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1 Introduction

A deeper understanding of an economic system requires an understanding of
how the individuals interact with each other, and how the results can be ag-
gregated. A common characteristic of many of these multi-agent interactive
procedures is the difficulty to find analytical outcomes. In the last decades,
sophisticated techniques based on simulation tools, computational software,
experimental approach, among others have permitted to represent and fit
economic environments. Agent-based Computational Economics(ACE) con-
cerns to the computational study of economies of such adaptive systems
involving interacting agents (see Axelrod (1984)). More specifically, ACE
seeks to understand how individuals behave and also the behavior of many
individuals leading to large-scale outcomes. A growing proportion of ACE
users produce computer simulations to construct and analyze the evolution
over time of an economic world. There are many issues to which ACE’s
could be applied. For instance, a list of specific objectives are i) to find and
explain global regularities such as social norms, ii) to discovery good designs
to design economic policies, iii) to understand the potential dynamical be-
havior of an economic system under alternatively specified initial conditions,
etc... Such understanding helps to clarify why certain non obvious conse-
quences or global outcomes occur, even if the assumptions used to model
the many interacting agents economic system are simple.

An important forerunner of the Economic literature which emphasizes
the above issues was Thomas C. Schelling in his seminal papers (1969),
(1971a). He studied the conditions under which individual residential lo-
cation decisions interact to produce racially segregated neighborhoods. He
assumed a population exhaustively divided into two groups; everyone is as-
sumed to care about the color of the people where he lives among, and is
able to observe the type distribution of the agents that occupy a piece of
territory. Everyone has a particular location at any moment, and moreover
he is capable of moving if he is dissatisfied with the color mixture of the
location he is. Given this model, the first question which arises is how indi-
vidual decisions of agents may affect the macro behavior of the system; and
the second, how these decisions may organize themselves in space, in other
words, what kind of spatial patterns may be observed on the global level.

The mentioned dynamics conveys a huge complexity degree and this
is the reason why ACE becomes the most commonly used spatial model
to obtain results on the Schelling model via Cellular Automata (see Albin
(1998), Batten (2001), Epstein and Axtell (1996), Gaylord and D’Andria
(1998), Laurie (2003), Pancs and Vriend (2007), Zhang (2004a), (2004b)).
The ACE’s simulation analysis considers Cellular Automata model in which
the timing of updating is varied from synchronous to asynchronous. Cellular
automata (CA) are dynamical systems defined on lattices in which time,
states, and spatial relationships are discrete. The state of each cell on the
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lattice updates at each time step according to a local rule which depends
not only on the current state of the cell but also on the states of cells in its
neighborhood around the cell. Up to now the CA approach has not been
based on theoretical principles and then has not been enough to guarantee
a rigorous conclusion even when the model insights many important results.
Nevertheless, CA provide a simple, adaptable framework in which to analyze
complex economic and social behavior through local interactions.

This paper presents a theoretical justification of a non-theoretical ap-
proach to ACE’s simulation analysis with CA for the particular case of
Schelling model. In other words, we provide a theoretical argument to val-
idate conclusions from CA simulation analysis. Hence it could be consider
as a methodology to apply and properly extend CA systems for many other
economic environments.

We focus on the one-dimensional Schelling model of segregation for sim-
plicity, but any other iterative problem with the same characteristics could
also be tackled. For this purpose, we reformulate Schelling’s dynamic as an
algorithm that is defined as a list of simple and precise rules which stops in
a finite number of steps. After the translation of the economic environment
to the language of an algorithm, we use a famous and very accepted hypoth-
esis called Church-Turing thesis, about the nature of mechanical calculation
devices, such as electronic computers. The thesis claims that any possible
calculation can be performed by an algorithm running on a computer, pro-
vided that both sufficient time and storage space are available. This implies
that if we can express an economic dynamics by means of an algorithm then
there will exist a program which could be run with our computer. Moreover,
after a finite time (probably quite large) the computer will give an output.

The main result establishes the relationship between a Turing Machine
and a Cellular Automata. Namely, for an arbitrary Turing Machine T with
m symbols and n states, there exists a one-dimensional Cellular Automata A
with a local rule with three neighbors and m+2n states which can simulate
T . The consequences of the theorem are that Cellular Automata are suitable
tools to study any phenomenon implemented by an algorithm, in particular,
the Schelling model of segregation.

We address this question for the particular case of Schelling model fol-
lowing three steps: i) we express the Schelling model as an algorithm; ii)
we implement it by a Turing Machine; iii) we prove the connection between
Turing Machines and Cellular Automata.

The paper is organized as follows. Section 2 sets up the one-dimensional
model of Schelling. The definitions of an algorithm and a Turing machine are
refreshed in Section 3, the algorithm of the Schelling dynamics is presented
as well. Our main result is offered in Section 4 where the connection between
a Turing Machines and Cellular Automata is established.
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2 The model of Schelling

There are two basic variants of Schelling’s spatial proximity model (Schelling
(1971a)), namely the one-dimensional and the two-dimensional. We focus
on the first one without loss of generality1. There are two types of agents,
denoted by 0 and 1, uniformly distributed along a segment. An agent’s
position is defined relative to her neighbors only. At stage t, the society S[t]
is defined as a finite sequence of zeros and ones2.

The Schelling’s dynamics consists of three important ingredients: the
first one is the information set of each agent which corresponds to her neigh-
borhood of radio r; the second one is a positive number m ∈ {1, . . . , 2r + 1}
called the tolerance, which determines the maximum number of unlike neigh-
bors that each agent is able to admit. In other words, tolerance could be
understood as a threshold of dissatisfaction that each agent admits in her
neighborhood; and finally, the individual utility which measures in a binary
form the individual satisfaction level generated by her neighborhood. For-
mally, the information set of each agent i, her neighborhood of radio r at
stage t denoted by V t(i, r), is equal to an element of {0, 1}2r+1 centered on
i and the utility of agent i at stage t is represented as follows:

U t(i) =
{

1 if | {j ∈ V t(i, r) such that j 6= i} | ≤ m
0 if | {j ∈ V t(i, r) such that j 6= i} | > m

The utility function says that each individual is concerned only with the
number of like and unlike neighbors, this implies that agents care of the
neighborhood’s composition rather than of its configuration. More specif-
ically, each agent wants at most m unlike neighbors; otherwise agents are
indifferent.

The dynamic is an iterative process, where agents choosing myopic best-
responses given agents’ local information set. Specifically this is a sequential
mechanism. At each stage, all unsatisfied agents are put in some arbitrary
order. Schelling’s movement arbitrarily let the discontented members to
move in turn, counting from left to right. When it is her turn to move, each
member will move to the nearest satisfactory location3, without regard if
she had studied the prospective decisions of others whose turn comes later.
Since all positions are relative only, she simply intrudes herself between two

1Schelling (1969, 1971a, 1971b) also considers a two-dimensional variant as a regular
lattice with bounds, such as a checkerboard. All the parameters and ingredients of this
approach are the same that in the one-dimensional model. The main difference of this
two-dimensional framework respect to the one-dimensional model is that agents can only
move to empty positions.

2There exists a variant of Schelling model in which the possibility of an infinite con-
tinuous line or a ring is considered. Young (1998, 2001) also presents another variant of
the Schelling’s linear model in which agents are located in a ring.

3Nearest means the point reached by passing the smallest number of neighbors on the
way.
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agents (or either at the end of the line). Similarly, her own departure does
not lead to an empty position. This process continues until no agent wants
to move anymore.

The consequence of this dynamics is the emergence of a more segregated
society than the initial one. Actually, two forces act in this process. The
first one comes from agents’ individual choice, whose depends on the compo-
sition of neighborhood rather than the configuration; while the second force
is generated by the aggregation of the individual choices that determines
the landscape of the society. The impact of the latter one is stronger, since
although nobody actually prefers segregation to integration, the typical out-
come is a highly segregated state of the society.

3 Implementation of the Schelling model by a Tur-
ing Machine

In this section we show that Schelling’s dynamics can be implemented by
a Turing Machine (henceforth TM), after rewritten such dynamics as an
algorithm. Conceptually, a TM is an abstract mathematical model which
formalizes the algorithm concept. In computation theory the Church-Turing
thesis, named after Alonzo Church and Alan Turing, is an hypothesis about
the nature of mechanical calculation devices, such as electronic computers.
The thesis claims that any possible calculation can be performed by an
algorithm running on a computer, provided that both sufficient time and
storage space are available.

It is generally assumed that an algorithm must satisfy the following
requirements:

1. The algorithm consists of a finite set of simple and precise instructions
that are described by a finite number of symbols.

2. The algorithm will always produce the result in a finite number of
steps.

Let us describe the features of the Schelling’s dynamics by means of
algorithm languages. Let D[t] be the finite set of dissatisfied elements of
S[t] at stage t and C[t] its cardinality. If C[t] = 0 then all members of the
society are satisfied in their respective locations and the algorithm stops.

Suppose w.l.o.g. that C[t] > 0. Between two stages t to t + 1 there is a
subroutine of C[t] stages in which each agent in D[t] = {j(1), j(2), . . . , j(C[t])}
moves to his nearest place. Specifically, j(1) is the first element from the left
to the right at stage t in S[t] who is not satisfied; j(2) corresponds with the
second dissatisfied agent, and so on. We can define inductively S[t, k], such
that S[t, 1] is equal to S[t], and S[t, k+1] is the society4 after the movement

4Notice that after some changes in S[t], player j(k) could decide to keep static.
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of dissatisfied agent j(k) in society S[t, k]. Therefore S[t, C[t] + 1] corre-
sponds to the final society when the subroutine is over, i.e. all agents in
D[t] have already moved.

The algorithm of Schelling’s dynamic is as follows:

For each t > 0

If C[t]=0 then stop;

S[t,1]=S[t];
For k=1,...,C[t]+1 S[t,k+1]
S[t+1]=S[t,C[t]+1];

If S[t+1] in S[1],...,S[t] then stop;

The above algorithm cheeks at any run: i) whether the society has no
dissatisfied agents, i.e.: whether D[t] is equal to the empty set for some t ≥ 1;
ii) whether S[t+1] enters into a cycle, which will imply that the society never
achieves a situation in which all individuals become satisfied. Under both
situations the algorithm always stops. In the former (i) because the initial
society is finite and in the later (ii) because of the algorithm’s specification.
Therefore, we capture all possible outcomes of Schelling’s dynamics; either
the society finishes with all members satisfied or the process never stops
generating cycles.

4 From Turing Machines to Cellular Automata

In this section we provide a theoretical argument to validate conclusions
from CA simulations. In Section 3 we have argued that any algorithm can
be implemented by a TM. An one-dimensional Turing Machine is represented
by a (finite) head and a (finite or infinite) tape of cells over finite alphabet.
The machine reads an element of the tape, which corresponds with the
input, and the head ascertains the output as a printed or erased symbol on
the tape state to the left or to the right. A Cellular Automata are a finite
one-dimensional linear array of cells of length. At every time, each cell has a
value of a given alphabet. These values are updated iteratively according to
a fixed rule which specifies exactly how the value of every site is computed
from its own present value and the values of its immediate neighbors. Thus,
the Cellular Automata have a head in each cell which acts synchronously.

Therefore, an one-dimensional Turing Machine is an abstract devise
which can be adapted to simulate the logic of any computer that could
be constructed and to study the properties of the list of simple rules call
the algorithm. However, Turing Machines are not meant to be practical
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computing technology, since they aren’t actually constructed. On the other
hand, Cellular Automata have been applied to both theoretical problems
and experimental data analysis. In particular, Cellular Automata are suit-
able tools to simulate a certain class of phenomena. The question is which
class of phenomena could be simulated by a Cellular Automata.

Our main result, Theorem 1, establishes the relationship between a
Turing Machine and a Cellular Automata, and therefore allows us to as-
set that any phenomenon implemented by an algorithm can be studied
by simulations with Cellular Automata. Formally, for an arbitrary one-
dimensional Turing Machine T with m symbols and n states, there exists a
one-dimensional Cellular Automata A with a local rule with three neighbors
and m + 2n states that can simulate it. The consequence of the theorem is
that Cellular Automata are suitable tools to study any phenomenon imple-
mented by an algorithm. In what follows we present the formal definitions
of a TM and a CA and, the main theorem and its proof.

Definition 1 A TM with an one-dimensional tape can be defined by the
6-tuple:

TM = (Q,Γ, s, b, F, δ)

where,

• Q is a finite set of states.

• Γ is the finite alphabet of tape symbols.

• s ∈ Q is the start state.

• b ∈ Γ is the blank symbol. The blank can appear infinite times.

• F ⊆ Q is the set of final or accepting states.

• δ : Q×Γ → Q×Γ×{L,R} is the transition function, where L and R
are the head moves toward left and right respectively.

Definition 2 An one-dimensional CA can be defined by 5-tuple:

CA = (Γ, S, r, φ, c)

where,

• Γ is the finite alphabet of set symbol.

• S is the initial configuration of the one-dimensional linear array of
length n, S ∈ Γn.

• r ∈ {1, . . . , n} is a neighborhood ratio.
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• φ is the CA rule, which assigns from a neighborhood configuration a
new cell value, φ : Γ2r+1 −→ Γ.

• c is the quiescent cell, which the CA rule leaves blocks of this kind of
cells invariant, i.e., φ(c, . . . , c) = c.

Table 1 gives a graphic illustration of this update process.

r︷ ︸︸ ︷
t i− r . . . i− 1 i i + 1 . . . i + r︸ ︷︷ ︸

↓ φ
t + 1 i′

Table 1: The update process for a cell i in the CA lattice. The update rule φ
is applied to the cell’s local neighborhood configuration (i−r, . . . , i, . . . , i+r)
to determine the state of cell i at the next time step.

At each time step, all the cells in the lattice update their state simulta-
neously according to a CA rule. The CA’s equation of motion is given by
applying the rule to each point i separately, where the new value of cell in
position i is given by:

i′ = φ(i− r, . . . , i, . . . , i + r).

Theorem 1 For an arbitrary one-dimensional Turing Machine T with m
symbols and n states, there exists a one-dimensional Cellular Automata A
with r = 1 (three neighbors) and with m + 2n states that can simulate T .

Proof.
Let T be a Turing machine with a finite alphabet Γ = {x1, x2, . . . , xm}

and Q = {q1, q2, . . . , qn} states. The movement of the head H is described
by a set of quintuples of the form qixjxkLql or qixjxkRql, where qi is the
intern state of T and ql is the new intern state generated by the transition
function; xj corresponds to the symbol read from the tape and xk is the one
written in the tape; finally, L or R are the movements of the head.

We build an one-dimensional CA A that considers only the adjacent
neighbor celsl to the left (a−) and to the right (a+), i.e.: r = 1.

The linear array of cells represents the tape of a TM and each cell can
be in any of the following m + 2n states.

• The first m states QM = {x1, x2, . . . , xm} correspond to the m symbols
of T .
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• The states of T must be represented in A such that they specify the
n states and also the movement of the head H; in particular N states
with movement toward the right QNR = {q1R, . . . , qnR} and toward
the left QNL = {q1L, . . . , qnL}, QN = QNL ∪QNR. Therefore we have
| QNL ∪QNR |= 2n states.

• The blank space in the tape of T is represented by quiescent cell.

Notice that the change of state occurs in a simultaneous way in A for
each transition rule of T :

Transition in T Transition in A
] at

− at at
+ at+1

qixjxkRql
1a
1b

. . .
qiR

qiR

xj

xj

. . .
xk

qlR

qixjxkLql

2a
2b
2c
2d

xz

qiR

. . .
xz

qiR

xj

xz

qiL

xj

. . .
qiL

. . .

qiL

xk

qlR

xz

where (. . . ) means that any state of the set QM , qiR, qiL, qlR are in QN and
xi, xk, xz are in QM respectively. The movements in A toward the right side
(1a and 1b of the preceding table) occur in one step:

t→ x1x2qRx3x4
t+1→ x1x2x

′
3q

′
Rx4

and the movements toward the left side (2a, 2b, 2c, and, 2d) in two steps:

t→ x1x2qRx3x4
t+1→ x1x2q

′
Lx′

3x4
t+2→ x1q

′
Rx2x

′
3x4

The number of states of A is | QM ∪QNR ∪QNL |= m + 2n.
When r is the neighborhood ratio equal to 1, three neighbors, we can

conclude that the model of Schelling can be simulated as a CA.
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