(·, θ0), θ0).

From C
−1
C = I4, we have C

−1 R 1
s
q(F−1(r, θ0),bθ)dr = (1, 0, 0, 0)0, since the first

column of C is
R 1
s
q(F−1(r, θ0),bθ)dr. Hence, R t0 bq0C−1 R 1s {q(F−1(r, θ0),bθ)dr = t.

Analogously, from (9), we have
R t
0
q0C−1

R 1
s
{q(F−1(r, θ0), θ0)dr = t for l = 1.

Thus, (III) can also be expressed as follows

(III) = supt∈[0,t0) |
R t
0
[bq0C−1 R 1

s
q(F−1(r, θ0),bθ)dbVn(r)

−q0C−1
R 1
s
q(F−1(r, θ0), θ0)dbVn(r)]ds| ≤

supt∈[0,t0)
R t
0
|bq0C−1 R 1

s
{q(F−1(r, θ0),bθ)− q(F−1(r, θ0), θ0)}dbVn(r)|ds+

supt∈[0,t0)
R t
0
|bq0{C−1 − C−1}

R 1
s
q(F−1(r, θ0), θ0)dbVn(r)|ds+

supt∈[0,t0)
R t
0
|{bq − q}0C−1

R 1
s
q(F−1(r, θ0), θ0)dbVn(r)|ds.

(10)

Now observe that using Proposition 1, assumption 6 and z = F−1(t, θ0), for the

estimated empirical process we can write

bVn(t) = Vn(t) + g(t)0n−1/2Σn + op(1) + o(1). (11)

where g(t) ≡ (Q2(t), Q3(t), Q4(t))
0 and Σn = (

Pn
i=1 ϕ1n(Xi, Yi),

Pn
i=1 ϕ2n(Xi, Yi),

−(bθ − θ0))
0. We next write equation (11) in its differential form

dbVn(t) = dVn(t) +
·
g(t)0dt Σn + op(1), (12)
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where
·
g(·) denotes the derivative of g(·). Therefore, for all s in (0, t0), applying

Cauchy-Schwarz inequality and (12), we derive that

|bq0C−1 R 1
s
{q(F−1(r, θ0),bθ)− q(F−1(r, θ0), θ0)}dbVn(r)| ≤

||bq|| ||C−1|| (|| R 1
s
{q(F−1(r, θ0),bθ)− q(F−1(r, θ0), θ0)}dVn(r)||+

{
R 1
s
||q(F−1(r, θ0),bθ)− q(F−1(r, θ0), θ0)||2dr}1/2 ×

[{
R 1
s
|| ·g(r)||2dr}1/2Op(1) + op(1)]) = ||bq||Op(1)op(1),

(13)

where the last equality follows from propositions A2 and A1. Similarly, reasoning

as in (13),

|bq0{C−1 − C−1}
R 1
s
q(F−1(r, θ0), θ0)dbVn(r)| ≤

||bq|| ||C−1 − C−1|| ||
R 1
s
q(F−1(r, θ0), θ0)dbVn(r)|| ≤

||bq|| ||C−1 − C−1|| {||
R 1
s
q(F−1(r, θ0), θ0)dVn(r)||+Op(1)}

= ||bq||op(1)Op(1).

(14)

To see the last equality, note that
R 1
s
q(F−1(r, θ0), θ0)dVn(r) = Op(1) by the

functional central limit theorem and, ||C−1−C−1|| = op(1), uniformly in s, using

the same argument as in Bai (2003, p. 548). Finally,

|{bq − q}0C−1
R 1
s
q(F−1(r, θ0), θ0)dbVn(r)| ≤

||bq − q|| ||C−1|| ||
R 1
s
q(F−1(r, θ0), θ0)dbVn(r)|| = ||bq − q||Op(1)Op(1).

(15)

Therefore, from (10), (13), (14) and (15), we have

(III) ≤ op(1)(

Z 1

0

||bq||2ds)1/2 +Op(1)(

Z 1

0

||bq − q||2ds)1/2

= op(1)Op(1) +Op(1)op(1) = op(1),

where the last equality follows from propositions A1.

To analyze (I) and (II), observe that, under assumptions 7 and 9, f(·,bθ) =
f(·, θ0) + op(1) (this follows applying a Taylor expansion). Hence, bC = C + op(1).
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Using the same arguments as above it is straightforward to show that (I) =

op(1) and (II) = op(1). Thus, under H0,
fWn(·) also converges weakly to a

Brownian motionW(1)(·) in the space D[0, t0]; hence, the martingale-transformed

statistic Kn,z0 ≡ F (z0,bθ)−1/2 supt∈[0,F (z0,θ0)] ¯̄̄fWn(t)
¯̄̄
converges in distribution to

F (z0, θ0)
−1/2 supt∈[0,F (z0,θ0)]

¯̄
W(1)(t)

¯̄
= supt∈[0,1] |W(t)|, where we denoteW(t) ≡

F (z0, θ0)
−1/2W(1)(F (z0, θ0)t), which is a Brownian motion in the space D[0, 1].

Similarly, from Proposition 1 and the uniform convergence of bFn(·), Cn,z0 ≡

F (z0,bθ)−2n−1Pn
i=1 I(bεi ≤ z0)cWn(bεi)2 = F (z0,bθ)−2 R I(z ≤ z0){cWn(z)}2dFε(z)+

op(1), and henceCn,z0 converges in distribution to F (z0, θ0)
−2 R F (z0,θ0)

0
{W(1)(t)}2dt

=
R
[0,1]
{W(t)}2dt. This completes the proof of part a.

On the other hand, under H1, the assertion can be deduced from the probability

limit of n−1/2cWn(z), which is

Υ(z) ≡ Fε(z)−
Z z

−∞
q(u, θ0)

0C(u, θ0)
−1{
Z +∞

u

q(τ , θ0)dFε(τ)}f(u, θ0)du.

Let us first assume that Υ(z) = 0 for every z ∈ R; if this is the case, then

∂Υ(z)/∂z = 0, and this amounts to saying that

fε(z)− q(z, θ0)
0Π(z)f(z, θ0) = 0, (16)

where we define Π(z) = C(z, θ0)
−1{
R +∞
z

q(τ , θ0)fε(τ)dτ}, and fε(·) denotes the

density function of ε. Let us show that Π(z) is constant: by the fundamental

theorem of calculus and the rules from matrix derivation, we have

∂
∂z
Π(z) = C(z, θ0)

−1 ∂
∂z
C(z, θ0)C(z, θ0)

−1{
R +∞
z

q(τ , θ0)fε(τ)dτ}

−C(z, θ0)−1q(z, θ0)fε(z) = −C(z, θ0)−1q(z, θ0) ∂∂zΥ(z) = 0,

where the second equality follows using ∂C(z, θ0)/∂z = −q(z, θ0)q(z, θ0)0f(z, θ0),

and the last equality follows from ∂Υ(z)/∂z = 0. Thus it follows that Π(z) =
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(Π1,Π2,Π3,Π4)
0 is constant, where Π4 = (Π41, ...,Π4m)0. From (16), it follows that

fε(z) = (Π1 +Π3)f(z, θ0) +Π2fz(z, θ0) +Π3zfz(z, θ0) + fθ(z, θ)
0Π4. (17)

If we integrate the two terms in (17), and also these two terms premultiplied by

z, z2 and z3, we derive a system of four linear equations in four unknowns. Under

our assumptions, which ensure that the integration and differentiation operators

can be exchanged, the only solution to this system is Π1 = Π2 = Π3 = Π4 = 0;

this implies that fε(z) = f(z, θ0). Thus, we have proved that if Υ(z) = 0 for

every z ∈ R, then H0 holds; therefore, under H1, there exists z∗ ∈ R such

that Υ(z∗) 6= 0, and if z0 ≥ z∗ then n−1/2Kn,z0 converges in probability to

F (z0, θ0)
−1/2 supz∈(−∞,z0] |Υ(z)| > 0, and n−1/2Cn,z0 converges in probability to

F (z0, θ0)
−2 R z0

−∞Υ(z)2dFε(z) > 0. The result in part b follows from here. ¥
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TABLE 1: Proportion of Rejections of H0

δ h(1) h(2) h(3) h(4) h(1) h(2) h(3) h(4)

n = 100 n = 500

α = 0.010

0 0.005 0.004 0.003 0.003 0.007 0.006 0.008 0.006

1/12 0.015 0.032 0.016 0.026 0.095 0.126 0.149 0.162

1/9 0.049 0.037 0.027 0.034 0.254 0.307 0.339 0.357

1/7 0.072 0.069 0.064 0.064 0.419 0.491 0.521 0.535

1/5 0.144 0.132 0.130 0.151 0.712 0.769 0.792 0.803

1/3 0.369 0.376 0.371 0.376 0.988 0.994 0.995 0.996

α = 0.050

0 0.015 0.018 0.013 0.015 0.045 0.037 0.038 0.040

1/12 0.044 0.060 0.049 0.059 0.177 0.232 0.258 0.280

1/9 0.079 0.090 0.074 0.075 0.378 0.455 0.486 0.499

1/7 0.126 0.127 0.111 0.105 0.555 0.618 0.650 0.663

1/5 0.216 0.202 0.201 0.238 0.821 0.865 0.884 0.892

1/3 0.484 0.494 0.493 0.481 0.996 0.998 0.998 0.998

α = 0.100

0 0.041 0.053 0.041 0.044 0.083 0.076 0.077 0.079

1/12 0.074 0.086 0.075 0.081 0.237 0.308 0.344 0.359

1/9 0.110 0.122 0.109 0.114 0.460 0.527 0.556 0.570

1/7 0.174 0.165 0.161 0.150 0.629 0.690 0.719 0.736

1/5 0.269 0.266 0.250 0.288 0.873 0.902 0.909 0.917

1/3 0.569 0.578 0.568 0.554 0.998 1.000 1.000 1.000
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TABLE 2: Proportion of Rejections of H0

γ h(1) h(2) h(3) h(4) h(1) h(2) h(3) h(4)

n = 100 n = 500

α = 0.010

1 0.005 0.007 0.006 0.006 0.009 0.009 0.007 0.007

1.25 0.026 0.028 0.031 0.035 0.174 0.172 0.160 0.171

1.5 0.077 0.074 0.078 0.086 0.305 0.307 0.321 0.322

1.75 0.127 0.136 0.133 0.147 0.684 0.702 0.704 0.717

2 0.189 0.198 0.201 0.211 0.902 0.924 0.921 0.913

α = 0.050

1 0.034 0.037 0.041 0.041 0.046 0.049 0.048 0.052

1.25 0.064 0.061 0.062 0.064 0.273 0.287 0.271 0.274

1.5 0.110 0.101 0.103 0.118 0.418 0.425 0.416 0.405

1.75 0.174 0.189 0.182 0.187 0.773 0.821 0.818 0.832

2 0.292 0.310 0.302 0.305 0.957 0.975 0.969 0.964

α = 0.100

1 0.067 0.074 0.071 0.069 0.094 0.096 0.099 0.104

1.25 0.102 0.124 0.120 0.109 0.344 0.361 0.342 0.350

1.5 0.162 0.177 0.174 0.181 0.518 0.542 0.521 0.522

1.75 0.262 0.283 0.271 0.285 0.924 0.942 0.927 0.926

2 0.356 0.374 0.361 0.367 1.000 1.000 0.999 0.999
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