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ABSTRACT 
 

This paper presents a model in which players interact via the formation of costly 

links and the benefits of bilateral interactions are determined by a coordination game. A 

novel contribution of this paper is that the fraction of the cost borne by each player 

involved in a bilateral link is not fixed exogenously, but results from bargaining. We 

analyze the model both in a static and a dynamic setting. Whereas the static game has 

multiplicity of equilibria, we show that only one is stochastically stable. 
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1 Introduction

In many situations, in order to be able to interact, different agents need to agree
on how to share some costs. Consider for example two firms that plan to engage
in a cooperative agreement, namely, a laundry firm and a student’s residence. The
laundry firm would benefit from having some room inside the residence, since it will
get new clients. The residence would also benefit, since providing laundry service
might increase the occupancy in the future. But, how should the cost of adapting
some space for the laundry machines be borne?

The literature on network formation studies situations in which agents can connect
with each other in order to get benefits.1 If link formation is costly, there are two
kind of models regarding how these costs are met: one-sided models, in which the
agent that proposes to form a link meets the entire cost, and two-sided models, in
which both agents share the cost evenly.2 In both models the fraction of the cost
that each agent bears in a link is exogenous. Nevertheless, when two players have the
possibility to form a link, there are several possibilities to split the cost it involves. In
our model, the cost shares are decided through a bargaining process that depends on
the potential benefits they can get from interaction and on what the two agents get in
the case the link is not formed. In this sense, we make the cost sharing endogenous.3

One can think of different sources of benefits from establishing links. For example,
the remarkable paper of Bala and Goyal (2000) models situations where profits come
from the mere fact of communication. In this paper, we analyze a network formation
model in which the potential benefits of each pair of connected agents depend on a
coordination game. Other papers that study the formation of networks in contexts of
coordination games are Goyal and Vega-Redondo (2005), Jackson and Watts (2002)
and Droste et al. (2000).4 Our coordination game has two pure Nash equilibria: one
efficient and the other risk-dominant. Our main objective is to study how a dynamic
process affects the likelihood of the different equilibria.

Our game has two stages. First, each agent chooses an action. Second, after
observing the action profile, agents bargain (on a bilateral basis) on the formation of
links and the corresponding cost sharing; we assume that the bargaining outcome is
determined by the Nash solution. We show that, in the static model, both the efficient
and the risk-dominant action profiles can be supported in equilibrium. Moreover, in

1See Jackson (2005) for a survey of the literature of network formation.
2For example, Bala and Goyal (2000), Goyal and Vega-Redondo (2005), Bramoulle et al. (2004),

and Galeotti et al. (2006) consider one-sided models. Examples of two-sided models are Watts
(2001), Jackson and Watts (2002), Droste et al. (2000) and Jackson and Wolinsky’s (1996) connec-
tions model.

3In the setup of communication networks, Slikker and van den Nouweland (2000) consider mul-
tilateral bargaining over the division of the benefits and the costs simultaneously, in a 3-person
cooperative game.

4Vega-Redondo (2005), Haag and Lagunoff (2004) and Galeotti and Meléndez-Jiménez (2004)
consider a prisoner’s dilemma game and Bramoulle et al. (2004) an anti-coordination game.
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equilibrium, either the complete or the empty network forms and, in every formed
link, the cost is shared evenly.

The dynamic version of the model addresses the issue of equilibrium selection.
We show that there is multiplicity of limit states, although the range of parame-
ters for which there is multiplicity shrinks with respect to the static game. Then,
in order to examine the robustness of each limit state, we characterize the set of
stochastically stable states.5 The main result of the paper (Theorem 2) shows that
the risk-dominance premium of the bilateral coordination game uniquely determines
a stochastically stable state. The risk-dominance premium is a particularization of
the optimization premium in Battalio et al. (2001) for the case in which a player
expects his opponent to play each action with equal probability in the bilateral game.
Intuitively, the risk-dominance premium is a measure of the degree of risk-dominance
of the coordination game. We show that if the risk-dominance premium exceeds
the share of the cost that a player meets in equilibrium, all players choose the risk-
dominant action in the unique stochastically stable state and, otherwise, the efficient
action is selected. The equilibrium network in the long run is the complete network
and the costs of the links are shared evenly.

We finally study how this result is altered when we relax some of the assumptions
of the paper. We first allow for side payments in the link formation and then allow
the payoffs of the bilateral coordination game to be negative. In both cases we obtain
that the unique stochastically stable state is the efficient one, regardless of the risk-
dominance premium. We then compare our results to other relevant papers that also
analyze network formation in a context of coordination games, but assume a different
cost structure.

The remainder of the paper is organized as follows. In Section 2, we present
the static model, analyze the bargaining outcome and characterize the equilibria.
In Section 3, we introduce the dynamics, characterize the limit sets and identify the
stochastically stable states. In Section 4, we relax the main assumptions of the model.
Finally, in Section 5, we compare our results to the most related papers.

2 The static model

Let N := {1, ..., n} be the set of players, where n > 2 and let G := {g ⊂ N ×N : for
all i, j ∈ N , (i, i) /∈ g and (i, j) ∈ g ⇐⇒ (j, i) ∈ g} be the set of undirected networks.
We consider a two-stage game. In the first stage, each player i ∈ N chooses an action
ai ∈ {α, β}. Then, all players observe the action profile a = (a1, ..., an) and, in the
second stage, players form a network g ∈ G. Let A := {α, β}n be the set of action
profiles. Given a ∈ A, the establishment of link (i, j) implies:

5The literature which analyzes stochastic stability in contexts of coordination games is extensive.
For instance, see Kandori et al. (1993), Young (1993), Ellison (1993, 2000), Ely (2002), Baskhar
and Vega-Redondo (2004), Goyal and Vega-Redondo (2005), Jackson and Watts (2002), Droste et
al. (2000) and Peski (2003, 2004).
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i) A gross payoff for each of the two players, which is given by the symmetric function
π : {α, β}× {α, β} → R, which only depends on the actions chosen in the first stage:
π(ai, aj), for player i, and π(aj , ai), for player j. The function π is represented in
Table 1 below, where d > f , b > e, d > b and b + f > d + e. The conditions d > f
and b > e reflect the fact that π (·) represents a 2× 2 symmetric coordination game.
The condition d > b implies that (α,α) is its Pareto efficient equilibrium. Finally, the
condition b+f > d+e implies that (β, β) is the risk-dominant equilibrium, as defined
by Harsanyi and Selten (1988). This equilibrium has the property that each player is
choosing a best response to the other player mixing 50/50 in the coordination game.
We also assume that e > 0, i.e., all the entries of the payoff matrix are positive.6

α β
α d e
β f b

Table 1: the bilateral (gross) payoff matrix.

ii) A fixed cost c > 0, to be borne by players i and j. We assume c < 2d, since,
otherwise, no link is ever formed.

Now we discuss how the link formation takes place. Given a ∈ A, each pair
i, j ∈ N , i �= j, bargain to share the surplus they would get by forming the link (i, j),
i.e., π(ai, aj) + π(aj , ai) − c. Let π̂(ai, aj) represent the net payoff that player i for
being linked to player j. For most of the paper, we assume that side payments are
not allowed, i.e., π̂(ai, aj) ≤ π(ai, aj).

7 If π(ai, aj)+π(aj , ai) ≤ c, then (i, j) /∈ g since
players i and j can not benefit from forming the link. In such a case, π̂(ai, aj) := 0
and π̂(aj , ai) := 0. Suppose now that π(ai, aj) + π(aj , ai) > c, then i and j bargain
to share the surplus. In such a case, B(ai, aj) := {(xi, xj) ∈ R2 : xi+ xj ≤ π(ai, aj)+
π(aj , ai) − c, xi ≤ π(ai, aj) and xj ≤ π(aj, ai)} defines a bargaining set and the
pair (B(ai, aj), (0, 0)) represents a two-person bargaining problem, where (0, 0) is
the disagreement value.8 We assume that, if players i and j reach an agreement,
the link (i, j) is formed and the outcome is determined by the Nash solution, that
is, (π̂(ai, aj), π̂(aj, ai)) := NS(B(ai, aj), (0, 0)) = argmax(xi,xj)∈B(ai,aj),xi,xj≥0 xi · xj.
Otherwise, the link is not formed and the outcome is the disagreement value. When
the link (i, j) is formed, the cost of player i is c(ai, aj) = π(ai, aj)− π̂(ai, aj).

Therefore, the timing of the game is as follows:

1. Players simultaneously choose actions. Then, the chosen action profile a ∈ A is
made public.

6This assumption is relaxed in Section 4.
7In section 4, we analyze how allowing for side payments affects the main result of the paper.
8A two-person bargaining problem is a pair (B, v) such that: i) B is a convex, closed and

comprehensive subset of R2, ii) v ∈ B and there exists x ∈ B such that x > v and iii) Bv = {x ∈
B : x ≥ v} is a compact set. B is called the bargaining set and v the disagreement value.
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2. Network formation. Each i ∈ N chooses Si(a) ⊆ N\{i}. Given i, j ∈ N ,
(i, j) ∈ g if and only if j ∈ Si(a) and i ∈ Sj(a).9

3. Payoffs are realized. Each i ∈ N gets, for each j ∈ N\{i}, the following net
payoff: 0 if (i, j) /∈ g, and NS(B(ai, aj), (0, 0))i if (i, j) ∈ g.

Given a ∈ A and g ∈ G, the total payoff a player i ∈ N gets, Πi(a, g), is the sum
of the net payoffs she gets from all her formed links, i.e., the sum of gross payoffs net
of the costs she meets. Let Ni(g) := {j ∈ N\{i} : (i, j) ∈ g}, then

Πi(a, g) :=
∑
j∈Ni(g)

π̂(ai, aj) =
∑
j∈Ni(g)

(π(ai, aj)− c(ai, aj)) . (1)

2.1 Link Formation and Cost Sharing

Let a ∈ A be the action profile chosen in the first stage. Let i, j ∈ N , j �= i, be
such that π(ai, aj) + π(aj, ai) > c. If i and j do not form the link (i, j), then they
obtain the disagreement value, i.e., (0, 0). Differently, if i and j form the link, they
obtain (π̂(ai, aj), π̂(aj, ai)) = NS(B(ai, aj), (0, 0)). Since the Nash solution results
in a strictly positive sharing of the surplus for each player, in equilibrium the link
(i, j) forms. Hence, given a, there is a unique network under which (a, g) can be an
equilibrium. We call this network g(a) :

g(a) = {(i, j) ∈ N ×N : i �= j and π(ai, aj) + π(aj , ai) > c} ∈ G. (2)

In the next proposition we identify the sharing of the surplus corresponding to
the Nash solution.

Proposition 1 For all i, j ∈ N and all ai, aj ∈ {α, β}, if π(ai, aj) + π(aj, ai) > c,

then π̂(ai, aj) = max
{
π(ai, aj)− c,min

{
π(ai,aj)+π(aj ,ai)−c

2
, π(ai, aj)

}}
.

Proof. See the appendix. �

Corollary 1 For all i, j ∈ N and all ai, aj ∈ {α, β}, if the link (i, j) is formed, then

c(ai, aj) = min
{
c,max

{
c+π(ai,aj)−π(aj ,ai)

2
, 0
}}
. Moreover c(ai, aj) + c(aj, ai) = c.

Proof. The first part follows from substituting π̂(ai, aj) from Proposition 1 in
c(ai, aj) = π(ai, aj)− π̂(ai, aj). The fact that c(ai, aj) + c(aj , ai) = c is immediate.�

Note that, if both players have the same gross payoff, then they share the cost
evenly. We observe that c(ai, aj) is (weakly) increasing in π(ai, aj)− π(aj, ai). Thus,
given a link (i, j), the player with the highest gross payoff meets a higher share of
the cost and, the higher the difference of gross payoffs, the higher the difference in

9Recall that we have explicitly assumed that, if π(ai, aj) + π(aj , ai) ≤ c, then j /∈ Si(a).
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the cost shares. In particular, when π(ai, aj)−π(aj , ai) > c, player i meets the entire
cost.

Note that, for all i, j ∈ N , j �= i and all a ∈ A,

π̂(ai, aj) =

{
0 if π(ai, aj) + π(aj , ai) ≤ c

max
{
π(ai, aj)− c,min{π(ai,aj)+π(aj ,ai)−c

2
, π(ai, aj)}

}
otherwise.

(3)

Hence, by equation (2), for all i ∈ N , Ni(g(a)) = {j ∈ N\{i} : π(ai, aj) + π(aj, ai) >
c} and Πi(a, g(a)) =

∑
j∈Ni(g(a))

π̂(ai, aj) =
∑
j∈N\{i} π̂(ai, aj). Table 2 represents

π̂(ai, aj) separating the cases c ≤ f − e and c > f − e.

α β
α 2d−c

2
e

β f − c max{2b−c
2
, 0}

α β

α 2d−c
2

max{ e+f−c
2

, 0}

β max{ e+f−c
2

, 0} max{2b−c
2
, 0}

c ≤ f − e c > f − e
Table 2: the bilateral net payoff matrix.

Lemma 1 π̂(α, α)− π̂(β, α) > 0 and π̂(α, α) + π̂(β, β) > π̂(α, β) + π̂(β, α).

Proof. Since d > f and d > b > e, π̂(α, α) − π̂(β, α) > 0. Note that π̂(α,α) =
d − c/2 > 0, π̂(β, β) = max{b − c/2, 0} and π̂(α, β) + π̂(β, α) = max{e + f − c, 0}.
Hence, if c ≥ e + f , π̂(α, α) + π̂(β, β) ≥ d − c/2 and π̂(α, β) + π̂(β, α) = 0. If
c < e + f , then π̂(α, β) + π̂(β, α) = e + f − c. Now there are two possibilities.
First, if c ≤ 2b, then π̂(α, α) + π̂(β, β) = d + b − c > e + f − c. Second, if c > 2b,
π̂(α,α) + π̂(β, β) = d− c/2 > e+ f − c. �

Note that, by Lemma 1, (α, α) is a strict Nash equilibrium of the (symmetric)
bilateral game represented in Table 2.

2.2 Equilibrium analysis

Let A∗ := {a ∈ A : (a, g(a)) is an equilibrium} and let aα, aβ ∈ A be defined, for all
i ∈ N , by aαi := α and aβi := β.

Lemma 2 If a∗ ∈ A∗, then, for all i, j ∈ N , a∗i = a∗j .

Proof. See the appendix. �

Corollary 2 For all a∗ ∈ A∗, if (i, j) ∈ g(a∗), then c(ai, aj) = c(aj, ai) =
c
2
.

Proof. The result follows from combining Lemma 2 and Corollary 1. �

Proposition 2 (I) If 2b < e+ f , A∗ =

{
{aα} if c ∈ (2(b− e), f + e)
{aα, aβ} otherwise.

(II) If 2b ≥ e+ f , A∗ = {aα, aβ}.
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Proof. See the appendix. �

By equation (2) and Proposition 2 we can characterize the network associated
to every equilibrium. Let gE ∈ G denote the empty network, i.e., gE = ∅, and let
gC ∈ G denote the complete network, i.e., for all i, j ∈ N, i �= j, (i, j) ∈ gC.

Corollary 3 g(aα) = gC and, if aβ ∈ A∗, g(aβ) =

{
gE if c ≥ max{2b, f + e}
gC otherwise.

Proof. By equation (2), since 2d > c, g(aα) = gC. Now, note that g(aβ) = gC if
and only if 2b > c. By Proposition 2, if 2b ≥ e+ f , then aβ ∈ A∗ and, if 2b < e+ f ,
then aβ ∈ A∗ if and only if c ≥ f + e. �

We have shown that there exists a wide range of parameter values for which both
aα and aβ are equilibria and, in some cases, both the complete and the empty network
are equilibrium networks. To refine the set of equilibria, we now introduce and analyze
a dynamic version of the model.

3 The Dynamic Model

Time is considered to be discrete, t = 0, 1, 2, ... At each period t, the state of the
system consists of an action profile a(t) ∈ A and a network g(t) ∈ G. Let (a(0), g(0))
denote the initial state. As in the static case, for all i, j ∈ N , j �= i, we assume that,
if π(ai(0), aj(0)) + π(aj(0), ai(0)) ≤ c, then (i, j) /∈ g(0) and that, if (i, j) ∈ g(0),
then π̂(ai(0), aj(0)) = NS(B(ai(0), aj(0)), (0, 0)). At each period t ≥ 1 there are two
stages:

First stage. With probability p ∈ (0, 1), each player i ∈ N independently receives
an opportunity to change her action. Thus, the probability that only the players in
{i1, i2, ..., iz} ⊆ N receive a revision opportunity at period t is pz · (1 − p)n−z. If
i ∈ N receives a revision opportunity, she can choose a new action ai(t) ∈ {α, β}
and, otherwise, ai(t) = ai(t − 1). We assume that all players that receive a revision
opportunity at period t make their choices simultaneously.

Second stage. Once the action profile a(t) has been chosen, it is observed by all
the population. Then, for each pair i, j ∈ N , j �= i, if at least one of the two players
received a revision opportunity, the link (i, j) is revised; the link formation being now
as in the static case (Subsection 2.1). If neither player i nor j received a revision
opportunity in the first stage, then the link is unchanged, i.e., (i, j) ∈ g(t) ⇐⇒
(i, j) ∈ g(t− 1) and π̂(ai(t), aj(t)) = π̂(ai(t− 1), aj(t− 1)).

For all i ∈ N , the (total) payoff at period t is computed as in the static case, i.e.,
Πi(a(t), g(t)) =

∑
j∈Ni(g(t))

π̂(ai(t), aj(t)).
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Remark 1 If i ∈ N receives a revision opportunity at period t̄, then, for all t ≥ t̄
and all j ∈ N\{i}, (i, j) ∈ g(t) ⇔ (i, j) ∈ g(a(t)), where g(a(t)) is defined by (2).
Hence, for all t ≥ t̄, Ni(g(t)) = Ni(g(a(t))) and Πi(a(t), g(t)) = Πi(a(t), g(a(t))) =∑
j∈N\{i} π̂(ai(t), aj(t)), where π̂(ai, aj) is defined by equation (3).

We assume that each player that revises her action chooses a myopic best response
to the actions that where chosen by the remaining players in the previous period, i.e.,
when choosing ai(t), player i believes that the bargaining outcome of the second stage
will be determined on the basis of (ai(t), a−i(t − 1)). Hence, in view of Remark 1,
for all i ∈ N and all t ≥ 1, with probability 1 − p, ai(t) = ai(t − 1) and, with
probability p, ai(t) ∈ argmaxai∈{α,β}

∑
j∈N\{i} π̂(ai, aj(t − 1)).

10 If the later argmax

is {α, β}, then there is pα ∈ (0, 1) such that, with probability pα, ai(t) = α and,
with probability (1− pα), ai(t) = β.11 Note that, once all the players that received a
revision opportunity at period t have (myopically) chosen their actions, the realized
action profile a(t) is observed by all the population. Then, in the second stage,
the network and cost sharing are updated according to a(t). Hence, the payoff at
period t of a player i ∈ N that received a revision opportunity is Πi(a(t), g(t)) =∑
j∈N\{i} π̂(ai(t), aj(t)), which may differ from

∑
j∈N\{i} π̂(ai(t), aj(t− 1)).

Remark 2 We intend to characterize the limit states of the dynamics. In view of
Remark 1, the dynamics is governed by the players’ choices of actions. To simplify the
exposition, we assume that g(0) = g(a(0)). This can be done without loss of generality,
since, if g(t) �= g(a(t)), Pr(g(t + 1) = g(a(t+ 1))) > 0 and, if g(t) = g(a(t)), for all
τ > t, g(τ) = g(a(τ)). Hence, for every limit state (a, g), g = g(a) (equation (2)).

Given the arguments presented in Remarks 1 and 2, we can reduce the state space
to A, i.e., the state at period t is a(t) ∈ A. For every a(t) ∈ A, by equation (2) and
Corollary 1, we can uniquely identify a network, g(a(t)), and a profile of cost shares
as in the static setting.

3.1 Limit sets and limit states

Let ∆(A) be the set of probability distributions over A. If we assume that a(0)
is chosen trough a certain µ0 ∈ ∆(A), the dynamics described above determines a
Markov chain on A. Let Q represent the 2n × 2n transition matrix, where (Q)a,â :=
Pr(a(t) = â |a(t−1)=a) for all a, â ∈ A. Then, the probability that the Markov process
(A,Q) leads to each state at period t ≥ 1 is µt = µ0 · Q

t. Our first objective is to
characterize the limit sets of the process (A,Q). Formally, a set L ⊂ A is a limit set
of (A,Q) if, for all â ∈ L,

∑
a∈L(Q)â,a = 1 and, for all â, ã ∈ L, there exists t > 0

10The results of the paper would hold if we considered that players use a (myopic) better response,
i.e., ai(t) ∈ {āi ∈ {α, β} :

∑
j∈N\{i} π̂(āi, aj(t − 1)) ≥

∑
j∈N\{i} π̂(ai(t − 1), aj(t − 1))}, as long as

all the better responses are chosen with positive probability.
11The results of the paper hold if we allow pα to differ across players and/or across states.
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such that (Qt)â,ã > 0. Let L be the set formed by all the limit sets of (A,Q). A state
a ∈ A is a limit state if it belongs to some limit set. Let Al be the set of limit states,
i.e., Al = ∪L∈LL.

We now introduce some constants that will be useful throughout the analysis. Let
φ := π̂(β,β)−π̂(α,β)

π̂(β,β)−π̂(α,β)+π̂(α,α)−π̂(β,α)
and let κ := φ · (n − 1). By Lemma 1, φ < 1 and

κ < n − 1. In the next lemma we show that, for each x ∈ {α, β}, {ax} constitutes
a limit set of the dynamics if and only if (x, x) is a strict Nash equilibrium of the
bilateral game represented in Table 2. Moreover, another consequence is that each
limit set is a singleton, i.e., a limit state.

Lemma 3 L =

{
{{aα}} if π̂(β, β) ≤ π̂(α, β)
{{aα}, {aβ}} if π̂(β, β) > π̂(α, β).

Proof. We analyze, for each a ∈ A, the one-period transitions from a. Given
i ∈ N , ai � α denotes that player i chooses α in the next period (similarly for
ai � β). Let Ka = {i ∈ N : ai = α} and ka = |Ka|.

Let i ∈ Ka. Then,
∑
l∈N\{i} π̂(α, al) = (ka − 1) · π̂(α,α) + (n − ka) · π̂(α, β) and∑

l∈N\{i} π̂(β, al) = (ka − 1) · π̂(β, α) + (n − ka) · π̂(β, β). Hence, by the dynamics,
with probability 1 − p, ai � α and, with probability p, player i is given a chance
to revise. If so, since, by Lemma 1, π̂(α,α) + π̂(β, β) > π̂(α, β) + π̂(β, α), ai � α
if ka > κ + 1 and also, with probability pα, if ka = κ + 1; otherwise ai � β.
Let j ∈ N\Ka. Then,

∑
l∈N\{j} π̂(β, al) = ka · π̂(β, α) + (n − ka − 1) · π̂(β, β) and∑

l∈N\{j} π̂(α, al) = ka · π̂(α,α)+ (n− ka− 1) · π̂(α, β). Hence, by the dynamics, with
probability 1−p, aj � β and, with probability p, player j is given a chance to revise.
If so, since π̂(α, α) + π̂(β, β) > π̂(α, β) + π̂(β, α), aj � α if ka > κ and also, with
probability pα, if ka = κ; otherwise aj � β.

We can already determine the transition matrix Q. Nevertheless, we only need
to identify some aspects of (A,Q). Given a ∈ A, the behavior of a player in Ka that
revises her action depends on whether ka > κ + 1, ka = κ + 1 or ka < κ + 1; and
the behavior of a player in N\Ka that revises her action depends on whether ka > κ,
ka = κ or ka < κ. We distinguish the following possibilities: (i) κ ∈ (0, n − 1) ∩ Z,
(ii) κ ∈ (0, n − 1)\Z, (iii) κ = 0, (iv) κ < 0. The dynamics is represented in Figure
1, where the numbers inside the boxes indicate the possible values that ka can take.
A path of consecutive arrows starting at box m ∈ {0, 1, ..., n} and ending at box
m′ ∈ {0, 1, ..., n} means that, for all a ∈ A such that ka = m, there exists a′ ∈ A such
that ka′ = m′ and (Q)a,a′ > 0,

12 i.e., there is positive probability of (direct) transition
from a state with m players playing α to a state with m′ players playing α. The
absence of a path of consecutive arrows from m to m′ means that, for all a, a′ ∈ A
such that ka = m and ka′ = m′, (Q)a,a′ = 0.

12In Figure 1, two arrows are consecutive if the first arrow ends in the same box that the second
arrow begins. Note that, if no player receives a revision opportunity at t, a(t) = a(t − 1). Hence,
for all a ∈ A, (Q)a,a ≥ (1− p)n > 0 .

10



0 n…K+1K…

0 n…… ⌈K⌉

n…0 1

n…0

(i) K ∈(0, n-1) ∩ Z

(ii)  K ∈(0, n-1) \ Z

(iii) K = 0

(iv)  K < 0

Figure 1. The dynamics for different values of κ.
⌈κ⌉ denotes the least integer not less than κ.

We formally prove case (i) and the rest of the cases follow by analogous reasoning.
Let κ ∈ (0, n − 1) ∩ Z. We distinguish four cases: (i.1) ka < κ, (i.2) ka = κ, (i.3)
ka = κ+ 1, and (i.4) ka > κ+ 1.

(i.1) ka < κ. Then, ka < κ + 1 and, for every i ∈ N that receives a revision
opportunity, ai � β. Hence, for all m ∈ {0, 1, ..., ka}, there exist ã ∈ A such that
kã = m and (Q)a,ã > 0. Moreover, for all â ∈ A such that kâ > ka, (Q)a,â = 0.

(i.2) ka = κ. Now, for each i ∈ Ka that is given the chance to revise, ai � β and, for
each j ∈ N\Ka that is given the chance to revise, with probability pα, aj � α and,
with probability 1 − pα, aj � β. Hence, for all m ∈ {0, 1, ..., n}, there exist ã ∈ A
such that kã = m and (Q)a,ã > 0.

Cases (i.3) and (i.4) are analogous to (i.2) and (i.1), respectively, but exchanging the
roles of α and β.

An examination of Figure 1 shows that, in cases (iii)-(iv), i.e., if κ ≤ 0, L = {{aα}}
and, in cases (i)-(ii), i.e., if κ ∈ (0, n − 1), L = {{aα}, {aβ}}. By Lemma 1, if
π̂(β, β) ≤ π̂(α, β), κ ≤ 0 and, if π̂(β, β) > π̂(α, β), κ ∈ (0, n− 1). �

Proposition 3 L =






{{aα}, {aβ}} if 2b > e+ f and c < 2b
{{aα}, {aβ}} if 2b ≤ e+ f and c < 2(b− e)
{{aα}} otherwise.

Proof. See the appendix. �

By comparing Proposition 2 and Proposition 3, we can see that the set of limit
states is a subset (maybe strict) of A∗, i.e., the dynamics allows to refine the set
of equilibria. The next corollary characterizes the networks associated to the limit
states and the costs met by the players.

Corollary 4 For all a ∈ Al, g(a) = gC, and for all (i, j) ∈ g(a), c(ai, aj) = c/2.

Proof. Since Al ⊆ A∗, by Corollary 3, g(a) ∈ {gC , gE} and, moreover, gE only
appears (as g(aβ)) if max{2b, f + e} < c. However, by Proposition 3, in such a case,
Al = {aα} and g(aα) = gC. Since Al ⊆ {aα, aβ}, for all a ∈ Al and all (i, j) ∈ g(a),
π(ai, aj) = π(aj, ai). Hence, by Corollary 1, c(ai, aj) = c(aj , ai) = c/2. �
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3.2 Perturbed dynamics: stochastically stable states

Now, in order to further refine the set of equilibria, we introduce a perturbation in the
dynamics and study the set of stochastically stable states. We follow the approach in
Ellison (2000). More specifically, we allow for mutations, interpreted as the possibility
of players making errors when implementing their choices on actions, i.e., at all period
t ≥ 1, each player that receives a revision opportunity will, with a small probability
ε > 0 revise her action randomly; namely, with probability qα ∈ (0, 1) chooses α
and with probability 1− qα chooses β.13 The mutations are produced independently
across players.

Remark 3 If, additionally to the mutations in the choices of actions, we considered
mutations in the formation of the links,14 the result of the paper would be unaltered,
i.e., there is no combination of mutations of the links that allow for transitions among
different limit sets. This is due to the fact that, throughout the dynamics, after a
player receives an opportunity to revise her action all her links are also revised on the
basis of her new action. Hence, mutations in the formation of the links would not
alter the posterior players’ choices of actions.

Specifically, the perturbed dynamics is as follows: for all i ∈ N and all t ≥
1, with probability 1 − p, ai(t) = ai(t − 1); with probability p · ε · qα, ai(t) = α;
with probability p · ε · (1 − qα), ai(t) = β and, with probability p · (1 − ε), ai(t) ∈
argmaxai∈{α,β}

∑
j∈N\{i} π̂(ai, aj(t − 1)).

15 If the later argmax is {α, β}, then, with
probability pα, ai(t) = α and, with probability (1− pα), ai(t) = β.

Recall that all randomizations are independent across players. For all ε > 0, the
process defines a Markov chain on A, with transition matrix Qε. Given a Markov
process (A,Qε), µ ∈ ∆A is an invariant probability distribution if µ ·Qε = µ. Since
for all a, a′ ∈ A, (Qε)a,a′ > 0, (A,Qε) has a unique invariant probability distribution,
namely µε.

16 From Ellison (2000), it is also known that µ̃ := limε→0 µε is well defined.
A state a ∈ A is stochastically stable when µ̃(a) > 0. Let As := {a ∈ A : µ̃(a) > 0}.
Young (1993) shows that, if a state is stochastically stable, it is a limit state of the
unperturbed dynamics, i.e., As ⊆ Al.

We define a cost function C : A× A → N ∪ {0} such that, for all pairs a, â ∈ A,
0 < limε→0(Qε)a,â/ε

C(a,â) < ∞, i.e., (Qε)a,â and εC(a,â) are infinitessimals in ε of the
same order. For all a, â ∈ A, C(a, â) represents the minimum number of mutations
needed for a transition from a to â to be feasible. Note that if a transition from a to â
has positive probability under the unperturbed dynamics, i.e., if (Q0)a,â ≡ (Q)a,â > 0,
then C(a, â) = 0.

13Again, the results of the paper hold if we allow qα to differ across players and/or across states.
14For instance, that at any period t ≥ 1, once the network g(t) has formed, each link (i, j) ∈ g(t)

is severed with a small probability δ > 0.
15Note that, if we considered p = 1, we would obtain the dynamics of Kandori et al. (1993). In

such a case the results of the paper essentially hold.
16See, for instance, Freidlin and Wentzell (1984).
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Below we introduce some concepts from Ellison (2000). A path from Z ⊆ A
to a set Y ⊆ A\Z is a finite sequence of distinct states

(
a1, ..., aV

)
with a1 ∈ Z,

av /∈ Y for 2 ≤ v ≤ V − 1, and aV ∈ Y . Let S(Z, Y ) to be the set of all paths
from Z to Y . We can extend the definition of cost to paths of states by setting
C(a1, ..., aV ) =

∑V−1
u=1 C(a

u, au+1). Let L̂ be a union of limit sets of the unperturbed

Markov process (A,Q). The basin of attraction of L̂, denoted D(L̂), is the set of
initial states from which (A,Q) converges to L̂ with probability one. Now we define
the radius and coradius of the basin of attraction of a union of limit sets of the
unperturbed process L̂, which are denoted by R(L̂) and CR(L̂), respectively.

R(L̂) = min(a1,...,aV )∈S(L̂,A\D(L̂))C(a
1, a2, ..., aV ).

CR(L̂) = maxa∈A\L̂min(a1,...,aV )∈S({a},L̂)C(a
1, a2, ..., aV ).

Intuitively, the radius of a set L̂ indicates the minimum cost (minimum number of
mutations) required to move out of it, and the coradius is the maximum cost required
to move into this set from some limit state not included in it.

Theorem 1 (Ellison (2000)). If for some set L̂, which is a union of limit sets,
R(L̂) > CR(L̂), then As ⊆ L̂.

In order to identify the set of stochastically stable states (Theorem 2), we first
state and prove Lemmas 4 and 5.

Lemma 4 Assume π̂(β, β) > π̂(α, β).
(I) If n is odd, then R({aβ}) > CR({aβ}) if and only if κ > n−1

2
and

R({aα}) > CR({aα}) if and only if κ < n−1
2
.

(II) If n is even, then R({aβ}) > CR({aβ}) if and only if κ ≥ n
2
and

R({aα}) > CR({aα}) if and only if κ ≤ n
2
− 1.

Proof. By Lemma 3, π̂(β, β) > π̂(α, β) implies L = {{aα}, {aβ}}. Also, since
π̂(β, β) > π̂(α, β) and π̂(α, α) > π̂(β, α), κ ∈ (0, n− 1). We distinguish two cases:

i) κ ∈ (0, n−1)∩Z (Figure 1 (i)). The basins of attraction of the two limit sets {aα}
and {aβ} are D({aβ}) = {a ∈ A : ka ≤ κ− 1} and D({aα}) = {a ∈ A : ka ≥ κ+ 2}.
In Figure 2 (i) we represent the perturbed dynamics when κ ∈ (0, n − 1) ∩ Z. For
all ε > 0 and all a, a′ ∈ A, (Qε)a,a′ > 0, which is represented by the fact that, for
all a, a′ ∈ A, there exists a path of consecutive arrows from ka to ka′. The regular
arrows represent transitions that do not require mutations and, therefore imply cost
0. On the other hand, a dashed arrow from one box to another indicates that a
mutation is needed from the corresponding transition to take place. The minimum
number of mutations needed for a transition from a state withm players choosing α to
a state with m′ choosing α, i.e., min(a1,...,aV )∈S({â∈A:kâ=m},{ã∈A:kã=m′})C(a

1, ..., aV ), is
represented by the minimum number of dashed arrows among all paths of consecutive
arrows starting at box m and ending at box m′.
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0 n…K+1K… 0 n…… ⌈K⌉

(i) K ∈(0, n-1) ∩ Z (ii)  K ∈(0, n-1) \ Z

Figure 2. The perturbed dynamics when κ ∈ (0, n− 1).

An examination of Figure 2 (i) indicates that the minimum number of mutations
needed for a transition from aβ (kaβ = 0) to a state in A\D({aβ}) is C(aβ, â), where
kâ = κ. The minimum number of mutations needed for a transition from aα (kaα = n)
to a state in A\D({aα}) is C(aα, ã), where kã = κ+1. Thus, R({aβ}) = CR({aα}) =
κ and CR({aβ}) = R({aα}) = n− κ− 1. Hence, if κ ∈ (0, n− 1) ∩ Z, then

R({aβ}) > CR({aβ}) if and only if κ > (n− 1)/2, and (4)

R({aα}) > CR({aα}) if and only if κ < (n− 1)/2. (5)

ii) κ ∈ (0, n − 1)\Z (Figure 1 (ii)). The basins of attraction of two limit sets are
D({aβ}) = {a ∈ A : ka ≤ ⌈κ⌉ − 1} and D({aα}) = {a ∈ A : ka ≥ ⌈κ⌉ + 1},
where ⌈κ⌉ denotes the least integer not less than κ. In Figure 2 (ii), analogously to
the previous case, we represent the perturbed dynamics when κ ∈ (0, n − 1)\Z. An
examination of Figure 2 (ii) indicates that the minimum number of mutations needed
for a transition from aβ (kaβ = 0) to a state in A\D({a

β}) is C(aβ, â), where kâ = ⌈κ⌉.
The minimum number of mutations needed for a transition from aα (kaα = n) to a
state in A\D({aα}) is C(aα, â), where kâ = ⌈κ⌉. Thus, R({aβ}) = CR({aα}) = ⌈κ⌉
and CR({aβ}) = R({aα}) = n− ⌈κ⌉. Hence, if κ ∈ (0, n− 1)\Z, then

R({aβ}) > CR({aβ}) if and only if ⌈κ⌉ > n/2, and (6)

R({aα}) > CR({aα}) if and only if ⌈κ⌉ < n/2. (7)

We now group the results obtained in i) and ii) and characterize the conditions for
R({aβ}) > CR({aβ}) and the conditions forR({aα}) > CR({aα}) when κ ∈ (0, n−1).
Since ⌈κ⌉ ∈ Z, we distinguish two cases:

(I) κ ∈ (0, n− 1) and n odd. Then (n− 1)/2 ∈ Z and n/2 /∈ Z. Hence, ⌈κ⌉ > n/2
if and only if κ > (n− 1)/2, and ⌈κ⌉ < n/2 if and only if κ ≤ (n− 1)/2. Therefore,
we get the following two results. First, R({aβ}) > CR({aβ}) if and only if κ ∈
((n− 1)/2, n− 1), since, by (4), for all κ ∈ (0, n− 1)∩Z, R({aβ}) > CR({aβ}) if and
only if κ > (n−1)/2; and, by (6), for all κ ∈ (0, n−1)\Z, R({aβ}) > CR({aβ}) if and
only if κ > (n− 1)/2. Second, R({aα}) > CR({aα}) if and only if κ ∈ (0, (n− 1)/2),
since, by (5), for all κ ∈ (0, n−1)∩Z, R({aα}) > CR({aα}) if and only if κ < (n−1)/2;
and, by (7), for all κ ∈ (0, n−1)\Z, R({aα}) > CR({aα}) if and only if κ < (n−1)/2.

(II) κ ∈ (0, n − 1) and n even. Then n/2 ∈ Z. Hence, ⌈κ⌉ > n/2 if and only
if κ > n/2, and ⌈κ⌉ < n/2 if and only if κ ≤ n/2 − 1. Therefore, we get the
following two results. First, R({aβ}) > CR({aβ}) if and only if κ ∈ [n/2, n − 1),
since, by (4), for all κ ∈ (0, n− 1) ∩ Z, R({aβ}) > CR({aβ}) if and only if κ ≥ n/2;
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and, by (6), for all κ ∈ (0, n − 1)\Z, R({aβ}) > CR({aβ}) if and only if κ > n/2.
Second, R({aα}) > CR({aα}) if and only if κ ∈ (0, n/2 − 1], since, by (5), for all
κ ∈ (0, n− 1) ∩ Z, R({aα}) > CR({aα}) if and only if κ ≤ n/2− 1; and, by (7), for
all κ ∈ (0, n− 1)\Z, R({aα}) > CR({aα}) if and only if κ < n/2− 1. �

Lemma 5 (I) Assume n is odd. If π̂(β, β)− π̂(α, β) > π̂(α, α)− π̂(β, α), As = {aβ}
and, if π̂(α, α)− π̂(β, α) > π̂(β, β)− π̂(α, β), As = {aα}.
(II) Assume n is even. If (π̂(β, β)−π̂(α, β))(n−2) ≥ (π̂(α, α)−π̂(β, α))n, As = {aβ}
and, if (π̂(α, α)− π̂(β, α))(n− 2) ≥ (π̂(β, β)− π̂(α, β))n, As = {aα}.

Proof. (I) Consider n odd. If π̂(β, β) − π̂(α, β) > π̂(α,α) − π̂(β, α) then κ ∈
(n−1
2
, n− 1). Hence, by Lemma 4 and Theorem 1, As = {aβ}. If π̂(α, α)− π̂(β, α) >

π̂(β, β)− π̂(α, β) then κ < n−1
2
. There are two possibilities. If κ ∈ (0, n−1

2
), then, by

Lemma 4 and Theorem 1, As = {aα}. If κ ≤ 0, then, by Lemma 3, Al = {aα}. Since
As ⊆ Al, As = {aα}.

(II) Consider n even. First, (π̂(β, β)− π̂(α, β))(n− 2) ≥ (π̂(α, α)− π̂(β, α))n can
be rewritten as 2(π̂(β, β)− π̂(α, β))(n−1) ≥ (π̂(α, α)− π̂(β, α)+ π̂(β, β)− π̂(α, β))n.
The latter inequality becomes κ ≥ n/2, since, by Lemma 1, π̂(α, α) − π̂(β, α) +
π̂(β, β) − π̂(α, β) > 0. Hence, κ ∈ [n/2, n − 1) and, by Lemma 4 and Theorem 1,
As = {aβ}. Second, (π̂(α,α)− π̂(β, α))(n−2) ≥ (π̂(β, β)− π̂(α, β))n can be rewritten
as 2(π̂(β, β)− π̂(α, β))(n− 1) ≤ (π̂(α, α)− π̂(β, α) + π̂(β, β)− π̂(α, β))(n− 2). The
latter inequality becomes κ ≤ (n − 2)/2, since, by Lemma 1, π̂(α, α) − π̂(β, α) +
π̂(β, β)− π̂(α, β) > 0. There are two possibilities. If κ ∈ (0, n−2

2
], then, by Lemma 4

and Theorem 1, As = {aα}. If κ ≤ 0, then, by Lemma 3, Al = {aα}. Since As ⊆ Al,
As = {aα}. �

Before presenting the main result of the paper, we define a measure of the degree
of risk-dominance of action β in the bilateral coordination game (Table 1): the risk-
dominance premium, r. It is a particularization of the optimization premium of
Battalio et al. (2001). The latter is defined as the difference in the payoff of the
best response to an opponent’s strategy and the worst response. Since action β
is risk-dominant, it is the unique best response to an opponent mixing 50/50 in
our bilateral game. We define r as the optimization premium in such a case, i.e.,
r = (b + f − d − e)/2.17 Let n̄ := (2d − e − f)/(d − b) and, for all x > 1, define
the positive strictly decreasing function δ(x) = (b− e+ d− f)/(2(x− 1)). Note that
limx→∞ δ(x) = 0. In the following theorem we identify the set of stochastically stable
states.

Theorem 2 (I) For all n odd, if c
2
< r, As = {aβ} and, if c

2
> r, As = {aα}.

(II) For all n even higher than n̄, if c
2
< r − δ(n), As = {aβ} and, if c

2
> r + δ(n),

As = {aα}.

17Intuitively, a player who is uncertain about the action of her opponent, and assigns equal prob-
ability of her playing each action, has a higher incentive to play β the higher r is.
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Proof. See the appendix. �

The next corollary states that, in all stochastically stable states the complete
network forms and all the costs of the links are shared evenly.

Corollary 5 Let a ∈ As. Then, g(a) = gC and, for all (i, j) ∈ g(a), c(ai, aj) =
c(aj , ai) = c/2.

Proof. Recall that As ⊆ Al. Hence the result follows from Corollary 4. �

If n is odd, Theorem 2 has an intuitive interpretation: when r is exceeds the cost
that a player pays in equilibrium, i.e., the degree of risk-dominance of action β is
high, there is a wide range of parameters for which the risk-dominant state aβ is
the unique stochastically stable state. We therefore find a close relationship between
the degree of risk-dominance of β and the robustness of the limit state aβ to small
perturbations in the dynamics. Conversely, if r < c/2, the unique stochastically stable
state coincides with the efficient equilibrium.

If n is even, we get a similar result, although there exists an interval centered on
r, [r− δ(n), r + δ(n)], such that, if c/2 lies in this interval, then both aα and aβ may
coexist as stochastically stable states. Note that, the larger the population is, the
smaller this interval becomes.

4 Side payments and negative payoffs

We now analyze how allowing for side payments or/and negative payoffs affect to the
main result of the paper. If we allow for side payments, the new bilateral net payoff
matrix is represented in Table 3. To see this, let W (ai, aj) be the bargaining set for
i, j ∈ N , i �= j, when side payments are allowed. Note that, if a player is no longer
restricted to achieve at most her gross payoff of the coordination game from a link,
then, for all ai, aj ∈ {α, β} such that π(ai, aj) + π(aj , ai) > c, W (ai, aj) = {(xi, xj) ∈
R
2 : xi + xj ≤ π(ai, aj) + π(aj, ai) − c}. The net payoffs resulting from the Nash

solution are (w(ai, aj), w(aj, ai)) = NS(W (ai, aj), (0, 0)), i.e., w(ai, aj) = w(ai, aj) =
(π(ai, aj) + π(aj, ai)− c)/2 (see proof of Proposition 1).

Under negative payoffs (e < 0), the bilateral net payoff matrix is represented in
Table 4. To see this, let ai = α and aj = β. Then, B(ai, aj) = {(xi, xj) ∈ R2 :
xi + xj ≤ e + f − c, xi ≤ e, xj ≤ f}. Since the disagreement value is (0, 0) and
0 > π̂i,j for all π̂i,j such that (π̂i,j, π̂j,i) ∈ B(ai, aj), player i does not find profitable
to form the link. Hence, no link forms between players choosing different actions.

α β

α 2d−c
2

max{e+f−c
2

, 0}

β max{ e+f−c
2

, 0} max{2b−c
2
, 0}

α β
α 2d−c

2
0

β 0 max{2b−c
2
, 0}

Table 3 Table 4
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Proposition 4 If side payments are allowed and/or e < 0, then (I) for all n odd,
As = {aα} and, (II) for all n even higher than 2d−c

d−b
, As = {aα}.

We omit the proof since it follows similar arguments to the ones used to prove
Theorem 2 (using Lemma 5 and considering Tables 3 and 4 instead of Table 2). Note
that, if side payments are allowed and/or there are negative payoffs, aα is the unique
stochastically stable state. This implies that the risk-dominant action is never selected
in the long run. Clearly, the network associated to the stochastically stable state is
complete and the cost of each link is evenly shared between the involved players.

5 Discussion

We compare our results to Goyal and Vega-Redondo (2005), GVR hereafter, and
Jackson and Watts (2002), JW hereafter. These two papers also consider the for-
mation of costly links in a context of social coordination. GVR consider a one-sided
model, i.e., they assume that players form links on an individual basis: when a player
decides to form a link, she unilaterally meets the entire cost of the link. Therefore, as
long as the payoffs of the bilateral coordination game are non-negative, no player has
incentives to refuse the formation of a link initiated by other player. Differently, JW
study a two-sided model, i.e., they assume that, whenever two players form a link,
the cost is shared equally, regardless of the actions they choose. Both papers obtain
that, when the cost of a link is low, the risk-dominant equilibrium is selected as the
unique stochastically stable state. Instead, when cost is high, the efficient equilibrium
is selected in GVR, and both the risk-dominant and the efficient equilibria coexist in
JW. In both cases, the complete network forms in the long run, as long as the cost
of the link is not so high that players do never find profitable to form a link.

Differently to these models, we determine the cost sharing from bargaining. Our
bargaining outcome results in symmetric cost sharing when two player coordinate
on the same action, and in asymmetric cost sharing when they are miscoordinated.
To this respect, our cost sharing is closer to JW if two players coordinate, and to
GVR if they do not. Regarding the network that arises in the long run, we obtain
the complete network, as both GVR and JW do. Our results on which equilibrium is
selected in the long run (efficient vs. risk-dominant) are qualitatively similar to GVR,
even though the distribution of the cost in equilibrium in our model coincides with the
two-sided model. An explanation of this fact may be found by comparing the revision
structures considered in each model. GVR assume that, when a player receives a
revision opportunity, she can change both her action and her links (on a unilateral
basis), being both decisions taken simultaneously. Differently, JW study a dynamics
in which the opportunities to revise actions and links are drawn independently, i.e.,
players may revise actions and not links or vice versa. Our revision structure is closer
to GVR, since we assume that, if a player revises her action, then all her links are
also revised.
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Finally, we would like to point out that we have assumed that the cost of a link
in our model is independent of the players that form it. Droste et al. (2000) propose
a two-sided model with a geographic cost of forming links. They analyze the case
in which the players are spatially distributed around a circle and assume that the
cost of a link is increasing in the geographic distance between the two players. They
obtain that the risk-dominant equilibrium is the unique stochastically stable state.
We consider that to introduce bargaining considerations in such a setup and in other
contexts of network formation is an interesting issue for future research.

6 Appendix

Proof of Proposition 1

Assume π(ai, aj) + π(aj , ai) > c. First, let W (ai, aj) = {(xi, xj) ∈ R
2 : xi +

xj ≤ π(ai, aj) + π(aj , ai) − c}. We define the unrestricted bargaining outcome as
(w(ai, aj), w(aj , ai)) = NS(W (ai, aj), (0, 0)) = argmax(xi,xj)∈W (ai,aj),xi≥0,xj≥0 xi · xj.
From the first order conditions of the maximization problem we get w(ai, aj) =
w(ai, aj) = (π(ai, aj)+π(aj, ai)−c)/2. Now, we want to calculate (π̂(ai, aj), π̂(aj , ai)) =
NS(B(ai, aj), (0, 0)). There are two possibilities:

First, if π(ai, aj) ≤ π(aj, ai), the constraint xj ≤ π(aj, ai) is not binding. In
this case, if π(aj , ai) ≤ c, the constraint xi ≤ π(ai, aj) is not binding either. Hence,
π̂(ai, aj) = w(ai, aj). If π(aj , ai) > c, there are two cases: if π(ai, aj) ≥ π(aj, ai)− c,
the constraint xi ≤ π(ai, aj) is not binding and, hence, π̂(ai, aj) = w(ai, aj). Dif-
ferently, if π(ai, aj) < π(aj , ai) − c, the constraint xi ≤ π(ai, aj) is binding and the
maximization problem results in the corner solution π̂(ai, aj) = π(ai, aj).

Second, if π(ai, aj) > π(aj , ai), the constraint xi ≤ π(ai, aj) is not binding. In
this case, if π(ai, aj) ≤ c, the constraint xj ≤ π(aj, ai) is not binding either. Hence,
π̂(ai, aj) = w(ai, aj). If π(ai, aj) > c, there are two cases: if π(aj , ai) ≥ π(ai, aj) −
c, the constraint xj ≤ π(aj , ai) is not binding and, hence, π̂(ai, aj) = w(ai, aj).
Differently, if π(aj , ai) < π(ai, aj) − c, the constraint xj ≤ π(aj, ai) is binding and,
hence, π̂(ai, aj) = π(ai, aj)− c. �

Proof of Lemma 2

For all a ∈ A, let Ka = {i ∈ N : ai = α} and ka = |Ka|. Suppose that there exists
a ∈ A∗ such that ka ∈ {1, ..., n− 1}.

Case 1: c ≤ f − e. When 2(b − e) < c ≤ f − e, β is strictly dominated by
α, a contradiction with ka < n. Consider 2(b − e) > c. Since a ∈ A∗, for all
i ∈ Ka,

∑
j∈N\{i} π̂(α, aj) ≥

∑
j∈N\{i} π̂(β, aj), i.e., (ka − 1)

2d−c
2
+ (N − ka)e ≥

(N −ka)
2b−c
2
+(ka− 1)(f − c). Hence, ka ≥

N(2(b−e)−c)
2(d−f+b−e))

+ 2(d−f)+c
2(d−f+b−e)

. Moreover, for all

i ∈ N\Ka,
∑
j∈N\{i} π̂(β, aj) ≥

∑
j∈N\{i} π̂(α, aj), i.e., (N − ka− 1)

2b−c
2
+ ka(f − c) ≥

(N − ka − 1)e+ ka
2d−c
2

. Hence ka ≤
N(2(b−e)−c)
2(d−f+b−e)

− 2(b−e)−c
2(d−f+b−e)

, a contradiction.
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Case 2: c > f − e. If max{2b, f + e} ≤ c < 2d, β is weakly dominated by α, a
contradiction with 0 < ka < n. Consider f−e < c < max{2b, f+e}. On the one hand,
if f + e > 2b, β is strictly dominated by α, a contradiction with ka < n. On the other
hand, if f + e < 2b, we have two possibilities: f − e < c < f + e and f + e < c < 2b.
First, if f−e < c < f +e, since, for all i ∈ Ka,

∑
j∈N\{i} π̂(α, aj) ≥

∑
j∈N\{i} π̂(β, aj),

then ka ≥
N(2b−(e+f))
2(d−f+b−e)

+ 2d−(e+f)
2(d−f+b−e)

and since, for all i ∈ N\Ka,
∑
j∈N\{i} π̂(β, aj) ≥∑

j∈N\{i} π̂(α, aj), then ka ≤
N(2b−(e+f))
2(d−f+b−e)

− 2b−(e+f)
2(d−f+b−e)

, a contradiction. Second, if

f + e ≤ c < 2b, since, for all i ∈ Ka,
∑
j∈N\{i} π̂(α, aj) ≥

∑
j∈N\{i} π̂(β, aj), then ka ≥

N(2b−c)
2(d+b−c)

+ 2d−c
2(d+b−c)

and since, for all i ∈ N\Ka,
∑
j∈N\{i} π̂(β, aj) ≥

∑
j∈N\{i} π̂(α, aj),

then ka ≤
N(2b−c)
2(d+b−c)

− 2b−c
2(d+b−c)

, a contradiction. �

Proof of Proposition 2

By lemma 2, A∗ ⊆ {aα, aβ}. Let Λ denote the set of Nash equilibria of the
bilateral game represented in Table 2. Clearly, for all x ∈ {α, β}, ax ∈ A∗ if and
only if (x, x) ∈ Λ. (I) 2b < e + f . Since 2b < e + f , 2(b − e) < f − e. Therefore,
if c ≤ 2(b − e), Λ = {(α, α), (β, β)}, hence A∗ = {aα, aβ}. If 2(b − e) < c < f + e,
Λ = {(α, α)}, hence A∗ = {aα}. Finally, if c ≥ f + e, Λ = {(α, α), (β, β)}, hence
A∗ = {aα, aβ}. (II) 2b ≥ e + f . Since 2b ≥ e + f , Λ = {(α,α), (β, β)}, hence
A∗ = {aα, aβ}. �

Proof of Proposition 3

First, assume 2b > e+ f .
If c ≤ f − e, π̂(β, β) = (2b − c)/2 and π̂(α, β) = e. Since 2b > e + f , 2(b − e) >

f − e ≥ c. Hence, π̂(β, β) > π̂(α, β) and, by Lemma 3, L = {{aα}, {aβ}}.
If f − e < c < e + f , π̂(β, β) = (2b − c)/2 and π̂(α, β) = (f + e − c)/2. Since

2b > e+ f , π̂(β, β) > π̂(α, β). Hence, by Lemma 3, L = {{aα}, {aβ}}.
If e + f ≤ c < 2b, π̂(β, β) = (2b − c)/2 > 0 = π̂(α, β). Hence, by Lemma 3,

L = {{aα}, {aβ}}.
If 2b ≤ c < 2d, π̂(β, β) = π̂(α, β) = 0. Hence, by Lemma 3, L = {{aα}}.

Second, assume e+ f ≥ 2b.
If c < 2(b − e), π̂(β, β) = (2b − c)/2 and π̂(α, β) = e, since e + f ≥ 2b implies

2(b − e) ≤ f − e. Hence, π̂(β, β) > π̂(α, β), since 2(b − e) > c and, by Lemma 3,
L = {{aα}, {aβ}}.

If 2(b − e) ≤ c ≤ min{2b, f − e}, π̂(β, β) = (2b − c)/2 and π̂(α, β) = e. In this
case π̂(β, β) ≤ π̂(α, β), since 2(b− e)− c ≤ 0. Hence, by Lemma 3, L = {{aα}}.

If 2b < c < f − e, π̂(β, β) = 0 < e = π̂(α, β). Hence, by Lemma 3, L = {{aα}}.
If f − e < c < 2b, π̂(β, β) = (2b− c)/2 ≤ (f + e− c)/2 = π̂(α, β), since e+ f ≥ 2b.

Hence, by Lemma 3, L = {{aα}}.
If max{2b, f − e} ≤ c < e+ f , π̂(β, β) = 0 < (f + e− c)/2 = π̂(α, β). Hence, by

Lemma 3, L = {{aα}}.
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If e+ f ≤ c < 2d, π̂(β, β) = π̂(α, β) = 0. Hence, by Lemma 3, L = {{aα}}. �

Proof of Theorem 2

Case (I): n odd

I.i) c
2
< r, i.e., c < b−e−(d−f). We claim that As = {aβ}. Note that b−e−(d−f) <

min{f−e, 2(b−e)}. Since c < b−e−(d−f) < min{f−e, 2(b−e)}, π̂(α, α) = (2d−c)/2,
π̂(β, β) = (2b − c)/2, π̂(α, β) = e and π̂(β, α) = f − c. Thus, c < b − e − (d − f)
implies π̂(β, β)− π̂(α, β) > π̂(α, α)− π̂(β, α). Hence, by Lemma 5, the claim follows.

I.ii) c
2
> r, i.e., c > b− e− (d− f). We claim that As = {aα}. We differentiate six

cases:
I.ii.1) 2b > e+f and b−e−(d−f) < c ≤ f−e. Since c ≤ f−e, π̂(α,α) = (2d−c)/2,

π̂(β, β) = (2b − c)/2, π̂(α, β) = e and π̂(β, α) = f − c. Thus, c > b − e − (d − f)
implies π̂(β, β)− π̂(α, β) < π̂(α, α)− π̂(β, α). Hence, by Lemma 5, As = {aα}.

I.ii.2) 2b > e+f and f−e < c < e+f . Then, π̂(α, α) = (2d−c)/2, π̂(β, β) = (2b−
c)/2 and π̂(α, β) = π̂(β, α) = (f+e−c)/2. Hence π̂(β, β)−π̂(α, β) < π̂(α, α)−π̂(β, α)
and, by Lemma 5, As = {aα}.

I.ii.3) 2b > e + f and e + f ≤ c < 2b. Then, π̂(α, α) = (2d − c)/2, π̂(β, β) =
(2b − c)/2 and π̂(α, β) = π̂(β, α) = 0. Hence π̂(β, β) − π̂(α, β) < π̂(α, α) − π̂(β, α)
and, by Lemma 5, As = {aα}.

I.ii.4) 2b > e+ f and c ≥ 2b. Then, by Proposition 3, Al = {aα}. Since As ⊆ Al,
As = {aα}.

I.ii.5) e+ f ≥ 2b and b− e− (d− f) < c ≤ 2(b− e). Since c ≤ 2(b− e) ≤ f − e,
π̂(α,α) = (2d − c)/2, π̂(β, β) = (2b − c)/2, π̂(α, β) = e and π̂(β, α) = f − c. Thus,
c > b− e− (d− f) implies π̂(β, β)− π̂(α, β) < π̂(α, α)− π̂(β, α). Hence, by Lemma
5, As = {aα}.

I.ii.6) e + f ≥ 2b and c > 2(b − e). Then, by Proposition 3, Al = {aα}. Since
As ⊆ Al, As = {aα}. This proves the claim and the first part of the Theorem.

Case (II): n even and higher than n̄ = 2d−(e+f)
d−b

.

II.i) c
2
< r − δ(n), i.e., c < b − e − (d − f) − b−e+d−f

n−1
. We claim that As = {aβ}.

Since c < b − e − (d − f) − b−e+d−f
n−1

< min{f − e, 2(b − e)}, π̂(α,α) = (2d − c)/2,

π̂(β, β) = (2b−c)/2, π̂(α, β) = e and π̂(β, α) = f−c. Since c < b−e−(d−f)− b−e+d−f
n−1

implies (π̂(β, β) − π̂(α, β))(n − 2) > (π̂(α, α) − π̂(β, α))n, by Lemma 5, the claim
follows.

II.ii) c
2
> r + δ(n), i.e., c > b − e − (d − f) + b−e+d−f

n−1
. We claim that As = {aα}.

Note that, since b − e − (d − f) + b−e+d−f
n−1

< 2(b − e) and n > 2d−(e+f)
d−b

, implies

b− e− (d− f) + b−e+d−f
n−1

< f − e. We differentiate six cases.

II.ii.1) 2b > e + f and b − e − (d − f) + b−e+d−f
n−1

< c ≤ f − e. Since c ≤ f − e,
π̂(α,α) = (2d − c)/2, π̂(β, β) = (2b − c)/2, π̂(α, β) = e and π̂(β, α) = f − c. Since
c > b−e− (d−f)+ b−e+d−f

n−1
implies (π̂(α, α)− π̂(β, α))(n−2) > (π̂(β, β)− π̂(α, β))n,

by Lemma 5, As = {aα}.
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II.ii.2) 2b > e + f and f − e < c < e + f . Then π̂(α, α) = (2d− c)/2, π̂(β, β) =

(2b−c)/2 and π̂(α, β) = π̂(β, α) = (f+e−c)/2. Since n > 2d−(e+f)
d−b

implies (π̂(α, α)−
π̂(β, α))(n− 2) > (π̂(β, β)− π̂(α, β))n, by Lemma 5, As = {aα}.

II.ii.3) 2b > e + f and e + f ≤ c < 2b. Then π̂(α,α) = (2d − c)/2, π̂(β, β) =

(2b − c)/2 and π̂(α, β) = π̂(β, α) = 0. Note that, in this case, n > 2d−(e+f)
d−b

implies

n > 2d−c
d−b

, which in turn implies (π̂(α, α) − π̂(β, α))(n − 2) > (π̂(β, β) − π̂(α, β))n.
Hence, by Lemma 5, As = {aα}.

II.ii.4) 2b > e+ f and c ≥ 2b. Then, by Proposition 3, Al = {aα}. Since As ⊆ Al,
As = {aα}.

II.ii.5) e+f ≥ 2b and b−e−(d−f)+ b−e+d−f
n−1

< c ≤ 2(b−e). Since c ≤ 2(b−e) ≤
f−e, π̂(α, α) = (2d−c)/2, π̂(β, β) = (2b−c)/2, π̂(α, β) = e and π̂(β, α) = f−c. Since
c > b−e− (d−f)+ b−e+d−f

n−1
implies (π̂(α, α)− π̂(β, α))(n−2) > (π̂(β, β)− π̂(α, β))n,

by Lemma 5, As = {aα}.
I.ii.6) e + f ≥ 2b and c > 2(b − e). Then, by Proposition 3, Al = {aα}. Since

As ⊆ Al, As = {aα}. This proves the claim. �
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