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ABSTRACT 
 

This paper discusses how to test for conditional symmetry in time series 

regression models.  To that end, we utilize the Bai and Ng test. We also examine 

the performance of some popular (unconditional) symmetry tests for observations 

when applied to regression residuals.  The tests considered include the coeficient 

of skewness, a joint test of the third and fifth moments, the Runs test, the Wilcoxon 

signed-rank test and the Triples test. An easy-to-implement symmetric bootstrap 

procedure is proposed to calculate critical values for these tests. Consistency of the 

bootstrap procedure will be shown. A simple Monte Carlo experiment is 

conducted to explore the finite-sample properties of all the tests. 

 

Codes JEL:  C12; C15; C22 

Keywords: Near Epoch Dependence; Nonparametric tests; Conditional symmetry; 

Boot- strap; Monte Carlo simulation. 



1 Introduction

The problem of testing conditional symmetry in time series data is fundamental in both theoretical

and empirical research. In the last few years considerable research has been devoted to model and

forecast the conditional mean and the conditional variance of �nancial time series, that is, the return

and risk of �nancial assets, respectively. The class of (Generalized) Autoregressive Conditional

Heteroskedasticity ((G)ARCH) models, introduced by Engle [12] and Bollerslev [6], is the most

widely used among economists and other applied practitioners to model time varying conditional

variances. In essence, all empirical studies that assume conditional heteroskedasticity also use a

quasi-maximum likelihood estimator (QMLE). If the likelihood is assumed to be Gaussian, the

QMLE is known to be consistent if the conditional mean and the conditional variance are correctly

speci�ed. However, normality of innovations is frequently not a very realistic assumption for

high-frequency �nancial time series because the resulting model fails to capture the kurtosis in

the data. Alternative distributions for innovations are considered in the literature. For example,

following Bollerslev [7], a popular choice is the standardized Student-t distribution. If the likelihood

is assumed to be non-Gaussian, Newey and Steigerwald [27] show that consistency of a QMLE

requires that both the assumed innovation density and the true innovation density are unimodal

and symmetric around zero. Moreover, if conditional symmetry fails, an additional parameter is

needed to ensure consistency of a non-Gaussian QMLE. The additional parameter accounts for the

location of the innovation density. The reader may refer to the work of Franses and Van Dijk [14]

for an extensive survey of the recent developments of modelling, estimation and hypothesis testing

for time-varying conditional variance models.

Whether or not conditional symmetry holds is also an issue of interest for adaptive estimation.

An adaptive estimator shares the asymptotic optimality properties of the maximum likelihood

estimator, di¤ering from it in that a nonparametric estimator of the score function of the log

likelihood replaces the analytic expression that would be used if the actual functional form of the

disturbance distribution was known. Bickel [5] shows that if the density function of the disturbance

is symmetric about the origin, then the parameters of a linear regression model can be estimated

adaptively. Newey [26] constructs adaptive estimators of linear regression parameters by a gener-

alized method of moments (GMM) when the foregoing is true. The above results are extended to

stationary autoregressive moving average (ARMA) process by Kreiss [23] and reduced-rank vector

error correction models by Hodgson [21]. In the case of testing, the e¢ ciency of the methods can

be improved under the additional assumption of a symmetric error distribution, see for example

Azzalini and Bowman [1] or Kulasekera and Wang [24]. Further, conditional symmetry is part of

the stochastic restrictions on unobservable errors used in semiparametric modelling (see Powel [28]

and references therein). The conditional symmetry restriction implies constant conditional mean

and median, which is quite familiar in econometric theory and practice.

The conventional asymptotic theory of the bootstrap relies on Edgeworth expansions in order

to prove the existence of asymptotic re�nements. In many cases the e¢ ciency of this method

can be improved under the additional assumption of symmetry. Davidson and Flachaire [9] study
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various versions of the wild bootstrap applied to a linear regression model with heteroskedastic

errors. They show that when the error terms are symmetrically distributed about the origin, the

wild bootstrap applied to heteroskedasticity consistent covariance matrix estimator based statistics

bene�ts from better asymptotic re�nements than when they are asymmetrically distributed. In

particular, they found that the error in rejection probability (ERP) is at most of order T�3=2 with

symmetric errors and T�1=2 with asymmetric errors, where T denotes the sample size. Comparable

results are obtained by Hall [18] for the case of homoskedastic regression models. He shows that

bootstrap tests on the slope parameters bene�t from re�nements in the case of unskewed error

terms.

There is also a growing literature addressing the problem of conditional symmetry of macro-

economic time series related to asymmetries in business cycles. As discussed in Brunner [8], the

assumption of Gaussian shocks places strong restrictions on the time series behaviour of economic

�uctuations. Since the Gaussian distribution is symmetric about zero, the conditional density is

symmetric about its conditional mean. Our notion of conditional symmetry is that, in an expan-

sion (contraction), the probability of further expansion (contraction), relative to the conditional

mean, is equal to the probability of a contraction (expansion). That is, positive shocks to the

conditional mean are as likely as negative shocks. There is a substantial body of empirical evi-

dence that suggests that business cycles expansions appear to be more persistent and less volatile

than contractions. That is, economic time series behave asymmetrically over the business cycle;

see e.g., DeLong and Summers [10], Hussey [22], Verbrugge [31] and Belaire-Franch and Contreras

[3]. Thus, symmetry tests are an essential �rst step in practical model-building exercises since it is

desirable to establish the validity or otherwise of the symmetry assumption before exploring more

complicated business cycle structures.

Tests for symmetry have a long tradition in both Statistics and Econometrics. In this paper,

we focus on the evaluation of several statistical testing procedures that can be used to test for

conditional symmetry. In particular, we consider the nonparametric test for conditional symmetry

of Bai and Ng [2]. The closely related problem of testing for (unconditional) symmetry was

investigated by Wilcoxon (see [16]), Gupta [17], McWilliams [25] and Randles et al. [30] among

others. It is not clear whether these tests can be extended to testing for conditional symmetry,

since it has not yet been rigorously demonstrated that statistics computed by using regression

residuals instead of the true errors have approximately the same distribution as those based on the

errors. It is by no means obvious that this is so. However, for the case of tests of symmetry based

on sample moments, we show that under standard regularity conditions that ensure asymptotic

normality of moment estimators, the asymptotic null distributions of the tests do not change when

replacing the unknown errors by well-behaved residuals. Another problem encountered when using

real data is that, for �nite samples, the distribution of the symmetry tests included in this study is

still unknown. As a consequence, the true size of these tests often di¤ers to a large extent from its

nominal size based on asymptotic critical values. The main purpose of this paper is to investigate

whether the bootstrap can be used to obtain improved �nite-sample critical values.

The remainder of the paper is organized as follows. Section 2 details the class of nonlinear
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dynamic processes under which we will work. In Section 3, we brie�y review all the tests for

conditional symmetry used in this paper. Section 4 describes the bootstrap method and establishes

consistency property of the bootstrap for a linear regression model. Section 5 performs, for a wide

variety of alternative symmetric and asymmetric distributions, Monte Carlo simulations to compare

the �nite-sample size and power of the tests when critical values are obtained using a bootstrap

procedure with that we could achieve using the asymptotic theory. Concluding comments are

presented in Section 6. Technical proofs of all results are deferred to Appendix A. Finally, tables

are relegated to Appendix B.

2 The nonlinear dynamic model

Suppose that f(Yt; Xt)g is a strictly stationary discrete-time stochastic process with Yt 2 R and
Xt 2 Rd, de�ned on some probability space (
; F ; P ). Here, Xt is a vector containing both
explanatory variables and lagged values of Yt. That is, Xt = (Zt; Yt�1; :::; Yt�p)0, where Zt 2 Rd�p

is a vector of some explanatory variables. Let Yt and Xt be both de�ned based on a stationary

process fVtg by

Yt = 	Y (Vt; Vt�1; Vt�2; :::);

Xt = (Xt1; :::; Xtd)
0 = 	X(Vt; Vt�1; Vt�2; :::);

where 	Y : R1 ! R and 	X : R1 ! Rd are two Borel measurable functions, respectively, and
fVtg may be vector-valued. We see that f(Yt; Xt)g depends upon the in�nite history of fVtg :
Let r > 0 be a positive real number. Following Gallant and White [15], we de�ne f(Yt; Xt)g
to be Lr-near epoch dependent (Lr-NED) with respect to a stationary process fVtg, provided
E jYtjr <1 and �r(m) = E

���Yt � Y (m)t

���r +E 


Xt �X(m)
t




r ! 0 as m!1, where j�j and k�k are

the absolute value and the Euclidean norm of Rd, respectively, Y (m)t = 	Y;m(Vt; Vt�1; :::; Vt�m+1);

X
(m)
t = (X

(m)
t1 ; :::; X

(m)
td )0 = 	X;m(Vt; Vt�1; :::; Vt�m+1); and 	Y;m and 	X;m are R- and Rd-valued

Borel measurable functions with m arguments involved, respectively. In particular, if �r(m) =

O(m�a��) for some � > 0 we say f(Yt; Xt)g is Lr�NED of size �a. The more negative �a is,
the more quickly the dependence of f(Yt; Xt)g on past values of Vt dies out. We will call �r(m)
the stability coe¢ cients of order r of the process f(Yt; Xt)g. Since NED is only a measure of how
f(Yt; Xt)g depends on fVtg, we place no conditions here on the dependence properties of fVtg.
We are interested in the conditional distribution of Yt conditional on Xt. Conditional symmetry

implies that the distribution of Yt, given Xt, has a symmetric form about its conditional mean.

That is to say, ft(y+ �t=Xt) = ft(�y+ �t=Xt); where ft(�=Xt) is the density of Yt conditional on
Xt; and �t = E [Yt=Xt] is the conditional mean. We assume that the dynamic behaviour of Yt is

given by the general nonlinear time series regression model:

Yt = �(Xt; �) + �(Xt; �)ut; t = 1; 2; :::; T (1)
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where �(Xt; �) and �2(Xt; �) are the conditional mean and the conditional variance of Yt, respec-

tively. The functional forms of � : Rd � Rk ! R and � : Rd � Rk ! R are known except for

� 2 � � Rk, where � is the parameter space. futgTt=1 are assumed to be independent and identi-
cally distributed (i.i.d.) zero-mean unit-variance unknown errors with ut being independent of Xt
for all t. Fu(�) is the cumulative distribution function (cdf) of ut with density function fu(�). Let b�
be a root-T consistent estimator of the parameter vector �. The estimated residuals are computed

from the the estimated parameters. Then but = (Yt � �(Xt;b�))=�(Xt;b�). Unless otherwise stated,
all summations considered here are taken from 1 to T , where T denotes the number of observations.

Note that the general framework (1) encompasses linear regression models as a particular case.

Under model (1), conditional symmetry of Yt is equivalent to the symmetry of ut about zero,

that is, fu(u) = fu(�u) for all u. Therefore, the null hypothesis under test is that "H0: ut is
symmetric about 0", versus the general alternative "H1: ut is not symmetric about 0". It is

pointed out that conditional symmetry does not, in general, imply unconditional symmetry1 .

An example of a NED process less trivial than a �nite moving average process is a simple AR(1)

process (see Gallant and White [15], pp. 27-28). ARMA models of �nite order with zeros lying

outside the unit circle can be shown to be NED of arbitrarily large size, provided the parameters are

chosen such that the stationarity as well as the invertibility condition is ful�lled and the innovations

satisfy appropriate moment conditions. In�nite MA processes can also be shown to be NED under

mild conditions on the moving average weights (see Wooldridge and White [32], example 3.3).

As Hansen [20] has shown, strictly stationary GARCH processes are NED under mild regularity

conditions. This framework also include the AR process with ARCH/GARCH errors, discussed

in Engle [12], which is widely applied in �nancial econometrics. Consider the AR(1)-GARCH(1,1)

process, in which observed data are generated as a realization of a stochastic compound process

Yt = 
 + �Yt�1 + et;

et = uth
1=2
t ; ht = �+ �ht�1 + �e

2
t�1;

with futg being i.i.d., so ht is strictly stationary. If j�j < 1; it is well-known that this model can
be expressed as

Yt = 
=(1� �) +
1P
�=0

��et�� :

It can be shown that Yt is NED of order r on the stationary process fetg, if for some r � 2;

E jetjr � � <1, with stable coe¢ cients

�r(m) = E
���Yt � Y (m)t

���r = E ���� 1P
�=m

��et��

����r � j�jm 1P
�=0

j�j� E jet�m�� jr � j�jm�=(1� j�j);

1To illustrate this, consider a MA(1) process Yt = ut � �ut�1 with ut i.i.d. and � = 1. The unconditional

distribution of Yt is always symmetric with independence of whether or not fu(�) is symmetric, since Yt and �Yt
have exactly the same distribution. However, the conditional distribution of Yt on Xt (which inlcudes ut�1) will be

asymmetric in case ut is asymmetric.
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decaying at a geometric rate. The conditions to ensure that E jetjr <1 are E jutjr <1 for some

r � 2; and � + � < 1.
We next show that et = uth

1=2
t is NED of order r on the stationary process futg. By repeated

substitution we have ht = �+�
1P
k=1

kQ
i=1

(�+�e2t�i) = �+�
1P
k=1

kQ
i=1

zt�i, where zt = �+�e2t . Because

under � + � < 1; supt�1E jztj
r � c < 1 for some r � 2, it follows that

E jhtjr = �+ �E
���� 1P
k=1

kQ
i=1

zt�i

����r � �+ � 1P
k=1

E

���� kQ
i=1

zt�i

����r � �(1 + c=(1� c)) <1;
by the Minkowski�s inequality for in�nite sums.

To see that ht is NED on futg, let h(m)t = �+ �
m�1P
k=1

kQ
i=1

zt�i. By Minkowski�s inequality

�hr (m) = E
���ht � h(m)t

���r = �E ���� 1P
k=m

kQ
i=1

zt�i

����r � �cm�1 1P
k=1

E

���� kQ
i=1

zt�(m�1)�i

����r � cm�=(1� c):
Thus ht is NED of order r on futg: By Theorem 4.2 of Gallant and White (1988), et = uth

1=2
t

is Lr-NED on futg. This is also true for ARCH errors (� = 0).

3 Tests for conditional symmetry

We next describe the tests for symmetry considered in our Monte Carlo study. To test for con-

ditional symmetry, tests are applied to regression residuals. Since these tests have been discussed

extensively in the literature, their description here is relatively brief.

A classical test of symmetry is the test of skewness (see Gupta [17] for a review of this test).

This test is developed for demeaned data, but the statistic has the same limiting distribution when

applied to residuals from a simple linear regression model. It might be of interest to compare

this test with a joint test of the third and �fth central moments. In principle, a joint test of

more moments is possible, but the higher order-moments are di¢ cult to estimate precisely. The

potential advantage is to be more powerful than a test based on the third moment in isolation. A

practical strategy would be to start with the skewness coe¢ cient and consider joint tests of higher

moments only if we do not reject H0. Standard asymptotic results will lead to the derivation of

both a joint test of the third and �fth central moments and the skewness coe¢ cient. The proof

is omitted here in order to save space, but is available upon request. An advantage of these tests

is that they are intuitive and easy to compute. However, they present a number of limitations.

First, the limiting distributions of the estimators are known and have a simple form for the case

of ordinary least squares. Di¤erent estimation methods may yield di¤erent limiting distributions.

Second, they are moment-based tests, which require the existence of the sixth and tenth moments,

respectively. This is not satis�ed by many useful distributions such as the student-t5 or GARCH

process. Finally, these tests are not consistent against alternatives which are asymmetric and yet

have the third moment and/or the �fth moment equal to zero.
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Bai and Ng [2] discuss how to test whether the regression residuals from a nonlinear time series

regression model are symmetrically distributed. The test, which is based on martingale transfor-

mations, does not require the data to be stationary or i.i.d., and the dimension of the conditional

variables can be in�nite. The test is shown to be consistent and asymptotically distribution free,

but its computation is rather intensive.

The literature on symmetry is large, an commonly used nonparametric tests are the Wilcoxon

signed-rank test (for further details, see Gibbons and Chakraborti [16]), the Runs test of McWilliams

[25], and the Triples test of Randles et al [30]. These test are asymptotically distribution-free for

i.i.d. observations. In the present setting, we replace the unobservable errors by well-behaved

residuals. Thus, the asymptotic distribution of these statistics is unknown.

4 Symmetric bootstrap

We consider the nonlinear regression model (1). Under the null hypothesis, we know that the

population fu1; :::; uT g is symmetric about zero. The tests under consideration were computed
with estimated regression residuals when testing for symmetry of regression errors. Let bTT =

TT (bu1; :::; buT ) denote the test statistic of interest, which is a function of the standardized residuals.
By using standardized residuals, we are guaranteed that all model residuals have, at least, the

same two �rst moments.

In this section, we consider a bootstrap procedure for approximating the distribution of the

test statistic of interest, which is a function of the residuals, for testing on the symmetry about the

mean of the underlying distribution of the errors. When bootstrapping any test statistic, our aim

is to �nd a bootstrap distribution that mimics the null distribution of the data, even though the

data may be generated by an alternative distribution. We propose a resampling scheme so that

the null hypothesis is respected in the bootstrap data-generating process. That is, a resampling

method that ensures the bootstrap distribution to be symmetric. To be precise, we de�ne the

bootstrap sample by ��T = f(Y �t ; X�
t ) : t = 1; 2; :::; Tg, where Y �t = �(X�

t ;
b�) + �(X�

t ;
b�)u�t and

X�
t = (Zt; Y

�
t�1; :::; Y

�
t�p)

0. Note that the exogenous explanatory variables are �xed in repeated

samples, and b� is some estimate of the parameter vector �. Bootstrap residuals u� = (u�1; :::; u�T )0
were constructed by a two-stage procedure:

Stage 1: Construct recentred versions of the residuals eut = but � T�1Pt but: Random signs

are assigned to the centered residuals eut according to independent realizations of a Rademacher
random variable st, independent of eut, which takes values +1 and �1 with probability 1=2 each.
By doing that, we obtain a set of symmetrized residuals fs1eu1; :::; sT euT g.
Stage 2: A random number device independently selects integers i1; :::; iT , each of which equals

any value between 1 and T with probability 1=T: We allow a single unit steut to appear more
than once in the sample, that is to sample with replacement. Therefore, the bootstrap data set

fu�1; :::; u�T g consists of members of the original data set fs1eu1; :::; sT euT g, some appearing zero
times, some appearing once, some appearing twice, etc.
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Each bootstrap sample ��T is then used to re-estimate the parameter vector �. Let b�� denote
the bootstrap estimator of �. The estimated residuals from the bootstrap sample are

nbu�t = Y �t � �(X�
t ;
b��))=�(X�

t ;
b��) : t = 1; 2; :::; To :

Using bootstrap residuals, we compute the bootstrap test statistic bT �T = TT (bu�1; :::; bu�T ).
Repeating this procedure B times gives a sample

nbT �Tb : b = 1; :::; Bo of bTT values. This sample
mimics a random sample of draws of bTT under the null hypothesis. In particular, we consider the
problem of estimating the �-level critical value of the bTT test from its empirical distribution. Letbc��;B denote the bootstrap estimate of the �-level critical value. Let bT �T (1) � bT �T (2) � ::: � bT �T (B)
denote the B realizations of bTT arranged in order of increasing size, and suppose we choose B and
� such that �=B = 1 � �. Since the B values of bT �Tb divide the real line into B + 1 parts, not B,
then it makes sense to select bc��;B = bT �T (�+1): For example, in the case of � = 0:05 and B = 1000,
this would involve taking bc��;B = bT �T (96).
It is convenient to choose a single value of B at which to monitor the performance of all the

tests. In this study, this is not possible since there are large di¤erences between the run times of the

tests. Di¤erent values of B were chosen, so as to make the run time of each test approximately the

same. We set B = 1999 for the moment-based tests, the Wilcoxon signed-rank test and the Runs

test, while B = 999 for the Bai and Ng test. For the Triples test, we carry out B = 99 bootstrap

replications, which is the smallest value of B that is commonly suggested. The processing time

becomes excessive when greater values are used, especially for T � 100. We will illustrate the �nite
sample performance of the bootstrap proposal of the paper by means of simulation in Section 4.

4.1 Asymptotic properties

To study the asymptotic properties of the proposed bootstrap, we need to state the underlying

assumptions.

(A1) For some small � > 0 and some r > 2; the data generating process (DGP) (1) is L2+�-NED

on fZt; utg of size �2(r � 1)=(r � 2). The constant � is speci�ed in A2 below.
(A2) E jYtj2+� <1 for some � > 0:

(A3) The errors ut are i.i.d. random variables with zero mean, unit variance and E ju1j4 <1.
The density of ut is fu(�) and the cdf Fu(�). Furthermore, ut is independent of Xt.
(A4) �(�; �) and �(�; �) are twice continuously di¤erentiable with respect to the second argument

with bounded derivatives. Additionally, there exists �0 > 0 such that �(�; �) > �0.
(A5) The estimator b� satis�es pT (b� � �) = Op(1):
(A6) �(�; �) and �(�; �) are Lipschitz continuous with respect to the �rst argument, i.e., there ex-

ist a constant L� such that j�(u; �)� �(v; �)j � L� ku� vk, and �(�; �) satis�es a similar inequality
for a certain constant L�:

(A7) 	X;m is continuously di¤erentiable with respect to the m arguments with bounded deriv-

atives.

(A8) m!1 with m = o(T ).
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Assumptions A1 and A2 are related to the nonlinear process itself. Assumption A3 is concerned

with the behaviour of the errors. The di¤erentiability condition required in A4 is relatively standard

in nonlinear estimations. A5 is a standard assumption, which ensures that the estimators are root-

T consistent. Conditions A6-A8 are required for purely technical reasons.

We next provide a little theory for the convergence of the empirical distribution of standardized

residuals under the symmetric bootstrap proposed above. The idea behind the bootstrap is to

replace the true distribution function of the error term ut by its empirical estimate. Let bFT be the
empirical distribution function of the recentred standardized residuals, putting mass 1=T on eacheut, t = 1; :::; T: That is, the centered residuals are equally likely to appear in the bootstrap sample.
Following Efron and Tibshirani [11], a bootstrap sample is de�ned to be a random sample of size

T drawn from bFT ; say eu� = (eu�1; :::; eu�T )0. The start notation indicates that eu� is not the actual
data set eu, but rather a randomized, or resampled, version of it.
We can construct the distribution bGT , which places mass 1=T at steut, t = 1; 2; :::; T , where st

is a Rademacher random variable, independent of eut. We use bGT as the basis for our bootstrap
resampling scheme. It is straightforward to prove that the distribution of the random variable stut
is symmetric about zero under both H0 and H1: Let Gu be its distribution function de�ned by

Gu(x) =
1

2
(1� Fu(�x) + Fu(x))

It is pointed out that Gu(x) = Fu(x) for every given x under the null hypothesis. Note that

the symmetry of the bootstrap errors does not depend on whether the null hypothesis holds or

not, although ut does. That is, our bootstrap approximation to the null hypothesis is always valid

even the data f(Yt; Xt)gTt=1 were drawn from a population under which the null hypothesis does

not hold. Therefore, the derived bootstrap tests automatically follow the �rst guideline set by Hall

and Wilson [19]. Namely resampling should be done in a way that re�ects the null hypothesis, even

when the true hypothesis is distant from the null. As they pointed out, this ensures the reasonable

power of the bootstrap test against the departure from the null hypothesis.

In order to investigate the asymptotic behaviour of the symmetric bootstrap, we use theMallows

metric2 d2 to show that the bootstrap errors u�t approximate the true errors ut under H0: There

is one key result that make this metric a useful tool in proving asymptotic results for regression

models. From Bickel and Freedman ([4]; Lemma 8.3), given distributions F; F1; F2;:::; the condition

d2(FT ; F ) ! 0 as T ! 1 implies that the probability measures corresponding to FT converge

weakly to the measure corresponding to F:

Proposition 1 Suppose that assumptions A1-A5 hold. Then, under H0, d2(ut; u�t ) ! 0 as T !
1:

As next step, we show that ��T replicates the structure of (1), given the original data �T =

2The Mallows metric is de�ned by d22(X;Y ) = d22(G;H) = inf
�
E[jjX � Y jj2] : X~G; Y ~H

	
; where the in�mum

is over all joint distributions of (X;Y ) whose �xed marginal distributions are G and H respectively and where jj:jj
denotes the Euclidean norm on R: See Bickel and Freedman ([4]; Section 8) for a detailed discussion of this metric.
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f(Yt; Xt); t = 1; :::; Tg : For this purpose, we de�ne e�T = n(eYt; eXt); t = 1; :::; To as
eYt = �( eXt; �) + �( eXt; �)"t; t = 1; 2; :::; T;

where eXt = fZt; eYt�1; :::; eYt�pg and f"tgTt=1 are conditionally i.i.d. random variables with the

following properties. Given �T ; (i) "t has conditional distribution Fu; (ii) d2("t; u�t ) = d2(ut; u
�
t ),

(iii) e�T is L2+�-NED on fZt; "tg for some � > 0. Here and in the following, a star appearing in E
denotes expectation with respect to ��T conditional on the data �T .

Proposition 2 Suppose that assumptions A1-A8 hold. Then, under H0,

sup
1�t�T

E�
���eYt � Y �t ��� = op(1) for T !1:

The following Corollary, which show that
���eYt � Y �t ���! 0 in mean for T !1 given �T ; follows

immediately from Proposition 2.

Corollary 1 Suppose that assumptions A1-A8 hold. Then, under H0,

E�fT�1
P
t

���eYt � Y �t ���g ! 0 for T !1:

Note that we do not prove that the conditional distribution of bT �T given �T is asymptotically
equal to the null-hypothesis distribution of bTT since the asymptotic distribution of bTT is unknown
for some of the statistics under consideration.

5 A Monte Carlo study

In this section, we investigate the �nite-sample properties of the symmetry tests of Section 2 by

means of Monte Carlo simulation3 . The aim of the experiments is two-fold. First, to investigate

whether the bootstrap procedure proposed in Section 3 can be used to obtain improved �nite-

sample critical values with respect to the asymptotic theory, whenever this is available. Second,

to identify the size and power properties of the test statistics under various scenarios, including

linear, AR, MA and GARCH models. We �rst describe the data-generating processes (DGP) and

the experimental design that is used in our simulations. A discussion of the results obtained in

these simulation experiments follows.

5.1 Experimental design

The time series considered in our study are generated according to model (1), where functions

�(�; �) and �(�; �) are generated according to four basic types of DGPs:

DGP1: �(Xt; �) = �0 +
kP
i=1

Zit�i; (Z1t; Z2t; :::; Zkt)
0 i:i:d:� N(0; Ik); and �(Xt; �) = � = 1;

3All the procedures for estimating the models described in this section were written in GAUSS programming

language. Programs are available from the author upon request.
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DGP2: �(Xt; �) = c+ �Yt�1 and �(Xt; �) = � = 1;

DGP3: �(Xt; �) = �+ �ut�1 and �(Xt; �) = � = 1;

DGP4: �(Xt; �) = 
 and �(Xt; �) = f�0 + �1�(Xt�1; �)2 + �2�(Xt�1; �)2u2t�1g1=2:

DGP1 is a linear regression model with an intercept component and k i.i.d. variables as regressors.

Data are generated setting �0 = ::: = �k = 1 and k = 1; 4. The reason for increasing the

number of regressors is to observe the sensitiveness of the size and the power of the tests to the

additional regressors. For an AR(1) speci�cation, our simulation experiment is based on DGP2.

We set c = 0 and � = 0:5; 0:8. We denote by DGP3 the MA(1) design. We set the constant

regressor � equal to zero and � = 0:5; 0:8: Finally, DGP4 corresponds to a GARCH(1,1) model.

In this framework, we set 
 = 1 and (�0; �1; �2) = (2; 0:5; 0:3). Also, we consider the model with

(�0; �1; �2) = (2; 0:9; 0:05), which is close to being an IGARCH(1,1). All parameter combinations

considered were selected to make the results of our study comparable with those obtained by Bai

and Ng [2], whenever this is possible.

For each DGP, we draw ut from symmetric and asymmetric distributions to derive conditionally

symmetric and asymmetric distributions for Yt. To asses the size of the tests, we �rst generate ut
from the standard normal distribution and the student-t distribution with 5 degrees of freedom.

To evaluate the power of the tests, we draw random variables from the exponential distribution

and the chi-square with two degrees of freedom. We then consider another ten distributions, four

symmetric and six asymmetric, from the generalized lambda family (GLF) discussed in Ramberg

and Schmeiser [29]. The choice of all these distributions is motivated by the fact they are used

in previous studies of testing symmetry and in consequence provide a benchmark for comparing

size and power. In addition, they cover a wide range of values of third and fourth standardized

moments. The GLF is easily generated since it is de�ned in terms of the inverse cumulative

distribution function F�1(u) = �1 +
�
u�3 + (1� u)�4

�
=�2, 0 < u < 1, with mean and variance

given by:

� = �1 +
�
(1 + �3)

�1 � (1 + �4)�1
�
=�2;

�2 = [(1 + 2�3)
�1 � 2�(1 + �3; 1 + �4) + (1 + 2�4)�1 � ((1 + �3)�1 � (1 + �4)�1)2]=�22;

where �(�; �) denotes the beta function. The � parameters de�ning the ten selected distributions
are taken from Randles et al. [30] and are listed in Table 1, together with the associated skewness

(�3) and kurtosis (�4) values. The distributions are arranged in ascending order of departure

from symmetry4 . To be under the assumptions of the regression model, all error distributions

are standardized to have zero mean and unit variance. Among these distributions, the Student-t

distribution with 5 degrees of freedom has �nite variance, but does not have �nite sixth and

tenth moments. The generalized lambda distributions have �nite qth moment if, and only if,

�1=q < min(�3; �4). All other distributions have �nite sixth and tenth moments. This is aimed
at checking how moment-based tests behave when data do not possess proper moments.

4The shapes of the GLF density functions are shown in McWilliams [25].
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The experiments proceed by generating arti�cial time series of length T from (1) with T 2
f50; 100; 200g. We have to estimate k + 2 parameters in DGP1. The parameters of interest are
estimated using ordinary least squares. Next, in DGPi (i = 2; 3) and DGP4; we have three and four

parameters to be estimated, respectively. In order to do that, we use maximum likelihood (ML)

estimation. In the context of DGP4; as Fiorentini et al. [13] proposed, for estimation purposes we

employ the analytic �rst and second derivatives of the log-likelihood instead of numerical approxi-

mations in order to bene�t for computational reductions and avoid convergence problems. Finally,

we compute the relevant test statistic bTT = TT (bu1; :::; buT ), which is based on the standardized
residuals from estimation of (1).

Due to the computational demand required by some of the tests included in this study is very

high, experiments were conducted using 500 replications for the Triples test, 1000 for the Bai

and Ng test, and 2000 for the remaining tests. For each replication, we reject the null being

tested at the nominal �-level, based on both bootstrap and asymptotic critical values, if the

observed test bTT is above bc��;B and exceeds the (1-�) quantile of the corresponding asymptotic

distribution, respectively. We �nally count the proportion of times that the null hypothesis is

rejected for each test statistic using bootstrap- and asymptotic-based critical values. For non-

symmetric alternatives, this proportion yields an estimate of the power of the test. In all cases

power is not size-adjusted. On the other hand, the proportions from the symmetric distributions

imply estimates of the Type I error. Since the results for tests performed at the 0.01, 0.05, and

0.10 signi�cance levels are qualitatively similar and lead to the same conclusions about the relative

merits of di¤erent tests, we focus on 5%-signi�cance level tests5 .

5.2 Simulation results: a comparative study of symmetry tests

The reader has to consider that the nonparametric tests included in this study, that is, the Wilcoxon

Signed-Rank test (WSRT ), the Runs test (RT ) and the Triples test (TRT ), are originally con-

structed for the problem of testing the unconditional symmetry of an i.i.d. sample of observations.

We investigate the performance of these tests when testing for conditional symmetry. Under (1),

conditional symmetry is equivalent to the symmetry of the error term about zero. Furthermore,

at this point we do not provide an asymptotic distribution theory for these tests when unknown

errors are replaced by well-behaved residuals. This is not the case of Bai and Ng test (CST ) and

moment-based tests (bS3T and bS3;5T ), whose corresponding asymptotic distributions are completely

known. We implement a bootstrap version of all the tests. Tables 2 to 9 show the empirical size

and empirical power of the various tests obtained using arti�cial time series generated according

to DGP1, DGP2, DPG3 and DGP4. It should be pointed out that moment-based tests are only

computed when the process is uncorrelated (DGP1). We report empirical rejection rates (%) under

the null and the alternative based on both asymptotic critical values as well as bootstrap critical

values obtained from Monte Carlo trials. To establish heuristic comparisons, for the set of nonpara-

metric tests we use the tabulated asymptotic critical values that will correspond to tests statistics

5Results at the 1% and 10% levels of signi�cance are available upon request.
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computed with "observable" errors6 . This should be borne in mind when assessing the results.

Based on the selected 5% nominal level (or size) of the tests, the empirical rejection frequencies

should be around 5% under the null, while they should be around 100% under the alternative.

Table 2 presents the empirical size of the symmetry tests for DGP1. A feature of the size

properties of the bS3;5T statistic with asymptotic critical values is that it is consistently undersized

with actual size about 2% for most of the cases investigated. The bootstrap does bring the

empirical size of the test closer to its nominal level. The empirical size of this test is rather

stable to an increase in the number of regressors. The performance of both moment-based tests

under distributions S4 to S6 deserves further analysis, since sixth and tenth moments of these

distributions do not exist. The empirical size of bS3;5T test in S3, for which sixth and tenth moments

exist, is comparable to its size under distributions S4 to S6. Comparing the size of both moment-

based statistics across distributions, shows that the bS3;5T test statistic rejects less often than the

skewness coe¢ cient under the null when using asymptotic critical values. The results are the

reverse with bootstrap-based critical values except for distributions with kurtosis equal to 3.

We next consider the Bai and Ng test. Note that for all DGPs considered in Bai and Ng [2],

the estimated regression model imposes �2 = 1. Under this circumstance, the variance is not

treated as a parameter to be estimated, as it is assumed in (1), but a constant to be specify, and

for this reason it is not possible to establish direct comparisons between their results and those

of this paper7 . Fixing k = 1, the size of the test based on asymptotic critical values is largely

satisfactory for distributions S1 to S4 when T = 50. However, this result should be interpreted

with caution, since when the sample increases to T = 100 empirical sizes fall drastically. This may

suggest that this test presents in�ated sizes for small samples under these distributions. Turning

to fat-tailed distributions, we may see that S5 is slightly oversized for T = 200. The S6 case

is more seriously oversized. This distortion increases with T . This re�ects an e¢ ciency loss in

conducting the CST test based on asymptotic critical values in distributions with high kurtosis,

since it tends to reject a true null too often. It should be pointed out, however, that oversizing is

not so large as to render the test unattractive for applications. These results appear to be robust

to increase the number of regressors to k = 4. On the other hand, the results from bootstrap

critical values show that, in S5 and S6 cases, the bootstrap performs well, with sizes close to the

nominal level for T � 50. Increasing the number of regressors moves bootstrap-based empirical

sizes upward in small samples. Since size distortions may lead to misleading inference, to guard

against possible over-rejection of the symmetry hypothesis, it is advisable to compute this test

statistic with bootstrap-based critical values.

The actual sizes of the Runs test based on asymptotic critical values are close to the 5% nominal

level even for T = 50. When k = 1, the Runs test with bootstrap-based critical values has poor

6All the tests conducted in this simulation study are one-tailed tests at the 0.05 level. The asymptotic critical

values for the tests bS3;5T and CST are 5:99 and 2:20 respectively. For the remaining tests, the asymptotic critical

value is 3:84.
7Models 1, 2, 4, 5 and 6 in Bai and Ng [2] correspond to distributions S1, S4, A5, A7 and A8 in this paper,

respectively.
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size. Interestingly, the performance of the test steadily deteriorates as T increases, its rejection

frequencies being around 1% for T = 200. In unreported simulations, we found that the size

distortions of the bootstrap test do disappear slowly as T increases further. The size properties of

RT for k = 4, on the other hand, seem largely satisfactory, being the performance of the bootstrap

comparable to asymptotic values.

In the case of the Wilcoxon Signed-Rank test, the striking feature of the results is the quite

severe size distortion of the test when asymptotic critical values are used for any of the distribu-

tions considered. Rejection frequencies are equal or close to zero, which illustrates the conservative

nature of the test. These size distortions do not disappear as T increases. These results should be

interpreted with caution. The poor size properties of WSRT statistic might stem from incorrectly

assuming the asymptotic distribution of the test is invariant to the replacement of errors by resid-

uals. The use of bootstrap-based critical values instead of asymptotic ones corrects the di¤erences

between the empirical and nominal sizes.

Focusing on TRT , for series of length T = 50 and k = 1, we may see that the empirical size of

the test with asymptotic critical values tends to be much smaller than the nominal size, although

the size distortions for S1 and S2 are considerably less than they are for distributions with kurtosis

higher than normal (S3 to S6). When considering leptokurtic distributions (S3 to S6) and �xing

T = 50, size increases substantially with k. A similar result holds for all the distributions when

bootstrap critical values are used. Again, this is a small sample e¤ect. For �xed T and k, the

performance of the test improves with bootstrap critical values.

The size properties of the Bai and Ng test together with the nonparametric tests in DGP2,

DGP3 and DGP4 are reported, respectively, in Tables 3 to 5. Overall, the evidence from our

simulations suggests that the relevant test statistics replicate the same patterns found for DGP1.

The results are quite robust even when the process is close to being nonstationary.

We now brie�y review the performance of the tests under the eight alternatives of asymmetry.

The results for each one of the four DGPs considered here are displayed in Tables 6 to 9, respec-

tively. The Monte Carlo simulations reveal that the bootstrap performance is better or at worst

equal to that of asymptotic critical values for all the tests under any DGP, with the exception of

RT . As intuition would suggest, this test is more successful with asymptotic critical values, given

the size of the test based on bootstrap critical values is too small. Since CST does not hold its

5% level very well with asymptotic critical values, it is di¢ cult to include it in any asymptotic

power comparisons, since it high power might easily arise out of these in�ated levels. Note also

that WSRT has disappointing power properties with asymptotic critical values. The reason for

such poor performance, when compared to bootstrap critical values, is that the asymptotic-based

empirical size of this test is extremely conservative (bearing in mind that the under-size in the

WSRT test computed with residuals is attributable to the use of critical values for the correspond-

ing WSRT test computed with errors). Therefore, unless stated otherwise, all power comparisons

between tests reported hereafter are based on bootstrap critical values, which are more reliable.

Turning attention to comparisons between DGPs, results seem not to be a¤ected by the DGP

where the data come from. There are two exceptions to this rule in the case of DGP4, for which
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the bootstrap-based empirical power of WSRT and RT .tests undergoes a signi�cant reduction for

most of the distributions, no matter the sample size considered. It should be pointed out that this

power distortion does not a¤ect comparisons between tests described below. For a �xed DGP, the

results of all the tests are quite robust across parameterizations for AR, MA and GARCH models.

Non-symmetry is detected with reasonable frequencies in nearly all cases. For a �xed distrib-

ution, power increases with T with both bootstrap and asymptotic critical values. For a �xed T ,

Bai and Ng test and the nonparametric tests exhibit monotonic power with the power of the tests

increasing for increasing levels of asymmetry, except for A6, which is analyzed in depth below. For

the moment-based tests, this monotonic behaviour is interrupted in A7 and A8, being their powers

lower than in A5. This may re�ect the sensitivity of these tests to the high kurtosis displayed by

these distributions. The alternative of non-symmetry is detected with the lowest probability in the

case A1, as we would expected given this distribution is rather close to symmetry. Distribution

A6 is introduced to show the sensitivity analysis of the power to the kurtosis of the underlying

distribution by comparing the behaviour of each particular test under A6 against alternative A5,

which has the same asymmetry as A6 but a lower level of kurtosis8 . From the empirical results, we

can assert that RT test is the most a¤ected by the kurtosis of the underlying distribution. For the

remaining tests, the di¤erences in power between these two distributions decrease as T increases.

It is noteworthy that A6 only outperforms, in terms of power, A1.

Overall, the WSRT test clearly dominates the others on power for all the DGPs, being the

di¤erences in performance more remarkable when T � 100. It is followed by the CST test for

DGP2 to DGP4. Under DGP1, CST and bS3;5T statistics are the best performing competitors.

Furthermore, these tests have complementary power, since bS3;5T performs better than CST for

distributions A2 and A3, while CST appears to be more preferable for A7 and A8, which are thick-

tailed distributions. For the remaining distributions, the power of both tests is comparable. The

TRT test on the other hand, which has good size properties for all the DGPs, has disappointingly

low power. It�s worth noting that the bootstrap power of RT is not a¤ected by the same erratic

behaviour of the size. Its power increases substantially with T . Turning to the properties of

moment-based tests in DGP1, we may see that bS3;5T is more competitive in power than bS3T in all
cases, especially when the sample size is moderate to large (T = 100; 200), which corresponds with

our intuition.

To summarize, the following conclusions emerge when size and power performance are jointly

considered. First, the simulations provide a strong case for the use of bootstrap critical values,

especially for T = 50. The Runs test is the only one for which asymptotic-based critical values

outperform bootstrap ones. For this test, the use of bootstrap critical values provides additional

protection of the 5% level, but at a nontrivial cost in terms of power. Second, bS3;5T dominates bS3T ,
since both moment-based tests have similar size properties, but a joint test of the third and �fth

moments is more competitive in power. The obvious simplicity of this test and its robustness to

the number of regressors in the model make it use attractive despite of its sensitivity to thick-

8To establish comparisons with A6, it would be also possible to use distribution A4, which has the same levels

of asymmetry and kurtosis as A5.

15



tailed distributions. Third, considering the Monte Carlo results and the fact that WSRT is easy

to calculate, we recommend it over any of the competitors included in this study, being aware of

the fact that its asymptotic distribution when replacing regression errors by residuals is unknown.

The level of protection of the nominal level is higher with CST , but at a no minor reduction

in power, especially for distributions with low skewness. Finally, note that the size and power

advantages held by WSRT using bootstrap critical values are limited to the speci�c class of null

and alternative distributions considered in this study.

6 Conclusions

This paper investigates the �nite sample properties of the Bai and Ng test commonly employed to

detect conditional symmetry. We also explore the possibility of evaluating conditional symmetry

by using some widely used tests for the unconditional symmetry of observations when the tests are

applied to regression residuals. The tests investigated included the coe¢ cient of skewness, a joint

tests of the third and �fth moments, the Runs test, the Wilcoxon signed-rank tests and the Triples

test. The limiting distribution of the conditional tests is only provided for moment-based tests.

For this reason, the performance of a symmetric bootstrap to compute critical values for all the

tests is discussed. The proposed symmetric bootstrap is easy to implement and is �exible enough

to be adapted to a variety of nonlinear regression models. The potential of the methodology is

illustrated using Monte Carlo simulation. The following general conclusions can be drawn from the

results. First, the ability of the bootstrap to overcome the problem of oversizing observed for the

Bai and Ng test when asymptotic critical values are used. Second, the size and power properties

of the tests do not appear to be a¤ected by the data-generating process for time series of relatively

large length. Finally, the evidence from our simulations suggests that the Wilcoxon signed-rank

test dominates the others in terms os size accuracy and power to detect non-symmetry.
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Appendix A

Proof. of Proposition 1: To proceed, corresponding to bFT and bGT , let FT and GT denote
the empirical distributions of futgTt=1 and fstutg

T
t=1 ; respectively. By the triangular inequality,

d22(ut; u
�
t ) = d

2
2(Fu; bGT ) � d22(Fu; GT ) + d22(GT ; bGT ):

Under H0, the �rst term converges to 0 by Lemma 8.4 in Bickel and Freedman [4]. In order to

obtain an upper bound for the second term, we consider particular random variables UT and VT ,

where UT = fstutg and VT = fsteutg ; t = 1; :::; T . Hence,
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d22(GT ; bGT ) � E�(UT � VT )2 = T�1
P
t
(but � ut � T�1P
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but)2

� 2T�1
P
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(but � ut)2 � 2(T�1P
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t
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�(Xt; �)� �(Xt;b�)

�(Xt;b�)
!2
+2(T

�1P
t
ut)

2

� 4T�1
P
t

(�(Xt; �)� �(Xt;b�))2
�(Xt;b�)2 +4T�1

P
t
u2t
(�(Xt; �)� �(Xt;b�))2

�(Xt;b�)2 +2(T
�1P

t
ut)

2
:

For the �rst term on the right hand side (r.h.s.), we make use of the lower bound for �(�; �) and a
Taylor expansion for the numerator. By adding and subtracting terms, it is bounded by

4��20 T�1
P
t

���(@�(Xt; �)=@�)0(b� � �) + op(1)���2
= Op(T

�1) + op(1) = op(1) as T !1;

which is obtained applying assumptions A4-A5.

Exactly along the same line, for the second term on the r.h.s,

4T�1
P
t
u2t
(�(Xt; �)� �(Xt;b�))2

�(Xt;b�)2 � 4(T�1=2
P
t
u2t )(T

�1=2P
t

(�(Xt; �)� �(Xt;b�))2
�(Xt;b�)2 ):

Under assumption A3, by the Central Limit Theorem,

T�1=2
P
t
u2t = Op(1):

The remainder is treated as follows,

T�1=2
P
t

(�(Xt; �)� �(Xt;b�))2
�(Xt;b�)2 � ��20 T�1

P
t

���(@�(Xt; �)=@�)0pT (b� � �) + op(1)���2 ;
which is of order op(1).

By the law of large numbers

(T
�1P

t
ut)

2
= op(1);

which completes the proof of Proposition 1.

Proof. of Proposition 2: By the de�nition of e�T and ��T
E�
���eYt � Y �t ��� = E�

����( eXt; �)� �( eX�
t ;
b�) + (�( eXt; �)� �( eX�

t ;
b�))u�t + �( eXt; �)(ut � u�t )���

� E�
����( eXt; �)� �( eX�

t ; �)
���+ E� ����( eX�

t ; �)� �( eX�
t ;
b�)���

+E�
����( eXt; �)� �( eX�

t ; �)
��� ju�t j+ E� ����( eX�

t ; �)� �( eX�
t ;
b�)��� ju�t j

+E��( eXt; �) j("t � u�t )j :
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Following the same reasoning as in the proof of Proposition 1, the second and the fourth term

converge to zero in probability. For the �rst term, we have from A6

E�
����( eXt; �)� �( eX�

t ; �)
��� � L�E� 


 eXt � eX�

t




 :
Exactly along the same lines we obtain

E�
����( eXt; �)� �( eX�

t ; �)
��� ju�t j � E� ju�1jL�E� 


 eXt � eX�

t




 :
Finally, by Proposition 1,

E��( eXt; �) j("t � u�t )j = E��( eXt; �)E� j("1 � u�1)j = op(1):
Thus,

E�
���eYt � Y �t ��� � (L� + E� ju�1jL�)E� 


 eXt � eX�

t




+ op(1):
Under A1, we use the following approximation to the NED process eXt by the stationary processeX(m)
t : That is, eXt = eX(m)

t + ( eXt � eX(m)
t ) = eX(m)

t + �
(m)
X;t ; (2)

where E�f�(m)X;t g2 = Ef�
(m)
X;t j�T g2 = O(v2(m)) asm!1: Note that E�f�(m)X;t g2 will never increase

as m!1: Thus, by (A8)
E�f�(T )X;tg

2 � E�f�(m)X;t g
2: (3)

Letting "t � 0 for t � 0, we have from (2) that for a given t

E�



 eXt � eX�

t




 � E�



 eXt � eX(T )

t




+ E� 


 eX(T )
t � eX�

t





� (E�




 eXt � eX(T )
t




2)1=2 + E� 

	X;T ("t; "t�1; ::; "1)�	X;T (u�t ; u�t�1; :::; u�1)


� O(

p
v2(m)) + E

� k@	X;T (x)=@xk k"t � u�t k = op(1);

where the second inequality follows by the Liapounov�s inequality, and the last inequality follows

from (3), (A7) and Proposition 1.
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Appendix B

Table 1. Distributions used in the Monte Carlo study

Distribution �1 �2 �3 �4 �3 �4

Symmetric distributions

S1 N(0; 1) 0 3.0

S2 0 0.197454 0.134915 0.134915 0 3.0

S3 0 -1 -0.080000 -0.080000 0 6.0

S4 t5 0 9.0

S5 0 -0.397912 -0.160000 -0.160000 0 11.6

S6 0 -1 -0.240000 -0.240000 0 126.0

Asymmetric distributions

A1 -0.116734 -0.351663 -0.130000 -0.160000 0.8 11.4

A2 3.586508 0.043060 0.025213 0.094029 0.9 4.2

A3 0 -1 -0.007500 -0.030000 1.5 7.5

A4 exponential: �ln(e); e � U(0; 1) 2.0 9.0

A5 �22 2.0 9.0

A6 0 -1 -0.100000 -0.180000 2.0 21.2

A7 0 -1 -0.001000 -0.130000 3.16 23.8

A8 0 -1 -0.000100 -0.170000 3.88 40.7
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