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CONSISTENT SPECIFICATION TESTS FOR ORDERED DISCRETE CHOICE
MODELS

Juan Mora and Ana I. Moro-Egido

ABSTRACT

We discuss how to test consistently the specification of an ordered discrete
choice model. Two approaches are considered: tests based on conditional moment
restrictions and tests based on comparisons between parametric and
nonparametric estimations. Following these approaches, various statistics are
proposed and their asymptotic properties are discussed. The performance of the
statistics is compared by means of simulations. A variant of the standard
conditional moment statistic and a generalization of Horowitz-Spokoiny’s statistic

perform best.

Codes JEL: C25, C52, C15.

Keywords: Specification Tests, Ordered Discrete Choice Models; Statistical
Simulation.



1. INTRODUCTION

Ordered discrete choice variables often appear in Statistics and Econometrics
as a dependent variable. The outcomes of an ordered discrete choice variable
Y are usually labelled as 0,1,...,J. Given certain explanatory variables X =
(X1, ..., Xi)', the researcher is usually interested in analysing whether one (or
some) of the proposed explanatory variables is significant or not, and/or providing
accurate estimates of the conditional probabilities Pr(Y = j | X = x), which
may be interesting by themselves or required in a first stage to derive a two-stage
estimator. Examples of ordered discrete choice dependent variables that have been
used in applied work include: education level attained by individuals (Jiménez and
Kugler 1987); female labour participation: work full-time, work part-time, not to
work (Gustaffson and Stafford 1992); level of demand for a new product or service
(Klein and Sherman 1997); and number of children in a family (Calhoun 1989).

The parametric model that is most frequently used for an ordered discrete choice
variable arises when one assumes the existence of a latent continuous dependent
variable Y* for which a linear regression model Y* = X', + u holds; the non-
observed variable Y* and the observed variable Y are assumed to be related as
follows:

where 1y = —00, g ; = +00 and pigg, gy, -5 Hos—1 are threshold parameters
such that pp0 < pig; < ... < gy ;1. Assuming independence between u and X, the

relationship (1) induces the following specification for Y
Pr(Y =j]X)= F(:u0j — X'By) — F(Mo,jfl — X'By), forj=0,1,...J, (2)
where F(+) is the distribution function of u, usually referred to as the “link func-
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tion”. In a parametric framework, for the sake of identification of the model it
is usually assumed that the first threshold parameter 1, is zero; additionally
it is assumed that F(-) is entirely known, the most typical choices being the
standard normal distribution (“ordered probit model”) and the logistic distrib-
ution (“ordered logit model”). With these assumptions we obtain a full para-
meterization of the conditional distribution Y | X = x, with parameter vector
0o = (B0, 1p)" € © C RF/7L

The key assumptions in a parametric ordered discrete choice model are the
linearity in the latent regression model, the form of the link function F'(-) (specif-
ically, its symmetry and its behaviour at the tails) and the independence between
w and X in the latent regression model (which, in turn, implies that it is ho-
moskedastic). Parameter estimates and predicted probabilities based on ordered
discrete choice models are inconsistent if any of these key assumptions is not met
(note that in contrast to standard regression models, heteroskedasticity or mis-
specification of the distribution function of u provoke inconsistencies). On the
other hand, there exist semiparametric methods (Klein and Sherman 2002) and
even nonparametric methods (Matzkin 1992) that allow for consistent estimation
of the conditional probabilities Pr(Y = j | X = x) under much weaker assump-
tions; these methods have not been much used in empirical applications due their
technical complexity, but they provide a reasonable alternative to purely para-
metric methods. Therefore, it is especially important to test the specification of
a parametric ordered discrete choice model, since misspecification errors lead to
inconsistent estimation, and it is possible to use alternative consistent techniques.

In recent years, various statistics have been proposed to test one (or some) of

the assumptions of a parametric ordered discrete choice model. However, most



of these statistics are constructed to detect only specific departures from the null
hypothesis; for example, Weiss (1997) proposes to test the null of a homoskedastic
u versus some parametric heteroskedastic alternatives; Glewwe (1997) proposes
to test the null that u is normal versus the alternative that it is a member of
the Pearson family; Murphy (1996) proposes to test the null that F'(-) is logistic
versus various alternatives; and Santos Silva (2001) proposes a test statistic to face
two non-nested parametric specifications. By contrast, we focus here on consistent
specification test statistics, i.e. test statistics that allow us to detect any deviation
from the null hypothesis “the proposed parametric specification is correct”.
Roughly speaking, two main approaches may be followed in our context to de-
rive consistent specification statistics: tests based on conditional moment (CM)
restrictions, which can be constructed following the general methodology described
in Newey (1985), Tauchen (1985) and Andrews (1988); and tests based on compar-
isons between parametric and nonparametric estimations, such as those proposed
by Andrews (1997), Stute (1997) and Horowitz and Spokoiny (2001), among oth-
ers. The objective of this article is to examine how these two approaches can
be applied to test the specification of an ordered discrete choice model, and to
compare the performance of the resulting statistics by means of simulations.
Our results highlight the importance of covariance matrix estimation in CM
tests. Specifically, standard CM statistics, computed with covariance matrix es-
timators based on actual derivatives, usually perform worse than statistics based
on comparisons between parametric and nonparametric estimations. However, ex-
ploiting the information about conditional expectations contained in the model,
here we derive variants of standard CM statistics that perform much better than

standard CM statistics; additionally, these variants are easy to compute, since



they can be obtained using artificial regressions. On the other hand, our results
suggest that the methodology proposed in Horowitz and Spokoiny (2001) can be
extended successfully to the context of ordered discrete choice models, and the
resulting statistic outperforms other statistics that are based on comparisons be-
tween parametric and nonparametric methods. However, when we compare the
performace of the generalization of Horowitz-Spokoiny’s statistic with the variant
of the standard CM statistic that we propose to use, there is no clear-cut answer
to the question of which one performs better: the latter outperforms the former in
some cases (e.g. with heteroskedastic alternatives) and is computationally much
less demanding, but the additional power that is obtained when using the former
in some other cases (e.g. with non-normal alternatives) may well justify the extra
computing effort.

The rest of the paper is organized as follows. In Sections 2 and 3 we describe
the test statistics considered here. In Section 4 we report the results of various
Monte Carlo experiments. In Section 5 we present two empirical applications. In

Section 6 we conclude. Some technical details are relegated to an Appendix.

2. STATISTICS BASED ON CONDITIONAL MOMENT

RESTRICTIONS

We assume that independent and identically distributed (i.i.d.) observations
(Y;, X])' are available, where, hereafter, i = 1,...,n. Additionally, the following
notation will be used: D;; = I(Y; = j), for j = 0,1,...,J, where I(-) is the
indicator function; and, given § = (3,/) € © C R¥/71 py(0) = F(—X!B);
pi®) =1~ Fluyy — XI); i J > 2, puu(6) = Fuy — X!B) — F(—X15); and if

J =3, pji(0) = Fu; — XiB) — Fp;_y — X{p), for j =2,...,J - L.
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Let us consider m;;(6) = D;; — pj;(6). Then, it follows from (2) that
E{mﬂ(«%) | Xz} = O, fOI'j = O, 1, cery J. (3)

This yields J 4+ 1 conditional moment restrictions that must be satisfied. In
fact, since the sum of all probabilities adds to one, only J moment conditions
are relevant to construct a test statistic. Specifically, we disregard the moment
condition for j = 0 and consider the random vector > m; (5), where m;(0) is
the J x 1 column vector whose j-th component is m;;(¢) and 0 is a well-behaved
estimator of 6y. To derive an asymptotically valid test statistic, we must analyze
the asymptotic behaviour of > " ; m; (5) First of all note that using a first-order
Taylor expansion of m]‘i(b\) —mj;(6p), it follows that

n~1/? Z ml(@\) =n 1?2 Zmi(eo) + By x nlﬂ@\ —0p) + 0,(1), (4)

i=1 i=1
where By = E{B;(fy)} and B;(f) denotes the J x (k+.J—1) matrix whose j-th row
is &m;;(9)/00'. Thus, the asymptotic behaviour of n=/2 3" m;() depends on
the asymptotic behaviour of n'/ 2(/0\— 6o). In our context, since our null hypothesis
specifies the conditional distribution Y; | X; = z, the natural way to estimate 6
is maximum likelihood (ML). The log-likelihood of the model can be written as
noJ
InL(0) => Y Djilnp;i(6).
i=1 j=0

We assume that the regularity conditions that ensure that the ML estimator is
asymptotically normal are met (see e.g. Amemiya 1985, Chapter 9). In this case,
this amounts to saying that the ML estimator 0 satisfies

n'2(0 — o) = A5t x 72> g () + 0,(1), (5)
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where g;(0) = Z}]:1 D;;0lnp;;(6)/00 is the derivative with respect to 6 of the i-th
term in In L(6), and Ag is the limiting information matrix, i.e. Ag = E{A;(6y)},

for A;(0) = —0g;(0)/06'. From (4) and (5) it follows that:

n R n—1/2 m; 0
’I’Lil/2 Zml(e) = [I] : BoAal] ZZ ! ( 0) + Op(l),

where I; is the J x J identity matrix. Hence,
1/2Zml 1, N(0,Vy), (6)

where

Vo = [IJ . BoAal]Qo[IJ : B()Aal]/, (7)

Qo = E{Qi(0y)} and Q;(0) = (m;(0),g:(0)") (m;(0),g:(0)"). Finally, to derive
a test statistic, a consistent estimator of Vo must be proposed. It is worthwhile
discussing in detail how V can be estimated, since it is well-known that the
finite-sample performance of statistics based on conditional moment restrictions
crucially depends on this.

According to (7), the natural candidate for estimating Vi is V,,; = [I; :

AYQ, [I; : BLAY, where Q, = n 23", Qi(6), B, = n 23", By(0)
and A, = n 'Y, AZ@) However, following the literature on artificial re-
gressions (see e.g. MacKinnon 1992), it is possible to propose an alternative
estimator of V that leads to a computationally simpler statistic. To derive
it, note that E{m;;(0)g:(0)'} = E{p;0lnp;(0)/00'} = E{—0my;(0)/00'}; hence
E{m;(6y)gi(0y)'} = —By. Moreover, the information matrix equality ensures that

E{gi(00)gi(0o)'} = Ay. Using these equalities, it follows that V, equals

E{my(00)m;(60)'} — E{m;(00)gi(0o)'} E{gi(00)gi(0o)'} " E{gi(0o)m;(6o)'}. (8)



This leads us to consider
Via =0 D m(0)mi(0) = > my(0)g:(0) > &i(0)gi(0)} > gi(0)m;(0)).
=1 =1 =1 =1

V,1 and V, 5 are the standard choices for estimating V(. Both are obtained
by simply replacing population moments by sample moments. However, in our
context we can do better than that. Observe that our null hypothesis yields the
specification of the conditional distribution Y | X = x. This means that we can
compute the conditional expectation with respect to the independent variables
and then, by the law of iterated expectations, the sample analog of this condi-
tional expectation is a consistent estimator of the the population moment; e.g.

E{m;(0y)m;(6y)'} can be consistently estimated with n=' >"" | Ey{m;(0)m;(0)'}.

Following this approach, expression (8) for V suggests that we can estimate this

~

matrix with V,, 3 =n"1Y"" | V,5(6), where
Vi3(0) = Ex{m;(0)m;(0)'} —Ex{m;(0)g:(0)'} Ex{gi(0)g:i(0)'} " Ex{gi(0)m,(0)'}.

Observe that the analytical expressions of these conditional expectations are easy
to derive. On the other hand, this approach could also be followed using expression
(7) rather than (8) as a starting point; but the estimator that is obtained in this
way proves to be again V,, 3.

To sum up, we can consider three possible consistent estimates for Vg, and,

thus, we can derive three possible test statistics

0 =m0 m(0) H{Var} Y mi(@)).

for 1 = 1,2,3. From (6), it follows that if specification (2) is correct then C’fi\f) N

X%; hence, given a significance level a, an asymptotically valid critical region is



{C’ffy‘l@ > Xi_a.s}, where x7_.; is the 1 — o quantile of a x7 distribution. To
facilitate the computation of these three statistics, in Appendix A1 we derive the
specific analytical expressions for V,, 1, V,, 2 and V,, 3 that are obtained here. As is
well-known in the relevant literature, note that C’f@]’\g) can also be computed using
an artificial regression because, since > - | g; (5) = (0In L/00)|,_5 = 0, the statis-
tic C%) proves to be the explained sum of squares in the artificial regression of a
vector of ones on m; (5)’ and g; (5) On the other hand, using a Cholesky decom-
position of Ex{m;(0)m;(#)’'}, it is also possible to derive an artificial regression
whose explained sum of squares coincides with C%) (see Appendix A2).

Still within the framework of tests based on conditional moment restrictions,
more statistics can be derived following the methodology described in Andrews
(1988), who proposes increasing the degrees of freedom of the statistic by parti-
tioning the support of the regressors. Specifically, let us assume that the support
of X; is partitioned into G subsets Aj,..., Ag. Then we can define m;g,(0) =
m;i(0)I(X; € Ay) for j = 1,...,J and ¢ = 1,...,G, and thus consider the JG

conditional moment restrictions
E{m;;(6y) | X;} =0, forj=1,..,J, andg=1,...,G.

To derive a test statistic, we consider now the random vector Y | mz(P) (5), where

mEP)(G) =m,(0) ® P;, and P; is the G x 1 matrix whose g-th row is I(X; € A,).

As before, it follows that

Ne)
~

w23 mP (@) -4 N0, VD), (
=1

where Vi” = L - B{” Ao "1Q7 e - B A, ')/ BYY = B{B{" (00)}, Q" =

E{Q"(90)}, BV (0) = Bi(0) ® P; and Q" () = (m{"(0),&i(0)') (m{"” (0,
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gi(0)"). Now, the natural candidate for estimating V(()P) is V,(lpl) = L : B A 1]Q$LP)
[Le : BY ALY, where BY = n 237 BY (@) and QY = n 137, Q7 (6).
With the same reasoning as before, two other consistent estimators of V(()P) can be
proposed: Vy(l];) and V,(l?, defined in the same way as V,,» and V,, 3, respectively,
but replacing m; (5) by mEP’ (5) (see Appendix A1). In this fashion we again obtain

three different test statistics

S —I{Zm VHVL D mi”0),
i=1

for I = 1,2, 3. From (9), it follows that if specification (2) is correct then Cr(i\l/lp) N

X%; hence, C’g‘fp) can also be used as a test statistic. Additionally, both C’,(LAQJP)
and C% can be computed using an artificial regression. Specifically, C’(MP)
coincides with the explained sum of squares in the artificial regression of a vector
of ones on m!”)(6) and g;(6), whereas the artificial regression which allows us to
(MP) . : i :

compute C, 3"’ is described in Appendix A2.

Finally, when J > 2 and k& > 2, Butler and Chatterjee (1997) propose using a
test of overidentifying restrictions. Observe that (3) implies that the following Jk

moment conditions hold:
E{Xhmﬂ(ﬁg)} = O, for | = ]., ...,k, j = 1, cey J,

where X;; denotes the [-th component of X;. Since the number of parameters is
k+ J — 1, a test of overidentifying restrictions is possible if Jk > k+ J — 1, and
this condition holds if and only if J > 2 and k£ > 2. Adapting the general results
of the generalized method of moments tests to our framework (see e.g. Hamilton
1994, Chapter 14), it follows that now the test of overidentifying restrictions can

be computed as follows: i) obtain an initial estimate of 6, say 0, by minimizing



$n(0)'s,(0), where s,(0) =n~1 3" m,;(f) ® X;; ii) compute S,,(f), where

Si1a(0) ... Sisn(0)

Sin(@) ... Syn(0)
Sjim(0) = n ' 30 XiXipji(1— pji) and Sy, (0) = —n ' S0 X X pjipu for j #
[; iil) obtain a final estimate of 0y, say 5, by minimizing s,,(7)'S,,(9)'s,(#); and

iv) compute the test statistic

OB = ns,(0)'S,(0) s, ().

If specification (2) is correct then CBe) 4, X (hts—1); thus, P can also be

used as a statistic to perform an asymptotically valid specification test.

3. STATISTICS BASED ON COMPARISONS BETWEEN

PARAMETRIC AND NONPARAMETRIC ESTIMATIONS

Many specification tests have recently been developed using comparisons be-
tween parametric and nonparametric estimations. In this paper we consider three
of them: one based on the comparison of joint empirical distribution functions
(Andrews 1997), and two others based on comparisons between regression esti-
mations, either non-smoothed (Stute 1997) or smoothed (Horowitz and Spokoiny
2001). In fact, as we discuss below, only the first of these statistics applies directly
to our framework, but the other two can be conveniently modified to cover our
problem. We focus on these three statistics because they have the advantage that

their performance does not depend on the choice of a bandwidth value'. Note as

! The test statistics proposed by Andrews (1997) and Stute (1997) do not use any bandwidth.
Horowitz and Spokoiny (2001) propose using as a test statistic a maximum from among statistics

computed with different bandwidths; hence the influence of bandwidth selection is ruled out.
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well that these three statistics require the use of a root-n-consistent estimator of
fp; as in the previous section, the ML estimator is the natural choice.

Andrews (1997) suggests testing a parametric specification of the conditional
distribution Y | X = 2 by comparing the joint empirical distribution function of
(Y, X") and an estimate of the joint distribution function based on the parametric
specification. Specifically, if F(- | x,6p) is the assumed parametric conditional
distribution function of Y | X = = and we denote

n n
Hy(a,y) = n Y 1Y Sy, X < 2) = Y F(y | X, 0) (X < o)},
i=1 i=1
where 0 is a root-n-consistent estimator of o, Andrews (1997) proposes using the

Kolmogorov-Smirnov-type test statistic:

CAN) = max }nl/an(Xj,Y})‘ .

" 1<j<n

The asymptotic null distribution of O cannot be tabulated but, given a sig-

Cy(LAN ) (AN)

nificance level «, an asymptotically valid critical region is { > can’ }, Where

cg}év )is a bootstrap critical value. This bootstrap critical value can be obtained

. AN )x*
as the 1 — o quantile of {C b )

n

, b=1,..., B}, where CT(L‘?)N)* is a bootstrap sta-
tistic constructed in the same way as CfLAN), but using as sample data the b-th
bootstrap sample {(Y;;, X/)'}7_,, which, in turn, is obtained as follows: X}, = X;
and Y; is generated with distribution function F'(- | XZ-,/H\).

Stute (1997) suggests testing the specification of a regression model by compar-

ing parametric and nonparametric estimations of the regression function. Specif-

ically, if m(-,0p) is the specified parametric regression function and

n

Ry(z) = n D _{Y; — m(X,,0)H(X; < @),

i=1

11



where @ is a root-n-consistent estimator of 6o, then he proposes using the Cramér-
von Mises-type statistic 7,, = Y., R,(X;)?. This statistic cannot be directly
applied to our problem since the specification that we consider is not a regression

model if J > 1. However, observe that (2) holds if and only if
E(Dﬂ | Xz) = pﬂ(ﬁo) fOI'j = 1, ceey J, (]_O)

that is, our specification is equivalent to the the specification of J regression
models. Hence, we can derive a test statistic for our problem following Stute’s
methodology as follows: first, we consider Stute’s statistic for the j-th regression

model in (10), which proves to be
2

i = *22 Z{Dﬂ PO M(X; < X))|

=1 i=1
and then we consider the overall statistic

J
Z o ST)

This way of defining an overall statistic ensures that any deviation in any of the
J regression models considered in (10) will be detected; but other definitions of
the overall statistic would also ensure this, e.g. max;<j<,, C j n ) or S i 1{0 (ST) }2
The asymptotic null distribution of Cn 5T) is not known either, but approximate
critical values can be derived using the bootstrap procedure described above. The
asymptotic validity of this bootstrap procedure in this context can be proved using
arguments similar to those in Stute et al. (1998).

Horowitz and Spokoiny (2001) propose testing the specification of a regression
model comparing smoothed nonparametric and parametric estimations of the re-

gression function with various bandwidths. Specifically, denote

n

Ron(z) =) {Yi— m(X;, 0)hwin(w),

i=1

12



where w; ,(z) = K{(x — X;)/h}/ >, K{(x — X;)/h} is the Nadaraya-Watson
weight, K (-) is the kernel function, h is the bandwidth and, as above, m(-, ) is
the specified parametric regression function and 6 is a Toot-n-consistent estimator
of 0p; with this notation, the statistic proposed in Horowitz and Spokoiny (2001)
is T), = maxpem, {1y Run(Xi)? —Nh}/Vh, where N, and V}, are normalizing con-
stants and H,, is a finite set of possible bandwidth values. As above, we can apply
this methodology in our context by first computing the statistic corresponding to

the j-th regression model in (10), which proves to be
~ 2
) _ 2= [Zi:l{Dji —Pji(Q)}wi,h(Xl)} = 2 Giin;
Jmn :}Ifel%f 5§ n 9 A2 A211/2
{ Zizl 21:1 31 9§10 i

where a;, = >0 win(Xo)wip(X,,) and 6§i = pji(/é){l - pﬂ(@)}; and then we

consider the overall statistic

J
Crs9 = 3 ),
j=1

,n

Again, any deviation in any of the J regression models considered in (10) is
detected in this way. The asymptotic null distribution of C) i not known
either, but approximate critical values can be derived using the bootstrap pro-
cedure described above. Observe that neither the bootstrap procedure nor the
conditional variance estimators 5?‘1 that we use are the ones proposed in Horowitz
and Spokoiny (2001), because we exploit the fact that in our case the dependent

variable is binary; in this way, a better finite-sample performance is obtained.
4. SIMULATIONS

In order to check the behavior of the test statistics, we perform eight Monte

Carlo experiments. In all of them we test the null hypothesis that (2) holds with
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the standard normal distribution as F'(-). With these experiments we seek to
examine whether the empirical size of the statistics is accurate, and also whether
the statistics detect misspecification in the latent regression model due to non-
linearities (Models 1-4), heteroskedasticity (Models 5-6) and non-normality in the
distribution function F'(-) (Models 7-8). In four experiments (Models 1, 3, 5, 7)
the dependent variable Y only has two possible values (i.e. J = 1); in the other
four Y has three possible values (i.e. J = 2). In six experiments (Models 1-2 and
5-8) only two regressors are included: a constant variable and a normal one; in
the other two, an additional regressor is included in order to examine the extent
to which results change if the number of regressors increases.

The specific models that we consider are as follows:

e Model 1: We generate n i.i.d. random vectors {(Xa;, u;)'}7;, where Xy; and
u; are independent with standard normal distribution; then Y;* = X3, +
c(X2 — 1) + u;, where X; = (1, Xy;)’, 8, = (0,1) and the value of ¢ varies;

finally V; = 0if Y* <0, or 1 if Y;* > 0.

o Model 2: {(Xy,u;)'}7, are generated as in Model 1; then Y;* = X3, +
o(X3 — 1) 4+ u;, where X; = (1, X5)", B, = (1,1)" and the value of ¢ varies;

finally V; =0if Y* < 0,0r 1if 0 < Y;* < p, or 2 it Y;* > 1, where py = 2.

e Model 3: We generate n i.i.d. random vectors {(Xy;, Xs;, u;)’ }7 all indepen-
dent with standard normal distribution; then Y;* = X, 3, + (X% — 1)(X2 —
1) + u;, where X; = (1, Xo;, X3;)', By = (0,1,1)" and the value of ¢ varies;

finally V; = 0if Y* <0, or 1 if Y;* > 0.

o Model 4: {(Xa, X3, u;)'}7_, are generated as in Model 3; then Y;* = X 3,+

C(‘XP%Z — 1)(X221 — 1) + Uj, Where Xz = (l,XQi,Xgi)l, 60 = (]_, ]_, 1)/ and the

14



value of ¢ varies; finally ¥; = 0if V* < 0,or 1if 0 < Y* < p, or 2 if

Y* > uy, where py = 2.

e Model 5: Data are generated as in Model 1 with ¢ = 0, but now the condi-
tional distribution of u; given Xs; = x is normal with zero mean and variance
exp(dXy; — d*/2) for various d; hence, the unconditional distribution of u;

has zero mean and unit variance.

e Model 6: Data are generated as in Model 2 with ¢ = 0, but now wu; is

generated as in Model 5.

e Model 7: Data are generated as in Model 1 with ¢ = 0, but now u; =
d|?e;—|d| 2 ifd > 0, or u; = — |d|"* e;+|d|"* if d < 0, and &; follows a
gamma distribution with density function f.(z) = (/141 exp(—z)/I'(1/|d|)
for various d; hence u; has zero mean and unit variance. The limit distrib-
ution of u; as d approaches 0 is the standard normal one, but if |d| is large
the distribution of u; is highly skewed (for d = 0, we generate u; from a

standard normal distribution).

e Model §: Data are generated as in Model 2 with ¢ = 0, but now wu; is

generated as in Model 7.

In all cases parameters are estimated by maximum likelihood assuming that
the null hypothesis holds. Note that in Models 1-4 Hy is true if and only if
¢ = 0, whereas in Models 5-8 Hy is true if and only if d = 0. In Tables 1-8 we
report the proportions of rejections of Hy at the 5% significance level for two
different sample sizes: n = 100 and n = 500. When a bootstrap procedure is

required we use B = 100 bootstrap replications. All results are based on 1000
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simulation runs, performed using GAUSS programmes that are available from
the authors on request. When computing C’fl{\fp) we consider various possible
partitions of the support, but we only report the results for the statistic that
yields the best performance, namely, C({‘gp) with G = 2 and A; = Rx(—00,0)

in Models 1-2 and 5-8; and C{y") with G = 4 and A; = Rx(—00,0) x (—00,0),
Ay = Rx(—00,0) x [0,00), A3 = Rx[0,00) x (—00,0) in Models 3-4. When
computing C,gHS) we use a Gaussian kernel and, after some preliminary results,
we decide to choose H,, = {%, for i = 1,...,5} when n = 100 and H, = f—é, for
i=1,...,5} when n = 500.

First we discuss the results that we obtain for the statistics based on conditional
moment restrictions. In all cases, the empirical size of the tests based on C%)
is much higher than the nominal level; this overrejection problem is especially
severe when n = 100, and leads us to disregard Cff,\g) as a test statistic. When
we use C’,(L]’\f) the null hypothesis is also rejected too often; additionally, under the
alternative the power of C,(lf\f) is much lower than that obtained with the other
statistics. Therefore, the most reasonable moment-based statistic proves to be
C,S{\g), that is, it is crucial to take into account the specific nature of discrete choice
models when estimating the covariance matrix Vj. Also observe that increasing
the degrees of freedom by partitioning the support of the independent variables
does not usually produce an increase in the power of the tests; the only exception
to this is when detecting non-normality (compare C%) and C’,(l{\gp) in Table 8). On
the other hand, the test of overidentifying restrictions P yields worse results
than the others, except again when detecting non-normal errors; in this case its

performance is comparable to (or even better than) that of the others.

As regards the statistics based on the comparison between parametric and non-
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parametric estimations, all three behave reasonably well in terms of size. When
comparing power performance, statistic C) yields the best results in almost all
cases. This is not a surprise in Models 1, 3, 5, 7, since they are all regression mod-
els, and Horowitz and Spokoiny (2001) derive the optimality of their statistic in
this context; our results suggest that this optimality property also holds when it is
applied in general ordered discrete choice models. The only exception to this rule
is Model 8, where the generalization of Stute’s statistic yields somewhat better
results than C{7%. Comparing ) and CT(LST), the latter performs better when
testing the specification of a binary choice models, but when J > 2 our results are
not so conclusive: Andrew’s statistic performs better than the generalization of
Stute’s statistic to detect non-linearities, but it performs worse with non-normal
errors.

Finally, if we compare the two statistics that perform best from each approach,
namely C%) and C,(LHS), there is no clear-cut answer to the question of which of
them performs better: the former performs better in detecting heteroskedasticity
in the latent regression model, whereas the latter performs better in detecting
non-normality or when the number of regressors is greater than one. Taking into
account the huge difference in computation time between them, one might be
tempted to say that C%’ should be preferred, but if computation time considera-
tions are disregarded, then our results show that the gain in power that is obtained

with the generalization of Horowitz-Spokoiny’s statistic is enough reward for the

additional programming effort.
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5. EMPIRICAL APPLICATIONS

As an empirical illustration, we apply all the test statistics in two different
contexts. First, we consider the well-known data on extramarital affairs described
in Fair (1978). This is a famous data set that has become a milestone for models
with qualitative dependent variable. The data come from a survey published in
1969 in Psychology Today, with questions about characteristics of the individual
and the number of extramarital affairs (NEA) during the past year. The size
of the sample is 601. As a dependent variable we consider: Y = 0 if NEA=
0, Y = 1if NEA= 1,2,3, or Y = 2 if NEA> 4. First we analyse whether
an ordered probit specification is adequate for the conditional distribution of Y
given as explanatory variables a constant variable, number of years married and
sex (0 for female, 1 for male). Then we repeat the analysis using all possible
explanatory variables, i.e. the three previous ones plus religiousness, education,
whether there are children or not, age and self rating of marriage. In Table
9 we report the results of the ML estimation and in Table 10 we report the
specification test statistics that are obtained. The statistic CT%P) is computed
with G = 2 and partitioning the support of the regressors according to sex; on
the other hand, the kernel weights required to obtain O are computed using
a Gaussian kernel, regressors previously standardized to have unit variance, and
the family of bandwidths H, = {2, for i = 1,...,5}. In all cases the bootstrap
p-values are obtained with B = 1000 bootstrap replications. The results reported
in Table 10 suggest that the ordered probit specification might not be adequate
for Y | X when X only includes a constant variable, number of years married and

sex (the specification is rejected at the 10% level with most test statistics), but
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there is no evidence against it when X includes all possible explanatory variables.

As a second example, we consider the determinants of women’s labour market
participation and the type of participation (work full-time or part-time). Liter-
ature has broadly dealt with this topic and its influence on fertility and divorce
rate, among other variables. We use data from the PSID (Wave 2001) to ex-
plain whether a woman does not work, works part-time or works full time. Our
sample contains 2866 observations; this sample has been obtained considering
only those women whose age is between 20 and 45, and whose marital status is
other than “never married”. Using information from the variable “Total hours
of work (wife)”, we define our dependent variable as follows: 0 if the woman re-
ports 0 hours, 1 if she reports a positive number of hours, but less than a certain
level ¢, and 2 if the hours reported are greater than ¢ (specifically, we choose
¢ = 1440 hours per year). We consider the following variables as determinants of
this employment status: age (as a proxy for experience), age square (to reflect the
non-linear influence of experience on employment status), whether the household
contains children or not, education and the husband’s labour income. In Table 10
we report the results of the ML estimation and the specification test statistics that
are obtained. The statistic C,%P) is computed with G = 2 and partitioning the
support of the regressors according to education (higher or lower than the mean
level), and O i computed as in the previous application. Bootstrap p-values
are again obtained with B = 1000 bootstrap replications. The results reported in
Table 10 show that the ordered probit specification is rejected at the usual signif-
icance levels with almost all test statistics. However, if we consider a distribution
function F(-) with fatter tails (specifically, a Student’s ¢ cdf with 5 degrees of

freedom, re-scaled to have unit variance), results change dramatically: this spec-
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ification is not rejected at the 5% level with most test statistics. Moreover, an
adequate choice of F'(-) is also crucial in analysing the influence of regressors on
employment status: note that estimations with a Student’s ¢ cdf suggest that age,

rather than husband’s income, is the most significant explanatory variable.

6. CONCLUDING REMARKS

We discuss in this paper how to test the specification of ordered discrete choice
models. Two main approaches can be followed: tests based on conditional moment
restrictions and tests based on comparisons between parametric and nonparamet-
ric estimations. Our contribution in this paper is threefold: first, we propose a
variant of the usual conditional moment statistics that exploits all the information
in the model and is easy to compute (it is based on an artificial regression); sec-
ond, we propose generalizations of the test statistics proposed in Stute (1997) and
Horowitz and Spokoiny (2001), and describe how bootstrap critical values can be
obtained for them in our context; and third, we compare the performance of these
statistics (and some others) using various models that allow us to examine the em-
pirical size of the tests and their ability to detect deviations from the assumptions
that are usually made in applications: linearity, homoskedasticity and normality
in the latent regression model. Our simulation results show that the behaviour
of conditional moment tests crucially depends on how the covariance matrix is
estimated; furthermore, if this estimator is adequately chosen, the resulting test
statistic outperforms almost all other statistics considered here. On the other
hand, our simulation results suggest that the optimality property of Horowitz-
Spokoiny’s statistic in regression models may also hold for the generalization of

the statistic that we propose. Finally, the results of the empirical applications that
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we include to illustrate the performance of the statistics highlight the importance

of selecting an accurate test statistic.

APPENDIX
A1l. Analytical Expressions for the Estimators of V;, and V(()P)

Hereafter, f(-) and f(-) denote the first and second derivative of F(-), fo =
F(=XI8), fu = F(=XIB) and, for j = 1,..J — 1, [ = flu; — XI6), fy =
f(uj — X[p). Additionally, f_1; =0, f,l,i =0, fr, =0, fji =0 and p;; = p;i(0).

To compute V,,; and V, 2, we must derive expressions for B;(f), g;(f) and
A;(0). Taking into account the definitions that are given in Section 2, it follows
that B;(0) = [B1;(0) : By;(6)], where By;(0) is the J x k matrix whose j-th row
is (fji — fi—1) X}, and By;(0) is the J x (J — 1) matrix whose (j,1) element is
—fiil(l=7)+ fj—1:I(l = j — 1). On the other hand, g;(#) is the (k+ J —1) x 1
vector whose first k rows are —{Z‘j]:o(fﬂ — fj—1,)D;i/pji } Xi, and whose (k+1)-th
row is {Dy;/pii — Dig1i/Pisa,i} f Finally,

Ai(0)  Agai(0)

A12i (9), A22i (9)

where,

p , o
Api(6) = {Z Djil(f5i — fjl,i)p; pji(fji = fim14)] } XX,
0 Ju

A19;(0) is the k x (J — 1) matrix whose j-th column is
{Dﬁ s = (Fji = fivi) fil | Dinal(fiens = Fii) fii = fipyenal } X

2 2
Dji Pt

+

and Asg;(#) is the symmetric matrix whose (j, j + 1) element is

Di(f2 — fupss Dy i(f2+ fupiina Dot ifoifiss
J (f]l 5 f] p] ) + 741, (f]l2 f.] p]+17 ) _[(l — O) o ]+1,Zf]1f.7+1,2 _[(l _ 1)
Pji Pjt1,i

2
Pit1;
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To compute V,, 3, we must derive expressions for Ex{m;(0)m;(#)'}, Ex{m;(0)
gi(0)'} and Ex{g;(0)g:(0)'}. In this case Ex{m;(¢)m;(6)'} is the J x J symmetric
matrix whose (7, j) element is p;;(1 — p;;) and whose (j,[) element, for [ > j, is
—pjipii- On the other hand, Ex{m;(0)g;(0)'} = —B;(#). Finally,

ATu(0)  Al(9)

Ex{gi(0)gi(0)'} ;
Al () Asy(0)

where Af,(0) = {ijo (fji = fim1.)” /pii} XX, A%y (0) is the k x (J — 1) matrix
whose j-th column is {(fj+1: — fji)/pPj+1.i — (fji — fi=1.4)/pji } [;:Xi, and A%, (0) is
the symmetric matrix whose (j,) element, for I > j, is (1/p;; + 1/pjy14) fHI(1 =
) = sifirni/ i) I =+ 1).

As for the estimators of V(() note that V( 1 and Vn 5 can be computed using

the above expressions. To compute Vg;,), observe that EX{mZ- )(H)mi 0)} =

Ex{m;(0)m;(6)'} © (PiP}) and Ex{m{"(0):(9)'} = ~B{"(0).

A2. Artificial Regressions to Compute C%) and ngp)

Taking into account the expression for V,, 3, in order to derive an artificial

regression whose explained sum of squares is O™ first we use a Cholesky de-

n, 3 )
composition of n~1 Y7 EX{mz( Jm; (0 )’ } to derive the first set of explanatory
variables in the artificial regression, and then we define the remaining explanatory
variables and the dependent variable accordingly. Here we describe the artificial

regression that is obtained in this way.

Denote pj; = pji(g) and ;5\]-1- =1-F(u; — X!B) + F(—X!B) and consider the
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-~

J x 1 vectors €;;, dji, &;,, f'ji, whose [-th components are defined by:

&jis = Bl (1 < 5) + 0j-1.41(1 = )}/ (Bri0jidj-1.)V/%,
djir = B (=Pl (1 < ) + 051 (1 = )]/ (Guidi-1.0)"/?,
&1 = f(l, — XIB) — f(fu_y — X[B),

fii0= JQu; — XZ{B){I(Z =Jj+1)—I(l=j)}

If we define Z = [z], ..., z,]’, where z; is the J X 1 vector whose j-th element is

& 1y, and W =[WO : W : WO where WO = [w, .., wl] for | = 1,2,3,

W

is the J x J matrix whose j-th column is &ji, WZ@) is the J x k matrix whose
j-th row is €/,&;X; and W£3) is the J x (J — 1) matrix whose (j, ) element is éng}l,
then it follows that ZW® =3 m;(0), ZW,= — 3", g;(0)= 0, where W, =
W® : WO, and WOWD - WOW, (W'W,) "W.W® =pV,, ;. Therefore
C’T(l],\?/,[) coincides with the explained sum of squares in the artificial regression with

vector of dependent observations Z and matrix of observations W. Similarly,

C,%P) coincides with the explained sum of squares in the artificial regression with

vector of dependent observations Z(*) = [zgp)/, s zﬁbp)']’ and matrix of observations

WE = [WED . WE2 . W) where 27 = 2, @ P, WE=[w\" Wiy

(P1)

L= w @ PP}, w'? = wgz) ® P; and WZ(P?)) = Wl(?)) ® P;.

) i

forl=1,2,3, w
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TABLE 1

Proportion of Rejections of Hy in Model 1, o = 0.05

o) oy oy P e ot o)

c n = 100
—0.8 0728 0999 0995 0.98) 0935 0978 0.992
—0.6 0.852 0.970 0940 0.928 0.764 0.880 0.920
—04 0687 0757 0682 0614 0358 0541 0.650
—0.2 0275 0323 0221 0188 0.107 0.166 0.209
0.0 0.100 0.123 0.047 0.056 0.052 0.056 0.057
02 0267 0316 0213 0168 0185 0196 0.188
04 0712 0764 0.687 0639 0562 0599 0.621
0.6 0.862 0.964 0946 0.912 0870 0.907 0.917
08 0720 0988 0984 0985 0973 0984 0.988

c n = 500
~0.8 1000 1.000 1.000 1.000 1.000 1.000 1.000
~0.6  1.000 1.000 1.000 1.000 1.000 1.000 1.000
—-0.4 0.999 0.999 0.999 0.998 0961 0.993 0.995
—0.2 0707 0.736 0722 0.640 0299 0538 0.544
0.0 0065 0070 0051 0048 0043 0.054 0.055
0.2 0.747  0.772 0.758 0.648 0474 0.575 0.525
04 0998 00998 0998 0998 0991 0996 0.992
0.6 1000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Proportion of Rejections of Hy in Model 2, o = 0.05

TABLE 2

oy clp o P9 ot et o)
c n = 100
~0.8 0290 0994 0987 0996 0.580 0970 0.741 0.980
—0.6 0.321 0935 0.933 0.939 0.637 0.907 0.671 0.917
—0.4 0.253 0.735 0.721 0.704 0.555 0.663 0.542 0.721
~02 0118 0330 0272 0253 0217 0238 022 0.203
0.0 0.067 0.120 0.048 0.044 0.072 0.069 0.049 0.060
0.2 0097 0302 0252 0233 0340 0207 0.189 0.240
04 0242 0.737 0.729 0725 0696 0.621 0440 0.702
0.6 0.297 0935 0935 0950 0.7564 0.896 0.716 0.918
0.8 0252 0990 098 0995 0.674 0983 0871 0.986
¢ n = 500
—0.8 0999 1.000 1.000 1.000 0.999 1.000 1.000 1.000
~0.6 0998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
—-0.4 0976 0.996 0.997 1.000 1.000 1.000 0.997 1.000
~0.2 0703 0860 0858 0874 0831 0.784 0.729 0.843
0.0 0064 0079 0050 0053 0052 0045 0.060 0.052
0.2 0.718 0.856 0.875 0.893 0.859 0.745 0.621 0.811
04 098 0999 1.000 1.000 0999 0.999 0998 1.000
0.6  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000
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TABLE 3

Proportion of Rejections of Hy in Model 3, o = 0.05

o) oy oy P e ot o)

c n = 100
~0.8 0533 0606 0561 0561 0467 0.640 0.852
—0.6 0.480 0.558 0.497 0.468 0.330 0.428 0.656
—04 0324 0441 0307 0272 0188 0217 0.358
—0.2 0185 0261 0126 0093 0085 0079 0.144
0.0 0.109 0.170 0.052 0.0564 0.057 0.061 0.066
02 0170 0.247 0.105 0099 0087 0.103 0.168
04 0338 0453 0322 0285 0107 0154 0.402
0.6 0.476 0.550 0.469 0.454 0.179 0.276 0.661
08 0500 0569 0536 0539 0248 0402 0.856

c n = 500
—0.8 0505 0.615 0832 0981 0995 1.000 1.000
—0.6 0430 0519 0752 0.941 0958 0.992 1.000
—-0.4 0.476 0.496 0.617 0.743 0.693 0.800 0.960
—0.2 0324 0366 0340 0263 0.197 0.206 0.394
0.0 0062 0072 0050 0048 0067 0.059 0.072
0.2 0.298 0.329 0.291 0.239 0.116 0.156 0.390
04 0457 0475 0598 0720 0394 0560 0.953
0.6 0426 0482 0.726 0927 0.751 0948 1.000
0.8 0.498 0.590 0.815 0.978 0.950 0.998 1.000
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Proportion of Rejections of Hy in Model 4, o = 0.05

TABLE 4

oy clp o P9 ot et o)
c n = 100
~0.8 0280 0526 0393 0373 0350 0510 0334 0.739
—0.6 0.251 0.505 0.388 0.303 0.400 0.374 0.257 0.551
—04 0216 0437 0311 0248 0350 0218 0.157 0.302
—0.2 0.137 0.284 0.1564 0.123 0.215 0.110 0.092 0.107
0.0 0.109 0.214 0.0564 0.053 0.102 0.050 0.065 0.047
0.2 0.142 0.288 0.156 0.143 0.113 0.082 0.104 0.212
0.4 0.215 0434 0302 0.231 0.171 0.147 0.185 0.496
0.6 0.252 0.522 0.387 0.318 0.234 0.180 0.251 0.670
0.8 0.269 0.531 0.428 0.401 0.204 0.241 0.246 0.766
¢ n = 500
~0.8 0606 0812 0862 0962 0906 1.000 0999 1.000
—0.6 0569 0.699 0819 0883 0920 0997 0981 0.999
—-0.4 0.520 0.601 0.732 0.703 0.858 0.847 0.764 0.973
—0.2 0.319 0422 0437 0302 0451 0.299 0.252 0.384
0.0 0081 0098 0.047 0055 0050 0062 0.051 0.060
0.2 0.308 0.407 0.422 0.286 0.283 0.196 0.230 0.676
04 0543 0622 0743 0697 0734 0582 0.630 0.995
0.6 0547 0.675 0.820 0.864 0855 0835 0803 1.000
0.8 0.585 0.763 0.844 0.951 0.830 0.957 0.871 1.000
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TABLE 5

Proportion of Rejections of Hy in Model 5, o = 0.05

o) oy oy P e ot o)

d n =100
—0.8 0564 0613 0479 0383 0356 0.395 0.406
—0.6 0.382 0.438 0.318 0.251 0.231 0.243 0.252
—04 0223 0266 0165 0135 0138 0.147 0.155
—0.2 0143 0.169 0083 0075 0080 0.074 0.074
0.0 0.100 0.123 0.047 0.056 0.052 0.056 0.057
02 0124 0163 0065 0057 0066 0.074 0.083
0.4 0.240 0.285 0.181 0.130 0.087 0.145 0.158
0.6 0.397 0.443 0315 0.253 0.130 0.225 0.275
08 0535 0597 0460 0371 0204 0355 0424

d n = 500
—0.8 0988 0990 0988 0975 0918 0957 0.942
—0.6 0930 0936 0924 0868 0711 0815 0.756
—-0.4 0.663 0.686 0.657 0.539 0.371 0.486 0.413
—-0.2 0.251 0.266 0.227 0.182 0.127 0.151 0.133
0.0 0065 0070 0051 0048 0043 0.054 0.055
0.2 0.231 0.248 0.217 0.1564 0.086 0.156 0.149
04 0649 0.666 0.652 0530 0238 0455 0438
0.6 0917 0926 0913 0865 0508 0.768 0.763
0.8 0.988 0.993 0988 0.980 0.775 0.945 0.954
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Proportion of Rejections of Hy in Model 6, o = 0.05

TABLE 6

oy clp o P9 ot et o)
d n =100
~0.8 0442 058 0429 0437 0056 0227 0187 0.389
—0.6 0.270 0405 0.272 0.283 0.049 0.1561 0.123 0.230
~04 0142 0263 0152 0.53 0.059 0.105 0079 0.132
~0.2 0073 055 0073 0072 0.063 0070 0070 0.077
0.0 0.067 0.120 0.048 0.044 0.072 0.069 0.049 0.060
0.2 0082 0.160 0065 0060 0062 0.069 0066 0.073
04 0156 0263 0.155 0.132 0076 0.066 0.104 0.122
0.6 0.259 0408 0.265 0.265 0.067 0.091 0.147 0.192
0.8 0430 0603 0443 0441 0065 0136 0211 0.283
d n = 500
~0.8 0995 0996 0996 0989 0061 0819 0872 0.974
—0.6 0954 0967 0943 0931 0.058 0488 0558 0.832
—-0.4 0.665 0.712 0.652 0.610 0.057 0.191 0.228 0.461
~0.2 0193 0217 0183 0.81 0.050 0087 0087 0.130
0.0 0064 0079 0050 0053 0052 0045 0.060 0.052
0.2 0.216 0.233 0.207 0.161 0.063 0.071 0.092 0.138
04 0650 0.696 0.634 0597 0047 0134 0208 0.378
0.6 0963 0973 0963 0938 0049 0327 0513 0.703
0.8 0.995 0.998 0.998 0.997 0.064 0.648 0.798 0.928
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TABLE 7

Proportion of Rejections of Hy in Model 7, o = 0.05

o) oy oy P e ot o)

d n =100
—0.8 048 0550 0308 0254 0142 0287 0.342
—0.6 0.400 0.450 0.244 0.187 0.103 0.207 0.232
—04 0273 0337 0185 0118 008 0.164 0.181
-0.2 0.182 0.218 0.097 0.090 0.064 0.104 0.114
0.0 0.100 0.123 0.047 0.056 0.052 0.056 0.057
02 0175 0209 0085 0088 0094 0.094 0.100
04 0287 0335 0166 0125 0148 0.166 0.161
0.6 0.397 0.469 0.210 0.184 0.231 0.246 0.263
08 0503 0564 0324 0217 0273 0299 0310

d n = 500
~0.8 0985 0991 0970 0950 0.682 0943 0.930
~0.6 0948 0953 0899 0834 0508 0820 0.796
—-0.4 0.831 0.850 0.768 0.658 0.345 0.605 0.555
—0.2 0495 0513 0420 0347 0163 0333 0.294
0.0 0065 0070 0051 0048 0043 0.054 0.055
0.2 0.488 0.515 0418 0.335 0.251 0.347 0.303
04 0799 0820 0.726 0648 0495 0616 0.567
0.6 0961 0968 0925 0837 0732 0836 0.799
0.8 0.985 0.990 0966 0.947 0.880 0.939 0.928
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Proportion of Rejections of Hy in Model 8, o = 0.05

TABLE 8

oy clp o P9 ot et o)
d n =100
~0.8 0350 0.601 0393 0492 0515 0388 0.668 0.589
—0.6 0.256 0.444 0.274 0.395 0488 0.307 0.534 0478
—0.4 0.198 0354 0.233 0.256 0.359 0.196 0.412 0.316
—0.2 0096 0218 0104 0.159 0218 0.129 0266 0.208
0.0 0.067 0.120 0.048 0.044 0.062 0.069 0.049 0.060
0.2 0.109 0.210 0.111 0.137 0.120 0.147 0.230 0.200
04 0172 0332 0175 0274 0251 0266 0393 0.351
0.6 0.258 0.483 0.280 0.408 0.331 0.361 0.546 0.494
0.8 0346 0597 0390 0505 0369 0459 0.646 0.576
d n = 500
~0.8 0899 0974 0964 1.000 0984 0993 1.000 0.999
—0.6 0777 0886 0.870 0994 0960 0962 0998 0.996
—-0.4 0.589 0.739 0.710 0.945 0900 0.808 0.946 0.937
~0.2 0292 0374 0313 0655 0638 0483 0815 0.617
0.0 0064 0079 0050 0053 0052 0045 0.060 0.052
0.2 0.321 0.399 0.358 0.634 0.572 0.489 0.754 0.580
04 0592 0722 068 0944 0826 0869 0978 0.920
0.6 078 0914 0891 0997 0936 0971 0998 0.989
0.8 0.903 0.969 0.958 1.000 0.980 0.999 1.000 0.998
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TABLE 9: Extramarital Affairs Data

Ordered Probit Model for YV | X

X = (X1, Xs, X3) X =(X1,..., Xs)

Estimates (with t-statistics)

Constant —1.060 0.720
(—9.077) (1.466)

Years of Marr. 0.040 0.062
(3.976) (3.397)

Sex 0.096 0.133
(0.883) (1.068)
Religiousness —0.202
(—4.045)

Education 0.021
(0.813)

Child./No Child. 0.149
(0.942)
Age —0.235
(—2.342)
S.R.M. —0.276
(—5.426)

P-values of test statistics

oy 0.307 0.421

cly 0.063 0.372

ciy) 0.076 0.365
CyP) 0.074 0.361
P9 0.082 0.134
oM 0.188 0.109
c57) 0.115 0.348
CSHS) 0.154 0.435
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TABLE 10: Female Labour Participation Data

Ordered Discrete Choice Model for YV | X

Normal cdf Student’s ¢5 cdf

Estimates (with t-statistics)

Constant —0.553 —0.751
(—0.839) (—1.163)

Age 0.054 0.067
(1.253) (1.715)
Age? —0.004 —0.008
(—0.586) (—11.642)

Child./No Child. ~0.226 —0.181
(—8.176) (—8.780)

Education 0.074 0.059
(6.515) (6.707)

Husband’s Income —0.009 —0.001
(—10.103) (—1.140)

P-values of test statistics

oy 0.002 0.227

cly) 0.001 0.215

cy) 0.001 0.173
) 0.003 0.268
Cye 0.002 0.010
CAN) 0.002 0.009

oh 0.125 0.121

OSHS) 0.013 0.148
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