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FIXED PRICE PLUS RATIONING: AN EXPERIMENT

Veronika Grimm, Jaromir Kovarik and Giovanni Ponti

ABSTRACT

This paper theoretically and experimentally explores a fixed price mechanism in
which, if aggregate demand exceeds supply, bidders are proportionally rationed. If
demand is uncertain, in equilibrium bidders overstate their true demand in order to
alleviate the effects of being rationed. This effect is the more intense the lower the
price, and bids reach their upper limit for sufficiently low prices. In the experiment we
observe a significant proportion of equilibrium play. However, subjects tend to overbid
the equilibrium strategy when prices are low and underbid when prices are high. We
explain the experimental evidence by a simple model in which the probability of a

deviation is decreasing in the expected loss associated with it
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1 Introduction

Prices are not always set such that the market clears. Instead, we often
observe non—price rationing of buyers, for different reasons. In initial public
offerings, for example, the seller frequently sets a price at which he expects
excess demand in order to be able to reward information revelation by large
investors with some preferential treatment. In other situations, where de-
mand is uncertain, the seller might simply not be able to set the market
clearing price. In this case, two main classes of mechanisms have been pro-
posed as solution to this problem: auctions and fixed price mechanisms. As
for the latter, since supply is fixed (and price is chosen before actual demand
reveals), the mechanism has to include a rationing device in case demand
exceeds supply.

While axiomatic properties of different rationing schemes have been ex-
plored extensively in the literature!, strategic behavior of buyers who expect
to be rationed has up to date received little attention. The few papers that
explicitly analyze incentives in market games that may involve rationing of
buyers find that these mechanisms are often desirable for the seller. In case
a common value is sold, Bulow and Klemperer (2002) show that prices which
require rationing can even be optimal. Gilbert and Klemperer (2000) come
to the same conclusion for situations where customers have to make sunk
investments to enter a market. In a private values setting, Bierbaum and
Grimm (2006) analyze a fixed price mechanism where buyers are propor-
tionally rationed in case of excess demand. They find that, if total demand
is uncertain, bidders overstate their true demand to alleviate the effects of
being rationed in high demand scenarios. This allows the seller to set the
fixed price at a rather high level which yields the surprising result that the
fixed price mechanism outperforms alternative selling mechanisms (such as
a uniform price auction)? with respect to a variety of criteria: revenue, vari-
ability of revenue in different demand scenarios, and minimum revenue that
is raised if demand turns out to be low.?

I9ee, for example, Herrero and Villar (2001), or Moulin (2000). Here rationing usually
occurs because the allocating authority is not allowed to use prices in order to ration, e. g. in
bankruptcy problems if claims are known but exceed the pie to be distributed.

2Since Bierbaum and Grimm consider large markets, in their framework a uniform price
auction is incentive compatible and therefore a very attractive mechanism. It has often been
proposed as an alternative to fixed price mechanisms or bookbuilding in order to conduct
initial public offerings but never has been widely established.

Also Chun (1989), Dagan et al. (1997), Moreno-Ternero (2002) and Herrero (2003) look
at rationing from a noncooperative perspective. Herrero et al. (2004) provide an experimental
study on the strategic behavior induced by rationing in the context of bankruptcy problems.



The above findings contribute to explaining the frequent use of mecha-
nisms that involve rationing of buyers. However, we know from an extensive
experimental literature on market institutions that often human behavior
differs substantially from theoretical predictions, which may affect the rela-
tive performance of different mechanisms. This motivated us to experimen-
tally study bidding behavior in a fixed price mechanism with proportional
rationing (FPM) quite similar to the one analyzed in Bierbaum and Grimm
(2006).

Our experimental design is based on a model where neither the buyers,
nor the seller, know total demand due to uncertainty about the number
of (identical) buyers. The seller, who is endowed with a given quantity of
a divisible good, sets a fixed price, and then, buyers are asked to submit a
quantity bid at this price. They are proportionally rationed in case the total
quantity demanded exceeds supply, otherwise they receive what they asked
for.* In the experiment, we were interested only in buyers’ bidding behavior.
Therefore, the seller’s role was played by a computer, i.e. in each round a
price was randomly chosen from the range where demand for the good was
positive, which allowed us to extract complete bid functions. We also study
an “incentive compatible mechanism” (ICM), which only differs from FPM
in that buyers are never rationed. Given that the two mechanisms only
differ with respect to the presence of the rationing device, we used ICM as
a control treatment of the experimental results on FPM.

Let us give a quick overview of our main results.

First, we show that Bierbaum and Grimm’s (2006) theoretical results on
FPM are maintained in the context of small markets (i.e. for a finite number
of buyers). At high prices bidding truthfully is optimal and rationing never
occurs; at low prices bidders demand the highest possible quantity and they
are rationed in any demand scenario; at intermediate prices bidders overstate
their true demand, but only moderately, and rationing only takes place when
demand is high.

In the experiment subjects play extremely well in ICM, where truthful
bidding emerges as unanimous behavior since the very beginning. In FPM,
behavior converges to equilibrium for very high and very low prices, where
the equilibrium strategy is relatively easy to figure out. For intermediate
prices, where equilibrium play is strategically more complex, some noise
remains. As time proceeds, bidders even move away a bit from the risk

4This is basically the model analyzed in Bierbaum and Grimm (2006). The only differ-
ences are that Bierbaum and Grimm analyze large markets (whereas in our experiment the
number of potential buyers is small). Moreover, they allow for different types of buyers.



neutral equilibrium prediction in the direction of overbidding. From a seller’s
point of view this increases the attractiveness of FPM, since revealed demand
is even higher than theoretically predicted exactly in the interval the optimal
fixed price is chosen from.

Although the explanatory power of the theory seems impressive (espe-
cially if compared with that of standard auction theory models) we identify
two significant deviations from equilibrium behavior: at intermediate prices,
bids are at a higher level (but as price sensitive as predicted); at low prices
we observe — contrary to the RNNE prediction — price sensitivity of bids
and underbidding. We show that both observations are consistent with the
hypothesis of noisy directional learning (Anderson et al., (1999)), where bid-
ders adjust their actions in the direction of higher expected profits but do
so subject to some exogenous noise (where the probability of an error is
decreasing in the associated expected loss).

The remainder of the paper is organized as follows. In section 2 we an-
alyze the theoretical properties of FPM and ICM. The experimental design
is described in section 3. Section 4 contains the experimental results. It is
divided into two parts. Descriptive statistics are presented first, followed
by some panel data regressions that check the robustness of equilibrium
predictions. Section 5 then investigates whether a quantal response equilib-
rium analysis may explain the systematic discrepancies between theory and
evidence. Conclusions and directions for future research are contained in
section 6.5

2 Theoretical Background and Hypotheses

Consider a seller who has a fixed quantity (normalized to 1) of a perfectly
divisible good and does not know the number of potential buyers interested
in the good. By analogy with our experimental conditions, let us assume
that n, the number of buyers, is either 2 or 4, where the probability that
nis 2 (4) is A (1 — A). Throughout the paper, we shall refer to the case
of n =2 (n =4) as the "low” ("high”) demand scenario. We assume that
all potential buyers are identical. In particular, each buyer ¢ has decreasing
linear demand for the good,

zi(p) =1—p. (D)

The proofs of the theoretical results in section 2 and the experimen-
tal instructions are provided in an appendix that can be downloaded from
http://deit.economia.unife.it/collana quaderno.php?do=anno&anno=2005




In what follows, we provide a theoretical analysis of two mechanisms,
the Fixed Price Mechanism (FPM) and an Incentive Compatible Mechanism
(ICM).

2.1 FPM

We model FPM as a 3-stage, 4-player game with incomplete information.
At stage 0 Nature moves, deciding market size n. Either two or four players
participate in the market. In a market with two players, players are labeled
717 and 727.5 If n = 4, they are labeled 717 to ”4”. In what follows we look
at the payoff of the representative player 1, who participates in the market,
not knowing the number of his competitors.

At the remaining two stages, the seller and the buyers move in sequence.
At stage 1, the seller announces a fixed price and an upper limit on individual
bids (p,d) € [0,1] x R,. At stage 2, each participating buyer i announces
the quantity he demands at the posted price, d; € [0, d], which we will call
buyer i’s bid. If aggregate bids fall short of supply, each buyer obtains his
bid, otherwise buyers are proportionally rationed. Each buyer has to pay
the posted price for each unit he receives.

We formally describe proportional rationing as follows. Let d = {d;}
be the vector of bids and denote by d_; = {d;};»; the vector of bids by
i’s opponents. Then, the aggregate bid is given by Y i, di, n € {2,4}.
Under proportional rationing, buyer 1 who bids di receives a final quantity
of diQ"(d), where (recall that supply was normalized to one)

Q”(d)mm{l,ﬁ}, n € {2,4}. )

j=1

We can now specify the players’ expected payoffs. We use the index ”0”
for the seller and consider the representative bidder “17. Now, for a given
pair (p,d), let 7; : [0, d]* — R denote player i’s expected payoff, given by

2 4
mo(d) = AQ%(d) Y dj-p+ (L =NQUD) Y _dj-p (3)
=1

Jj=1 J

Tn the experiment, the other two players participated in a separate two—player market.
Since we analyze the decision of the representative player 1, we ignore the existence of this
parallel market.



and

d1Q%(d1,d—1) d1Q*(d1,d—1)
7r1(d1,d1))\/ (1—x—p)dm+(1—)\)/ (1 —2—pdx.
0 0
(4)

The extension to mixed strategies of the payoff structure (4) is straight-
forward, once we assume that players mix independently. If §; € A(]0,d]) =
Ay (6 € A([0,d)?) = A_;) denotes a generic mixed strategy for player
i(’s opponents), with 6;(d;) (6—i(d—;)) denoting the probability of bidding
d; (d—;) under 8; (6_;), then 71(61,0-_1) defines player 1’s expected profit
of a generic mixed strategy profile. In the following analysis, however, we
restrict our attention to pure strategy profiles.

2.1.1 Stage 2: the bidding stage

We begin by characterizing optimal bidding behavior given the price p and
upper limit on bids d > 1.
Proposition 1 (Equilibria of Stage 2) Let

1947 192
T 1345y ¢ Pm—

De
(i) p€ [%, 1]: unique equilibrium d;(p) = 1 — p for all 7.
(ii) p € 10, pe): unique equilibrium di(p) = d for all i.
(ii) p € [pe, 7):

(a) p € (pm, %): unique equilibrium

1 1-X23 3 1
(P — —(1 — °_ 201 — )2 :
di(p) = 5L =Pt —— (Pt -7 Jorali.
(b) p= Pm: @ continuum of equilibria d; = d, i = 1,...,n for all

de [%, d] and one equilibrium where

1 1—-X 3 3 1
. — _ —- = _ 2 ;
di(p) 2(1 p) + 3 (4 p)16+4(1 p)2  for all i.

(¢) D E [Pes pm): two equilibria, di(p) = d for all i and

1 1—-X3 3 1
() — (1 — v 1 )2 -
di(p) 2(1 p) + 3 (4 p)16 + 4(1 p)?  for oll i.



Proof. See the Appendix. H.
1
Figure 1.Equilibrium bidding for A = 2

Figure 1 suggests that the interval of possible prices can be split up into
three subintervals:

o High prices: p€ [%, 1]. The buyers’ aggregate demand never exceeds
supply. Therefore, rationing plays no role and the buyers’ optimal
strategy simply is to bid truthfully.

o Low prices: p € [0,p.). Large excess demand in the high demand
scenario (and, at prices below %, also excess demand in the low demand
scenario) yields a strong incentive to overstate true demand which
leads to rationing in both scenarios. The only equilibrium is that
every buyer asks for as much as possible, i. e. d.

o Intermediate prices: p € [Pe, %). Excess demand in the high demand
scenario is moderate, which still yields an incentive to overstate de-
mand. In the whole range of prices there is an equilibrium with mod-
erate overbidding, where the optimal bids solve a trade-off between
getting too much in the low demand scenario (where no rationing takes
place) and getting too little in the high demand scenario (where buyers
are rationed). When p = p,,, the game has also a continuum of sym-
metric (pure strategy) equilibria, one for every possible bid d; € [%, 1].
For prices p € [pe, pm) there exist two equilibria, the one with mod-
erate overbidding and an equilibrium where demand explodes, like in
the case of low prices.

2.1.2 Stage 1: Choice of the posted price and the upper-bound
on bids

At stage 1 the seller chooses the profit maximizing price anticipating buyers’
behavior at stage 2, but not knowing how many of them will participate in
the market. We make two important observations:

(1) Only prices in the interval p € [pe, %] can be rational choices of the
seller. At p. he sells the whole quantity in both demand scenarios in
any equilibrium of stage 2 and it would definitely lower his profit if he
posted a lower price. p = % is the linear monopoly price given high
demand and thus, a higher price cannot be profit maximizing under
demand uncertainty.



(2) The seller will always choose the upper bound on bids d high enough
not to affect revealed demand at the posted price.

Since the seller was simulated in our experiment, here we do without a
detailed analysis of the seller’s behavior. In an earlier version of this paper,
Grimm et al. (2004), we formally show that any equilibrium of FPM has
those two properties.

2.2 ICM

In our experiment we also tested another fixed-price mechanism, ICM, which
only differs from FPM in that bidders always get what they ask for (i.e. there
is no rationing). In ICM, player 1’s payoff function (4) simplifies to

dy
7r1<d1,d1)/0 (1= pde = (2~ 2p— o) 5)

The absence of rationing breaks any strategic link among the players, who
basically face a simple decision problem, whose solution is truthful bidding.

Proposition 2 In ICM each bidder’s optimal bid equals his true demand,
1. e.

d; (p) = 1—p. (6)

In our experiment, ICM mainly serves as a robustness check for our
experimental design, to evaluate whether subjects bid truthfully when it is
a strictly dominant strategy to do so.

3 The experimental design

In what follows, we describe the experimental design in detail.

Subjects. The experiment was conducted in three subsequent sessions
(two sessions devoted to FPM, and one to ICM) in May, 2004. A total of 72
students (24 per session) were recruited among the undergraduate student
population of the Universidad de Alicante, mainly undergraduate students
from the Economics Department with no (or very little) prior exposure to
auction theory. The FPM sessions lasted approximately 120’ each, while the
ICM session was slightly shorter (100’ approx.).



The experiment was computerized.” Subjects were given a written copy
of the instructions in Spanish, together with a table indicating their mone-
tary payoff associated with a grid of 21 x21=441 representative price-quantity
pairs.® Instructions were read aloud and we let subjects ask about any doubt
they may have had. In addition, a self-paced, interactive computer program
proposed three control questions, to make sure that subjects understood the
main features of game. In particular, we checked the comprehension of the
rationing rule and the downward sloping demand function.

Treatment. In each session, subjects played 84 rounds of the correspond-
ing mechanism. As for the FPM sessions, subjects were divided into three
malching groups of 8. Subjects from different matching groups never inter-
acted with each other throughout the session. As for the ICM session, every
subject can be considered as a "matching group of size one”.

Compared with the scale used in section 2, in the experiment, all prices
and quantities were multiplied by 10. We did this to mitigate “integer”
frame problems.” Within each round ¢ = 1, ..., 84, group size, composition
and prices were randomly determined. Let time interval Ty = {t : 21(k —
1) <t £ 21k}, k = 1,...,4, be the subsequence of the k—th 21 rounds.
Within each time interval T}, subjects experienced each and every possible
price p € P = {0,.5,1,...,10}, (recall that the seller was simulated by the
computer in our experiment). The sequence of those prices was randomly
selected within each time interval and was different for each matching group.
After being told the current price, subjects had to determine their bid,
di(p) € [0, 10], for that round (subjects could not bid more than the entire
supply). '© With this design, we are able to characterize four complete
individual bid schedules, one for each time interval. Moreover, in each round
t, a (uniform) random draw fixed the group size n € {2, 4} independently
for each matching group (i.e. A = %) Given all these design features, we
were able to collect 6 independent observations for FPM, and 24 for ICM.

Payoffs. All monetary payoffs in the experiment were expressed in Span-
ish ptas. (1 euro is approx. 166 ptas.).!! Subjects participating in FPM

"The experiment was programmed and conducted with the experimental software z- Tree,
version 2.1 (Fischbacher, 1999).

8The complete set of instructions, translated into English, can be found in the appendix
at the journal’s webpage.

9Neverthelesss, in presenting the results, we shall not modify the scale to facilitate com-
parison with the content of section 2.

19Bids were not constrained to be integer numbers. Instead, any possible quantity (up to
three precision digits) was allowed.

U714 is standard practice for all experiments run in Alicante to use Spanish ptas. as ex-
perimental currency. The reason for this design choice is twofold. First, it mitigates integer



(ICM) sessions received 2000 (1500) ptas. just to show up. These stakes
were chosen to exclude the possibility of bankruptcy.

Ez-post information. After each round, subjects were informed of the
payoff relevant information. For FPM this refers to group size, summary
information on the aggregate behavior of their own group (both in terms of
the total sum of individual bids, but also of the average bid(s) of the other
member(s) of their group), the quantity of the good they actually received,
together with the monetary payoff associated with it. For ICM subjects
were simply informed of the result of their individual bid. All information
was also given in the form of a History Table, so that subjects could easily
review the results of all the rounds that they had played so far.

4 Results

In this section we report the results of our experiment. We begin by present-
ing some descriptive statistics which summarize the evolution of subjects’
aggregate behavior over time in ICM and FPM. We then estimate dynamic
panel data regressions. As for ICM, these regressions clearly show that equi-
librium analysis almost perfectly explains subjects’ behavior. Also for FPM
our theoretical model provides a reasonably good prediction of actual behav-
ior, even though our regressions unambiguously show persistent deviations
from equilibrium. In short, in FPM people tend to overbid (underbid) the
equilibrium strategy when rationing is less (more) severe.

4.1 Descriptive statistics

Figure 2 provides a graphical sketch of the evolution of the subjects’ ag-
gregate behavior for both experimental protocols, ICM (Fig. 2a) and FPM
(Fig. 2b), tracing the average bids in the four experimental time intervals.
The ordinate tracks prices, while the axis of abscissae reports average bids.
The dotted line corresponds to the equilibrium strategy as given by propo-
sition 1; the 4 grey lines correspond to aggregate average bid functions per
time interval, with greyscale increasing with the time interval.

problems, compared with other currencies (USD or Euros, for example). On the other hand,
although Spanish Pesetas are no longer in use (substituted by the Euro in the year 2000),
Spanish people still use Pesetas to express monetary values in their everyday life. In this
respect, by using a “real” (as a opposed to an artificial) currency, we avoid the problem of
framing the incentive structure of the experiment using a scale (e.g. ”Experimental Curren-
cy”) with no cognitive content.

10



Figure 2. Evolution of Aggregate Bids

As Figure 2a) shows, subjects played ICM extremely “well”. Their be-
havior is close to equilibrium from the very beginning, with some initial
variance quickly vanishing over time. Out of 21 prices, in time interval 3
(4), all 24 subjects always played their dominant strategy in 19 (17) cases.
Even though equilibrium play does not correspond to subjects’ unanimous
decision, deviations from the dominant strategy are negligible and only ob-
served for few subjects.

Things are different when we move to FPM, whose evolution of aggragate
bids is reported in Figure 2b). Recall from section 2 that the structure of
the equilibria of FPM crucially depends on the price level. Thus, we present
our experimental evidence for three broad price intervals, which turn out to
be crucial not only in the theoretical analysis, but also to evaluate subjects’
behavior in the experiment:

e At high prices (p > %), where truthful bidding corresponds to the
unique equilibrium, we observe that subjects start bidding slightly
more than their demand, with overbidding gradually reducing over
time.

o At low prices (p < pe), where demand explosion corresponds to the
unique equilibrium, individual bids get very close to the maximum
possible amount of 1. However, contrary to the theoretical prediction,
average bids seem to be sensitive to prices: the lower the price, the
closer average bids get to the upper limit.

e At intermediate prices (% > p > pe =2 0.568), subjects start bidding
above equilibrium, with bids increasing (i.e. moving away from equi-
librium) over time.

We finally look at the experimental evidence from the seller’s viewpoint.
Figure 3 plots the evolution of expected profits (ordinate) as a function of
the ruling price given the observed behavior.?

Figure 3. FPM: Evolution of the Seller’s Profits

2Note that, in the range [pe, pm], FPM has multiple equilibria and, therefore, also seller’s
profit is not uniquely determined.

11



As Figure 3 shows, at low prices (p < pn,) actual profits equal their
equilibrium levels. This is basically due to the fact that, within this price
range, out-of-equilibrium underbidding is not sufficient to prevent subjects
to be rationed in both demand scenarios. As a consequence, the entire
supply is always sold, independently of the demand scenario. At high prices
(p> %) expected profits start above equilibrium (due to overbidding), but
converge quickly to their equilibrium level.

At intermediate prices (pe < p < %) initial overbidding raises the seller’s
profits above their equilibrium levels. Moreover, since overbidding within
this price range increases over time, also the seller’s profit increases. Recall
(see section 2) that the profit-maximizing price always lies in the intermedi-
ate price range. Therefore, persistent overbidding takes place exactly within
the price range that would be selected by a profit maximizing seller. In conse-
quence, observed profit exceeds its equilibrium level in all four time intervals,
and even increases (up to 12% above the theoretical prediction, since actual
and predicted behavior lead to profits of .65 and .583 respectively).!®

4.2 Panel-Data Regressions

In this section, our main concern is to check whether the discrepancies be-
tween observed and predicted behavior are statistically significant. To this
aim, we construct a panel containing all decisions of all subjects at all times.
Remember that each subject participated in 84 rounds of ICM (FPM), which
creates a panel where subjects serve as the cross-sectional variable. The
sample size is, therefore, 24 (48) subjects for ICM (FPM) session(s).

As for the ICM data, we use a simple random-effect linear regression.
The underlying model assumes subjects playing linear bid functions, one
for each time interval Ty, k = 1,...,4. Since individual (random) effects are
common across time intervals, the model includes time interval dummies
and their interactions with the ruling price p;, as follows:

B3To {llustrate the profitability of FPM, suppose that seller and buyers knew the market
size, n. In such a case, the unique equilibrium would require the seller to set the linear
monopoly price (i.e. either p = % ifn=2 orp= % if n = 4) and buyers to bid truthfully.
Thus, the whole amount, would be sold in both scenarios and the ex-ante expected revenue
would be the expected monopoly profit m7p = %)\Jr %(1 — A). Since both scenarios are equally
likely in our experiment (i.e. A = %), 7p = .625. Since the theoretical expected revenue in
FPM (.583) is lower than the expected linear monopoly profit theory predicts that the seller
prefers a situation of full information. However, given the observed behavior the seller’s
profits are .65, which is higher than the expected monopoly profit.

12



4 4

det = a1+ Z Qg+ Z Bryept + €s + st (7)
k=2 k=1
where v, are time interval dummies (i.e. v, = 1 if ¢ € T}); ¢, is the

individual (random) component which describes subject s unobserved time-
invariant heterogeneity and e4 is an idiosyncratic error term (we further
assume €5 L £4). Since, for ICM, the unique equilibrium corresponds to
truthful bidding, null hypotheses for our tests are «; = 1 and 8, = —1, for
tel) and g +ar =1 and 8y + 3, = —1, for k£ > 1. Figure 3 reports the
estimated coefficients of (7).

Table 1. ICM: panel regression estimated coefficents

As it can be seen from Table 1, bidders played closely to the assumed
linear function in all time intervals. The overall R? for regression is .7878
(within-R? = .8390, between-R? = 0) that is, an extremely high value when
compared with panel regressions from analogous experiments.

In the case of ICM, our null hypotheses correspond to

1. for k =1: ay + By = 0 (i.e. null demand at p = 1) and 3; = —1;
2. fork>1: oy +ar+ 8, =0and 3, = —1.

In this respect, we first notice that the estimates of a1+ 3; and 3, are
significantly different from their theoretical predictions, both independently
and jointly. This implies that subjects started bidding less aggressively
than what theory predicts, with bids less sensitive to prices than expected.
However, when we look at the estimated coefficents for £ > 1, we find
that we can never reject the null hypothesis that, from 15 on, subjects
played according with our theoretical prediction. Moreover, we can neither
reject the joint hypothesis g = a3 = a4 = 89 = O3 = 8, = 0. This
basically implies that learning mostly takes place in the first repetitions of
the experiment and behavior stabilizes from 7% on.

The FPM time-series cross-section analysis is more complex and results
are less straightforward. By analogy with (7), Table 2 reports estimates of
a model which assumes subjects playing a piecewise linear bid function, as
follows:

4 2
dit = ag + Z vhag + Z Z BRyipe + € + sit (8)
(k,h)#(1.0) k=1 h=0

13



where, by analogy with (7), ’yZ is a dummy for time and price interval, i.e.
AP =1 when t € Ty and p > .75 (p; € (.55;.75)) [py < .55], for b = 0
(h = 1) [h = 2] respectively. Observe that dummies ’yZ partition the set of
experimental conditions into the 4x3 = 12 subsets that emerged from our
theoretical analysis. In consequence, (8) estimates different — but, through
the individual effects ¢;, interdependent — linear bid functions, one for each
period and price subinterval. By the same token, BZ measures the sensitivity
of bids on prices in all the subcases induced by the previous analysis.

Table 2. FPM: panel regression estimated coefficents

In this respect, (8) can be interpreted as the natural extension of (7) to
the case of FPM subject to some conditions, which we now discuss.

1. Multiple equilibria. Recall from section 2.1 that there is a multiplicity
of equilibria for p € [pe, pm]. Given the price grid used in the experi-
ment, multiplicity only occurs at p = .6,'4 with equilibrium bids being
1 and .461, respectively. In order to check which of these equilibria is
somehow “more consistent” with our experimental evidence, we run
a Wald test with following null hypotheses: d(.6) = 1 (d(.6) = .461).
We can (not) reject the null hypothesis which suggests that subjects
bid more consistently with the equilibrium where moderate bidding
prevails. Consequently, we include p = .6 into the intermediate price
interval.'?

2. Linearity. The equilibrium bid function of FPM is not linear (but con-
cave) in the intermediate price interval. However, as Figure 1 shows,
the demand function may well be approximated by a linear function.

3. Independent observations. Unlike in the ICM case, where bidders al-
ways get what they ask for, in FPM they face the competition of
the other group members to obtain their desired share. This, in
turn, leaves open the possibility that the estimation of the variance-
covariance matrix of (8) -not the estimation of the coefficients- needs
to be adjusted to control for possible correlation among observations
drawn from the same matching group. In other words, the estima-
tions of Table 2 are performed under the assumptions that, in the

YRecall that prices were from the grid {0,.5,1,...,10} and for A = % we get pe = .568
and p,, = .607.

Bp_values are 0 and .4787, respectively. In any case, we also run regressions excluding
observation at p = .6. Results do not change (and are available on request).
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FPM case, only the history of each matching group (and not the his-
tory of the 8 subjects that form each matching group) corresponds to
an independent observation.'

4. Interactions. In (8), we estimate all the interactions between period
and price effects, both for the slope and the constant In this respect,
the estimated constant takes into account of the omitted condition
(k=1,h=0).

Table 2 reports the estimation results. Again, subjects’ behavior is close
to the equilibrium bid function, although not as close as for ICM. This
consideration notwithstanding, averall fit (.8048) is even higher (within-
R? = 8481, between-R? = .0164). This is due to the higher number of
regressors involved. Moreover, bidding behavior evolves quite differently
for the different price intervals. Therefore, we discuss the results of the
estimations separately for high, low, and intermediate prices.

e High prices (p > %). Here, the statistical analysis confirms the ob-
servations of section 4.1 that behavior converges to truthful bidding,
as predicted. Estimated demand at p = 1 drops from .044 in 73 to
-.003 in Ty (with only the constant in 77 being significantly different
than the corresponding theoretical predicion). As for price sensitivity
(measured by ﬁ%), we can see that it slightly increases over time (i.e.
overbidding decreases with time, as expected). From Table 2 we can
detect significant differences between actual and predicted behavior
only in time intervals 75 and Ty. This is due to a drastic reduction
in the standard error, rather than a significant shift in the estimated
coefficients.

e Low prices (p < pe). In this price interval, null hypotheses correspond
to i) ap + ai =1 and ii) ﬁi =0,k=1,..,4 (i.e. bids coincide with
the upper bound and therefore, are independent of prices). As for i),
independent Wald tests do not reject the null except for 171; as for ii)
the null hypothesis is always rejected, either indepepndently or jointly.
This basically implies that estimated demand at p = 0, which move
from .94 to 1.035 from 17 to T4 respectively, is significanly lower than
predicted only in Ty. As for the evolution of the price sensitivity pa-
rameter ﬁi, Table 2 shows a sudden (downward) jump between the
first and the last two time intervals (although they always remain sta-
tistically significant) Again, our descriptive remarks of Section 4.1 are

16We thank an anonymous referee to point this out in an earlier version of this paper.
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reinforced by our regression analysis: average bidding increases over
time, although some (statistically significant) price sensitivity remains,
even if in the last repetitions, has a lower impact on average bidding
behavior.

e Intermediate prices (% > p > pe =2 0.568). Within this price interval,
the estimated bid functions coincide with equilibrium if i) ag + af, =
1.255 and ii) 81 = —1.324, respectively. As for i) the four estimated
constants increase from 1.057 to 1.603, from 17 to Ty respectively.
Independent Wald tests do not reject the null, except for Ty; this
basically implies that overbidding increase over time and induces a
significant shift with respect to prediceted behavior in the last rep-
etitions. As for ii), as Table 2 shows, price sensitivity also increase
(from -.954 to -1.715 from 13 to 1} respectively), but estimated val-
ues are never statistically different-neither independently, nor jointly-
than theoretical prediction. Moreover, movements in price sensititiv-
ity (i.e. ﬁ,lc — 5114:717 k > 1) are never significant, nether independently,
nor jointly. In other words, the estimated bid function has a similar
slope as the equilibrium one, while the estimated constant is bigger
(and increase with time, in particular in the last repetitions).

To summarize, our panel-data analysis suggests that subjects behaved
almost perfectly in line with the equilibrium prediction in ICM and at high
prices in FPM (where the equilibria of both games coincide with truthful
bidding). For the remaining prices, the observed behavior in FPM signif-
icantly differs from equilibrium. For intermediate prices, bids are as price
sensitive as predicted, however, at a higher level. Bidders start overbidding
insignificantly, but over time overbidding increases and becomes significant.
At low prices, bids depend negatively on the price level, contrary to pre-
diction. This results in underbidding relative to equilibrium. Although
underbidding tends to disappear (the estimated inverse bid function shifts
to the right), some price dependence remains.

5 Bounded rationality and out of equilibrium play

Our experimental results show that the equilibrium analysis developed in
section 2 is an (extraordinary) good predictor of subjects behavior (as far as
ICM is concerned). This consideration notwithstanding, our regressions also
show that subjects consistently deviate from equilibrium play, and that these
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deviations (in particular overbidding at intermediate prices and price sensi-
tivity of bids at low prices) do not seem to vanish over time. To understand
these empirical regularities of our experimental evidence, we hereafter as-
sume that subjects are boundedly rational, i. e. that their choice is affected by
some (unmodeled) external factors which make behavior intrinsically noisy.
This noise may be induced by the complexity of the game, a limitation of the
subjects’ computational ability, random preference shocks, etc. This kind of
choice framework may be modeled by specifying the payoff associated with
a choice as the sum of two terms. One term is the expected utility of a
choice, given the choice probabilities of other players. The second term is
a random variable that reflects idiosyncratic aspects of payoffs that are not
modeled formally.

Clearly, properties of this alternative class of models crucially depend
on the specific way in which the stochastic process that generates noise is
formally defined. One prominent recent approach is McKelvey and Palfrey’s
(1995) quantal response equilibrium (QRE). A quantal response is, basically,
a “smoothed-out best response”, in the sense that agents are not assumed
to select the strategy that maximizes their expected payoff with probability
one. Instead, each pure strategy is selected with some positive probability
that increases in its expected payoff.!”

Some recent papers (such as Anderson et al. (1999), or Goeree et al. (2002))
have modified the notion of QRE to deal with games with a continuum of
pure strategies, such as our ICM and FPM. A logit response function is
often used to model the QRE. Formally, the standard derivation of the logit
model is based on the assumption that payoffs are subject to unobserved
preference shocks from a double-exponential distribution (e.g., Anderson et
al., 1999). In this case, a (logit) QRE would be the fixed point

exp [mi(di, 6 )]

6i(di) = fildilo—i, p) =
( ) ( | 'u) fol exp [71'1'(8,571'):“] ds

71':17---747 (9)

where m;(d;, ;) is the expected payoff associated with the pure strategy
d; against 6 ; € A_;, and p is the noise parameter. As u — o0, the
probability of choosing an action with the highest expected payoff goes to 1.
Low values of p correspond to more noise: if 4 — 0, the density function
in (9) becomes flat over the entire support and behavior becomes essentially
random.

7See also Rosenthal (1989).
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As we just argued, a (logit) QRE is a vector of densities that is a fixed
point of (9). Continuity of the payoff function =;(-) ensures existence, both
in the case of ICM and FPM. While section 5.1 explicitly characterizes the
(unique) logit equilibrium in the case of ICM, for FPM no explicit solution
can be found. This is because FPM is a game with a continuum of pure
strategies, for which logit equilibria can be calculated only for very spe-
cial cases.'® In this case, we are only able to evaluate a QRE numerically.
The equilibrium has the property that, when p — o0, it converges to the
(unique) equilibrium we derived in section 2. We use standard maximum-
likelihood techniques to estimate the value of p in each time interval and
each treatment and report the results in Table 3.

5.1 ICM

Fix a price p € [0, 1] and consider the associated game induced by ICM. By
(5), equilibrium distribution functions can be calculated as follows:

exp [udxzf;p—di)]

1 di(2—2p— '
I exp [u (2 2210 y)] dy

f(dilp) = (10)

The first row of Table 3 reports estimates of the noise parameter p for
ICM. The estimated noise parameter jumps dramatically between 17 and
T5 and reaches its highest value at T (precisely, 201200, basically infinity),
implying that the empirical bid distribution collapses to the equilibrium one.
The estimated value of u then decreases in T}y, but is still significantly higher
than in 77. This confirms the finding that the learning mostly takes place
in Tl.

Table 3. Maximum Likelihood Estimations of u

Figure 4 shows, for each time interval, average bids observed in the
experiment and bids in the estimated QRE (with the dotted line tracing the
equilibrium strategy). The effect of noise (whose magnitude is measured by
1) is to create underbidding (with respect to equilibrium behavior) when the
price is low(er than .5), and overbidding when the price is high(er than .5),
independently of p. The reason it that bidder profits are symmetric around

18guch as potential games, as in Anderson et al. (2001).
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xi(p), which implies that also the equilibrium distributions given by (10)
are symmetric around the mode at z;(p). However, upwards (downwards)
deviations are more likely for high (low) prices since the strategy space is
restricted to the interval [0, 1].

Figure 4. ICM: Evolution of the Estimated QRE Bid Functions

As Figure 4 shows, in 77 our QRE analysis predicts well the slight over-
bidding (underbidding) when prices are high (low). The observed threshold
where the average bid switches from overbidding to underbidding (as price
decreases) is situated around p = .5, consistently with the QRE prediction.
From 7% on, the three curves almost coincide, as we know already from
section 4.

5.2 FPM

The last row of Table 3 reports the maximum-likelihood estimates of u
for FPM. Each estimate is derived from a separate regression using the
corresponding data. A first look at Table 3 confirms the findings in section
4: the estimated u raises gradually from 46 in 77 to a final 150 in T},
This suggests that, as time proceeds, the observed behavior gets closer to
the equilibrium prediction. Like in the case of ICM, the QRE analysis
reproduces our experimental evidence with remarkable accuracy, as Figure
5 shows.

Figure 5. FPM: Evolution of the Estimated QRE Bid Functions

Equilibrium distributions are analogous to the ICM case only for very
high prices. In contrast, for very low prices, distributions are unimodal
at 1. For prices % > p > Pe, the QRE distribution is not unimodal at
(1 — p), but has a mode at a higher level and is skewed to the right. That
is, deviations in the direction of overbidding are relatively cheaper (and,
therefore, by (9), overbidding with respect to d; is more likely to occur).
Furthermore, the larger the fraction of overbidding bidders is, the more
attractive overbidding becomes for others. In other words, if overbidding
strategies grow in probability, their payoff becomes relatively higher and this,
by (9), reinforces the bias toward overbidding induced by the asymmetry in
relative costs. In consequence:

19



° % > p > pe. For intermediate prices, overbidding of the equilibrium

strategy is more likely to be observed due to the deviation cost asym-
metries highlighted in the previous paragraph.

e p> %. For very high prices, overbidding is basically due to the “drift
effect” already discussed in section 5.1.

® p < pe. For very low prices, the drift effect yields underbidding. More-
over, QRE predicts the observed sensitivity of bids on price level (al-
though sensitivity to prices is not as high as in our data). This is
because the higher the price, the cheaper it is to underbid the equilib-
rium prediction by the same amount. Therefore, it is more likely to
observe such deviations at higher prices.

6 Conclusion

Two main conclusions can be drawn from our experiment. First, equilibrium
analysis provides a very good description of subjects’ behavior, compared
to other experimental settings. Second, there are still deviations from equi-
librium, for which QRE (as opposed to risk aversion, for example) seems to
produce a sufficiently consistent explanation.

We emphasize that the observed deviations from equilibrium bidding
make FPM even more attractive as a selling mechanism. Persistent overbid-
ding of RNNE occurs exactly within the price range that would be selected
by a profit maximizing seller. Revenue at this price turns out to be even
higher than the expected monopoly profit of a seller who knows the demand
scenario when he chooses the (linear) price.

A general and most important observation from our experimental data
is that subjects were able to solve the problem well enough to achieve re-
sults closely resembling the theoretical predictions. This finding is important
when it comes to the question when and where FPM should be used in prac-
tice. In this respect, two conclusions can be drawn. First, the theoretically
appealing properties of FPM clearly survive (or even are improved on) in
the laboratory, which suggests that FPM should be quite popular as a sell-
ing mechanism. Second, we have to keep in mind that those advantages of
FPM can only be realized if the seller fixes the price correctly, anticipating
buyers’ bidding behavior. Thus, FPM should rather be observed in markets
where sellers are experienced.

The latter observation points to a question for future research. While
in our experiment we focused on buyers’ behavior, the seller’s decision is
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certainly as relevant for evaluating the attractiveness of the mechanism. Two
issues are of interest here. First, does the seller anticipate bidding behavior
correctly and sets the price optimally given buyers’ behavior? Second, does
the fact that the seller is a real player (and not simulated by the computer)
change buyers’ behavior at the second stage of the game?

Another natural extension of the model studied in this paper could be
the replacement of proportional rationing by a different rule. Two natural
candidates are constrained equal losses and constrained equal cwards. The
former is a rule that makes the difference between what players ask and
what players get as equal as possible across players, subject to the condition
that no bidder ends up with a negative quantity. Under the constrained
equal awards rule supply is distributed uniformly across bidders (i.e. they
all receive the same amount), subject to the condition that no one gets more
than her bid.

It is not difficult to show that the equilibria characterized in section \ref
{theory} maintain a similar feature if proportional rationing is replaced by
constrained equal losses.'” Only the intermediate price interval equilibrium
may be slightly modified by the different rationing scheme. On the other
hand, constrained equal awards affects the equilibrium considerably. In this
case, a symmetric

equilibrium is to submit the true demand for all p > % For prices below
this threshold, any (asymmetric) bid such that min[d;] < % is an equilibrium.
In other words, multiple equilibria occur for prices sufficiently low. How the
presence of such strong strategic uncertainty may affect subjects’ behavior
in the lab is left for future research.
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