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ABSTRACT 

 

 This paper describes the evolution of the daily Euro overnight interest 

rate (EONIA) by using several models containing the jump component such as 

a single regime ARCH-Poisson-Gaussian process, with either a piecewise 

function or an autoregressive conditional specification (ARJI) for the jump 

intensity, and a two regime-switching process with jumps and time varying 

transition probabilities. To model the jump intensity, we include the following 

effects which are significant for the occurrence of jumps such as: (1) the end of 

maintenance period effect because of reserve requirements, (2) the end of 

month effect, also known as the calendar day effect, caused mainly by the 

accounting adjustments and finally, (3) the meeting effect caused by the 

fortnightly meetings of the Governing Council of the European Central Bank 

(ECB). These effects lead to a better performance and several of them are also 

included for the behavior of the transition probabilities. Since the target of the 

ECB is keeping the EONIA rate close to the official rate, we have modeled the 

conditional mean of the overnight rate series as a reversion process to the 

official rate distinguishing two alternative speeds of reversion, in concrete, a 

different speed if EONIA is higher or lower than the official rate. We also study 

the jumps of the EONIA rate around the ECB’s meetings by using the ex-post 

probabilities of the ARJI model. Finally, we develop an out-of-sample 

forecasting analysis to measure the performance of the different candidate 

models. 

 
JEL classification: C13, C22, E43, E52. 

Keywords: ARCH-Poisson-Gaussian; Regime switching; mean reversion; 
Autoregressive conditional jump intensity; Maintenance period; Calendar day 
effect; ECB’s meeting. 
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1.  Introduction 

 

The control of very short-term interest rates, specifically the interest rate of the 

interbank market for unsecured overnight loans - the EONIA1 for the Eurozone - is the first 

step in the mechanism for the monetary policy transmission and the basis on which it acts 

in order to influence the behavior of longer term interest rates. Accordingly, the central 

banks are very interested in understanding its dynamics and how it relates to monetary 

policy decisions.  

 

The subject of several papers in recent years is about understanding the empirical 

characteristics of the EONIA rate and how effective monetary policy measures are in order 

to keep its evolution close to the official rate. However, the literature has not yet covered 

many of the aspects analysed in other interest rate markets. For example, in the United 

States the analysis of Federal Funds is much wider than the study of EONIA in the 

Eurozone. The earliest studies carried out on the empirical characteristics of the Federal 

Funds include the works by Hamilton (1996) and Balduzzi et al. (1997), while one of the 

most recent is the work of Bartolini et al. (2002). 

 

In the Eurozone most works have concentrated on knowing whether both 

instruments and procedures to implement the monetary policy have a repercussion on the 

overnight rate. Thus, for example, it has been analysed the implications of the institutional 

details of the reserve market on the behavior of the EONIA and how this rate is affected by 

the liquidity management of the European Central Bank (ECB). In this regard, Hartmann et 

al. (2001) and Manna et al. (2001) concentrate on analysing the operational framework of 

ECB, while either Bindseil and Seitz (2001) or Angeloni and Bisagni (2002) concentrate 

more on the consequences of the liquidity conditions. Prati et al. (2002) carried out a study 

on how the operational procedures and intervention forms of the central banks affect the 

characteristics and behavior of the one-day rate in the most industrialised countries 

(Eurozone and G7). Gaspar et al. (2001) drew up a model for the behavior of the overnight 

rate during the reserve maintenance period, mainly in order to estimate the impact of the 

announcement of monetary policy measures. Würtz (2003) carried out a descriptive model 
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aimed at an exhaustive list of all the characteristics and variables that may explain the 

behavior of the EONIA rate. Moschitz (2004a) modelled the problem of the intertemporal 

decision in the reserve market, both for the central bank and for commercial banks. Pérez 

Quirós and Rodríguez Mendizábal (2005) checked whether there are statistical differences 

in the behavior of the daily rate before and after the European Monetary Union (EMU), 

presenting a model for liquidity shocks focused from the demand side. Other works by 

Moschitz (2004b), Blanco (2005) and Cassola and Morana (2003, 2004), among others, 

focus on understanding the volatility transmission from the EONIA rate along the yield 

curve. 

 

Many of these authors reach common conclusions with respect to the behavior of 

the overnight rate. They are unanimous regarding the martingale hypothesis does not hold. 

One widely tested empirical characteristic is the existence of predictable patterns in the 

behavior of the EONIA rate. The most obvious non-compliance with the hypothesis come 

from the effect known as the end of maintenance period effect and the calendar effects 

(end of month, quarter, half-year and year). The former is a consequence of the averaging 

provisions to comply with reserve requirements, while the calendar effects may be 

attributed to the window-dressing activities performed by banks on their balances when 

they must be presented. Together with these effects, the periodical meetings that the 

Governing Council of the ECB holds fortnightly to assessment the Eurosystem’s monetary 

policy, constitute the main causes of the jumps observed in the dynamics of the EONIA 

rate. 

 
In this context, our aim is to tackle the evolution of the EONIA rate through a jump 

diffusion model which covers these three effects. As starting model, we will use the 

Poisson-Gaussian process with ARCH conditional variance implemented by Das (2002) 

for modeling the federal funds rate. This model, in addition to capturing properly the 

empirical characteristics observed in the EONIA series, allows us to know the jump 

intensity caused by each of the three effects studied. Likewise, and given that the aim of 

the ECB is to maintain the EONIA rate close to the official rate, we will model the 

conditional mean of this overnight interest rate as a reversion process to this official rate, 

                                                                                                                                                    
1 The EONIA (Euro OverNight Index Average) is published by the European Banking Federation as the balanced 
average of all overnight unsecured lending transactions between the most active credit institutions in the Eurozone money 
markets. 
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distinguishing two alternative speeds of reversion, in concrete, a different speed if EONIA 

is higher or lower than the official rate. We will test the existence of market overreaction 

as another cause of the violation of the martingale property. An extension of the above 

model is also implemented here, specifically the autoregressive conditional jump intensity 

model by Chan and Maheu (2002). This model will also be used to analyse the behavior of 

jumps around the days of the ECB’s meetings through the ex-post probabilities implicit in 

this model. Finally, we develop a two-regime switching model with time varying transition 

probabilities and each regime is characterised by an ARCH-Poisson-Gaussian process. The 

regime switching model outperforms simple single-regime models for interest rates as 

many empirical applications confirm such as Gray (1996) and so forth. 

 

The rest of this paper is divided into nine sections. The next section describes the 

effects mentioned above. Section three analyses EONIA rate data corresponding to the 

period under analysis. Section four specifies the first model used here that includes a study 

of the market overreaction. Section five shows the second model, results and the study of 

jumps around the ECB’s meetings. Section six exhibits the regime switching process and 

results. Section seven shows both an in-sample and out-of-sample forecasting analysis for 

the different models and finally, section eight concludes. 

 

2.  Stylized facts of EONIA behavior 

 
In order to meet its aims, including the control of very short-term interest rates, the 

Eurosystem uses a series of instruments and procedures which make up its operational 

framework, specifically: it carries out open market operations, it offers standing facilities 

and it demands that credit institutions hold minimum reserves.  

 

The most important open market operations are the main refinancing operations 

(MRO)2. The interest rate from these operations represents the guideline of the monetary 

policy. The Eurosystem also offers standing facilities to its counterparty institutions, who 

may recur on their own initiative to the marginal lending facility (overnight liquidity from 

                                                 
2 The MRO represent the main injection of liquidity by the ECB into the financial system, mainly through regular 
auctions. Until 28 June 2000 the intervention interest rate matched the interest rate applied to fixed rate auctions. From 
that moment it has coincided with the minimum bid rate for variable interest rate auctions. 
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national central banks at a pre-specified interest rate against eligible assets); and the 

deposit facility (overnight deposits with national central banks at a pre-specified interest 

rate). The interest rates applied to these facilities are, in general, unfavourable as regards 

market interest rates, which determine the fluctuation band of the EONIA rate with the aim 

of reducing the volatility. In Figure 1, together with the EONIA rate, we can see the 

evolution of the rates of the MRO, marginal lending facility and deposit facility, for the 

period under study.  

 

Finally, the ECB requires credit institutions to hold minimum reserves on accounts 

with the national central banks. The compliance with such reserve requirements may lead 

to a mechanism of averages, that is, the minimum reserves to maintain are calculated as an 

averaging provision for the whole month covered by the maintenance period, not for each 

day. The maintenance period begins on the 24th calendar day of each month and ends on 

the 23rd calendar day of the following month3. The ECB uses this average mechanism to 

stabilize interest rates. Credit institutions may soften daily liquidity fluctuations, as the 

transitory reserve imbalances may be compensated with imbalances in the other direction 

within the same maintenance period. This averaging provision allows for a certain 

intertemporal arbitrage4 which should, in theory, guarantee equality throughout the 

maintenance period between the current level and the expected level of the shortest interest 

rate at the end of the maintenance period. However, towards the end of the maintenance 

period, and especially after the last MRO, the reserve must be adapted to comply with the 

required minimum average. It is not possible to transfer a deficit or surplus liquidity into 

the future, neither turn to an MRO. This leads to the peaks observed in the series of the 

EONIA rate towards the end of the maintenance period. 

 

The calendar effects are due to the window dressing activities to which banks adjust 

their balances at the end of the month, making the demand for one-day funds shoot up. As 

                                                 
3 From March 8, 2004 the schedule for reserve maintenance periods always starts on the settlement day of the first main 
financing operation (MRO) following the Governing Council meeting at which the monthly assessment of the monetary 
policy stance is prescheduled and will end on the day preceding the corresponding settlement day in the following month 
(see “The monetary policy of the ECB” in year 2004 available on http://www.ecb.int). We do not study the effect of this 
new schedule of the maintenance period on the EONIA behavior due to the lack of enough data. 
 
4 The mechanism allows credit institutions to grant loans on the market (and incur in reserve deficits) when the shortest 
term money market interest rates are above the expected levels for the rest of the maintenance period. Otherwise, they 
may take loans on the market and maintain a surplus of reserves. 
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Moschitz (2004a) says, the central banks cannot do much to cancel these effects, as 

changes in the offer of reserves during these days would be interpreted as temporal 

changes and, therefore, would not affect the behavior of the interest rate. 

 

The final effect considered is the effect caused by the fortnightly meetings of the 

Governing Council of the ECB5, after which changes of the rate of the MRO may occur. 

The expectation regarding changes in the official rate is one of the important variables in 

the behavior of the EONIA rate. One of the concerns of the central banks is to avoid an 

increase of the volatility when the official rate is modified. The aim is to communicate 

monetary policy measures clearly and not to give confusing signals to the market, 

especially when expectations regarding interest rates vary in the middle of a maintenance 

period. This aspect is studied by Gaspar et al. (2001) who, using a time series going from 

January 1999 to March 2001, come to the conclusion that the market anticipates monetary 

policy changes, so that the announcement of a new rate does not cause important changes 

either in the level or volatility of overnight rates. However Moschitz (2004a), using a wider 

series up to February 2004, found that banks react slowly to changes in the official rate, 

with an increased volatility around the day of the announcement of the monetary policy 

decision. 

 
3.  Data 
 

This section analyses the main characteristics of the EONIA interest rate for a 

sample of 1303 daily observations over the period from January 1999 - starting date of 

Stage Three of the EMU - up to December 2003. As Figure 1 shows the EONIA rate has, 

in general, been close to the rate of the MRO, which shows the importance of these 

operations pursuing the aims of steering interest rates. The fluctuations in the overnight 

rate, which can be seen in the graph, reflect liquidity conditions that are temporarily 

relaxed or restrictive on the money market. As we have already said, these fluctuations and 

the peaks are related mainly to the aforementioned averaging provisions for the reserve 

                                                 
5 The Governing Council meets twice a month, on alternative Thursdays. At its first meeting, as a rule, the Governing 
Council assesses the economic situation and the stance of the monetary policy. Decisions on the key interest rates are 
normally taken during that meeting. At its second meeting, the Governing Council focuses on issues related to other tasks 
and responsibilities of the ECB and the Eurosystem. Obviously, if warranted by the circumstances, the Governing 
Council can still decide to change the key ECB interest rates at any time, regardless of previously scheduled meetings.  
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requirements, but also to the calendar effects and the fortnightly meetings of the Governing 

Council of the ECB. 

 
Figure 1.  Evolution of the following rates: EONIA, MRO, Marginal lending facility and Deposit 
facility for the period from 4 January 1999 to 31 December 2003. 
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 Table 1 shows the descriptive statistics for the EONIA rate and its first difference. 

The maximum value (5.75%) was reached on 17 April 2001, and the minimum (1.34%) on 

23 September 2003. The largest rise (1.16%) occurred on 24 May 2000 and the largest 

drop (0.98%) on 24 October 2001. We can see that both of them occurred on day 24 of the 

month, precisely the first day of each reserve maintenance period, when the EONIA 

recovers the value that it reached on the days before the end of the reserve maintenance 

period. Moreover, the Jarque-Bera statistic rejects normality for both the series: level ( tr ) 

and first difference ( tr∆ ). Note that tr∆  shows a high level of asymmetry and leptokurtosis.  
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Table 1.  Descriptive statistics 
 

 EONIA rate  
( )r  

First difference of 
EONIA rate 

( )r∆  

Mean 3.3740 -0.0006 

Median 3.2900 0.0000 

Maximum 5.7500 1.1600 

Minimum 1.3400 -0.9800 

Std. Dev. 0.9021 0.1417 

Skewness 0.3199 0.8631 

Kurtosis 2.1739 16.8901 

Jarque-Bera 

(p-value) 
59.2737 

0.0000 

10628.38 

0.0000 

 
Descriptive statistics of the daily rate and its first difference over the period January 
1999 to December 2003. The data are in percentage terms. 

 

 

 Table 2 provides the high persistence that the EONIA series exhibits by looking at 

the sample autocorrelation coefficients. Note the high values they show and how slowly 

they tend to decrease. This suggests evidence of the possible presence of a unit root, as 

ratified by the Augmented Dickey-Fuller (ADF) test. This test, however, rejects the 

presence of a unit root for the series of tr∆ . Finally, note that the correlation coefficients of 

tr∆  are small and negative. This behavior suggests a pattern of mean reversion.  

 

4.  ARCH-Poisson-Gaussian model 

 
A Poisson-Gaussian process with ARCH volatility is selected for modeling the 

dynamics of the change in the EONIA rate or tr∆ . This process results to be suitable for 

the empirical characteristics of the series under study. As the model allow for jumps, we 

can perfectly capture the peaks observed in the overnight rate series and also the high level 

of leptokurtosis, which is shown in Table 1, makes the use of these models very 

appropriate. On the other hand, empirical evidence shows that jump models diminish the 

possible no linearity of the conditional mean of  the series. As  regards the behaviour of the  
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Table 2.  Autocorrelation coefficients and unit root test  

 

 EONIA rate 
( )r  

First difference of 
EONIA rate 

( )r∆  

1ρ  0.987 -0.106 

2ρ  0.977 -0.152 

3ρ  0.970 -0.055 

4ρ  0.965 -0.054 

5ρ  0.961 -0.035 

6ρ  0.958 -0.034 

7ρ  0.956 0.004 

            ADF 

Critical value 

-0.6785 

-1.6165 

-21.4034 

-2.5667 

 
ADF denotes the Augmented Dickey-Fuller unit root test statistic with a 10% critical 
value of -1.6165 for EONIA rate and with a 1% critical value of -2.566 for changes in 
the EONIA rate. The number of lags used is four. 

 

 

interest rate volatility, it is widely accepted that these series have a high level of 

conditional heteroskedasticity in the variance. In this way, a GARCH family specification 

for volatility allows us to capture both the clustering effect and the high persistence 

intrinsic to tr∆ . 

 

Let define the information set available at time t to be the history of daily interest 

rates, both the overnight and the official rates, and denoted as tΦ . The model for the 

EONIA rate presents the following specification: 

 

                                                  t t t t t tr z J nµ σ∆ = + + ∆                                                (1) 

 

where tµ  is the expected conditional mean, that will be characterised later, when there is 

no jump; tz  is an independent standard normal variable; tJ  is the jump size that is also 

assumed normally and independent distributed with a time varying mean denoted as tθ  and 

variance 2ψ ( 0)ψ > , that is assumed to be constant in order to simplify the model. 
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Likewise, we assume that tz  and tJ  are also independent. Moreover tn∆  designates the 

Poisson process with tλ  as the time-varying intensity parameter for the number of jumps 

which occur in the interval from t-1 to t, specifically ( ]1,t t− . We approach the Poisson 

process with a Bernoulli distribution – see Das (2002) – conditioned to 1t−Φ  with 

probability tλ  when there is a jump, that is ( )11t t tP n λ−∆ = Φ = , and so a probability 1 tλ−  

when there is no jump. Note that tλ  is interpreted as the ex-ante probability of occurring 

one jump. We specify the conditional variance 2
tσ  with an ARCH (1) feature6 so as to 

limit the number of estimated parameters. Finally, it is important to mention that , ,t t tµ σ θ  

and tλ  are measurable with respect to the information set 1t−Φ . 

 

4.1 Likelihood function and conditional moments 

 

The hypothesis underlying equation (1) implies that the distribution of tr∆ , conditioned to 

the most recent information set and to  j  jumps, is normally distributed as  

 

             ( )
( )

( )
( )

2

1 2 22 2

1, exp
22

t t t
t t t

tt

r j
f r n j

jj

µ θ
σ ψπ σ ψ

−

 ∆ − −
 ∆ ∆ = Φ = −
 ++  

                         (2) 

 

where, for our purposes, j takes either value 0 or 1. The conditional density function of tr∆  

is obtained from  

 

             ( ) ( ) ( ) ( )1 1 11 0, 1,t t t t t t t t t tf r f r n f r nλ λ− − −∆ Φ = − × ∆ ∆ = Φ + × ∆ ∆ = Φ                  (3) 

 

and its log-likelihood, denoted as L, is calculated as ( )1
1

ln
T

t t
t

f r −
=

∆ Φ∑  where T indicates 

the size of the sample. 

 

The conditional mean of (3) is 

                                                 
6 The same volatility structure is imposed by Das (2002) for modeling the Fed Funds rate. 
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                                                         ( )1t t t t tE r µ λθ− ∆ = +                                                     (4) 

 

where ( )1tE − ⋅  indicates the expectation conditioned to the information set 1t−Φ . The 

conditional variance is obtained as 

 

                                                  ( ) ( )2 2 2
1 1t t t t t tV r σ λ ψ λ θ−  ∆ = + + −                                   (5) 

 

It can be seen that this conditioned variance contains two components. A first 

component defined as 

 

( )2 2 2
, 1t J t t tσ λ ψ λ θ = + −                                              (6) 

 

is associated with the innovation of the jumps and secondly, 2
tσ  is modelled with the 

following ARCH (1) structure: 

 

                                          ( ) 22
0 1 1 2 1t t t tr E rσ ω ω − − −= + ∆ − ∆                                           (7) 

 

where it can be seen that 0 1, 0ω ω > . Observe that equation (7) includes the effects of both 

innovations – normal innovations and innovations due to jumps – in the square of its past 

innovations. 

 

4.2 The no-jump component in the conditional mean 

 

As we have already mentioned, because the central bank tries to keep the daily rate close to 

the official rate, see Figure 1, we have modelled the conditional mean tµ  as a process 

reverting to the MRO rate. This rate displays a discontinuous behavior due to the discrete 

interventions carried out by the ECB. Accordingly, the rate of the MRO will represent the 

long-term average to which the EONIA rate should revert. One relevant characteristic of 

our model is the specification of two different speeds of reversion: one for high rates if the 
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EONIA rate is above the official rate, and another for low rates when the daily rate is 

below the official rate. In short, the behavior of tµ  is guided by: 

 

( ) ( )* *
1 1 1 2 1 1 t t t t tr r r rµ α α

+ −

− − − −= − + −                                      (8) 

 

where tr  is the overnight rate; *
tr  is the rate of the MRO or official rate; the expression 

( )*
1 1t tr r

+

− −−  is equal to ( )*
1 1max ,0t tr r− −− ; while ( )*

1 1t tr r
−

− −−  is equal to ( )*
1 1min 0, t tr r− −− ; 

and 1 2  and  α α  are the reverting coefficients, which must be negative to ensure that 

reversion to the official rate exists. An asymmetric behavior will hold if it is verified that 

1 2α α≠ .  

 

Finally, respecting the mean of the jump size tθ , we will assume two alternative 

specifications: one with a constant average, that is tθ θ= ; and another a mean reverting to 

the official rate, ( )*
1 1t t tr rθ γ − −= −  verifying that 0γ <  to guarantee mean reversion to the 

rate of the MRO. 

 

4.3 The jump intensity 

 

As we have mentioned above, we know that there are certain days on which the EONIA 

rate has a greater jump probability: the last days of the maintenance period, end of month, 

quarter, half-year and year, and the days close to the periodical meetings of the Governing 

Council of the ECB. Accordingly, we make the jump arrival intensity tλ  of these days 

depending on dummy variables. In this way, we assume a piecewise dynamics for the 

specification of the jump intensity: 

 

                   50 1 2 3 4
o mp m meet meet mp meet m

t t t t t t tD D D D D Dλ δ δ δ δ δ δ+ += + + + + +                   (9) 

 

where tD  designates a certain dummy variable: 
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1mp
tD = ; if the last four days of the maintenance period. 

1m
tD = ; if the last two days of each month7. 

1meet
tD = ; if day of meeting of the Governing Council of the ECB or next day. 

1meet mp
tD + = ; if either the day of the meeting of the Governing Council of the ECB  or 

the following day coincide with the last four days of a maintenance 

period. 

1meet m
tD + = ; if either the day of the meeting of the Governing Council of the ECB or 

the following day coincide with the last two days of the month. 

1o
tD = ; if any other day. 

 

The aim of the dummy variables meet mp
tD +  and meet m

tD +   is to capture, and so to 

eliminate from the other dummy variables, those days where the effects analysed (end of 

maintenance period, end of month and meeting) coincide. Note that it could be impossible 

to distinguish which part of the jump intensity is due to which effect without the 

introduction of these variables. Summing up, it holds that 

 
mp m meet meet mp meet m o
t t t t t tD D D D D D+ +∩ ∩ ∩ ∩ ∩ =∅ . 

 

The choice of the last four days of the maintenance period and the last two days of 

each month was made after repeating the analysis with different combinations and 

observing that the best fit, under the Schwarz Information Criterion (SIC), was obtained 

with the combination above. 

 

As observed by Pérez-Quirós and Rodríguez Mendizábal (2005), there is no 

consensus on how many days are affected by the end of the maintenance period effect. 

However, their theoretical model and much of the literature agree that the liquidity 

conditions play an important role after the last MRO of the maintenance period. This is due 

to the fact that no liquidity imbalance occurs after the last MRO of the maintenance period 

can be cleared by the ECB. In a simple graphic analysis, we have observed that it is 

necessary to eliminate at least four days in order to make disappear the peaks in the 

                                                 
7 In order to reduce the number of dummy variables, we have grouped the end of month, quarter, half-year and year 
effects into a single end of month effect. 
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EONIA series. Since the time between the last MRO of the maintenance period and the end 

of that period is one week at most, then four days would be a reasonable value. 

 

With respect to the effect caused by the meetings of the Governing Council of the 

ECB, we looked at the jump intensity occurring on the day of the meeting and on the 

following day. The announcement of the result of the meeting, with the possible 

modification of the official rate, is not known until 1:45 p.m. Indeed, the EONIA rate 

corresponding to the day of the meeting incorporates transactions made previously to such 

announcement and so it does not take into account the outcome of the meeting. All 

transactions carried out on the following day include the result of the meeting. In case of 

approving a change of the official rate, it comes into effect just on the next day after the 

meeting.  

 

Finally, those effects that might cause jumps on other days are measured through 

the constant 0δ . 

 

4.4. Results 

 

Tables 3 and 4 show the results obtained by the Poisson-Gaussian model with ARCH 

variance – under the two alternative specifications of both tµ  and tθ  – with a constant 

intensity parameter λ  and a time varying intensity tλ  defined in equation (9) respectively. 

We can appreciate some features. First, there is mean reversion for both the single and 

double mean reversion processes, though the SIC value for the double mean reversion is 

higher and hence, a more adequate model. It is also verified that those models in Table 4 

with a mean reversion structure for tθ  score a higher SIC value than the case of tθ  to be 

constant.  

 

Second, if we concentrate on the parameters of the double mean reversion – see 

model 4 from Table 3 and models iii and iv from Table 4 – under any specification for 

either the intensity parameter or the mean of the jump size, we observe two main 

characteristics: (1) the value of the parameters 1 2 and  α α  are both negative and 

significant, confirming the reversion to the MRO interest rate; and (2) this reversion is 
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asymmetric since 1 2  and  α α  are different. Because of 1α  is lower than 2α , it also holds 

that the speed of reversion for low rates (and lower than the official rate) is greater than the 

speed of reversion for high rates (and higher than the official rate). So, the EONIA rate 

reverts to the official rate more quickly from drops than from rises.  

 
Table 3  ARCH-Gaussian and ARCH-Poisson-Gaussian process with 

constant intensity parameter λ  

 
Daily data of EONIA rate covering the period January 1999 to December 2003. This table contains the ARCH-
Gaussian process (no jumps) and the ARCH-Poisson-Gaussian process under different features of tµ . The ARCH-

Poisson-Gaussian process with a constant intensity parameter λ  is specified as follows: 

            t t t t t tr z J nµ σ∆ = + + ∆ ;    (0,1)t Nz ∼ ; 2( , )t tJ N θ ψ∼ ;  tz  and tJ  are independent 

where *
1 1( )t t tr rθ γ − −= − ; ( )[ ]22

0 1 1 2 1t t t tr E rσ ω ω
− − −

= + ∆ − ∆  and tµ  is defined in the table below.
 

 

 ( )*
1 1t t tr rµ α − −= −  ( ) ( )* *

1 1 1 2 1 1 t t t t tr r r rµ α α
+ −

− − − −= − + −  

 Model 1 Model 2 Model 3 Model 4 

Parameters ARCH-Gaussian ARCH-Poisson-
Gaussian ARCH-Gaussian ARCH-Poisson-

Gaussian 

α  -0.173 
(-5.084) 

   -0.0317 
   (-4.542) ------- -------- 

1α  -------- -------- -0.1254 
(-3.371) 

-0.0315 
(-4.384) 

2α  -------- -------- -1.155 
(-21.184) 

-0.4169 
(-10.18) 

0ω  0.0047 
(3.347) 

0.00003 
(6.418) 

0.0032 
(1.524) 

0.00004 
(6.108) 

1ω  2.2086 
(2.623) 

0.7708 
(5.4333) 

3.9393 
(1.283) 

0.7475 
(6.1468) 

γ  -------- -0.3222 
(-6.714) 

-------- -0.2896 
(-5.675) 

ψ  -------- 0.1916 
(14.100) 

-------- 0.1897 
(13.413) 

λ  -------- 0.2176 
(11.483) 

-------- 0.2191 
(12.068) 

Log-Likelihood 
Function 1127.51 2128.99 1185.47 2150.58 

SIC 
 1116.75 2107.48 1171.12 2125.48 

 
Estimation is carried out using maximum-likelihood. Heteroskedasticity-Consistent t-statistics are in parentheses. 
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Third, Table 4 also analyses the effect on changing the specification of tθ . There is 

no much difference in the parameters when we compare either model i against model ii 

(single mean reversion) or model iii against model iv (double mean reversion). The SIC 

statistic reaches a slightly higher value for both situations when tθ  is not constant. It also 

holds that the parameter γ  is negative and significant. This result leads to a mean reversion 

to the MRO rate in terms of the mean of the jump size.  

 

 Fourth, if we analyse the ARCH effect and take, for instance, the value of 1ω  

equals 0.648 from model iv in Table 4 then it reflects both a high and persistent time-

varying volatility defined through the ARCH (1) structure. Note that this value is similar 

across all models except for the ARCH-Gaussian ones – models 1 and 3 from Table 3 – 

that we will study later. With regard to models 2 and 4 in Table 3, their respective values 

of 1ω , 0.771 and 0.747 respectively, are higher than in Table 4. It means that going from a 

constant to a time-varying intensity (a piecewise function in this case) parameter drives to 

a decrease in the ARCH persistence. Under model iv, it holds that the average of the daily 

ARCH variance series is about 0.023 which is similar to 0.020 corresponding to the sample 

variance of tr∆  in Table 1 ( 20.142 ). If we compute the mean of this daily conditional 

variance series at different periods measured according to the dummy variables in equation 

(9), it is verified that the daily variance scores the highest value at the end of the 

maintenance period each month. We obtain a daily variance mean of 0.042 for the 

maintenance period or 1mp
tD = . Meanwhile, the daily variance averages of 0.026, 0.023 

and 0.015 would be associated with 1m
tD = , 1meet

tD =  and 1o
tD =  respectively. 

 

Fifth, a comparison of the ARCH-Gaussian – models 1 and 3 in Table 3 – and any 

ARCH-Poisson-Gaussian model reveals a sharp drop in the conditional variance once 

jumps are implemented. Note that the ARCH (1) process drives to a large value of 1ω  and 

higher than 1 under models 1 and 3. This fact implies that jumps account for a substantial 

component of the volatility as the equation (6) confirms. 

 

Sixth, we can also be interested in knowing how the jump volatility 2
,t Jσ  in equation 

(5) does change  due  to  changes in  the  jump  intensity. We  would expect  the  derivative  
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Table 4  ARCH-Poisson-Gaussian process with tλ  as a piecewise function 

 
Daily data of EONIA rate covering the period January 1999 to December 2003. This table contains the ARCH-
Poisson-Gaussian process under different features of both tµ  and tθ . Our more general ARCH-Poisson-Gaussian 
process is specified as follows:  

            t t t t t tr z J nµ σ∆ = + + ∆ ;    (0,1)t Nz ∼ ; 2( , )t tJ N θ ψ∼ ;  tz  and tJ  are independent 

where ( )[ ]22

0 1 1 2 1t t t tr E rσ ω ω
− − −

= + ∆ − ∆  and both tµ  and tθ  are defined in the table below. 
 

 ( )*
1 1t t tr rµ α − −= −  ( ) ( )* *

1 1 1 2 1 1 t t t t tr r r rµ α α
+ −

− − − −= − + −  

 Model  i Model  ii Model  iii Model  iv 

Parameters tθ θ=  ( )*
1 1t t tr rθ γ − −= −  tθ θ=  ( )*

1 1t t tr rθ γ − −= −  

α  -0.046 
(-6.601) 

-0.0344 
(-6.365) ------- -------- 

1α  -------- -------- -0.0465 
(-6.244) 

-0.0388 
(-7.832) 

2α  ------- -------- -1.0928 
(-263.81) 

-0.9943 
(-61.837) 

0ω  0.00003 
(5.123) 

0.00003 
(7.189) 

0.0004 
(10.127) 

0.0004 
(12.833) 

1ω  0.6240 
(5.922) 

0.6092 
(5.542) 

0.6651 
(6.338) 

0.6482 
(6.053) 

or θ γ  -0.0087 
(-1.196) 

-0.4152 
(-8.179) 

-0.009 
(-1.170) 

-0.2758 
(-4.406) 

ψ  0.2101 
(12.939) 

0.1903 
(14.249) 

0.2003 
(12.294) 

0.1930 
(13.035) 

0δ  0.1209 
(7.841) 

0.1128 
(6.917) 

0.1025 
(7.005) 

0.1023 
(7.209) 

1δ  0.5260 
(10.201) 

0.5271 
(11.546) 

0.5500 
(10.714) 

0.5347 
(10.431) 

2δ  0.5257 
(8.838) 

0.5076 
(9.830) 

0.5233 
(8.486) 

0.5306 
(8.460) 

3δ  0.1421 
(3.582) 

0.1309 
(4.239) 

0.1344 
(3.493) 

0.1476 
(3.568) 

4δ  0.8307 
(10.345) 

0.8060 
(10.055) 

0.8763 
(10.372) 

0.8847 
(10.998) 

5δ  0.3896 
(2.741) 

0.3569 
(3.080) 

0.4368 
(2.843) 

0.4373 
(3.367) 

Log-Likelihood 
Function 2186.46 2222.14 2237.55 2256.05 

SIC 
 2147.01 2182.69 2194.51 2218.01 

 
Estimation is carried out using maximum-likelihood. Heteroskedasticity-Consistent t-statistics are in parentheses. The 
coefficients 1 2 3 4 5,  ,  ,  ,  δ δ δ δ δ  and 0δ  denote respectively the following probabilities of jump: (i) the last four 
days of the maintenance period, (ii)  the last two days of the month, (iii)  the day of the meeting of the ECB’s 
Governing Council and next day, (iv)  the day of the meeting of the ECB’s Governing Council  or the following day 
when they coincide with the last four days of a maintenance period, (v)  the day of the meeting of the ECB’s 
Governing Council or the following day when they coincide with the last two days of the month and (vi) the remaining 
days. In short, the intensity of the jump is defined as follows: 

0

0 1 2 3 4 5

mp m meet meet mp meet m

t t t t t t t
D D D D D Dλ δ δ δ δ δ δ+ += + + + + +  

    where 0 ,  ,  ,  ,  ,  mp m meet meet mp meet m

t t t t t tD D D D D D+ +   are dummy variables. 
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2
, /t J tσ λ∂ ∂  to be positive. It holds that ( )2 2 2

,
1/ 0 1 /
2t J t t tσ λ λ ψ θ∂ ∂ > ⇔ < + . Consider, for 

instance, the situation of tθ θ=  and tλ  to be time varying – models i and iii from Table 4 -

, then it is shown that tλ  verifies the above condition. 

 

Last but not least, there are several reasons why jumps are more probable to occur 

on certain days than on others. Henceforth, our comments will be related to model iv in 

Table 4. We examined the probability of the occurrence of a jump during the final days of 

the maintenance period ( 1δ ), on the last days of each month ( 2δ ), on the day the Governing 

Council of the ECB meets and the following day ( 3δ ) and the remaining days ( 0δ ). As one 

might expect, the jump arrival intensity is very high at the end of the maintenance period, 

1 0.535δ = . Likewise, the parameter which measures the jump intensity at the end of the 

month, 2δ , is nearly just as high as 1δ , having grouped all the calendar effects (end of 

month, quarter, half-year and year) into a single effect (end of month effect). The lowest 

jump intensity is on the day of the meeting and the following day, 3 0.148δ = . This result 

must be taken with caution because this parameter covers all the meetings, both those after 

which there has been a change in the official rate and those after which no change has 

taken place. The results of the parameters 4δ  and 5δ , which indicate the jump intensity 

when the end of the maintenance period and the end of the month coincide with a meeting 

respectively, are not important results due to the low percentage that they represent of the 

whole. Specifically, 17% of ends of month coincide with a meeting, while only 8% of 

meetings coincide with an end of month. Moreover, 28% of the ends of maintenance 

periods match up with a meeting, and vice versa. The introduction of the dummy variables 
meet mp
tD +  and meet m

tD +  is due to the fact that these dummies let us to withdraw coincidence 

with other effects from each effect8. The coefficient 0δ  measures the impact by the 

occurrence of jumps due to those possible effects that could happen on the remaining days. 

It gives a value of 0.102, that is, the lowest possibility of a jump occurs on those days in 

which none of the analysed effects takes place. 

                                                 
8 The total of days corresponding to each group are: 172 data for 1mp

tD = , 100 observations for 1m
tD = , 152 for 

1meet
tD = , 789 for 1o

tD = , 68 for 1meet mp
tD + =  and finally, 20 for 1.meet m

tD + =  
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Finally, another important question is: does the double mean reversion specification 

for the conditional mean in equation (8) help to capture the nonlinearity behavior of the 

drift for tr∆ ?. We compute the daily log-likelihood ratio ( tLR ) statistic between the 

following two models: the restricted (single mean reversion) and unrestricted (double mean 

reversion) specifications with tθ θ=  corresponding to the models i and iii in Table 4 

respectively. Note that the restricted version is the case of 1 2α α=  in equation (8). So, tLR  

is defined as twice the difference between the daily log-likelihood values of the two 

models. Note that when 0tLR >  the double mean reversion process performs better than 

only a mean reversion process. Summation of these daily likelihood ratios over the whole 

sample generates the likelihood ratio test (LRT) statistic for the null hypothesis of one 

mean reversion against the alternative of double mean reversion. Here, the statistic 

( )2 1LRT χ∼  with value equals 102.18 gives a p-value of zero, so the null hypothesis of 

one mean reversion is rejected. Figure 2 plots the daily tLR  series where we can see that 

there are more positive – 61% over the whole sample – than negative values. Note that the 

highest values in absolute value of tLR  are reached when 0tLR > . A deeper analysis 

drives to split the series in Figure 2 into 4 groups: (a) the period containing the end of the 

month or those days verifying that 1m
tD = ; (b) the period for the meetings where in this 

case we join those days corresponding to any of the following groups: 1meet
tD = , 

1meet mp
tD + =  or 1meet m

tD + = ; (c) those days for the maintenance period or 1mp
tD =  and 

finally; (d) those days satisfying that 1o
tD = . It holds that the number of positive values is 

higher in every group except for the maintenance period. Summing up, the percentage of 

each group’s positive values are respectively: 69%, 51.67%9, 40.12% and 67.55%. 

 

4.5. Overreaction 

 

Modifying the specification for tλ  in (9) we can easily test if the EONIA rate reacts 

strongly to large moves, that is, whether there is a quick reaction in the opposite direction.  

 

                                                 
9 If we consider for the second group, or meeting period, only the case of  1meet

tD =   then the percentage of positive 
values is 54% that is slightly higher. 
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Figure 2.  Time series of daily log-likelihood ratio statistic 
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This phenomenon is known as overreaction. The existence of overreaction would mean 

that the direction of the interest rate would be predictable after large moves. If there is 

overreaction, the probability of a jump in the opposite direction to the previous large 

movement in the interest rate would weight more than the probability of a jump in the 

same direction as the previous movement. To verify this, we modify the jump intensity in 

the same way as Das (2002) by making the intensity parameter as a function of the product 

of the current and previous change in the interest rate, thus: 

 

0 1 2t t tR Rλ δ δ δ+ −= + +  

where  

 

( )( ) ( )( )1 1 2 1 1 2max 0,   and   min 0,t t t t t t t t t tR r r r r R r r r r+ −
− − − − − −= − − = − −        

 

where 1  δ and 2δ denote respectively the magnitude of the “continuation” and the 

“reverse” in the direction of the changes. Table 5 shows that the value of the parameters 

1  δ and 2  δ are both significant, indicating that they have a strong impact on the jump 
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intensity. The value of 1δ  shows that the “level of continuation” in the changes equals 

0.382, while the “level of overreaction” – measured through 2δ  –  reaches a value of 0.606, 

implying that the overreaction effect is twice as big as the “continuation” effect. This leads 

us to the conclusion that the EONIA rate overreacts to large moves and hence, the rejection 

of the martingale hypothesis. 
 

Table 5  Overreaction 
 

 
The parameters have been estimated using the following econometric specification: 

 

t t t t t t
r z J nµ σ∆ = + + ∆ ;  2( , )

t tJ N θ ψ∼ ; tz  and tJ  are independent where 

( ) ( )* *

1 1 1 2 1 1
 

t t t t t
r r r rµ α α

+ −

− − − −
= − + − , ( )[ ]22

0 1 1 2 1t t t t
r E rσ ω ω

− − −
= + ∆ − ∆    and   ( )*

1 1t t tr rθ γ
− −

= − . 
 

Parameter 1α  2α  0ω  1ω  γ  ψ  
0δ  1δ  2δ  

Log-
Likelihood 
Function 

SIC 
 

Value -0.0344 
(-4.085) 

-0.0411 
(-0.663) 

0.0004 
(12.943) 

0.1216 
(1.656) 

-0.5783 
(-8.129) 

0.1867 
(15.733) 

0.1262 
(8.838) 

0.3824 
(7.166) 

0.6064 
(8.853) 2221.41 2189.13 

 
Estimation is carried out using maximum-likelihood. Heteroskedasticity-Consistent t-statistics are in parentheses. The 
variable 

1
δ  is the continuation coefficient and the variable 

2
δ  is the reversal component. The intensity of the jump is 

defined as 0 1 2t t tR Rλ δ δ δ+ −= + +  where  ( )( )[ ]
1 1 2

max 0,
t t t t t

R r r r r+

− − −
= − −  and ( )( )[ ]

1 1 2
min 0,

t t t t t
R r r r r−

− − −
= − − . 

 
 

 

5.   Autoregressive conditional jump intensity 
 

In section 4, we have obtained a model for the EONIA rate that incorporates the 

end of the month effect, the end of the maintenance period effect, and the ECB’s meetings 

in the intensity parameter. Note that the first two effects above can be set as seasonal ones 

in the sense that they are exhibited each month. In this section, we will generalize the 

piecewise equation (9) for the dynamics of tλ  with a truly time varying function. In 

concrete, we will implement the autoregressive conditional jump intensity (ARJI), see 

Chan and Maheu (2002) and Maheu and McCurdy (2004). The idea behind our first model 

or equation (9) was trying to understand the dynamics of the jump intensity and so, which 

factors may affect its behavior. In this section, we are interested in a more general model of 

tλ  in the sense of capturing better the pattern of the EONIA series but also, a model to 

forecast that will be used later in section 8, specifically, for the out-of-sample performance 
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of the volatility. It is very important to search for a parsimonious structure of tλ . We can 

state that those features that could be characterised as a seasonal pattern are both the end of 

the month and the maintenance period since they affect the changes in the EONIA rate. 

Nevertheless, the meeting effect does not support this kind of seasonal evidence. The 

reason is that in our estimation period, the number of times the target rate changed was 15 

over a total of 120 meetings for a period of 5 years (2 meetings per month). It means that 

although we know the date of the meeting each month, the frequency of a change in the 

interest rate is very low in order to consider important the meeting dates by fixing a 

dummy variable for these dates. In short, it means to leave out meet
tD  while keeping both 

mp
tD  and m

tD  for the new specification of tλ . 

 

To reinforce this decision of exclusion, remember that we have assumed in this 

paper for the target rate to be an exogenous variable instead of being endogenous. 

Modeling the target rate is beyond the scope of this paper. If we were interested in that 

case, we would need additional information such as the evolution of the inflation rate, the 

GDP rate and so on. The dynamics of these macroeconomic variables would be followed 

by the ECB for the decision of keeping constant or changing the target rate in each 

meeting. In short, since we have not established any rule for the ECB about its decision on 

altering the target rate, this is the reason why we do not incorporate this effect into the 

jump intensity behavior if we are interested in a model for the EONIA in order to foresee. 

This idea of forecasting the target rate given the information until nowadays containing the 

time series of the target rate but also some exogenous variables, such as unemployment, 

production and so on, can be seen in the study of the daily federal funds (FF) target rate by 

Hamilton and Jordá (2002). Another more recent study of prediction can be seen in Sarno 

et al. (2005) for the FF rate where the standard macroeconomic variables, which are useful 

for the monetary policy decisions, are not included in the information set but it does 

contain the FF target rate, other US interest rates, FF futures rates and lagged values of the 

FF rate. It is important to mention that our paper does not aim to forecast the level of the 

EONIA rate among several candidate models. However, we will show in subsection 6.1 
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how to predict future values for tλ  conditioned to the information set at present which are 

necessary for the prediction of level of the EONIA rate10.  

 

Finally, we will study the behavior of tλ  around the days of the ECB’s meetings. 

Under the new modeling of tλ , i.e. ARJI dynamics, we can obtain a daily time varying ex-

post probability of the occurrence of a jump. A higher value of this probability gives a 

more clear proof of jump. This probability is useful to check the existence of jumps around 

those meetings where it really happen a change in the target rate.  

 

5.1 The model 

 

The dynamics for tλ  is given by 

 

                                     0 1 1 2 1 3 4
mp m

t t t t tD Dλ δ δ λ δ ξ δ δ− −= + + + +                                          (10) 

 

where ( )mp m
t tD D  corresponds to a dummy variable for the last four days of the 

maintenance period (the last two days of each month)11. The standard ARJI model is 

nested in equation (10), just for the case of 3 4 0δ δ= = . The coefficient 1δ  measures the 

level of persistence over the arrival of jump events (jump clustering). The term 1tξ −  is 

known as the jump intensity innovation and it is defined as 

 

[ ] ( )1 1 1 1 1 1 11t t t t t t tE n P nξ λ λ− − − − − − −≡ ∆ − = ∆ = Φ −  

 

where ( )1 11t tP n − −∆ = Φ  is called the filter and it is the ex-post inference on 1tn −∆  given 

the information set 1t−Φ , while 1tλ −  is by definition the conditional expectation of 1tn −∆  

                                                 
10 Closed-form formulae to the daily forecasting of the EONIA rate, that is [ ]t t kE r

+
 where 1k ≥ , are also obtained 

according to the new specification of tλ  - see equation (10) - though they are not reported here in order to shorten the 
paper. These expressions are available upon request. 
 
11 Those days satisfying 1meet mp

tD + =  ( 1meet m
tD + = ) in equation (9), now they are grouped into the maintenance period  

(the end of the month) and so, verifying that 1mp
tD =  ( 1m

tD = ) in (10). 
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given 2t−Φ . This implies that tξ  is a martingale difference sequence with respect to 1t−Φ , 

that is, [ ]1 0t tE ξ− = . It also holds that [ ] 0tE ξ =  and ( ), 0,t t iCov iξ ξ − = ∀ . In short, the 

parameter 2δ  measures the effect of the most recent intensity residual or the change in the 

conditional forecast of 1tn −∆  given the last available information set 1t−Φ  which is larger 

than 2t−Φ . 

 

Equation (10) will be a stationary process if it holds that 1 1δ < . Denote as tx  the 

vector ( ),mp m
t tD D . Note that tx  has only three possible values: ( )0,0 , ( )1,0  and ( )0,1 . By 

the law of iterated expectations, the unconditional probability of one jump ( )tλ  is equal to 

 

[ ] ( ) ( ) ( )0,0 1,0 0,10,0 1,0 0,1t t t t t tE E E x E E Eλ λ π λ π λ π λ       =   = + +          

 

where ,i jπ  denotes the probability corresponding to the value ( ),i j  for tx  such that 

0,0 1,0 0,1 1π π π+ + = . Hence, 

[ ] 0 1,0 3 0,1 4

11tE
δ π δ π δ

λ
δ

+ +
=

−
. 

 

 Let [ ]t t kE λ +  denote the forecasts of the future jump intensities conditioned to 

nowadays that is denoted as period t. Since [ ]1 1t t tE λ λ+ += , then for the case of 2k ≥  we 

have: 

 

[ ]
1

11
0 1 1 3 1 4 1

2 21

1
1

k k k
k k j mp k j m

t t k t t j t j
j j

E D Dδλ δ δ λ δ δ δ δ
δ

−
− − −

+ + + +
= =

 −
= + + + − 

∑ ∑ . 

 

Finally, once we have observed tr  and using the Bayes rule, we can infer the ex-

post or filtered probability of the occurrence of one jump at time t defined as 

 

( ) ( ) ( )
( )

1 1

1

1, 1
1 t t t t t

t t
t t

f r n P n
P n

f r
− −

−

∆ ∆ = Φ ∆ = Φ
∆ = Φ =

∆ Φ
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where ( )11t t tP n λ−∆ = Φ =  and so, ( ) ( )0 1 1t t t tP n P n∆ = Φ = − ∆ = Φ . 

 

5.2 Results 

 

Table 6 reports the parameter estimates for the ARCH-Poisson-Gaussian model, where tµ  

is a double mean reverting process and tθ  shows mean reversion, under the dynamics of tλ  

in the equation (10) or model B and the restricted version of (10) given by 1 2 0δ δ= =  or 

model A. Note that tλ  in model A results to be a piecewise function similar but easier than 

tλ  of equation (9) – see model iv, Table 4 –.The results show evidence of time-variation in 

the arrival of jump events since all the parameters of tλ  in model B are significantly 

different from zero. We observe that the same conclusions for the analysis of the double 

mean reversion in Table 4 also maintain here. The parameter γ  which defines the speed of 

reversion of tθ  is also negative. Note that the interpretation of the jump intensity for either 

the maintenance period (mp) or the end of the month (m) from model A is different. These 

effects measured respectively by the parameters 3δ  and 4δ  show the increment that tλ  

suffers when any of these effects does occur, that is, 0 3tλ δ δ= +  for the maintenance 

period and 0 4tλ δ δ= +  for the end of the month. We can also appreciate how equation 

(10), or model B, is better than its restricted version or model A. The corresponding LRT 

statistic has a chi-square distribution with two degrees of freedom and a value of 48.6 (p-

value equals zero) and hence, model B beats model A. 

 

If we analyse the contribution of each component to the total variance in equation (5), that 

is, ( )2
, 1/t J t tV rσ − ∆  and ( )2

1/t t tV rσ − ∆  which represent the proportion of the conditional 

variance explained by the jump and the ARCH component respectively. It is verified for 

model B that the mean (median) of  the  series ( )2
, 1/t J t tV rσ − ∆  is  0.817 (0.976) that is much 

higher than the mean (median) of ( )2
1/t t tV rσ − ∆  which is 0.161 (0.033). The standard 

deviation for both series is nearly the same, a value of 0.288.  
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Table 6  ARCH-Poisson-Gaussian process with tλ  time varying 

Daily data of EONIA rate covering the period January 1999 to December 
2003. The ARCH-Poisson-Gaussian process estimated is specified as 
follows: 

t t t t t tr z J nµ σ∆ = + + ∆ ;     (0,1)t Nz ∼ ;    2( , )t tJ N θ ψ∼ ; 

where tz  and tJ  are independent; ( ) ( )* *

1 1 1 2 1 1 t t t t tr r r rµ α α
+ −

− − − −
= − + − ; 

( )[ ]22

0 1 1 2 1t t t tr E rσ ω ω
− − −

= + ∆ − ∆ , ( )*

1 1t t tr rθ γ
− −

= −  and tλ  is 

different in each model: 0 3 4
mp m

t t tD Dλ δ δ δ= + +  (model A) and  

10 1 1 2 3 4t

mp m
t t t tD Dξλ δ δ λ δ δ δ

−−= + + + +  (model B) 
 

Parameter Model A Model B 

1α  -0.0379 
(-7.486) 

-0.0383 
(-7.330) 

2α  -1.0574 
(-87.213) 

-0.9095 
(-44.226) 

0ω  0.00004 
(6.685) 

0.00003 
(7.763) 

1ω  0.7313 
(6.035) 

0.7011 
(7.166) 

γ  -0.3218 
(-2.812) 

-0.4878 
(-13.057) 

ψ  0.1944 
(12.478) 

0.1920 
(11.621) 

0δ  0.1038 
(7.180) 

0.0317 
(4.249) 

1δ  ------ 0.4031 
(7.373) 

2δ  ------ 0.6140 
(7.090) 

3δ  0.4965 
(10.080) 

0.2806 
(8.818) 

4δ  0.3951 
(6.774) 

0.3064 
(8.745) 

Log-Likelihood 
Function 2248.07 2287.39 

SIC 
 2215.79 2247.94 

 
Estimation is carried out using maximum-likelihood. Heteroskedasticity-
Consistent t-statistics are in parentheses.  

 
 

 

Table 7 exhibits the descriptive statistics for both the ex-ante and ex-post 

probabilities for model B. Ex-post (ex-ante) probabilities higher than 0.5 provide a 

significant evidence that a jump has occurred (forecast the occurrence of a jump). It is 

verified for both cases that the total of probabilities higher than 0.5 represent a size about 

20%. Looking at the quantiles, the probability of getting a value higher than 0.9 ranges 
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from 0.10 to 0.20 for the ex-post probability while it is lower than 0.1 for tλ . If we regress 

the ex-post probability onto a constant and tλ , the slope is significantly different from zero 

and value of 1.01. The R-squared statistic of this regression is 0.40. Finally, if we study 

more carefully those situations where the ex-post probabilities reach values higher than 0.5 

– in concrete, an amount of 261 over 1,299 observations in all –, it holds a percentage of 

50% for the maintenance period, 21% for the end of the month, 27% for the fifteen 

meetings over the total where the ECB did really change the official rate – we select here a 

window of ± 4 days around the meeting date in order to measure the market reactions – 

and 19% corresponding to the remaining days. 

 
Table 7  Descriptive statistics of the ex-ante and ex-post probabilities  

       
                       Daily data of EONIA rate from January 1999 to December 2003. 

 Ex-ante probability: 
 

1

1

0 1 1 2 3 4

where   1

t

t t t

mp m
t t tt

P n

D Dξ

λ

λ δ δ λ δ δ δ−

−

−

 
 
 

= ∆ = Φ

= + + + +  

                   
Ex-post probability: 
 

( ) ( )
( )

1

1

1,
1 t t t t

t t
t t

f r n
P n

f r

λ −

−

∆ ∆ = Φ
∆ = Φ =

∆ Φ

 

 

Statistics Ex-ante 
probability 

Ex-post 
probability 

Mean 0.2605         0.2454 
Median 0.1636         0.0438 

Maximum 0.8888         1.0000 

Minimum 0.0449         0.0016 

Std. Dev. 0.2178         0.3458 

Quantile (75%)            0.3855         0.3743 

Quantile (80%) 0.5082         0.5056 

Quantile (90%) 0.6018         0.9958 

Jarque-Bera  

   (p-value) 

161.80  

(0.00)

372.34         

(0.00) 
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5.3 Behavior of the probability of jump around the days of the ECB’s meetings 

 

 This subsection shows how the intervention held by the ECB’s meetings can be a 

source of jumps. The empirical evidence of jumps can be supported by a high value of the 

ex-post probability. Table 8 reports these probabilities around the days where an 

intervention of the official rate occurred for a window of ± 4 days. We study a total of 15 

interventions – the official rate dropped (raised) eight (seven) times – given our sample 

period. Those situations such that prior to the meeting date the EONIA rate raised a high 

ex-post probability, they might be interpreted as the market anticipation of changing the 

official rate in the next meeting. Meanwhile, changes of the interest rates after the meeting 

date could be interpreted as market reactions due to either the forecast of the interest rate 

level before the meeting was not the right one, henceforth there is a correction once the 

new MRO rate is known or those cases where there was no anticipation of a possible 

change of the MRO rate before holding the meeting. An example for the last case might be 

the reason of an ascending ex-post probability in the following meetings: October 5, 2000 

(upward movement) and May 10, 2001 (downward movement). We can also appreciate 

that this probability is not always upwards the same day as the meeting. There is also 

evidence of a cluster of jumps around each meeting excepting March 16, 2000 (upward 

movement). Finally, Table 8 also exhibits for the selected window around the meeting date 

that other type of event may have occurred in some cases: the end of the month and the last 

days of the maintenance period denoted as the symbols “∗ ” and “∗∗ ” respectively. It 

happens that the ex-post probabilities tend to be very high in these situations. Note that we 

could separate the meeting effect against any other effect in every case with the exception 

of the days around the meetings: August 30, 2001 and September 17, 2001 (descending 

rates in both dates).  

 

We also carried out another study to understand better how the ECB decisions may 

affect the value of tλ . We considered all the meetings occurred – a total of 120 meetings 

where the rate was intervened in only 15 meetings – and selected a 4-day window before 

and after the meeting date, that is, a sample of 1,076 data. The idea is to analyse if the 

impact of this ex-ante probability is different depending on the decision taken from each 

meeting about changing the MRO rate, that is, either an upward or downward movement. 

We  select  a  dummy  variable up
tD  ( down

tD )  equals  one  if day t  belongs to  the  window  
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Table 8  Changes in the MRO rate and jumps in the EONIA rate  
 

DOWN UP 
Date Ex-post  Date Ex-post Date Ex-post Date Ex-post 
April  2, 1999 0.172 Nov. 2, 2001 0.050 Oct. 29,1999 1.000* Jun. 2, 2000 0.015 
April  5, 1999 0.029 Nov. 5, 2001 0.063 Nov. 1,1999 0.251 Jun. 5, 2000 0.012 
April  6, 1999 0.014 Nov. 6, 2001 1.000 Nov. 2,1999 0.386 Jun. 6, 2000 0.009 
April   7, 1999 0.999 Nov. 7, 2001 0.339 Nov. 3, 1999 0.053 Jun. 7, 2000 1.000 
April  8, 1999 0.338 Nov. 8, 2001 0.828 Nov. 4, 1999 0.040 Jun. 8, 2000 0.847 
April   9, 1999 1.000 Nov. 9, 2001 0.266 Nov. 5, 1999 0.037 Jun. 9. 2000 0.152 
April 12, 1999 0.369 Nov. 12, 2001 0.032 Nov. 8, 1999 0.045 Jun. 12, 2000 0.132 
April 13, 1999 0.057 Nov. 13, 2001 0.897 Nov. 9, 1999 0.032 Jun. 13, 2000 0.029 
April 14, 1999 1.000 Nov. 14, 2001 0.995 Nov. 10,1999 0.031 Jun. 14, 2000 1.000 
        
May 4, 2001 0.010 Nov. 29, 2002 1.000* Jan. 28, 2000 1.000* Aug. 25, 2000 0.122 
May 7, 2001 0.003 Dec. 2, 2002 0.186 Jan. 31, 2000 0.612* Aug. 28, 2000 0.049 
May 8, 2001 0.003 Dec. 3, 2002 0.932 Feb. 1, 2000 0.154 Aug. 29, 2000 0.012 
May 9, 2001 0.005 Dec. 4, 2002 1.000 Feb. 2, 2000 0.634 Aug. 30, 2000 0.056 
May 10, 2001 1.000 Dec. 5, 2002 0.311 Feb. 3, 2000 0.054 Aug. 31, 2000 0.153 
May 11, 2001 0.999 Dec. 6, 2002 0.130 Feb. 4, 2000 0.267 Sept. 1, 2000 0.229 
May 14, 2001 0.259 Dec. 9, 2002 0.096 Feb. 7, 2000 0.039 Sept. 4, 2000 0.012 
May 15, 2001 0.010 Dec. 10, 2002 0.003 Feb. 8, 2000 0.004 Sept. 5, 2000 0.036 
May 16, 2001 0.097 Dec. 11, 2002 0.004 Feb. 9, 2000 0.008 Sept. 6, 2000 0.011 
        
Aug. 24, 2001 0.046 Feb. 28, 2003 0.999* Mar. 10, 2000 0.134 Sept. 29, 2000 1.000* 
Aug. 27, 2001 0.087 Mar. 3, 2003 0.769 Mar.13, 2000 0.048 Oct. 2, 2000 0.406 
Aug. 28, 2001 0.015 Mar. 4, 2003 0.587 Mar. 14, 2000 0.018 Oct. 3, 2000 0.090 
Aug. 29, 2001 1.000 Mar. 5, 2003 0.212 Mar. 15, 2000 0.012 Oct. 4, 2000 0.012 
Aug. 30, 2001 0.903* Mar. 6, 2003 0.099 Mar. 16, 2000 0.003 Oct. 5, 2000 0.952 
Aug. 31, 2001 0.576* Mar. 7, 2003 0.157 Mar. 17, 2000 0.004 Oct. 6, 2000 0.796 
Sept. 3, 2001 0.235 Mar. 10, 2003 0.018 Mar. 20, 2000 0.081 Oct. 9, 2000 0.183 
Sept. 4, 2001 0.043 Mar. 11, 2003 1.000 Mar. 21, 2000 0.091 Oct. 10, 2000 0.015 
Sept. 5, 2001 0.008 Mar. 12, 2003 0.602 Mar. 22, 2000 1.000** Oct. 11, 2000 0.005 
        
Sept. 11, 2001 0.009 May. 30, 2003 0.546* April 21, 2000 0.605**   
Sept. 12, 2001 1.000 Jun. 2, 2003 0.097 April 24, 2000 0.215   
Sept. 13, 2001 0.601 Jun. 3, 2003 0.063 April 25, 2000 0.537   
Sept. 14, 2001 0.140 Jun. 4, 2003 1.000 April 26, 2000 0.125   
Sept. 17, 2001 0.037 Jun. 5, 2003 0.528 April 27, 2000 0.263   
Sept. 18, 2001 1.000** Jun. 6, 2003 0.178 April 28, 2000 1.000*   
Sept. 19, 2001 0.683** Jun. 9, 2003 0.121 May 1, 2000 0.263   
Sept. 20, 2001 0.947** Jun. 10, 2003 0.005 May 2, 2000 0.048   
Sept. 21, 2001 0.470** Jun. 11, 2003 0.038 May 3, 2000 0.035   

 
( )1

t t
P n∆ = Φ  is the ex-post probability of the occurrence of one jump at time t. The meeting days are recorded here in 
bold. DOWN (UP) contains those dates where the official (MRO) rate has moved downwards (upwards) by intervention. 
Those probabilities higher than 0.5 around the intervention date (± 4 days) which do not match with either the 
maintenance or end of the month period have also been recorded in bold. The symbol (*) denotes a date corresponding to 
any of the last two days of the month while (**) shows any of the last four days from the maintenance period. 
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around a meeting with the decision of ascending (descending) the rate, or zero otherwise. 

For the decision of neutral stance, we set the dummy variable denoted as neutral
tD  having a 

similar construction as the others. Regression I in Table 9 reports this kind of analysis 

where the dependent variable is the estimate of tλ , denoted as � tλ , which is obtained from 

model B in Table 6. The explanatory variables are: the three dummy variables mentioned 

above and also, mp
tD  and m

tD  if either the end of maintenance or the end of the month 

period can take place for the selected window (Table 8 exhibits a few situations of 

coincidence). As a result, the ex-ante probability scores the highest value for downward 

movements while it seems to be similar for either an upward movement or no intervention 

in the MRO rate. The adjusted R-squared statistic for this regression is 0.665. Meanwhile, 

regression II tries to eliminate the effect of either the maintenance period or the end of the 

month by adjusting the value of the ex-ante probability. Again, it holds the same 

conclusion as before. Finally, regression III is the same as regression I but now the 

dependent variable is the ex-ante probability. Comparing the parameter estimates in both 

regressions I and III, we can appreciate the largest change of value in the downward 

intervention where 3β  moves from 0.224 to 0.353. Surprisingly, this asymmetric behavior 

about the impact of the official rate reduction by the ECB having more influence on the 

dynamics of the EONIA rate is also verified in other markets such as the LIBOR rate, see 

Guan et al. (2005). In this case, the Federal Open Market Committee (FOMC) contributes 

more in changing the parameters implied in a jump-diffusion specification for the LIBOR 

rate upon decisions on federal funds rate reductions than other situations. 

 

6.  A regime-switching process with jumps 
 

So far, a single-regime model is set for the mean-reversion of EONIA to the target 

rate. This leads to assuming that the speed of reversion, i.e. either α  for the single 

reversion or both 1α  and 2α  for the double reversion – see Table 4 for the two cases –, are 

the same throughout the sample. A more general model such as a regime switching (RS) 

process has the advantage, for instance, of being more flexible by allowing a different 

speed of reversion at different times throughout the sample. The RS process lets to capture 

several patterns which could be hidden under a single regime and hence, a better  
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Table 9  The behavior of the time-varying tλ  around the ECB’s meetings 

Regression I: 1 2 3 4 5

neutral up down mp m
t t t t t t tD D D D Dλ β β β β β ε= + + + + +� ; where tλ�  is the estimate of the 

time-varying intensity tλ  defined in (10) where the coefficients of tλ  are exhibited in model B from Table 6. 

Regression II: *

1 2 3

neutral up down

t t t t tD D Dλ β β β ε= + + + ; where *
tλ  is the adjusted tλ�  defined as: 

*
3 4( )mp m

tt t tD Dλ λ δ δ= − +� � �  such that 3δ�  and 4δ�  denote the estimates of 3δ  and 4δ  respectively that 
correspond to model B in Table 6. 

Regression  III: similar to regression I but now the dependent variable is the ex-post probability. 

 

 Neutral 
meetings 

Upward 
interventions 

Downward 
interventions 

End of the 
maintenance 

period 

End of the 
month  

 1β  2β  3β  4β  5β  R-squared 

Regression  I 0.1509 
(32.388) 

0.1657 
(10.657) 

0.2245 
(11.940) 

0.4178 
(40.178) 

0.3640 
(27.335) 0.6658 

Regression  II 0.1841 
(41.465) 

0.1817 
(11.761) 

0.2361 
(12.457) ------- ------ 0.0089 

Regression  III 0.1186 
(13.298) 

0.1825 
(4.705) 

0.3528 
(7.996) 

0.4522 
(17.053) 

0.3950 
(8.900) 0.3178 

 

t
D  is a dummy variable: 1neutral

t
D = , 1up

t
D =  and 1down

t
D =  if the four days around the ECB’s meetings in which 

interest rate did not change, increased and decreased respectively. 1mp

t
D =  if the last four days of the maintenance 

period and 1m

t
D =  if the last two days of each month. Estimation is carried out using the least squares method. White 

heteroskedasticity-consistent t-statistics are in parentheses.  

 
 

understanding of the EONIA dynamics. Empirical evidence reported among others by 

Gray (1996), Dahlquist and Gray (2000), Ang and Bekaert (2002a, 2002b) find two states 

characterised by a low-volatility/random-walk (or near random walk) regime where the 

short rate spends the majority of the time and a high-volatility/mean-reverting regime. A 

possible answer to this behavior could be found in Mankiw and Miron (1986). They argue 

that the smoothing actions of the US Fed make the short rate behave like a random walk 

corresponding to ‘normal’ periods, that is why the volatility is low under this regime. 

Nevertheless, when there are extraordinary shocks, interest rates shift to another state or 

second regime where its volatility is higher and they show a strong mean-reversion. 

 

We develop an extension of our jump process to accommodate regime changes in 

the dynamics of EONIA. This approach can be found in Das (2002) though our model is 
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more general in the sense that we incorporate the ARCH (1) structure, time varying 

transition probabilities and so forth. In short, the new model accommodates either a single 

or double mean reversion, jump structure and ARCH (1) within each regime. Gray (1996) 

implements a generalized RS model with a GARCH (1,1) structure augmented with the 

level of the interest rate opposite to a low-order ARCH process as in either Cai (1994) or 

Hamilton and Susmel (1994). Our model will be in the line of these last two works in the 

sense of implementing an ARCH (1) structure and keeping the parameter of the ARCH 

effect, denoted as 1ω , to be the same in both states.  

 

6.1 The model 

 

Since we postulate a two regime process, let tS  denote the unobserved state or latent 

variable of the system where 0 or  1tS = . tS  is assumed to follow a first-order Markov 

process with the transition probabilities: 

 

               
1 00 1 00

1 11 1 11

0 0 ; 1 0 1

1 1 ; 0 1 1 .

t t t t

t t t t

P S S p P S S p

P S S p P S S p

− −

− −

 = =  =  = =  = −   

 = =  =  = =  = −   

                         (11) 

 

where 00 0 0exp( ) /(1 exp( ))p q q= +  and 11 1 1exp( ) /(1 exp( ))p q q= +  are defined as logistic 

functions. Note that these transition probabilities are constant at first. We will also 

implement the RS model with time-varying transition probabilities. This augmented model 

will be shown in this section later.  

 

For our ARCH-Poisson-Gaussian with shifting regime specification, we will 

impose several restrictions on the number of the parameters and also easier specifications 

for the behavior of tλ  in order to make the estimation of the new model feasible as we will 

comment later. We will implement for tµ  either a simple  mean  reversion process,  that  is 
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( )

( )

*
, 1 1

0 1

;

1 ;

t

t

t

S
S t t t

S
t t

r r

S S

µ α

α α α

− −= −

= − +

                                            (12) 

 

or a double mean reversion process: 

 

                                 
( ) ( )

( )

* *
, 1 1 1 2 1 1

0 1

;

1 ;

t t

t

t

S S
S t t t t t

S
k k t k t

r r r r

S S

µ α α

α α α

+ −

− − − −= − + −

= − +

                              (13) 

 

where 1,2k = . For the ARCH (1) process defined in (7), we will only assume a shifting 

regime specification for the parameter 0ω : 

 

                                             
( )

( )

22
, 0 1 1 2 1

0 1
0 0 0

;

1 .

t

t

t

S
S t t t t

S
t t

r E r

S S

σ ω ω

ω ω ω

− − −= + ∆ − ∆  

= − +

                                   (14) 

 

A constant variance model will be defined as the above process subject to the restriction of 

1 0ω = . With respect to the jump component, we will make the following assumptions on 

both tλ  and the volatility of the jump size, i.e. 

 

                                                     ( )0 11
tS t tS Sλ λ λ= − +                                                     (15) 

and 

 

                                                    ( )0 11 .
tS t tS Sψ ψ ψ= − +                                                  (16) 

 

Note that we assume that tλ  is constant instead of being time-varying as shown in equation 

(10) in order to simplify the model. The same reason holds for the mean of the jump size 

that is supposed to be the same value across the different states. Here, we will adopt the 

specification of ( )*
1 1t t tr rθ γ − −= − .  
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Section A.1 from the Appendix shows the construction of the likelihood function 

for this process.  

 

 

6.2 The conditional mean and variance 

 

The conditional mean of our RS model with jumps is 

 

                                            [ ] ( )1 0, 0, 0, 1,1t t t t t tE r p pµ µ− ∆ = + −� �                                           (17) 

 

where 0, 10t t tp P S −≡  = Φ    and 0,1 tp−  are the ex-ante probabilities of states 0 and 1 – see 

section A.1 from Appendix – and ,tS tµ�  is the conditional mean of state tS  at date t : 

 

, ,t t tS t S t S tµ µ λ θ= +� . 

 

The conditional variance is obtained as 

 

           
( ) ( ) ( )

( ) ( )( ) ( )

22
1 1 1

22 2
0, 0, 0, 0, 1, 1, 0, 0, 0, 1,1 1

t t t t t t

t t t t t t t t t t

V r E r E r

p h p h p pµ µ µ µ

− − −∆ = ∆ − ∆

 = + + − + − + − � � � �
       (18) 

 

where ,tS th  is the conditional variance of state tS  at date t : 

 

                                            ( )2 2 2
, , 1

t t t t tS t S t S S S th σ λ ψ λ θ = + + −  .                                       (19) 

 

6.3 Time varying transition probabilities 

 

We will also implement an augmentation of the above RS but a time-varying structure for 

the transition probabilities in equation (11) – denoted as ,ii tp  where 0,1i =  – is allowed. 

We will assume two alternative specifications: 
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( )
( )

*
0 1 1 1

, *
0 1 1 1

exp

1 exp

i i
t t

ii t i i
t t

r r
p

r r

β β

β β
− −

− −

+ −
=

+ + −
                                             (20) 

and 

 

                               
( )
( )

*
0 1 1 1 2 3

, *
0 1 1 1 2 3

exp

1 exp

i i i mp i m
t t t t

ii t i i i mp i m
t t t t

r r D D
p

r r D D

β β β β

β β β β
− −

− −

+ − + +
=

+ + − + +
                              (21) 

 

where , 1ii t t tp P S i S i−≡  = =    such that 0,1i = 12. Equation (20) depends on the size of the 

spread at time 1t − . Note that the behavior of the spread time series will depend mainly on 

the dynamics of the EONIA rate rather than the evolution of the official rate which hardly 

changes as it is shown in Figure 1. This model nests the constant transition probability, or 

equation (11), when 0 1
1 1 0β β= = . Meanwhile, equation (21), which nests (20) when 

2 3 0i iβ β= = , also incorporates the well known seasonal pattern captured by both the 

maintenance period (mp) and the end of the month (m) effect. Equation (21) nests the 

constant transition probability when 1 2 3 0i i iβ β β= = = . 

 

6.4 Results 

 

Table 10 exhibits the estimates of the RS model with constant transition probabilities under 

alternative specifications of both the conditional mean ,tS tµ  (single or double mean 

reversion) and conditional variance 2
,tS tσ  (constant variance or ARCH (1) structure). A 

total of five models are estimated: model I is a Gaussian process with ARCH (1) structure 

and single mean reversion in each state. Remark on the other models in Table 10, and also 

in Table 11 as we will comment in short, that states 0 and 1 will always be characterised by 

a Poisson-Gaussian process under alternative specifications of both the mean reversion and 

                                                 
12 Note that 

, 1ii t t tp P S i S i−≡  = =    is an abbreviated form. Equation (20) must be really expressed as 

, 1 1,ii t t t tp P S i S i− −≡  = = Γ    where 1t−Γ  is an information set that affects the likelihood of regime switches. In this case, 

*
1 1 1t t tr r− − −Γ = − . Meanwhile, in equation (21), [ ], 1 1, ,ii t t t t tp P S i S i− −≡ = = Γ ϒ  where tϒ  is a different information set at 

time t containing the seasonal components mp
tD  and m

tD  which are known at time t-1. 
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the conditional variance. Model II shows single mean reversion and constant variance, 

model III presents single mean reversion but an ARCH (1) structure, model IV shows a 

double mean reversion and constant variance and finally, a double mean reversion but an 

ARCH (1) structure is the specification of model V. Models III and V nest models II and 

IV when there is no ARCH effect, i.e. 1 0ω = , respectively. Note also that model IV nests 

model II when there is no a double mean reversion, i.e. 1 2
t tS Sα α= , and so on. The models 

in Table 11, denoted as VI to IX, are characterised as follows: models VI and VII are 

similar to models II and III respectively, but now with a time varying transition probability 

,ii tp  defined in (20); meanwhile models VIII and IX are the same as models II and III 

respectively but ,ii tp  is driven by equation (21). To ensure that we identify the global 

maximum we have reestimated each model with different sets of starting values. 

 

Looking at tables 10 and 11, we can appreciate some features: first, modeling the 

EONIA rate under a regime-switching ARCH process but without the introduction of the 

jump component in each state (model I) leads to the lowest values of both the likelihood 

function and SIC. For instance, model III which is the same as model I – that is, single 

mean reversion and ARCH (1) structure – but with a Poisson-Gaussian specification shows 

a SIC value of 2223.65 against 2128.49 for model I. This large difference about more than 

one hundred is due to the lack of the jump component in model I.  

 

Second, there is only ARCH (1) effect – the coefficient 1ω  is significant –in model 

I. It also holds that the magnitude of 1ω  decreases sharply going from model I to another 

model. For example, 1 0.0056ω =  in model III against 1= 0.4391ω  in model I. The reason 

is once we plug the jump component into each state in model I, and so we obtain model III, 

the ARCH contribution in the variance of each state becomes less important. If we take the 

conditional variance of state tS  at date t denoted as ,tS th  – see equation (19) – then we can 

observe that ,tS th  for model I is equal to the ARCH (1) component 2
,tS tσ  defined in equation 

(14) while ,tS th  for model III is the sum of the ARCH effect and the jump effect. Note that 

this last component is ( )2 21
t t tS S S tλ ψ λ θ + −  . 
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Table 10. Poisson-Gaussian model with a regime-switching process (constant transition probabilities) 
 

Daily data of EONIA rate covering the period January 1999 to December 2003. This table contains Poisson-Gaussian models with a 
regime-switching process and constant transition probabilities under different specifications for the conditional mean (single or double mean 
reversion) and conditional variance (constant or ARCH (1) variance). The system switches between two regimes, 0,1,tS =  where each state 
follows a Poisson-Gaussian process except model I (Gaussian process in each state). In each regime, the parameters for the conditional mean 

and variance with no jumps, denoted as 
,

t
S t

µ  and 2

,
t

S t
σ  respectively; the jump intensity 

t
S

λ ; and the jump volatility 
tSψ  are varied. The 

Markov chain is defined by the switching probabilities in equation (11). The ARCH (1) specification is 
1 2 1

2
, 0 1

2[ ( )]t

t t t t

S
S t r E rσ ω ω

− − −
= ∆ − ∆+  

where 0 1

0 0 0(1 )t

t

S

tS Sω ω ω−= + . The constant variance is defined as 2
, 0

t

t

S
S tσ ω= , i.e. the above process subject to 1 0ω = .  

  Single mean reversion Double mean reversion 

State Parameters 
( )

,

*

1 1

0 1(1 )
t

t

t

S t t t

S

S
t t

r r

S S

µ α

α α α

− −
= −

= − +
 

( ) ( )* *

1 1 1 1, 1 2

0 1 where

 

(1 )      1, 2

t t

t

t

S t t t t

S S
t

S
k k t k t

r r r r

S S k

µ α α

α α α

+ −

− − − −
= − + −

= − + =
 

  Gaussian Poisson-Gaussian 

  (I)  
ARCH (1) 

(II) 
Constant variance 

(III) 
ARCH (1) 

(IV) 
Constant variance 

(V) 
ARCH (1) 

0 0α  
-0.0421 
(-3.622) 

-0.0182 
(-0.993) 

-0.0273 
(-5.325) ------ ------ 

1 1α  
-0.5452 

(-10.343) 
0.0313 
(0.817) 

0.0875 
(2.286) ------ ------ 

0 0
1α  ------ ------ ------ -0.0206 

(-1.542) 
-0.0274 
(-4.634) 

1 1
1α  ------ ------ ------ 0.0234 

(0.968) 
0.0578 
(0.988) 

0 0
2α  ------ ------ ------ -1.0909 

(-123.61) 
-1.0855 

(-43.054) 

1 1
2α  ------ ------ ------ 0.1347 

(1.732) 
0.1709 
(2.168) 

0 0
0ω  0.00004 

(5.379) 
0.00003 
(7.267) 

0.00003 
(6.786) 

0.00004 
(6.669) 

0.00003 
(7.042) 

1 1
0ω  0.0365 

(6.946) 
0.0032 
(3.760) 

0.0033 
(5.120) 

0.0028 
(4.599) 

0.0030 
(4.136) 

both 1ω  0.4391 
(3.304) ------ 0.0056 

(1.380) ------ 0.0046 
(0.799) 

both γ  ------ -1.2783 
(-3.598) 

-1.8410 
(-7.547) 

-1.2612 
(-3.246) 

-1.6295 
(-3.269) 

0 0ψ  ------ 0.0058 
(1.951) 

0.0068 
(2.325) 

0.0064 
(1.135) 

0.0072 
(2.714) 

1 1ψ  ------ 0.2643 
(17.918) 

0.2519 
(15.092) 

0.2646 
(17.238) 

0.2521 
(14.020) 

0 0λ  ------ 0.1393 
(3.431) 

0.1127 
(5.310) 

0.1370 
(4.026) 

0.1292 
(4.430) 

1 1λ  ------ 0.4079 
(10.877) 

0.4146 
(10.480) 

0.3817 
(9.316) 

0.3739 
(8.283) 

0 00p  0.8339 
(41.623) 

0.8045 
(43.378) 

0.8016 
(47.075) 

0.8124 
(47.531) 

0.8095 
(48.605) 

1 11p  0.5901 
(12.661) 

0.7850 
(29.590) 

0.7703 
(32.667) 

0.8001 
(34.149) 

0.7732 
(22.023) 

 Log-L 
Function 2153.59 2255.01 2266.70 2273.10 2299.43 

 SIC 2128.49 2215.56 2223.65 2226.48 2249.22 

       
 

Estimation is undertaken using maximum-likelihood. Heteroskedasticity-Consistent t-statistics are in parentheses. 
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Table 11. Poisson-Gaussian models with a regime-switching process (time varying transition probabilities) 
 

Daily data of EONIA rate covering the period January 1999 to December 2003. This table contains Poisson-Gaussian models with a 
regime-switching process and time varying transition probabilities. The system switches between two regimes, 0,1,tS =  where each 
state follows a Poisson-Gaussian process. In each regime, the parameters for the conditional mean and variance with no jumps, denoted 

as ,tS tµ  and 2

,tS tσ  respectively; the jump intensity 
tSλ ; and the jump volatility 

tSψ  are varied. The Markov chain is defined by the 

switching probabilities [ ], 1ii t t tp P S i S i
−

≡ = =  where 0,1i =  and ( ),ii t tp xϕ=  where  ( ) ( ) ( )( )exp / 1 expt t tx x xϕ = + . The 

specification of ,tS tµ  and 2

,tS tσ  are respectively:  

( )
,

*

1 1

0 1
where (1 )     

t

t t

S t t t

S S

t tr r S Sµ α α α α
− −

= − = − +

( )2 0 1

, 0 1 1 2 1 0 0 0 1

2
where constant variance[ ( )]  (1 ) 0 :        ;t t

t

S S

S t t t t t tr E r S Sσ ω ω ω ω ω ω
− − −

= + ∆ − ∆ = − + =  

  ( )*

0 1 1 1,

i i

t tii tp r rϕ β β
− −

= + −  
*

0 1 1 1 2 3, ( )i i i mp i m

t t t tii tp r r D Dϕ β β β β
− −

= + − + +  

State Parameters (VI) Constant variance (VII) ARCH (1) (VIII) Constant variance (IX) ARCH (1) 

0 0α  
-0.0236 
(-3.036) 

-0.0263 
(-4.981) 

-0.0311 
(-4.406) 

-0.0311 
(-5.450) 

1 1α  
0.0215 
(0.538) 

0.0479 
(1.399) 

0.0376 
(1.108) 

0.0491 
(1.371) 

0 0
0ω  0.00004 

(7.232) 
0.00003 
(7.116) 

0.00004 
(6.495) 

0.00003 
(5.173) 

1 1
0ω  0.0033 

(3.110) 
0.0038 
(5.668) 

0.0044 
(4.312) 

0.0043 
(4.734) 

Both 1ω  ------ 0.0047 
(1.345) ------ 0.0074 

(0.710) 

Both γ  -1.2727 
(-2.655) 

-1.7986 
(-5.486) 

-1.1190 
(-3.322) 

-1.5556 
(-5.120) 

0 0ψ  0.0061 
(2.006) 

0.0067 
(2.061) 

0.0241 
(4.266) 

0.0212 
(5.332) 

1 1ψ  0.2667 
(18.770) 

0.2601 
(15.787) 

0.2654 
(17.838) 

0.2607 
(16.575) 

0 0λ  0.1298 
(4.141) 

0.1135 
(6.637) 

0.1892 
(5.020) 

0.1762 
(6.137) 

1 1λ  0.4015 
(9.699) 

0.3918 
(9.871) 

0.4635 
(9.096) 

0.4403 
(8.776) 

0 0
0β  1.4681 

(6.505) 
1.3792 
(8.253) 

3.0148 
(7.968) 

2.8766 
(7.588) 

1 1
0β  0.0758 

(0.322) 
0.1176 
(0.495) 

-1.5327 
(-2.984) 

-1.3691 
(-2.700) 

0 0
1β  -1.6935 

(-0.471) 
-0.0874 
(-0.040) 

-2.7050 
(-0.556) 

-3.1237 
(-0.730) 

1 1
1β  9.9756 

(3.943) 
8.5354 
(4.415) 

16.0894 
(3.734) 

13.526 
(2.783) 

0 0
2β  ------ ------ -2.8226 

(-8.046) 
-2.6925 
(-8.001) 

1 1
2β  ------ ------ 16.7859 

(0.917) 
19.142 

(0.3556) 

0 0
3β  ------ ------ -2.8747 

(-7.788) 
-2.7674 
(-8.406) 

1 1
3β  ------ ------ 12.5492 

(0.427) 
11.525 
(2.559) 

 Log-Likelihood 
Function  2286.80 2293.21 2384.62 2393.14 

 SIC 2240.18 2243.00 2323.66 2328.59 
 
Estimation is undertaken using maximum-likelihood. Heteroskedasticity-Consistent t-statistics are in parentheses.  
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Third, both variance components, i.e. 0
tSω  from 2

,tS tσ  (no jump) and 2
tSψ  (jump), are 

higher in state 1 than in state 0. The intensity parameter, or the probability of occurring one 

jump, 
tSλ  is also higher in state 1. This suggests that state 0 is a period of lower volatility 

than state 1. In order to strengthen this result, a simple analysis based on the smoothed 

probability – see section A.2 in Appendix – with the criterion of 0 0.5t TP S = Φ  >   is 

established to identify the day t as regime 0 and so, regime 1 for the case of the above 

probability lower or equal to 0.5. Once we have set a regime to each day, we compute for 

instance the total conditional variance according to equation (18) for model IX – it makes 

the best scoring according to the SIC value – which is exhibited in Figure 3 and then, we 

split this sample into two parts corresponding each to states 0 and 1 respectively (state 0 

includes 805 days against 495 days for state 1) and compute both the mean and the 

standard deviation to each subsample. The mean of the daily variance in state 0 is 0.009 

with a standard deviation of 0.011 against a mean of 0.078 with a standard deviation of 

0.111 in state 1. Since the variation coefficient (standard deviation/mean) is rather the 

same for both samples, we can affirm that state 1 displays more volatility than state 0. 

 
Figure 3. Daily conditional variance (Regime switching with jumps) 
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The next question we wonder why regime 1 is more volatile. We find that the 

percentage of days containing only those days for either the end of the maintenance period 

(mp) or the end of month (m) tends to be higher in regime 1. It also holds that the 

percentage of days of the end of the maintenance period is always higher than the 

percentage of days of the end of the month in regime 1 in each model. Model IX shows an 

amount of 22.39% days in regime 0 corresponding to the total of both effects while a 

percentage of 36.16% in regime 1. The mp (m) effect represents in regime 0 a size of 

41.25% (68.33%) over the total days in the sample corresponding to the mp (m) effect. In 

short, since these magnitudes are rather the same across the different models, it means that 

mp (m) is higher (lower) in regime 1 but the size of both effects is higher in regime 1. In 

section 5 it was shown that the highest variance average was reached during the end of the 

maintenance period while the end of month was higher than the rest of days (o). Again, this 

empirical fact might help to understand why regime 1 exhibits more volatility than regime 

0 since both effects are more concentrated here. Finally, it is also prompt to understand 

why the probability of occurring a jump is higher in regime 1 since, as we mentioned in 

section 5, tλ  is higher for either mp or m than any other day (o) as Table 4 reports. 

 

Fourth, Model I shows a significant mean reversion in both states. This result is 

contrary to the evidence observed in the rest of the models in tables 10 and 11 

characterised by a unique regime of mean reversion. Nevertheless, we will concentrate on 

the behavior of all models except model I since its SIC value is pretty worse than the 

others as we commented before due to the lack of modeling the jump effect in each state. 

In short, the misspecification of jumps leads to model I to exhibit mean reversion in the 

two states but the introduction of jumps makes a higher performance, according to the SIC 

value, and shows a pattern of mean reversion completely different in each state that is more 

in accordance with the empirical evidence shown by Gray (1996) and so forth. 

Specifically, the sign of the mean reversion (both single and double) is always negative in 

state 0 while it is positive in state 1 (except for model I). This evidence suggests that the 

EONIA rate is mean reverting to the official rate in state 0 characterised by a period of low 

volatility while the mean reversion does not guarantee in state 1. It is held that the mean 

reversion (state 0) tends to be more significant under the ARCH (1) structure. Indeed, the 

mean reversion (single and double) is always significant, except for models II and IV 

(constant variance). It is also verified that the double mean reversion beats the single one. 
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An LRT statistic, which is distributed as ( )2 2χ  under the null or restricted model, is 36.18 

(p-value equals zero) and hence, a rejection of model II (single mean reversion) against 

model IV (double mean reversion). The same conclusion maintains under the ARCH (1) 

structure, i.e. model III is rejected in favor of model V.   

 

Last but not least, the models under time varying transition probabilities improve 

the performance13 in the sense of higher SIC values. An LRT statistic rejects the constant 

probability model II in favor of model VI. The LRT, which is also distributed ( )2 2χ , is 

63.58 and its p-value equals zero. We arrive at the same conclusion when the null and the 

alternative hypotheses are models III and VII respectively. Finally, an LRT statistic rejects 

model VI (model VII) in favor of model VIII (model IX). The LRT statistic, that is 

distributed ( )2 4χ , is 195.64 (199.86) and its p-value is zero (zero) again. Note also that 

most of the parameters of the time varying transition probability in equation (21) 

concerning models VIII and IX are significant. 

 

Finally, we must remark that our evidence on both low volatility and mean 

reversion in state 0 and the opposite in state 1 is different with respect to the other works 

cited previously. It is worth to emphasize that all those papers employ interest rate series 

having either a weekly or monthly frequency while we use daily data. The selection of a 

higher frequency might be a possible reason why this study brings out a different result. A 

possible answer to our results can be found in the analysis of the sign of the parameters 

which define ,ii tp  in the equations (20) and (21). If we take model VI or VII and consider 

an increase in the size of the spread *
1 1t tr r− −− . Since 0

1β  is negative (state 0), the 

probability of staying in this regime decreases as the size of the spread increases. 

Conversely, since 1
1β  is positive (state 1) the probability of staying in this regime increases 

as the size of the spread increases. Therefore, when the size of the spread raises – mainly 

due to a rise in the EONIA rate – the probability of staying or switching to regime 1 

increases. In short, high level of interest rates takes place in regime 1 in addition to both a 

higher probability of occurring jumps and the failure of holding the mean reversion in this 

                                                 
13 We do not estimate RS under double mean reversion with time varying transition probabilities. The reason is based on 
the large number of parameters we had to estimate.  
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state. Now, if we consider model VIII or IX, the same conclusion holds about the 

sensitivity of ,ii tp  to changes in *
1 1t tr r− −− , i.e. 0

1 0β <  and 1
1 0β > . The sensitivity of the 

end of the maintenance period or the end of month in regime 0 is measured through the 

parameters 0
2β  and 0

3β  respectively and they are negative while they show the opposite 

sign in regime 1. This evidence reinforces our suspicion or hypothesis that if tomorrow 

1mp
tD =  or 1m

tD =  then the probability of staying or switching to regime 1 increases.  

 

6.5 Regime classification 

 

To measure the quality of the regime classification we use the regime classification 

measure (RCM) proposed by Ang and Bekaert (2002a), defined for two states as 

 

1

1RCM 400 0 1
T

t T t T
t

P S P S
T =

= ×  = Φ ×  = Φ    ∑  

 

where t TP S i = Φ    is the smoothed probability of state i (see section A.2 in Appendix). 

RCM is between 0 and 100. A good regime classification is associated with low RCM 

statistic values. A value of 0 means perfect classification and a value of 100 implies no 

information about the regimes is revealed. It is shown that moving from constant to time 

varying transition probabilities produces an improvement. For example, consider the case 

of constant variance (ARCH structure) and single mean reversion: model II (model III) 

leads to a value of RCM equals 21.12 (23.78) which is higher than 19.79 (21.49) and 18.31 

(19.45) for models VI (VII) and VIII (IX) respectively. It is inferred from these results that 

a better classification is obtained with time varying transition probabilities. It also holds 

that the constant variance specification beats the ARCH structure. Note that model I, the 

only specification which does not incorporate jumps in any state, scores the worst 

classification with a value of 25.53 under a single mean reversion structure. Finally, the 

regime classification shown by the double mean reversion is worse than the single mean 

reversion: the RCM values corresponding to models IV and V are 38.21 and 23.06 

respectively. Contrary to the single mean reversion, the ARCH structure beats in this case.  
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7.  Out-of-sample performance 
 

 We estimate the parameters of a particular model over the in-sample period which 

are held fixed to compute a time series of conditional variances over the out-of-sample 

period. We repeat this process several times for alternative in-sample periods. Let 

[ ]1t t t tr E rε −= ∆ − ∆  denote the innovation to the interest rate process. We compare the 

conditional variance 2
1t tE ε−     with the actual squared innovation 2

tε . The difference 

between 2
tε  and 2

1t tE ε−     is the error denoted as te . We will use the following common 

statistics for our in-sample and out-of-sample performance: the root mean squared error 

(RMSE), the mean absolute error (MAE) and the 2R  measure from the regression with 

dependent and independent variables 2
tε  and 2

1t tE ε−     respectively and imposing an 

intercept of zero and a slope of one. So, 2R  becomes a direct measure of the goodness of 

fit of the variance forecast. Note that negative values of 2R  are possible. For a time series 

te , these statistics are defined as: 

 

2 2 2 4

1 1 1 1

1 1RMSE ; MAE and 1 /
T T T T

t t t t
t t t t

e e R e
T T

ε
= = = =

= = = −∑ ∑ ∑ ∑ . 

 

 Tables 12 and 13 exhibit the in-sample and out-of-sample tests for different periods 

respectively. We compare the performance of some models of both one regime and two 

regimes. From the first group, we select both the single and the double mean reverting 

ARCH (1)-Poisson-Gaussian processes where tλ  is constant, which represent models 2 and 

4 from Table 3, and the double mean reverting ARCH-Poisson-Gaussian but with an 

autoregressive time varying tλ  defined in equation (10), i.e. model B in Table 6. In the 

second group, we select the ARCH-Gaussian with shifting regime specification – or model 

I in Table 10 – and all constant variance Poisson-Gaussian with shifting regime 

specifications: models II and IV in Table 10 (constant transition probabilities) and models 

VI and VIII in Table 11 (time varying transition probabilities). To shorten, we do not 

report the case of the ARCH specification for the two regime models since the 
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performance of each model is worse than the one nested under the constant variance 

specification. 

 

 With regard to the in-sample analysis: first, the best fit – according to either the 

lowest value of MAE or RMSE – is classified depending on the mean reversion (single or 

double). For the single mean reversion, we select model VIII under both statistics. 

Meanwhile, for the double mean reversion, we select model 4 under MAE but model IV 

under RMSE. Note that the MAE values are rather the same for models 4 and B. 

Nevertheless, under RMSE model B beats. Second, if we compare a double mean reversion 

against a single one, it occurs that under one regime the double mean reversion is always 

better under both statistics but it does not happen the same under two regimes. Indeed, 

model IV is sometimes better than models I and II under RMSE but it never wins under 

MAE. Note that this last comparison is made under constant transition probabilities. 

Finally, comparing one regime with two regimes it happens that model 4 beats under MAE 

but model VIII beats under RMSE. There is also an improvement going from constant to 

time varying transition probability models, mainly because of the introduction of the 

dummy variables mp
tD  and m

tD  but not *
1 1t tr r− −− . Specifically, compare models II and 

VIII.  

 

In relation to the 2R  measure, note that it is always positive under any two regime 

specification reaching the best in-sample forecasting under model VIII. Nevertheless, 

under one regime specification 2R  is always negative for models 2 and 4 but it is always 

positive for model B. The 2R  values for model B are higher than those of model I except 

for the first period, that spans from January 1, 1999 to December 30, 2003, but they score 

the worst performance respecting the remaining two regime models. Negative values of 
2R  occur when the in-sample daily variance forecast is much higher than the actual daily 

variance measured through 2
tε . Hence, models 2 and 4 tend to an in-sample forecast over 

the actual variance. 

 

With respect to the out-of-sample analysis: first, the best forecast – again according 

to either the lowest value of MAE or RMSE – is classified depending on the mean 

reversion (single or double). For the single mean reversion, we select model 2 under  MAE  
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Table 12. In-sample specification tests 
 

 
Daily data of EONIA rate covering the period January 1999 to March 2005, a total of 1628 observations. This table contains mean absolute 

errors (MAE), root mean squared errors (RMSE) where the error te  is the difference between the actual daily variance 2( tε  where 

1[ ])t t t tr E rε
−

= ∆ − ∆  and the conditional expected variance
1

2( [ ])
t tE ε
−

 and the 2R  measure - with constant and slope equal zero and one 

respectively – defined as 2 2 4

1 1

1 /
T T

t t

t t

R e ε
= =

= −∑ ∑ . 

 
  One regime Two regimes 

Period 
(simple size) Statistic Table 3 Table 6 Table 10 Table 11 

  Model 2 Model 4 Model B Model I Model II Model IV Model VI Model VIII 
Jan 1,1999-
Dec 30, 2003 
(1302) 

MAE 
RMSE 

2R  

0.0270    
0.0777    
-0.1677 

0.0225     
0.0616 
-0.0734 

0.0226 
0.0587 
0.1517 

0.0245    
0.0590     
0.1555 

0.0259     
0.0514     
0.2295 

0.0258     
0.0516     
0.1872 

0.0264     
0.0534     
0.2001 

0.0230      
0.0497      
0.3116 

Jan 1999-
Mar 3, 2004 
(1348) 

MAE 
RMSE 

2R  

0.0263     
0.0766 
-0.1749 

0.0219     
0.0607 
-0.0809 

0.0220 
0.0581 
0.1508 

0.0240    
0.0589     
0.1405 

0.0250     
0.0502     
0.2382 

0.0249     
0.0505     
0.1910 

0.0259     
0.0530     
0.1869 

0.0224      
0.0489      
0.3094 

Jan 1999-
May 5, 2004 
(1393) 

MAE 
RMSE 

2R  

0.0263     
0.0770 
-0.1851 

0.0219     
0.0611 
-0.0772 

0.0219 
0.0583 
0.1563 

0.0239    
0.0590     
0.1407 

0.0248     
0.0501     
0.2408 

0.0244     
0.0494     
0.2102 

0.0256     
0.0525     
0.1985 

0.0220      
0.0484      
0.3171 

Jan 1, 1999-
Jun 30, 2004 
(1433) 

MAE 
RMSE 

2R  

0.0257     
0.0758 
-0.1779 

0.0215     
0.0603 
-0.0773 

0.0216 
0.0578 
0.1589 

0.0233    
0.0578     
0.1504 

0.0243     
0.0493     
0.2460 

0.0239     
0.0492     
0.2126 

0.0246     
0.0508     
0.2261 

0.0214      
0.0475      
0.3245 

Jan 1, 1999-
Sep 1, 2004 
(1478) 

MAE 
RMSE 

2R  

0.0254     
0.0753 
-0.1852 

0.0214     
0.0601 
-0.0781 

0.0214 
0.0575 
0.1584 

0.0230    
0.0575     
0.1455 

0.0237     
0.0484     
0.2558 

0.0234     
0.0484     
0.2208 

0.0239     
0.0496     
0.2415 

0.0208      
0.0463      
0.3344 

Jan 1, 1999-
Nov 3, 2004 
(1523) 

MAE 
RMSE 

2R  

0.0252     
0.0749 
-0.1671 

0.0213     
0.0602 
-0.0686 

0.0214 
0.0580 
0.1579 

0.0231    
0.0581     
0.1388 

0.0236 
0.0482 
0.2608 

0.0234     
0.0484     
0.2243 

0.0236     
0.0491     
0.2532 

0.0207      
0.0460      
0.3381 

Jan 1, 1999-
Jan 5, 2005 
(1568) 

MAE 
RMSE 

2R  

0.0244     
0.0735 
-0.1564 

0.0206     
0.0592 
-0.0689 

0.0207 
0.0568 
0.1563 

0.0225    
0.0578     
0.1313 

0.0236 
0.0489 
0.2212 

0.0234     
0.0488     
0.1908 

0.0235     
0.0493     
0.2316 

0.0204      
0.0458      
0.3286 

 
 

except for the first two periods where model I scores the highest performance. 

Nevertheless, we choose model I under RMSE except for the last two periods where model 

2 is the best. For the double mean reversion, we select model 4 under MAE but model IV 

under RMSE except for the last two periods where model 4 is the winner again. If we 

compare models 4 and B, it holds that under RMSE model B beats model 4 except for the 

last two periods. Second, if we compare a double mean reversion against a single one, it 

occurs that under one regime model 2 is always better under MAE. Meanwhile, under 

RMSE model B hits except for the last two periods where model 2 beats. For two regimes, 

model I is the winner under MAE but there is a trade-off between models I and IV 

depending on the selected period under RMSE. Again, this comparison is under constant 
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transition probabilities. Finally, comparing one regime against two regimes it happens that 

model I beats under MAE until July 1, 2004 and afterward model 2 beats. Models 4, I and 

IV beat depending on the selected period under RMSE though the two regime models is 

better in most of the periods. Contrary to the in-sample analysis, there is no an 

improvement going from constant to time varying transition probability models.  

 

 The 2R  measure is positive for all the periods except the last two ones. For the case 

of 2 0R > , model I scores the highest value. 2R  is also negative for the period going from 

September 2, 2004 to March 30, 2005 but only for model 2. The evidence of 2 0R <  in the 

last two periods suggests that all models tend to forecast systematically daily variances 

higher that the actual variances. Note that this over prediction is lower for model 2. 

 

8.  Conclusions 
 

This paper analyses the daily time-series of the Euro overnight interest rate 

(EONIA). We conclude that jumps are an essential component of modeling EONIA. The 

different models we implement contribute to a much better improvement in-sample fit once 

jumps are considered. Three effects such as the end of maintenance period effect, the 

calendar effect and the meeting effect show evidence of the existence of jumps. These 

effects have been considered for modeling jumps and specifically, the jump intensity or the 

ex-ante probability of occurring one jump. We find that both the end of maintenance 

period effect and the calendar effect cause greater jumps than the effect by the meetings of 

the Governing Council of the ECB. The lowest jump intensity corresponding to the days 

on which none of the effects occur leads to the conclusion that the main causes of the 

jumps are covered by our model. It also occurs that the persistence of the ARCH effects 

tend to decrease with the introduction of jumps. 

 

The ECB’s aim of keeping the overnight rate next to the official rate seems to 

sustain given the high level of reversion that empirical evidence suggests. We have 

analysed whether the speed of reversion is different when EONIA is higher than the 

official rate to when it is lower. It suggests that reversion is much greater in the latter case. 

In short, a two mean reversion specification has been implemented giving better results 

than a one mean reversion process. We have also tested the existence of overreaction in the  
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Table 13. Out-of-sample specification tests 
 

 
Daily data of EONIA rate covering the period January 1999 to March 2005, a total of 1628 observations. This table contains mean absolute 

errors (MAE), root mean squared errors (RMSE) where the error te  is the difference between the actual daily variance 2( tε  where 

1
[ ])

t t t t
r E rε

−
= ∆ − ∆  and the conditional expected variance

1

2( [ ])
t tE ε
−

 and the 2R  measure - with constant and slope equal zero and one 

respectively – defined as 2 2 4

1 1

1 /
T T

t t

t t

R e ε
= =

= −∑ ∑ . 

 
  One regime Two regimes 

Period 
(simple size) Statistic Table 3 Table 6 Table 10 Table 11 

  Model 2 Model 4 Model B Model I Model II Model IV Model VI Model VIII 
Dec 31,2003-
Mar 30, 2005 
(326) 

MAE 
RMSE 

2R  

0.0130    
0.0398    
0.0591 

0.0131     
0.0398     
0.0675 

0.0148 
0.0392 
0.2081 

0.0126    
0.0284     
0.3361 

0.0149     
0.0301     
0.1933 

0.0140     
0.0291     
0.2384 

0.0147     
0.0318     
0.1036 

0.0130      
0.0312       
0.1622 

Mar 4, 2004-
Mar 30, 2005 
(280) 

MAE 
RMSE 

2R  

0.0135    
0.0427    
0.0651 

0.0135     
0.0426     
0.0733 

0.0153 
0.0417 
0.2233 

0.0128    
0.0303     
0.3543 

0.0151     
0.0316     
0.2293 

0.0142     
0.0307     
0.2672 

0.0151     
0.0340     
0.1166 

0.0135      
0.0329      
0.1892 

May 6, 2004-
Mar 30, 2005 
(235) 

MAE 
RMSE 

2R  

0.0112     
0.0360     
0.0190 

0.0113     
0.0357     
0.0321 

0.0134 
0.0350 
0.1866 

0.0118    
0.0258     
0.3149 

0.0140     
0.0267     
0.1865 

0.0132     
0.0256     
0.2397 

0.0140     
0.0284     
0.0840 

0.0126      
0.0277       
0.1489 

Jul 1, 2004-
Mar 30, 2005 
(195) 

MAE 
RMSE 

2R  

0.0111     
0.0386     
0.0188 

0.0113     
0.0385     
0.0401 

0.0139 
0.0379 
0.1929 

0.0118    
0.0273     
0.3274 

0.0144     
0.0285     
0.1943 

0.0135     
0.0273     
0.2529 

0.0144     
0.0300     
0.1153 

0.0131      
0.0295       
0.1648 

Sep 2, 2004-
Mar 30, 2005 
(150) 

MAE 
RMSE 

2R  

0.0102     
0.0392 
-0.0222 

0.0104     
0.0389     
0.0066 

0.0133 
0.0389 
0.1532 

0.0112   
0.0263     
0.3736 

0.0139     
0.0269     
0.2394 

0.0131     
0.0260     
0.2847 

0.0139     
0.0287     
0.1594 

0.0124      
0.0281       
0.1985 

Nov 4, 2004-
Mar 30, 2005 
(105) 

MAE 
RMSE 

2R  

0.0043     
0.0060 
-0.7723 

0.0045 
0.0057 
-0.6926 

0.0083 
0.0118 
-4.7860 

0.0079    
0.0096     
-3.0637 

0.0116 
0.0141 
-7.8151 

0.0110     
0.0136 
-7.372 

0.0112     
0.0136 
-7.1741 

0.0105      
0.0157 
-9.7939 

Jan 6, 2005-
Mar 30, 2005 
(60) 

MAE 
RMSE 

2R  

0.0038     
0.0047 
-1.3531 

0.0040     
0.0046     
-2.0029 

0.00903 
0.01267 
-23.945 

0.0072    
0.0087     
-7.4391 

0.0102 
0.0123 

-17.9586 

0.0094     
0.0113 
-17.957 

0.0096     
0.0111 
-13.918 

0.0101      
0.0149 
-30.128 

 

 

market as another possible factor to explain the behavior of the overnight rate. This study 

has been carried out by imposing a certain dynamics to the jump intensity. It holds that the 

overreaction level is approximately twice as big as the “continuation” level. 

 

The first two models implemented here are based on extensions of the well-known 

Poisson-Gaussian-ARCH structure. The difference between the two candidates can be 

found in the dynamics of the jump intensity tλ . Our first approach consists of a piecewise 

function where tλ  captures the three effects mentioned before. The second model exhibits 

a really time-varying pattern for tλ , in concrete, the autoregressive conditional jump 
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intensity (ARJI) by Chan and Maheu (2002) which also includes both the end of the 

maintenance period and the calendar effects since these effects behave like seasonal 

components. We conclude that both models drive to the same conclusions though the last 

one makes a better performance. Under the ARJI dynamics, we obtain daily time-varying 

ex-post probabilities which can be used to understand better the reaction of EONIA around 

the ECB’s meetings.  

 

Finally, we develop a two regime-switching model where each state is driven by an 

ARCH-Poisson-Gaussian under different specifications for the transition probabilities. The 

empirical results indicate that there is one regime characterised by high volatility and no 

reversion to the official rate and the other by low volatility and mean reversion. This 

evidence is agreed with other works such as Gray (1996) and so forth in the sense that the 

mean reversion does not always hold, that is why two regimes might result to be more 

appropriate than a single regime process to model interest rates. Moreover, two regime 

models outperform single regime ones in most cases in our out-of-sample forecasting 

analysis. According to our more generalized structure for the transition probability (a time-

varying function depending on the size of the spread – the difference in absolute value 

between the official rate and the EONIA –, the end of the maintenance period and the 

calendar effects), it is shown that the probability of staying or switching to the regime of 

high volatility/no mean reversion is higher when any of these two seasonal effects happen. 

This might be a possible reason why there is more volatility in this period of no reversion 

since these seasonal components, which tend to concentrate here, lead to more volatility as 

we showed in other sections before. This regime is also characterised by a higher 

probability of occurring jumps and higher levels of interest rates. 
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Appendix 
 

A.1) Likelihood function 

 

The density of tr∆  in each state is: 

 

( ) ( ) ( ) ( )1 1 1, 1 , 0, , 1,
t tt t t S t t t t S t t t tf r S f r S n f r S nλ λ− − −∆ Φ = − × ∆ ∆ = Φ + × ∆ ∆ = Φ  

 

such that 

( )
( )

( )
( )

2

,
1 2 22 2

,,

1, , exp
22

t

t tt t

t S t t
t t t t

S t SS t S

r j
f r S n j

jj

µ θ

σ ψπ σ ψ
−

 ∆ − − ∆ ∆ = Φ = −
 ++  

. 

 

Finally, the conditional density of tr∆  for this model is: 

 

( ) ( ) ( )1 0, 1 1, 10, 1,t t t t t t t t t tf r p f r S p f r S− − −∆ Φ = × ∆ = Φ + × ∆ = Φ  

 

where , 1tS t t tp P S i −≡  = Φ    for 0,1i =  such that 

 

( )0, 00 1 1 11 1 1

1, 0,

0 1 1 ;

1 ;

t t t t t

t t

p p P S p P S

p p

− − − −= ×  = Φ  + − ×  = Φ    

= −
 

 

where both 1 10t tP S − − = Φ    and 1 11t tP S − − = Φ    denote the ex-post or filtered 

probabilities from the previous period. The filtered probabilities follow Bayes’ Theorem: 

 

( )
( )

1 1

1

0 0,
0 ; 1 1 0 .t t t t t

t t t t t t
t t

P S f r S
P S P S P S

f r
− −

−

 = Φ × ∆ = Φ  = Φ  =  = Φ  = −  = Φ      ∆ Φ
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Finally, the log-likelihood is obtained as ( )1
1

ln
T

t t
t

f r −
=

∆ Φ∑  where T is the sample size.  

 

A.2) Smoothed probabilities 

 

The smoothed probabilities t TP S Φ   , where 1,2,...,t T= , are also of interest in 

determining if and when regime switches occur. These are obtained by the smoothing 

algorithm in Kim and Nelson (1999): 

 
1

1
0

,t T t t T
j

P S i P S i S j+
=

 = Φ  =  = = Φ    ∑  

where 

 

1 1
1

1

, t T t t t t
t t T

t t

P S j P S i P S j S i
P S i S j

P S j
+ +

+
+

 = Φ ×  = Φ ×  = =       = = Φ  =   = Φ  
. 
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