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ABSTRACT 
 

We consider allocation problems with indivisible goods when agents’ 

preferences are single-peaked. Two natural procedures (up methods and 

temporary satisfaction methods) are proposed to solve these problems. They are 

constructed by using priority methods on the cartesian product of agents and 

integer numbers, interpreted either as peaks or opposite peaks.   Thus, two families 

of solutions arise this way. Our two families of solutions satisfy properties very 

much related to some well-known properties studied in the case of perfectly 

divisible goods, and they have a strong relationship with the continuous uniform 

and equal-distance rules, respectively. 
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1 Introduction

We face up in this paper the problem of allocating indivisible units of an homogeneous
good among a group of agents whose preferences are single-peaked. One of the examples
used to illustrate this kind of problems is that in which a group of people must supply a
certain amount of labor paid hourly to complete a common task. These agents’ preferences
over worked hours, and thus over earned money, are assumed to be single-peaked. This
means that each agent has a most preferred amount of hours (equivalently money) to
work, and if it happens that he has to work more than this preferred amount he wishes
to deviate as less as possible. Similarly, if it happens that he has to work less than this
preferred amount he wishes to be as close as possible to his preferred amount.

Consider now the following situation. At a university department, there is a certain
amount of extra hours to be covered by the faculty members. Here the agents are the
members of department faculty; each of whom, given the salary per hour, has an ”ideal”
amount of time to work. Usually, each hour corresponds to a complete class of a particular
subject, that is, it is not possible to allocate fractions of hours. In this case, thus, the task
is made out of a certain number of indivisible units (hours). Similar situations appear, for
instance, in the allocation of shifts in hospitals or hotels.

The above situation is a particular instance of a general set of problems called allocation
problems under single-peaked preferences with indivisible goods. These problems come
described by three elements. First, a set of agents. Second, an amount of indivisible
units of a certain good to be distributed, called the task. Finally, a profile of the agents’
preferences over the number of units involved in the task. A rule, or solution, is a function
that distributes the task among the agents.

The literature related with allocation problems when preferences are single-peaked has
focused so far on the continuous case (when the task is perfectly divisible or when monetary
compensations are allowed). The traditional way of supporting rules to solve the problem
is by applying the so-called axiomatic method. Rules are then defended on the basis of
the properties they fulfil, and, in general, suitable combinations of different appealing
properties are used to differentiate among rules. The most appealing properties in this
case have to do with efficiency, equity, and incentive compatibility constrains. By far, the
best-known rule in the continuous case, when the task is perfectly divisible, is the uniform
rule, introduced and characterized by Sprumont (1991). It proposes to treat all agents
as equally as possible, subject to efficiency. Characterizations of this rule also appear
in Ching (1994), Sönmez (1994), Thomson (1994a,b), and Dagan (1996), among others.
An alternative, also well-known rule in the continuous case is the equal distance rule,
introduced by Thomson (1994a), that proposes to select the allocation at which all agents
are equally far from their preferred consumptions, subject to efficiency and boundary
conditions, in which case those agents whose consumptions would be negative are given
zero instead. Characterizations of this rule appear in Herrero and Villar (1999, 2000) and
Herrero (2002). Both the uniform and the equal distance rules are efficient and equitable,
and the uniform rule is also incentive compatible, while the equal distance rule is not.

When the good comes in indivisible units, some of the aforementioned properties cannot
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be met. Whereas efficiency and strategy-proofness can be satisfied in the indivisible case.
Equity properties have to be accommodated to this case. The traditional requirement of
equal treatment of equals, for example, can only be partially reached, and we should allow
equal agents to be allotted different amounts. The only way of keeping equality as far as
possible is to forbid equal agents allotments to differ in more than one unit.

A natural way to solve rationing problems when the good comes in indivisible units consists
of applying priority methods (see Young (1994), Moulin (2000); Moulin and Stong (2002),
and Herrero and Mart́ınez (2004)). When there is a pure priority relationship on the set
of agents, the easiest way of solving the problem is by asking agents to choose the amount
of the task to consume, following the priority ordering, and forcing the last agents to
get whatever is left. These pure priority methods are efficient and incentive compatible,
but they are far from being minimally equitable. A different method consists of applying
priority orderings on the cartesian product of agents and integer numbers, the so-called
standards of comparison by Young (1994). When using standards of comparison to solve
rationing problems, the most natural and equitable procedure consists of starting from
some predetermined allocation, and then move out of it, unit by unit by using the standard.
This procedure was used in Herrero and Mart́ınez (2004) to solve claims problems.

In this paper, we analyze two methods to solve allocation problems when preferences are
single-peaked when the good comes in indivisible units, by using standards of compari-
son. The first procedure (up methods) allocates the task unit by unit, according to the
standard, when the numbers paired with the agents are interpreted as agents’ peaks. The
second procedure (temporary satisfaction methods) starts by giving all agents their pre-
ferred consumptions, and then move away from this provisional allocation, unit by unit,
by using the standard. Here, the numbers paired with the agents are interpreted either as
agents’ peaks or the opposite peaks, depending upon the type of problem at hand (either
an excess demand or excess supply problem).

Then we explore the properties our families of discrete rules may satisfy. As it happens in
Herrero and Mart́ınez (2004), in order to approach equality we should consider a subfamily
of standards, those called monotonic standards, that always give priority to larger numbers.
Then it happens that monotonic up methods provide allocations very similar to those
prescribed by the equal-distance rule when the good is perfectly divisible. Similarly, the
allocations prescribed by monotonic temporary satisfaction methods are as close as possible
to those provided by the continuous uniform rule. Then we obtain that our discrete
families can be characterized by sets of properties very similar to those supporting some
of the characterizations of the continuous versions of the respective rules.

The rest of the paper is structured as follows: In Section 2 we set up the problem of
allocating indivisible units of a good when preferences are single-peaked. In Section 3 we
introduce standards of comparison and use them to construct two allotment procedures:
the up and the temporary satisfaction methods, that convey to construct two families of
discrete rules. Section 4 analyzes the properties our families of rules may fulfil. In Section
5 we present our characterization results. Section 6 sets the connections between the di-
visible and indivisible case. Finally, Section 7 concludes with final comments and remarks.
Examples providing the tightness of the characterizations are relegated to Appendix A,
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while the proofs of our results are relegated to Appendix B.

2 Statement of the problem

A preference relation, Ri, defined over Z+ is said to be single-peaked if there exists an
integer number, p(Ri) ∈ Z+, called the peak of Ri, such that, for each a, b ∈ Z+,

aPib ⇔ [(b < a < p(Ri)) or (p(Ri) < a < b)] ,

where Pi is the strict preference relation induce by Ri. Let S denote the class of all single-
peaked preferences defined over Z+. Let N be the set of all potential agents and N be the
family of all finite subsets of N. An allocation problem with single-peaked preferences, or
simply a problem, is a triple e = (N, T, R) in which a fixed number of units, T (called
task) has to be distributed among a group of agents, N ∈ N , whose preferences over
consumption are single-peaked, R = (Ri)i∈N ∈ SN . Let AN denote the class of problems
with fixed-agent set N , and A the class of all problems, that is,

AN =
{
e = (N,T, R) ∈ {N} × Z+ × SN

}
and

A =
⋃

N∈N
AN .

For each problem, we face the question of finding a division of the task among the agents.
An allocation for e ∈ A is a list of integer numbers, x ∈ ZN

+ satisfying the condition of
being a complete distribution of the task, i.e.

∑
i∈N xi = T . Let X(e) be the set of all

allocations for e ∈ A. A rule is a function, F : A −→ ZN
+ , that selects, for each problem

e ∈ A, a unique allocation F (e) ∈ X(e).

3 Standards of comparison, and up and temporary satisfac-

tion methods

A standard of comparison is a linear order (complete, antisymmetric and transitive) over
the cartesian product N×Z such that for each agent, larger integer numbers have priority
over smaller integer numbers.

Standard of Comparison, or simply standard, (Young, 1994): σ : N × Z −→ Z+

such that for each i ∈ N, and each a ∈ Z, σ(i, a + 1) < σ(i, a). Let Σ denote the class of
all standards of comparison.

Consider a problem with only one unit of task to allocate. The standard of comparison
determines the agent who receives this unit. Alternatively, if the task differs from the
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sum of the peaks (aggregate demand) by just one unit, then all agents, but one, are fully
satisfied. In this case, the standard of comparison determines who that agent is.

This class of orders have been applied by Moulin and Stong (2002) and Herrero and
Mart́ınez (2004) in the context of claims problems with indivisiblilities.1

By using the standards of comparison, we can construct rules to solve allocation problems.
The first option consists of an algorithm to allocate all units of the task one by one. The
second one consists of accommodating all units of either excess demand or excess supply
one by one, after giving (temporarily) all agents their peaks. We shall call these methods
up methods and temporary satisfaction methods respectively.

In order to define our methods, we introduce the notion of agent with the strongest number.
Let M ∈ N be an agent set. For each list of pairs agent-integer number {(i, ai)}i∈M , the
agent with the strongest number according to the standard of comparison σ is the
agent k ∈ M such that the pair (k, ak) has the highest priority among all the pairs (i, ai)
according to σ. That is, k is the agent with the strongest number according to σ if for
each i ∈ M r {k}, then σ(k, ak) < σ(i, ai).

Up method associated to σ, Uσ: Let e ∈ A. Start by associating to each agent his
peak, and then identifying the agent with the strongest number (peak) according to σ.
Then give one unit of the task, T , to this agent. Reduce his number (peak) by one unit.
Now identify the agent with the new strongest number for σ, and proceed in the same
way. Repeat this process until the task runs out.

Temporary satisfaction method associated to σ, TSσ: Let e ∈ A. Start by giving
all agents their peaks. Now we distinguish two cases. (1) If the task is not enough,
i.e.,

∑
i∈N p(Ri) ≥ T . In this case we have to remove some units from the temporary

allocation. Associate to each agent his peak, and identify the agent with the strongest
number (peak) according to σ. Subtract one unit from this agent (allocation), and reduce
his number accordingly. Identify again the agent with the new strongest number according
to σ, and proceed in the same way until reaching the task. (2) If the task is too large,
i.e.,

∑
i∈N p(Ri) ≤ T , we have to allocate extra units to the agents, T ′ = T −

∑
i∈N p(Ri).

We shall proceed in the following way. Associate to each agent the opposite of his peak,
that is, let ai = −p(Ri). Identify the agent with the strongest number (-peak) according
to σ. Then assign one unit of the remaining task, T ′, to this agent. Reduce the number
of this agent by one unit. Now identify the agent with the new strongest number for σ,
and proceed in the same way. Repeat this process until the task T ′ runs out.

We present know a collection of examples to illustrate the functioning of the two afore-
mentioned methods. Different types of standards have been used.

Example 3.1. Assume that the standard of comparison is such that, restricted to agents
in N = {1, 2, 3}, it happens that σ(2, x) < σ(1, y) < σ(3, z), for all x, y, z ∈ Z+. Now,
consider the allocation problem where N = {1, 2, 3}, T = 6 and R = (R1, R2, R3) such
that p(R) = (1, 3, 5). Note that, in this case,

∑
i∈N p(Ri) > T . For the pairs involved in

1The reader is referred to the survey by Thomson (2003) for a widely exposition of claims problems

when the good is perfectly divisible.
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the aforementioned problem, we have

σ(2, 3) < σ(2, 2) < σ(2, 1) < σ(1, 1) < σ(3, 5) < σ(3, 4) < σ(3, 3) < σ(3, 2) < σ(3, 1).

The next table shows how up methods work for this problem and standard. The first
column shows the kth unit of the task. The second column shows the allocation up to
that unit, x(k). The third column shows the updated vector of numbers, p(k).

T x(k) p(k)

(0,0,0) (1,3,5)
1 (0,1,0) (1,2,5)
2 (0,2,0) (1,1,5)
3 (0,3,0) (1,0,5)
4 (1,3,0) (0,0,5)
5 (1,3,1) (0,0,4)
6 (1,3,2) (0,0,3)

Example 3.2. The next table shows how the temporary satisfaction method works for
the same standard of comparison and problem as in previous example. In this case we
start by fully satisfying all agents, that is, by giving to each agent his peak amount. This
implies allocating 9 units, but we only have 6 units to allocate. Thus we need to remove
3 units. The table shows the process of removing. The first column shows the kth unit
of the task. We start from 9 units and we remove one by one up to reach 6 units. The
second column shows the allocation up to that unit, x(k). The third column shows the
updated vector of numbers, p(k).

T x(k) p(k)

9 (1,3,5)
8 (1,2,5) (1,3,5)
7 (1,1,5) (1,2,5)
6 (1,0,5) (1,1,5)

Previous examples illustrate the way both the up method and the temporary satisfaction
method work. Additionally, they show that these methods could result in pure priority
rules, depending upon the standard of comparison used. Given the standard of comparison
in previous examples, the allocation obtained by means of the up-method is the allocation
prescribed by a pure priority rule in which agent 2 is fully satisfied first, then agent 1 comes
to the line and he is also fully satisfied, and, finally, any remaining units go to agent 3.
As for the allocation obtained by the application of the temporary satisfaction method,
it coincides with the allocation recommended by the pure priority rule with the reverse
order: Now, agent 3 is the one going first to the line up to when he is fully satisfied, next,
agent 1 comes to the line, and finally, any remaining units go to agent 2. Next examples
consider a different type of standard of comparison.

Example 3.3. Let N = {1, 2, 3}, and assume that the standard of comparison is such
that, restricted to agents in N , it happens that for all i, j ∈ N, and all x, y ∈ Z++, if
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x > y, then σ(i, x) < σ(j, y). Furthermore, σ(1, x) < σ(2, x) < σ(3, x) if x is odd, and
σ(2, x) < σ(1, x) < σ(3, x) if x is even. Now, let be T = 14, and R = (R1, R2, R3) such
that p(R) = (1, 3, 5). The next table shows how the up method works associated to this
standard of comparison, after reaching the peaks,

T x(k) p(k)

. . . . . . . . .

9 (1,3,5) (0,0,0)
10 (1,4,5) (0,-1,0)
11 (2,4,5) (-1,-1,0)
12 (2,4,6) (-1,-1,-1)
13 (3,4,5) (-2,-1,-1)
14 (3,5,5) (-2,-2,-1)

Example 3.4. This example illustrates how the temporary satisfaction method works for
the same problem and standard of comparison. In this case, T = 14 > 9 = p(R1)+p(R2)+
p(R3). Then, after fully compensating all the agents T ′ = 5 = T − (p(R1)+p(R2)+p(R3))
remains. We associate to each agent his opposite peak: (1,−1), (2,−3), and (3,−5). The
next table shows the rest of the process.

T ′ x(k) p(k)

0 (1,3,5) (-1,-3,-5)
1 (2,3,5) (-2,-3,-5)
2 (3,3,5) (-3,-3,-5)
3 (4,3,5) (-4,-3,-5)
4 (4,4,5) (-4,-4,-5)
5 (4,5,5) (-4,-5,-5)

4 Properties

Here we look for properties our rules may fulfil. Some of the following properties have
been studied in the case where the good is perfectly divisible, and their rationale and
appealingness are preserved in the case of indivisible goods. For some other properties,
we have to adapt the fairness principle at hand so that it becomes meaningful in the case
of problems with indivisibilities.

One of the basic requirements in the literature is efficiency. An allocation is efficient
if and only if there is no other allocation weakly preferred by all the agents and strictly
preferred by, at least, one agent. As Sprumont (1991) points out, the principle of efficiency
is equivalent to asking for each agent to consume no more than his preferred amount if∑

i∈N p(Ri) ≥ T , and no less if
∑

i∈N p(Ri) ≤ T .

Efficiency: For each e ∈ A, there is no allocation, x ∈ X(e), such that, for each i ∈ N ,
xiRiFi(e), and for some j ∈ N , xjPjFj(e).

The most common and appealing requirement in the continuous case is a property of im-
partiality. In one of its forms, the so-called equal treatment of equals. If two agents have

7



identical preferences, then they should be indifferent among their respective allocations.
Paired with the requirement of efficiency, it simply means that agents with identical prefer-
ences should be allotted the same amount. Unfortunately, no rule can fulfill this property
in the context of problems with indivisibilities. It is enough to consider a two-agent,
N = {1, 2} problem with identical preferences R1 = R2, and T = 1. Young (1994), and
Herrero and Mart́ınez (2004) consider a weaker version of this condition, referred to as
balancedness: If in a problem two agents have equal preferences, then their allocations
should differ, at most, by one unit.

Balancedness: For each e ∈ A and each {i, j} ⊆ N , if Ri = Rj , then |Fi(e)−Fj(e)| ≤ 1.

The following property says that an agent’s allocation depends only on his preferred con-
sumption.

Peaks only: For each e = (N,T, (Ri, R−i)) ∈ A and each e′ = (N,T, (R′
i, R−i)) ∈ A such

that p(R′
i) = p(Ri), then Fi(e) = Fi(e′).

The next principle, ar-truncation, can be interpreted as an instance of a general principle
of independence of irrelevant alternatives. Given e ∈ A, let ar(e) =

P
j∈N p(Rj)−T

n . The
number ar(e) is simply the average rationing of the task among the agents in N . This
property states that any information on the agents’ preferences below ar(e) should be
ignored. In consequence, all those problems whose preferences coincide in [ar(e),+∞[ are
indistinguishable.

Ar-truncation: For each e = (N,T, R) ∈ A and each e′ = (N,T, R′) ∈ A, if for each
i ∈ N , Ri = R′

i on [ar(e),+∞[, then, F (e) = F (e′).

The following two properties refer to the case in which there is a change in a problem’s
task, without altering agents’ preferences. The first one, one-sided resource monotonicity,
considers the case in which the change in the task does not alter the type of rationing
associated to the initial problem, i.e, if initially we have to ration labor, it is still labor to
be rationed after the task increasing, or else, if in the initial problem we have to ration
leisure, then again, we have too much labor to allocate even after the decreasing of the
task. In either case, the property states that no agent should suffer.

One-sided resource monotonicity: For all e, e′ ∈ A such that e = (N,T, R) and e′ =
(N,T ′, R). If it happens that (a)

∑
j∈N p(Rj) ≥ T ′ > T, or else, (b)

∑
j∈N p(Rj) ≤ T ′ < T .

Then for each i ∈ N, Fi(e′)RiFi(e).

Imagine now that when estimating the value of the task this falls short, so that the real
value is larger than expected. Then two possibilities are open, either to forget about
the initial allocation and just solve the new problem, or to keep the tentative allocation
and then allocate the rest of the task among the agents, after adjusting the preferences
by shifting them by the amount already obtained. The property of agenda independence
requires that the final allocation should not depend on this timing.

Agenda independence For e = (N,T, R) ∈ A and each T ′ ∈ Z++, F (e) = F (N,T ′, R)+
F (N,T − T ′, R′), where R′

i = πFi(N,T ′,R)(Ri).2

2For a given a ∈ Z, πa : S −→ S is defined as follows: For each R ∈ S, xπa(R)y iff (x + a)R(y + a).
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The principle of strategy-proofness states that truthtelling should be a (weakly) dominant
strategy for all agents, or, in other words, that no agent should benefit from misrepresent-
ing his preferences.

Strategy-proofness: For each e = (N,T, (Ri, R−i)) ∈ A, each e′ = (N,T, (R′
i, R−i)) ∈ A,

and each i ∈ N , Fi(e)RiFi(e′).

The next group of properties refers to changes in the set of agents. Suppose that, after
solving the problem e = (N,T, R) ∈ A, a proper subset of agents S ⊂ N decides to
reallocate the total amount they have received, that is, they face a new allocation problem:
(S,

∑
i∈S ai, RS), where RS = (Ri)i∈S and a is the allocation corresponding to apply

the rule to the problem e. A rule satisfies consistency if the new reallocation is only a
restriction to the subset S of the initial allocation.

Consistency: For each e ∈ A, each S ⊂ N , and each i ∈ S, Fi(e) =
Fi(S,

∑
j∈S Fj(e), RS).

If the previous requirement is made only for subsets of agents of size two, then it is referred
to as bilateral consistency.

Bilateral consistency: For each e ∈ A, each S ⊂ N , such that |S| = 2,and each i ∈ S,
Fi(e) = Fi(S,

∑
j∈S Fj(e), RS).

Finally, as Chun (1999), we consider the possibility of recovering the solution for the
general case out of the solutions in the two-agent case. Let us consider an allocation
for a problem with the following feature: For each two-agents subset, the rule chooses
the restriction of that allocation for the associated reduced problem to this agent subset.
Then that allocation should be the one selected by the rule for the original problem.

Let c.con(e;F ) ≡ {x ∈ ZN
+ :

∑
i∈N xi = T and for all S ⊂ N such that |S| = 2, xS =

F (S,
∑

i∈S xi, RS)}

Converse consistency: For each e ∈ A, c.con(e;F ) 6= φ, and if x ∈ c.con(e;F ), then
x = F (e).

We present now some relations among the aforementioned properties. Proofs are relegated
to Appendix B.

Proposition 4.1. One-sided resource monotonicity together with consistency imply con-

verse consistency.

Ching (1994) shows the relationship among efficiency, strategy-proofness, and peaks only.
We present here the parallel result for the indivisible case.

Proposition 4.2. Efficiency and strategy-proofness together imply peaks only.

Lemma 4.1 ([Elevator lemma] Thomson, 2004). If a rule F is bilaterally consistent and
coincides with a conversely consistent rule F ′ in the two agent case, then it coincides with
F ′ in general.

Given R ∈ S, we call πa(R) the shifting of R by a.
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5 Monotonic methods and characterizations results

As we observed in Section 3, up and temporary satisfaction methods associated to a
standard of comparison may end up in pure priority methods, and thus could violate
balancedness. In order to guarantee this minimal requirement of impartiality, we should
concentrate on a particular subfamily of standards of comparison, that we call monotonic
standards.

Monotonic standard of comparison: For each {i, j} ⊆ N, and each x, y ∈ Z, if
x > y, then σ(i, x) < σ(j, y). Let ΣM denote the subfamily of all monotonic standards of
comparison.

In other words, monotonic standards of comparison always give priority to agents with
larger integer numbers.

The following result is straightforward:

Proposition 5.1. Let σ ∈ Σ be an standard of comparison. Then, the associated up
and temporary satisfaction methods, Uσ and TSσ, satisfy balancedness if and only if σ is
monotonic.

We shall call up (temporary satisfaction) monotonic methods to the up (temporary
satisfaction) methods associated to monotonic standards of comparison.

We know then that, both up monotonic and temporary satisfaction methods satisfy bal-
ancedness. Moreover, they may also satisfy some of the properties introduced in Section
4 (see Table 1).

We present now a characterization of the temporary satisfaction monotonic methods. The
formal statement of the result is preceded by a lemma stating properties of rules fulfilling
efficiency, balancedness, and strategy proofness.

Lemma 5.1. Let F be a rule, and two problems, e, e′, involving two agents, {i, j}, such
that e = ({i, j}, T, (R,R)); e′ = ({i, j}, T, (R′, R′)) such that either both 2p(R), 2p(R′) are
strictly larger or both strictly smaller than T . Then, F (e) = F (e′).

Theorem 5.1. A rule F satisfies efficiency, balancedness, strategy proofness, and consis-
tency if and only if there exists a monotonic standard of comparison σ ∈ ΣM such that
F = TSσ.

Next, a characterization of the up monotonic methods is provided.

Theorem 5.2. A rule F satisfies balancedness, peaks only, agenda independence, ar-
truncation, and consistency if and only if there exists a monotonic standard of comparison
σ ∈ ΣM such that F = Uσ.

The following table summarizes the results in this section.
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Property TSσ Uσ

Efficiency Y∗ Y
Balancedness Y∗ Y∗

Peaks only Y Y∗

ar-truncation N Y∗

One-sided resource monotonicity Y N
Agenda independence N Y∗

Strategy-proofness Y∗ N
Consistency Y∗ Y∗

Converse consistency Y Y

Table 1: ”Y” means that the rule satisfies that property for each σ ∈ ΣM ,
while ”N” that it does not. On the other hand Y ∗ means that this property,
together with the others marked with ∗ in the same column, characterize the
rule.

6 Monotonic methods and continuous rules.

In the previous section we obtained characterization results for the family of up and
temporary satisfaction monotonic methods. The properties used in the characterization
result for the family of monotonic temporary satisfaction methods (Theorem 5.1) are very
much related to those used by Ching (1994) to characterize the uniform rule,3 with the
suitable change of equal treatment of equal by balancedness. Similarly, the properties
in Theorem 5.2 characterizing the family of monotonic up methods are in line with the
characterization of the equal distance rule in Herrero and Villar (1999), with identical
proviso. We interpret this fact as a suggestion of a strong relationship between our families
of methods and the uniform and the equal distance rules, respectively. Actually, the
relationship between those monotonic methods and the uniform and equal distance rules
is strongest. That is, any monotonic temporary satisfaction method can be interpreted as
a discrete version of the uniform rule, and, similarly, any up monotonic method could be
interpreted as a discrete version of the equal distance rule. We show that, for any problem,
the allocation prescribed by the uniform rule can be interpreted as the ex-ante expectations
of the agents under the application of temporary satisfaction monotonic methods, if all
plausible monotonic standards are equally likely. Similarly the allocation prescribed by
the equal distance rule can be interpreted as the ex-ante expectations of the agents under
the application of up monotonic methods, if all plausible monotonic standards are equally
likely. Next proposition proves the result.

3Under the assumption that the task were completely divisible, two of the most widely studied rules are

the so called uniform and equal distance rules. The idea underlying the first one is equality distribution

of the task.

Uniform rule, u: For each e ∈ A, selects the unique vector e(u) ∈ RN such that: If
P

i∈N p(Ri) ≥ T ,

then u(e) = min{p(Ri), λ} for some λ ∈ R such that
P

i∈N min{p(Ri), λ} = T . And, if
P

i∈N p(Ri) ≤ T ,

then u(e) = max{p(Ri), λ} for some λ ∈ R such that
P

i∈N max{p(Ri), λ} = T .

The idea of the second rule is also equality, but now focusing on losses above or below, depending on

the case, with respect to the peaks.

Equal distance rule, ed: For each e ∈ A, selects the unique vector ed(e) ∈ RN such that ed(e) =

max{0, p(Ri) + λ} for some λ ∈ R.
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Proposition 6.1. Let e ∈ A. Let ΣM
e denote the subset of ΣM of the different partial

standards involved in problem e.4 Then

(a) u(e) =
1

|ΣM
e |

∑
σ∈ΣM

e

TSσ(e).

(b) ed(e) =
1

|ΣM
e |

∑
σ∈ΣM

e

Uσ(e).

7 Final Remarks

In this work we have considered allocation problems with indivisible goods when agents’
preferences are single-peaked, that is, problems in which the task, the allocations and the
preferences are only defined over the set of integer numbers. Two natural procedures,
up and temporary satisfaction methods have been proposed to solve these problems. The
construction of these methods rely on using a particular standard of comparison on the
cartesian product of agents and integer numbers, interpreted either as peaks or opposite
peaks. Thus, what we propose is not a pair of solutions, but else, two families of solutions,
one for each method.

When we concentrate on a certain sub-family of standards, monotonic standards, our two
families of solutions satisfy properties very much related to some well-known properties
studied in the case of perfectly divisible goods, and they have a strongest relationship with
the continuous uniform and equal-distance rule, respectively.

Some qualifications on the properties used in this paper are in order. The procedural
properties related to changes in the set of agents, consistency, bilateral consistency and
converse consistency, read exactly as in the case of a perfectly divisible good, and they
maintain both their interpretation and strength in obtaining the characterization results.
It is particularly interesting to note that the main incentive compatibility condition, strat-
egy proofness, is not only meaningful in the case of indivisible goods, but also that all
the solutions in the family of temporary satisfaction methods do satisfy this property.
This means that there is a large family of allocation methods for which the agents do not
have incentives to misrepresent their preferences. As for balancedness, this property is the
best we can do to approach equal treatment, and, in this respect, we may look at our
procedures as impartial as they might be, given the indivisibilities.

In the same way as the requirement of balancedness forces is to rely on a subfamily of
standards of comparison, the so-called monotonic standards, we may ask whether some ad-
ditional properties may also significantly reduce the family of standards. Some particular
sub-families come naturally to mind, and seem to be worth studying. For instance, con-
sider a priority relation α on the set of agents, and then, construct a monotonic standard

4In ΣM we consider all possible standards over N×Z++. Notice that, for a given e, not all of them rank

the pairs (i, ai) involved in that particular problem in different ways. ΣM
e denotes precisely the subset of

those different standards.
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σ, out of this priority relation in the following way

x > y =⇒ σ(i, x) < σ(j, y) ∀i, j ∈ N

α(i) < α(j) =⇒ σ(i, x) < σ(j, x) ∀x ∈ Z

This family of standards always respect the priority relation in the set of agents, whenever
the integer numbers coincide. We may call this standards persistent monotonic standards.
It is an open problem to see whether persistent monotonic standards are associated to some
appealing additional property for both up and temporary satisfaction methods. This and
related questions are left for future research..
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Appendix A. On the tightness of characterizations results.

We present now a collection of examples to illustrate the independence of properties used
in Theorems 5.1 and 5.2.

Example 7.1. A rule satisfying balancedness, strategy-proofness and consis-
tency but not efficiency. Let �: N −→ Z++ be an order defined over the set of potential
agents such that agent labeled i has priority over agent labeled i + 1, i.e., i � i + 1. The
rule F works as follows. Let e ∈ A. Give to each agent the integer part of the uniform
allocation,5 that is, Fi(e) = bT

n c for each i ∈ N . If no unit remains we have finished. If
some units, T ′ = T − n · bT

n c, remain, allotted each one of them to each one of the T ′

agents with the highest priority according to �.

Example 7.2. A rule satisfying efficiency, strategy-proofness and consistency
but not balancedness. Consider the standard σ such that σ(i, x) < σ(i + 1, y). That
is, σ is an standard in which the smaller the agent’s label, the higher the priority. Let us
consider now the temporary satisfaction method associated to this standard, TSσ. It is
easy to check that it satisfies peaks only, strategy-proofness and consistency. But, if we
consider the problem e = (N,T, R) where N = {1, 2}, T = 4 and R is such that R1 = R2

and p(R1) = p(R2) = 5. Then TSσ(e) = (0, 4), violating balancedness.

Example 7.3. A rule satisfying efficiency, balancedness and consistency but not
strategy-proofness. It is enough to consider any monotonic up method and to observe
Theorem 5.2.

Example 7.4. A rule satisfying efficiency, balancedness and strategy-proofness,
but not consistency. This rule, F , can be defined as follows. Let σ1, σ2 ∈ ΣM be two
different monotonic standards such that σ1(i, x) < σ1(i + 1, x) and σ2(i + 1, x) < σ2(i, x).
Then, we define the solution F (σ1,σ2) as

F (σ1,σ2)(e) =

{
TSσ1(e) if |N | = 2
TSσ2(e) otherwise

Consider now the problem e = (N,T, R) where N = {1, 2, 3}, T = 5, and R is such that
p(R) = (3, 5, 6). Then F (σ1,σ2)(e) = (1, 2, 2); but if S = {1, 2} then F (σ1,σ2)(S, 3, RS) =
(2, 1). Therefore, this rule is not consistent.

Example 7.5. A rule satisfying balancedness, ar-truncation and agenda-
independence, and consistency, but not peaks only. Let us define such a rule,
F , for the two-agent problem, N = {i, j}. Let us define the order α : N ×Z×S2 −→ Z++

such that, if x > y, then α(·, x, ·) < α(·, x, ·). And, if x = y, then

Ri = Rj ⇒ α(i, x, (Ri, Rj)) < δ(j, x, (Ri, Rj))
Ri 6= Rj ⇒ α(j, x, (Ri, Rj)) < δ(i, x, (Ri, Rj))

The order α determines, in case of having only one unit, the agent who gets it. It will
depend on the agent, the peaks, and the preferences. To obtain the allocation prescribed

5We denote by bac the smallest integer number non greater than a.
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by the rule associated to that order α, Fα, we proceed in the following way. Let us
consider the problem ({i, j}, T, (Ri, Rj)). Then, identify the agent with the smallest α for
the problem, let us say agent i. Give one unit of the task to i. Shift agent i’s preferences by
a unit to R′

i = πFi({i,j},1,(Ri,Rj))(Ri). In the new problem, ({i, j}, T − 1, (R′
i, Rj)), proceed

in the same way. Repeat this process until the task runs out.

Example 7.6. A rule satisfying peaks only, ar-truncation, agenda-
independence, and consistency, but not balancedness. Select one particular agent
i ∈ N from the set of all potencial agents. For each σ ∈ ΣM , the rule F σ is defined as

F σ
j (e) =


Uσ

j (e) if
∑

k∈N p(Rk) ≥ T

p(Ri) if
∑

k∈N p(Rk) < T and j = i

Uσ
j (N r {i}, T − p(Ri), RNr{i}) if

∑
k∈N p(Rk) < T and j 6= i

Example 7.7. A rule satisfying peaks only, balancedness, ar-truncation, and
consistency, but not agenda-independence. Let σ ∈ ΣM , then

F (e) =

{
Uσ(e) if

∑
j∈N p(Rj) ≤ T

TSσ(e) if
∑

j∈N p(Rj) ≥ T

Example 7.8. A rule satisfying peaks only, balancedness, agenda-independence,
and consistency, but not ar-truncation. Let �: N −→ Z++ be an order defined over
the set of potential agents such that agent labeled i has priority over agent labeled i + 1,
i.e., i � i + 1. And let σ ∈ ΣM a monotonic standard of comparison. Both � and σ are
independent. Now, for each problem e ∈ A, the rule F works as follows. If no subset of
agents have equal peaks (i.e., all the peaks are different), then we give one unit of the task
according to the up monotonic method associated to σ, Uσ, and we reduce one unit the
peak of the agent who has received the unit. If a subset of agents, let say S, have equal
peaks, then we give one unit of the task to the agent in S who has the smallest label (that
is, the agent in S with the highest priority according to �) among all of them involved in
S. If there were two or more subsets of agents, let us say S and T , with equal peaks, then
we give unit of the task to the agent with the smallest label among all of them involved
in S and T . After that, we reduce this agent’s peak by one unit. We repeat the process
until the task runs out.

Example 7.9. A rule satisfying peaks only, balancedness, ar-truncation and
agenda-independence, but not consistency. This rule, F , can be defined as follows.
Let σ1, σ2 ∈ ΣM be two different monotonic standards such that σ1(i, x) < σ1(i + 1, x)
and σ2(i + 1, x) < σ2(i, x). Then, we define the solution F (σ1,σ2) as

F (σ1,σ2)(e) =

{
Uσ1(e) if |N | = 2
Uσ2(e) otherwise

Consider now the problem e = (N,T, R) where N = {1, 2, 3}, T = 5, and R is such that
p(R) = (3, 5, 6). Then F (σ1,σ2)(e) = (2, 2, 1); but if S = {2, 3} then F (σ1,σ2)(S, 3, RS) =
(1, 2). Therefore, this rule is not consistent.
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Appendix B. Proofs of the results

Proof of Proposition 4.1.

Let e ∈ A. By consistency the set c.con(e;F ) 6= φ. Let x, y ∈ c.con(e;F ) with x 6= y. We
distinguish two cases.

Case 1. If
∑

i∈N p(Ri) ≥ T . There exists k ∈ N such that xk > yk. Consider each
two-agent set S = {k, j} with j ∈ N and j 6= k. Since x, y ∈ c.con(e;F ), xS =
F (S, xj + xk, RS) and yS = F (S, yj + yk, RS). By one-sided resource monotonicity,
xj ≥ yj . This fact, join with xk > yj , and

∑
i∈N xi = T =

∑
i∈N yi yields a

contradiction.

Case 2. If
∑

i∈N p(Ri) ≤ T . There exists k ∈ N such that xk < yk. Consider each two-
agent set S = {k, j} with j ∈ N and j 6= k. Since x, y ∈ c.con(T,R;F ), xS =
F (S, xj + xk, RS) and yS = F (S, yj + yk, RS). By one-sided resource monotonicity,
xj ≤ yj . This fact, join with xk < yj , and

∑
i∈N xi = T =

∑
i∈N yi yields a

contradiction.

Proof of Proposition 4.2.

Let F be a rule fulfilling strategy-proofness. Let e = (N,T, (Ri, R−i)) ∈ A and e′ =
(N,T, (R′

i, R−i)) ∈ A such that p(R′
i) = p(Ri). Let us show that xi = F (e) = F (e′) = x′i

when T ≤
∑

j∈N p(Rj). Let us suppose that this is not true, and xi 6= x′i. We can assume
without loss of generality that xi < x′i. If this is the case, efficiency implies that xi < x′i ≤
p(Ri) = p(R′

i). Then, x′iPixi, which means that Fi(N,T, (R′
i, R−i))PiFi(N,T, (Ri, R−i)).

This implies a contradiction with strategy-proofness. Therefore xi = x′i.

The case when T ≥
∑

j∈N p(Rj) is analogous.

Proof of Lemma 5.1.

Consider first the case where 2p(R) > T, 2p(R′) > T. Let R′′ be such that p(R′′) = T+1
2 ,

and let e′′ = ({i, j}, T, (R′′, R′′)). We shall prove that F (e) = F (e′′) = F (e′).

If T is even, balancedness implies the result. Let T = 2λ+1, for some λ ∈ Z, and suppose,
w.l.o.g., that F (e′′) = (λ, λ + 1), whereas F (e) = (λ + 1, λ). This is the only possibility of
discrepancy because of efficiency and balancedness. Since p(R) ≥ p(R′′) = λ + 1, agent j

is happier in problem e′′ than he is in problem e, and it is the other way around for agent
i. Additionally, strategy proofness implies that

Fi({i, j}, T, (R,R′′)) ≤ λ; Fj({i, j}, T, (R,R′′)) ≤ λ

The first inequality follows from agent i’s inability to get a better result when misrepre-
senting his preferences in problem e′′, while the second inequality follows from agent j’s
inability to benefit from misrepresenting his preferences in problem e. But, if this is the
case,

Fi({i, j}, T, (R,R”)) + Fj({i, j}, T, (R,R”)) ≤ 2λ < T

which is a contradiction with F being a rule.
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The case where 2p(R) < T, 2p(R′) < T is analogous.

Proof of Theorem 5.1.

It is easy to check that each TSσ satisfies the four properties. Conversely, let F be a rule
satisfying all the properties. We divide the rest of the proof into two steps.

Step 1. Definition of the standard of comparison. Let us define the order σ ∈ ΣM as
follows

a > b ⇒ σ(i, a) < σ(j, b)

a = b ⇒ [σ(i, a) < σ(j, b) ⇔ Fi({i, j}, 2a− 1, (Ri, Rj)) = a− 1],

where Ri and Rj are two single-peaked preference relations such that p(Ri) = a =
b = p(Rj). It is straightforward to see that such a σ is complete and antisym-
metric. Let us show that σ is transitive. Suppose that there exist {i, j, k} ⊆ N
such that σ(i, x) < σ(j, y), σ(j, y) < σ(k, z), but σ(i, x) > σ(k, z). By con-
struction and peaks only (implied by strategy proofness according to Proposition
4.2), this can only happen when x = y = z. By the definition of σ, in such a
case, Fi({i, j}, 2x − 1, (Ri, Rj)) = x − 1, Fj({j, k}, 2x − 1, (Rj , Rk)) = x − 1 and
Fk({k, i}, 2x−1, (Rk, Ri)) = x−1, where p(Ri) = p(Rj) = p(Rk) = x = y = z. Con-
sider the problem ({i, j, k}, 3x−2, (Ri, Rj , Rk)). There are only three possible alloca-
tions: (x−1, x−1, x), (x−1, x, x−1) and (x, x−1, x−1). Suppose that F ({i, j, k}, 3x−
2, (Ri, Rj , Rk)) = (x − 1, x − 1, x), by consistency, Fk({i, k}, 2x − 1, (Ri, Rk)) = x,
achieving in this way a contradiction with Fk({i, k}, 2x − 1, (Ri, Rj)) = x − 1. An
analogous argument is applied if F ({i, j, k}, 3x− 2, (Ri, Rj , Rk)) = (x− 1, x, x− 1),
or if F ({i, j, k}, 3x− 2, (Ri, Rj , Rk)) = (x, x− 1, x− 1). Therefore σ(i, x) < σ(k, z),
and then σ is transitive.

Step 2. Let us prove now that F = TSσ. It is straightforward that TSσ is one-sided
resource monotonic and consistent, then, by Proposition 4.1, TSσ is converse con-
sistent. Therefore, in application of Lemma 4.1, it is sufficient to show the equiva-
lence of both F and TSσ in the two-agent case. Then, let us consider the problem
e = (S, T, R) ∈ A where S = {i, j}. Without loss of generality we can assume that
p(Ri) ≤ p(Rj). We analyze the case in which p(Ri) + p(Rj) ≥ T . The other case is
completely analogous. We distinguish the following cases:

Case 1. If R1 = R2 and T is even. By balancedness, F (e) =
(

T
2 , T

2

)
= TSσ(e).

Case 2. If Ri = Rj and T is odd. If T = 2p(Ri) − 1, by the definition of the
standard of comparison, F (e) = TSσ(e). If T < 2p(Ri) − 1, by Lemma 5.1,
F (e) = F ({i, j}, T, (R′

i, R
′
j)), where R′

i = R′
j and p(R′

i) = p(R′
j) = T+1

2 . And
then, F (e) = F ({i, j}, T, (R′

i, R
′
j)) = TSσ({i, j}, T, (R′

i, R
′
j)) = T σ(e).

Case 3. If Fi(e) ≤ Fj(e) ≤ p(Ri) ≤ p(Rj). By efficiency and strategy proofness,
Fi(e) = Fi(S, T, (Rj , Rj))= TSσ

i (S, T, (Rj , Rj)) = TSσ
i (e).

Case 4. If Fj(e) ≤ Fi(e) ≤ p(Ri) ≤ p(Rj). By efficiency and strategy proofness,
Fj(e) = Fj(S, T, (Ri, Ri)) = TSσ

j (S, T, (Ri, Ri)) = TSσ
j (e).

17



Case 5. If Fi(e) ≤ p(Ri) < Fj(e) ≤ p(Rj). By efficiency and strategy proof-
ness, Fi(e) = Fi(S, T, (Rj , Rj)) = TSσ

i (S, T, (Rj , Rj)) = TSσ
i (e). If Fi(e) =

TSσ
i (e) = p(Ri), then Fj(e) = T − Fi(e) = T − TSσ

i (e) = TSσ
j (e). If

Fi(e) ≤ p(Ri)− 1, then Fj(e) ≤ p(Ri), which is a contradiction.

Then, F coincides with TSσ in the two agents case, and therefore they do so in
general.

Proof of Theorem 5.2.

It is easy to check that each up monotonic method satisfies the properties. Conversely, let
F be a rule satisfying the five properties.

Step 1. Definition of the standard of comparison. Let us define the order σ ∈ ΣM as
follows

a > b ⇒ σ(i, a) < σ(j, b)

a = b ⇒ [σ(i, a) < σ(j, b) ⇔ Fi({i, j}, 1, (Ri, Rj)) = 1],

where Ri and Rj are two single-peaked preference relations such that p(Ri) = a =
b = p(Rj). It is straightforward to check that σ is an order following a similar
argument to Step 1 in the previous theorem.

Step 2. Let us prove now that F = Uσ. It is straightforward that Uσ is one-sided resource
monotonic and consistent, then, by Proposition 4.1, Uσ is converse consistent. There-
fore, in application of Lemma 4.1 it is sufficient to show the equivalence of both F and
Uσ in the two-agent case. Then, let us consider the problem e = (S, T, R) ∈ A where
S = {i, j}. Without loss of generality we can assume that pi ≡ p(Ri) ≤ p(Rj) ≡ pj .
Suppose first that pi = pj . By peaks only, balancedness, agenda independence, and
the definition of the standard, F (e) = Uσ(e). Let now pi 6= pj . We distinguish now
the following cases:

Case 1. If pi + pj = T . Let us show that F (S, T, (Ri, Rj)) = (pi, pj) =
Uσ(S, T, (Ri, Rj)). By ar-truncation, F (S, pj − pi, (Ri, Rj)) = (0, pj − pi).
Once we have allotted the amount pj − pi, both agents have the same pref-
erence relation: R′

i = R′
j , and T − (pj − pi) = 2pi units remain to allocate.

By balancedness, F (S, 2pi, (R′
i, R

′
j)) = (pi, pi). In application of agenda in-

dependence, F (S, T, (Ri, Rj)) = F (S, pj − pi, (Ri, Rj)) + F (S, 2pi, (R′
i, R

′
j)) =

(0, pj − pi) + (pi, pi) = (pi, pj).

Case 2. If pi + pj < T . Let us define T ′ = pi + pj . Then F (S, T ′, R) = (pi, pj) =
Uσ(S, T ′, R) by Case 1. Once we have allotted the amount T ′, both agents
have the same preference relation: R′

i = R′
j . And then F (S, T −T ′, (R′

i, R
′
j)) =

Uσ(S, T−T ′, (R′
i, R

′
j)). By agenda independence, F (e) = F (S, T ′, R)+F (S, T−

T ′, (R′
i, R

′
j)) = Uσ(S, T ′, R) + Uσ(S, T − T ′, (R′

i, R
′
j)) = Uσ(e).

Case 3. If pi + pj > T . If T is such that 0 ≤ T ≤ pj − pi, then ar(e) ≤ pi. By
ar-truncation, F (e) = (0, T ) = Uσ(e). If T is such that pj − pi ≤ T ≤ pi + pj ,
then, by agenda independence, F (e) = F (S, pj−pi, R)+F (S, T − (pj−pi), R′),
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where R′
i = R′

j . Note that, by ar-truncation, F (S, pj − pi, R) = (0, pj − pi) =
Uσ(S, pj − pi, R). By balancedness and the definition of the standard, F (e) =
F (S, pj − pi, R) + F (S, T − (pj − pi), R′) = Uσ(S, pj − pi, R) + Uσ(S, T − (pj −
pi), R′) = Uσ(e).

Then, F coincides with Uσ in the two agents case, and therefore they do so in
general.

Proof of Proposition 6.1.

Let us prove the result for the uniform rule. On one hand, it is known that the continuous
uniform rule satisfies converse consistency. On the other hand, it is easy to check that
the temporary satisfaction monotonic methods are consistent. Then the average given by
the right hand side in the formula is also consistent (see Thomson (2004)). By using the
Elevator Lemma it is enough to consider the two-agent case. But it is straightforward that
in this case both the uniform rule and the average coincide. As a result, they are equal in
general. An analogous argument proves Statement b.
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