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A MODEL OF IMMIGRATION, INTEGRATION AND CULTURAL
TRANSMISSION OF SOCIAL NORMS.

Friederike Mengel

ABSTRACT

I present and study an evolutionary model of immigration and cultural
transmission of social norms in a set-up where agents are repeatedly matched
to play a one-shot interaction prisoner’s dilemma. Matching can be non-random
due to limited integration (or population viscosity). The latter refers to a
tendency of individuals to have a higher rate of interaction with individuals of
their type than with similar numbers of other agents. I derive a cultural
transmission mechanism in order to examine the influence of viscosity and of
other institutional characteristics of society on the evolutionary selection of pro-
social norms. The main findings are that strict norms, sustained by strong
internal punishment, need either viscosity or strong institutional pressures to
persist, while norms of intermediate strength persist under a variety of
institutional characteristics. Endogenizing norm strength allows to identify two
scenarios in which pro-social norms survive: One of rigidity in which
separation (high viscosity) leads to monomorphic equilibria with strict norms
for cooperation. And one of integration (low viscosity) where intermediate
norms persist in polymorphic equilibria. Furthermore, with endogenous normes,

viscosity and cooperation are not linked in a monotone way.

JEL classification: C70, C73, Z13.



1 Introduction

In the last decades Europe has experienced a marked rise in immigration and
migration policy is one of the most fiercely debated issues in many european
countries. Economists have been quick to analyze some of the consequences of
migration on the host countries’ economies. Topics studied include the effect
of migration on wages, employment or the welfare state.! One issue, though,
that has been mostly neglected is the impact of immigration on culture or more
precisely on social norms prevailing in a society, in spite of the fact that this is
one of the most widely discussed topics in european societies nowadays.? Maybe
people worry just as much about the erosion of social norms and cultural values
as a consequence of migration as they do worry about wages and jobs. The
extent to which migration impacts culture and social norms is clearly linked to
the issue of integration. On the one hand, social norms might be more easily
transmitted and cultural clashes avoided if there is a high level of integration of
immigrants. On the other hand, isolation can help to protect groups adhering
to pro-social norms.?

This study is an attempt to provide some insights into these and other
important issues within an evolutionary game-theoretic framework. I consider
a set-up where agents are matched to play a one-shot interaction prisoner’s
dilemma in a society where there is a social norm for cooperation. And I address
the following more general questions:

- Can pro-social norms survive immigration of agents that do not adhere to
this norm ?

- How does the answer to the previous question depend on the institutions
of a society and in particular on the degree of integration ?

From the standard perspective of a direct evolutionary approach the first
question has a clear-cut answer: If evolutionary selective forces apply directly to
strategies, if the population dynamics is payoff monotonic, and if matching takes
places randomly within the whole population, cooperation is never evolutionary
stable.*

The idea of integration appears in a somewhat different disguise in contribu-
tions to the biological literature - termed population viscosity there - and relates
to matching probabilities.® In fact a population is called viscous if agents have
an increased probability of interacting with agents of their own type. Viscosity
is maybe the most narrow measure of the degree of integration of a society. The

1See Borjas (1999) for a survey on this literature.

2Most of the research on the relation between migration and culture is empirical and
asks the reverse question. How does culture determine migration and trade ? There are
few theoretical contributions related to this topic. One example is Kénya (2002, 2001) who
presents macroeconomic models of cultural assimilation. An interesting empirical study of
assimilation is DeLeire et al. (2004).

3Pro-social norms are norms that induce agents to act in a way conferring benefits to others
at a cost to themselves. A norm for cooperation in the prisoner’s dilemma is a well-known
example. Used in this sense the concept of pro-sociality can be seen as more or less equivalent
to the concept of altruism in evolutionary biology.

4Weibull (1995), Vega-Redondo (1996).

5The concept of population viscosity is due to Hamilton (1964). See also Price (1970).



second question is answered in this literature as follows: Cooperative behaviour
can only survive if the society displays a high enough degree of viscosity. The
intuition is clear: Cooperation in the Prisoner’s dilemma promotes the fitness
of defectors at the expense of the cooperators themselves. If cooperation is
to survive as a trait it has to be that the benefits of this altruistic behaviour
fall disproportionately onto other cooperators. This is the case whenever the
population is sufficiently viscous.®

In contrast to direct evolution the indirect evolutionary approach has se-
lection work on preferences instead of strategies. An (internalized) social norm
for cooperation in the prisoner’s dilemma affects an agent’s preferences in the
sense that deviations from the norm cause him to suffer feelings of guilt, shame,
embarrasment or anxiety. Consequently norm-adherence in these approaches
will be determined by the (material) fitness implications of the strategies in-
duced by the norm. Bester and Giith (1998) or also Guttman (2003) study such
mechanisms.

Cultural evolutionary models try to go beyond the pure fitness implications of
preferences and (induced) strategies and consider explicitly the process of trans-
mission of traits through either the family (vertical transmission), peer-groups
(horizontal transmission) or socializing institutions of society (oblique trans-
mission).” Gintis (2003) presents a model with exogenous vertical and oblique
transmission and an (also exogenous) fitness-disadvantage for agents that have
a preference for altruism. His main finding is that in order for the altruistic
preference to survive the level of oblique transmission has to be sufficiently
high. Henrich and Boyd (2001) consider a model in which norms are transmit-
ted through social learning. In their model pro-social norms are stable because
the horizontal transmission process stabilizes punishment of non-adherers.

The rational socialization approach to preference formation assumes that
altruistic and forward-looking parents deliberately pass on preferences to their
children trying to maximize what they, as parents, see to be the children’s
future well-being. Bisin, Topa and Verdier (2004) present a model of endogenous
vertical transmission in which altruistic preferences survive, because minorities
have higher incentives to socialize their offspring to their own preferences than
majorities do. ®

In contrast to the previous literature that focuses on individual preference
traits, in this study I concentrate on social norms taking into account the role
of society for the evolution of preferences. In many cases it is (internalized) so-
cial norms that shape preferences by determining what are socially and morally
acceptable behaviours.” On the other hand what constitutes a social norm is to
a large extent determined by what are common behaviours in a society. I derive

6Mitteldorf and Wilson (2000), Hamilton (1964), Bowles and Gintis (1997), Axelrod, Ham-
mond and Grafen (2004).

7Cavalli-Sforza and Feldman (1981), Henrich and Boyd (2001), Henrich and Boyd (1998)
Henrich and Gil-White (2000), Boyd and Richerson (2005), Richerson, Boyd and Henrich
(2003), Henrich (2003).

8See also Guttman (2001a, 2001b).

9 Azar (2001), Cialdini et al (1990), Grasmick and Green (1980), Liu (2003), Reno et al.
(1993), Young (1998).



a cultural evolutionary model to analyze the interplay between economic incen-
tives, the formation of social norms, the evolutionary selection of preferences
and rational behaviour of agents given these preferences.

While cultural evolution in my model puts selection pressures on preferences
it does not deny that holding their preferences fixed agents act rationally. In
this aspect my model relates very much to the indirect evolutionary approach.
It differs from this approach in conceiving the evolution of preferences as an
essentially social and cultural phenomenon, placing a focus explicitly on social
norms. This is the first contribution of the paper.

The second main contribution of this paper is to introduce the important
question of population viscosity as a special institutional characteristic into the
study of norm-transmission and the evolution of pro-social behaviour. Vis-
cosity has been little studied in Economics and there are almost no formal
models. An exception are Myerson, Pollock and Swinkels (1991) who extend
Nash-equilibrium to viscous populations. Related studies in evolutionary biol-
ogy are Henrich (2003), Boyd and Richerson (2002) or Mitteldorf and Wilson
(2000) among others. I add to these studies by rigorously introducing popu-
lation viscosity into a model of cultural evolution. Viscosity in my approach
has two kinds of effects: Short-run effects by changing the incentives of ratio-
nal players and long-run effects by affecting norm strength and the evolution of
preferences.

Finally my paper is also related to studies of norm-guided behaviour in
other fields of Economics. Lindbeck, Nyberg and Weibull (1999) use a model
with endogenous social norms to examine the interaction of monetary incentives
and social norms in the welfare state. In Benabou and Tirole (2005) norms with
endogenous strength are part of a theory of pro-social behaviour. Unlike the
analysis in my paper their models are essentially static. To my knowledge my
study is unique in examining the consequence of endogenous social norms for
the evolutionary selection of preference traits.'®

For exogenous norms the main results of the paper are: If norms are very
strict, in the sense that they induce strong feelings of guilt if violated, a high
level of viscosity or other forms of institutional pressures are needed to have
cooperation survive. Norms of intermediate strength on the contrary can survive
under a variety of institutional settings.

Endogenizing social norms delivers the following results: Pro-social norms
persist in two polar scenarios: One of rigidity in which separation (high vis-
cosity) leads to monomorphic equilibria with strict norms for cooperation (sus-
tained by high levels of internal punishment). Cooperation in this scenario is
achieved through rigid population structures (viscosity) which in turn lead to
strict norms. In this sense rigidity is self-reinforcing. The second scenario is one
of an integrated society with intermediate norms sustained by lower internal
punishment and displaying heterogeneity of types in equilibrium. Here integra-
tion stabilizes a polymorphic equilibrium with norms that are less strict. Thus

10Obviously my study also ties in with other studies of norm-guided behaviour in Economics
such as Azar (2001), Elster (1989), Guttman (2001a), Nyborg and Rege (2003), Traxler (2005),
Young (1998) among many others



in contrast to standard direct and indirect evolutionary approaches, my mecha-
nism based on endogenous social norms always produces polymorphic equilibria
in fully integrated societies (where matching is random).

Furthermore I show that - contrary to what is often taken for granted in the
literature - viscosity and cooperation are not linked in a monotone way. Pro-
sociality that is sustained through culturally transmitted social norms differs
from genetically transmitted pro-sociality in this important aspect.

The exogenous institutional characteristics I consider - while having a quite
straightforward and monotonic impact on behaviour whenever preferences are
fixed - turn out to have interesting non-monotonic effects when one allows for
changing social norms and the evolution preferences. The differing implications
different institutional designs have together with the relatively fast speed of
cultural (as opposed to biological) evolution make the results an issue for policy
design. At the end of the paper I shortly discuss the welfare implications of
different institutional designs.

The paper is organized as follows: In section 2 the model is described. In sec-
tion 3 I study the equilibria of the basic model (with exogenous norm-strength)
and in section 4 norm-strength is endogenized as described above. Section 5
concludes.

2 The Model
2.1 The Social Norm

Consider a society consisting of a (unit-mass) continuum of individuals 7. Indi-
viduals are randomly and repeatedly matched in pairs to interact in Prisoner’s
dilemma type of situations.'!

In the bilateral game each player has two actions available: X and Y. The
action set Z = {X,Y} is the same for all players i € I. Payoffs from the
(symmetric) Prisoner’s dilemma interaction can be summarized by the following
payoff matrix A € R?*? (payoffs for the row player):

XY
X|a |0 (1)
Y |1 |d

where 1 > a > d > 0. It is well known that in this game Y is a dominant strategy
for both players and consequently the unique equilibrium prediction leads to a
payoff of d for both players.

Assume now that there is a social norm for cooperation (”for playing X in the
Prisoner’s dilemma”) in the society. Individuals have internalized this norm and
deviating from it thus causes them feelings of guilt, shame or embarrasment.'?

11 As explained in the introduction matching will not always be perfectly random. The exact
matching technology is specified in section 2.2.

12In principle social norms can also be sustained by external mechanisms such as social
disapproval. This is distinct from the internal, ”self-imposed” sanctions I consider here. See



This psychological cost w is reflected in the following payoff matrix A¥ € R2*2,

X Y
X |a 0
Y |l—-w|d—w

(2)

I will distinguish between three different strengths of the norm. In particular
I will call the social norm weak if w < min{l—a, d}, i.e. if violation of the norm
causes feelings of guilt so weak that they are always outweighed by the material
payoff-advantage of defecting (playing Y). In this case the two game forms
(1) and (2) represent the same strategic context, namely that of a Prisoner’s
dilemma. I will call the norm intermediate in the following two cases: If w €
[1—a,d] (2) represents a stag-hunt game, having two symmetric Nash-equilibria
in pure strategies where both agents play the same strategy (either X or Y).
If w e [d,1— a] then (2) represents a chicken game, with two asymmetric
Nash-equilibria in pure strategies where one players X and the other player
Y. The unique symmetric Nash-equilibrium in this case is in mixed strategies
where each player plays 17“_”;11 - X @ 11:‘(1;75 Y. Finally T will call a norm strict
if w > max{1l — a,d} , i.e. if the internal punishment caused by a norm-
violation is so strong that cooperation is a dominant strategy for an agent
having internalized this norm.!3

Suppose now that there is migration of agents from a different cultural back-
ground, who adhere to different social norms. In particular let us assume that
they do not have internalized the social norm w, so their payoffs in the Pris-
oner ’s dilemma are given by matrix (1).14 Then there are two different types in
the economy. To model strategic interaction between these two types of agents
we describe the following population game:

2.2 The Population Game

Let the type space be T = {0, w} with typical element 7, where a w-type’s payoffs
are given by matrix A" as defined in (2) and a 0-type‘s payoffs by matrix A
as defined in (1). Agents have incomplete information about each other’s type.
When choosing an action z; € Z in the bilateral game they estimate the type
of their match from the distribution of types in the economy and from their
knowledge about the matching technology described below.

The set of population states (or distributions of types) is P = {p: p € [0,1]}
where p denotes the share of w-types in the population. Obviously then the

Elster (1989) or Gintis (2003) for a discussion. An alternative modeling approach would be
to assume that the psychological payoff-loss w depends on the opponent’s action. In this case
the analysis becomes slightly more complicated but results do not change qualitatively.

131 assume that agents in choosing their strategy rationally trade off material benefits and
psychological incentives. Empirical support for this assumption can be found in Bosman and
van Winden ((2001), (2002)). Theoretical papers employing the same or similar social norms
are Benabou and Tirole (2005) or Lindbeck, Nyberg and Weibull (1999) among others.

14There is evidence of huge differences in the domains of cooperative behaviour among dif-
ferent cultural groups, that are independent of differences in environment or local regularities.
(Henrich and Boyd 1998)



share of O-types is 1 — p. A complete description of the population is given by
the population profile (cg,04,p) where o, = (UTX,U{/)/ € R?*! denotes the
distribution of actions among 7-types.'® o% being the share of 7-types that
use action X. Obviously o7 € [0,1)Vz € Z,Vr € T and 0% + 0} = IV7r € T
have to hold. o = (09, 04, ) is the collection of these measures or the distribution
of actions in the population. Furthermore distributions of actions where o7 €
{0,1}Vz € Z,Vr € T, i.e. where all agents of the same type choose the same
action are denoted (zg, z,,) Where zp indicates the action chosen by all 0-types
and z,, the action chosen by all w—types.'®

Matching takes place randomly in a viscous population. The latter meaning
that individuals have a tendency to interact more often with individuals that
are of the same type than agents of another type do. I measure the degree of
integration of a society with the paramter = € [0,1], where x = 1 means that
the society is fully integrated and x = 0 means that the society is fully viscous,
implying that types interact with probability 1 among themselves and never
with agents of another type.

For any fixed distribution of types p and degree of viscosity x material payoffs
in the population game are given by the collection of bilinear vector fields

F(o) = (I"(-),11°()

where IT% (o) = (II*(X, 0), IT*(Y, 0)) € R2%! is the vector field that for a w-
type associates expected material payoffs (corresponding to each of the possible
actions z; € Z) to every distribution of actions in the population o = (0¢, 0y).
Analogously IT° (o) describes expected material payoff of a 0-type. The matching
technology implies that

’

vo-(B5) -1 DEN ) v

wi oy (II"(X,0)\ _[[A 0) (oo / (1-p)z

(o) = (Hw(Y,a)) - [(0 A) (aw 1-(1-p)z )

As a consequence of population viscosity a w-type is matched with proba-

bility (1 — p)a with a O-type and with probability 1 — (1 — p)a with another

w-type. While a 0-type is matched with probability pz with a w-type and with
probability (1 — px) with another O-type.

The vectors (1-p) and 1—pz could thus be called the matching
1-(1-px px

vectors of a w-type and a O-type respectively. They are known to all agents at

all times.

and

15Here / indicates the transpose of the vector/matrix in question.

16Note that z = (20, 2w) can be seen as formally equivalent to a pure strategy in the
(bilateral) Bayesian game where zg denotes the action a player chooses conditional on being
a O-type and z,, the action a player chooses conditional on being a w-type.



If the society is fully viscous (i.e. if z = 0) the matching vectors are given
by (0,1) for a w-type and by (1,0)" for a O-type. In this case (3) and (4)
reduce to II" (o) = Ao, V7 € T. As in fully viscous societies both types interact
exclusively among each other material payoffs for any agent depend neither on
the distribution of types in the population p nor on the distribution of actions
among agents of a distinct type.

If the society is fully integrated (if # = 1) matching is random and the
matching vector given by (1 — p,p)’ for both types. In this case (3) and (4)
reduce to I17 (o) = (1 —p) Ao +pAo,, V7 € T. With random matching material
incentives are thus the same for both types.

Note that bilinearity of II"(¢) implies that expected (material) payoffs of a
T-type ¢ when using the "mixed action” (0;X & (1 — 0;)Y’) are given by

O (0;,0) =0, II"(X,0) + (1 — 0)II" (Y, 0) (5)

Individuals are von Neumann-Morgenstern expected utility maximizers and
for any fixed distribution of types p utility (or total payoff) is given by

F(o) = (7(),7°()

where 7%¥(0) = (7¥(X,0),7"(Y,0))" is the expected utility of a w-type for
each of his actions when he faces a distribution of actions in the population of
o. Utility relates to material payoffs as follows: For a O-type where there are
no psychological payoffs obviously I1°(c) = (II°(X, o), II°(Y, o))" = 7°(0). By
contrast a w-type suffers a utility-loss everytime he plays Y and 7% is obtained
from (4) by replacing A with A". The utility functions extend to mixed actions
in an analogous way as given by (5).

Having specified payoffs we have a complete description of the population
game I' = (I, T, Z, P, F (-)). To describe optimal behaviour I rely on the concept
of Nash-equilibrium:'7
Definition 1 A Nash-equilibrium of the population game T is any population

profile (o,p) s.th. 07 > 0= z € argmaxz 7" (z,0)V1 € T.

We are interested in how rational behaviour in this population game affects
the dynamics of norm-adherence and the evolutionary selection of preferences.
To answer these questions we have to specify the process of cultural transmission
of social norms:

2.3 The cultural transmission process

Social norms are adopted via 2 mechanisms: First they are transmitted hori-
zontally via peer interaction. There is a huge amount of evidence that humans
aquire much of their behaviour through social learning. However both theory

17 Again there is a formal equivalence between the Nash-equilibria of I' and the symmetric
Bayes-Nash equilibria of the bilateral game with incomplete information.



and empirical research indicate that humans do not simply copy other individ-
uals at random, but they seem to rely on rules that make copying of succesful
agents more likely.'® Success is identified here with material payoffs as described
by I and IT*. Norm transmission is typically seen to be biased in this sense
because individuals with higher material payoffs are likely to enjoy higher sta-
tus in society. This makes the norms they adhere to more appealing and gives
them a higher cultural impact.'® T will refer to this process as (payoff-biased)
horizontal transmission.

Secondly the adoption of the pro-social norm is enhanced because institu-
tions of society promote this norm. By structuring interactions institutions lead
to framing and other situation construal effects that favor the spread of some
social norms.?? Also legal norms or public policies can induce social norms by
stigmatizing some behaviours while promoting others.?! The pro-social norm
can be (more or less) explicitly transmitted through socialization institutions
such as schools, universities or churches. And finally communication media can
shift reference points and in this way affect norm-transmission. In my analy-
sis one particular institutional characteristic - namely the degree of integration
- is highlighted. I will subsume all other effects under the term institutional
transmission.??

8Henrich and Boyd (2001,1998), Henrich and Gil-White (2000), Boyd and Richerson (2005).

19The relevant payoffs here are material payoffs. While this seems clearly the right approach
in a biological context with genetic evolution, it is maybe not as natural in a set-up where
evolution of preferences is a cultural phenomenon. Nevertheless psychological/emotional pay-
offs should not affect an agents aptitude as a cultural model for the following reasons: There
is evidence suggesting that a) material wealth and happiness are separated by individuals
(Bosman and van Winden (2001),(2002)) and b) that we are more likely to adopt the pref-
erences of agents who are materially rich rather than of those individuals who are ”happy”
(Huck (1998)).

20Many experimental studies show that ideals and norms are not absolute but influenced
by the institutional structure in which an agent is placed. (Hoffmann et al. (1994) Schotter,
Weiss and Zapater (1996)). Alesina and Fuchs-Schiindeln (2005) use data from separated and
reunified Germany to test whether there exists a feedback effect from the economic regime on
individual preferences. They find strong and significant evidence of the impact of institutions
on preferences. See also Bowles (1998), Huck (1998) or Gintis (2003).

21Hirschmann (1984) recognized this fact when he remarked that raising the cost of anti-
social behaviour might not be the appropriate policy measure whenever it is mainly values
instead of tastes that drive behaviour. In this case he suggested that legal measures (such as
prohibition) are more effective as they can shift norms.

22Related to this is the process of oblique transmission as considered by for example Gintis
(2003), Gintis (2002). In this paper I am interested in the formation and transmission of social
norms rather than in socialization through intergenerational (vertical or oblique) transmission
of exogenous preference traits.

10



The cultural transmission process is illustrated in Figure 1.

Institutions Social Norm w

transmission

social
learning

Social Norm 0

Figure 1: The Cultural Transmission Process

Horizontal transmission is modelled as follows: Suppose that at some point
in time t an individual of type 0 meets an individual of type w with prob-
ability p,x and observes that individual’s type and average material payoff
¥ (0y,0) =: ¥ in that period.?*> With complementary probability a 0-type
meets another O-type. And analogously with probability (1 — p:)x a w-type
meets a 0-type observing her type and average payoff and with complementary
probability someone of her own type.

Denote the type of an individual’s cultural model by m € {0, w} . After such
a random encounter individuals might adapt the norm of their model. More
specifically if an agent’s cultural model is of his own type he will stick to his
norm with probability 1. If the cultural model is of another type he might
adapt her norm with a probability that depends linearly on (positive) payoff-
differences. The probability that an individual of type 0 adapts the w-norm at
time ¢ is then given by:

(1-a)+a( —1UNH1, ifm=w

Pr(wl0) = { 0 if m =0 (©)

a € [0,1] is a parameter that measures the importance of payoff for (hor-
izontal) norm-transmission. 1, is the indicator function taking the value 1 if
the preceding term is positive and 0 otherwise. Note that as I’ —II? € [—1,1)
this probability is always between 0 and 1. Analogously we have

(1—a)+ o -TI¥)1, ifm=0

Pr(0fw), = { 0 = w (7)

Independently of the parameter « this rule is neutral in the sense that if both
types get the same payoff in expectation their population shares stay unchanged.

23In the following I will omit the argument of the payoff function when it can be done
without ambiguity and denote average material payoffs of a w-type at time ¢ by II}" and
average material payoffs of a O-type by II9.

11



A high value of « implies that the norm transmission process is quite inert in
the absence of payoff-differences. Social Learning in this case is highly adaptive.
On the other hand if « is small the norm is transmitted with high probability
even if the cultural model has lower or equal payoff. In this case agents can be
seen as displaying a high degree of conformity in the sense that they easily (and
without particular reason) adopt the norm of their model.?*

The total share of w-types in the population after horizontal transmission
can be computed easily using (6) and (7) as:

Pr(w); = pi(1—Pr(0|w)s)+ (1 — ps) Pr(w|0); (8)
= pi+ (1 —p)prza(IP —107)

Accordingly
Pr(0); =1 — Pr(w); 9)

denotes the total share of O-types after horizontal transmission.

Let us now consider the impact of institutions: Under the influence of in-
stitutional pressures some of the O-types from equation (9) will switch to the
w-norm. I assume that institutional transmission is proportional to the ”effec-
tive” number of w-types in the society, i.e. to the number of w-types a O-type
perceives in his environment p;z. Having the parameter A € [0, 1] measuring the
strength of institutional pressures the share of O-types that adapt the w-norm
because of institutional transmission is given by p;zA. While it is clear that
institutional transmission cannot be independent of the effective number of w-
types, the assumption of exact proportionality is maybe the most conservative
in an attempt to keep the number of parameters in the model to a limit.2?

Adding institutional transmission to horizontal transmission we get the fol-
lowing population dynamics:

pir1 = Pr(w); +pixA(l - Pr(w),)
= pr+pi(1 —p)zfaP —TI2)(1 — przld) + A

or in continuous time

p=p(1 —p)zfa(T” —TI°)(1 — pzA) + A] =: f(p) (10)

241t is important though to note that this is distinct from conformist transmission, as
usually used in the literature. Conformist transmission refers to a tendency to copy the most
frequent behaviour in a population. There is quite some evidence though - both theoretical
and empirical - that apart from payoff-biases people display a tendency to copy frequent
behaviour. (Henrich and Boyd (2001), Boyd and Richerson (2005)). See also Ellison and
Fudenberg (1993) or Bernheim (1994). I will give a short discussion of conformist biases in
Appendix 0.

250One could argue that immigrants create their own institutions promoting different norms.
Letting A, denote the strenght of established institutions and Ag the strenght of new insti-
tutions (promoting the 0-norm) with A, > Ag the state equation is as follows:

p=p(1 —p)zfa(l® —T°)(1 — pr(Aw — Ao) — 280) + (Aw — Ag)]

It can be seen that focusing on (A, — Ap) and normalizing Ag = 0 does not impact the
behaviour of this dynamics qualitatively. The basic assumption is that A, > Ag.

12



Note that if A = 0 this equals the familiar Replicator Dynamics (up to a
change of time scale).

3 Cultural Equilibrium

I call a cultural equilibrium in this model a situation where - given equilibrium
play in the population game - the share of norm-adherers in the population
remains constant. Or more precisely:

Definition 2 A cultural equilibrium is a population state p that satisfies p =0
in equation (10).

Typically though we will be interested in cultural equilibria that are locally
stable in the sense that the state trajectory can be kept arbitrarily close to the
equilibrium state given that the initial state is sufficiently close.?%

The set of locally stable cultural equilibria obviously depends on the strength
of the norm. I will describe the different cases in turn.2”

3.1 Weak Norm

If the norm is weak, defection is a dominant strategy in the bilateral game for
both the w- and the 0-types. In this case the population dynamics is trivial: As
payoffs for both types are the same horizontal transmission is neutral and the
dynamics is governed by institutional transmission only. Full adherence to the
w-norm (p = 1) is globally stable whenever (A, z) >> 0. Note though that with
weak norms norm-adherence leads to behaviour that is ” phenotypically” indis-
tinguishable from behaviour without the norm. Any population equilibrium will
be characterized by full defection. The more interesting cases are consequently
those in which the norm is of a strength to induce (at least sometimes) a differ-
ent behaviour of the two types. These are the cases of intermediate and strict
norms.

3.2 Strict Norm

If the norm is strict, cooperation is a dominant strategy for the w-type. Conse-
quently all the Nash-equilibria of the population game are of the form (Y, X, p)
i.e. population profiles where all O-types play Y and all w-types play X. The

260r more formally T will call p* locally stable if VR > 0,3r > 0, s.th.p(to) € Br = p(t) €
Bpgr,Vt > to, where Bp is an open ball around p* with radius R, Bpg : ||p|]| < R. In fact most
of the equilibria I will call locally stable below satisfy a stronger criterium of asymptotic local
stability, i.e. they are not only stable in the above sense but also local attractors of the system.

271 will use the terms population equilibrium and cultural (population) equilibrium inter-
changeably to denote an equilibrium state p* of equation (10) . Strategy profiles that consti-
tute Nash-equilibria for any given population state p will be called (Nash-) equilibria of the
population game.
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cultural equilibria in this case are both monomorphic states as well as the poly-
morphic states p; and p,.2® Which of these will be locally stable depends on
the vector of institutional characteristics (A, x). It is clear that very high in-
stitutional pressures A always lead to the spread of the w-norm. Let us then
focus first on the more interesting case where A is arbitrarily small (but strictly
positive). Integration impacts the set of stable cultural equilibria as follows:

If the degree of integration is very small (if 0 < 2 < min{4=%, 1 — 4}) the
monomorphic equilibrium p = 1 is globally stable. The reason is that for low
2 both types mainly interact among each other. As a consequence w-types will
get the high payoff for joint cooperation relatively often while O-types will often
get the lower payoff associated with mutual defection. This biases the social
learning process in favor of the w-norm.

If integration takes on intermediate values two mutually exclusive cases
arise depending on the payoff parameters. Cooperation survives in both: If
T € (‘1‘%‘;, 1- %) (implying that a +d < 1, i.e. that the material gains from
unilateral defection are higher then the losses from unilateral cooperation in the
Prisoner “s dilemma), the globally stable equilibrium is the polymorphic state
p1- The reason is that for low levels of norm-adherence p O-types will obtain
lower material payoffs in expectation, what biases social learning in favor of the
w-norm and has p rise. As p rises this payoff bias shrinks and reverts at p;. If
on the other hand z € (1 — £,2=2) (implying that a + d > 1) this reasoning
goes the other way round. The polymorphic equilibrium will be unstable and
both monomorphic states will be locally stable with their basins of attraction
separated by the interior equilibrium ps.

Finally if the degree of integration is very high ( z > max{1 — %, %}) 0-
types will be able to benefit from the cooperative behaviour of the w-types and
thus obtain a higher material payoff. Payoff-biased social learning then always
works against the w-norm.

We have the following proposition:

Proposition 1 If w > max{l — a,d}, A > 0 arbitrarily small and

(i) if0<z< min{ﬁ, 1- %} the globally stable equilibrium is p* = 1.
(i) if v € (‘fT_fil, 1-— %) the globally stable equilibrium is p* = p;.

(iii)if x € (1 — £,2=4) the locally stable equilibria are p* = {0,1}.
() if x > max{l — g, ‘f%g} the globally stable equilibrium is p* = 0.
Proof. see Appendizx A m

The intuition for this result is clear: The strict social norm leads to strong
internal sanctions for norm-violations. This induces norm-adherers to uncondi-
tionally cooperate in the Prisoner’s dilemma thereby promoting the success of
0-types at the expense of the norm-adherers themselves. The strict norm sur-
vives as a preference trait if and only if the benefits of the altruistic behaviour
it induces fall disproportionately onto other norm-adherers. This is the case

28The expressions for p; and py are rather complicated and stated in Appendix A.
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whenever the population is sufficiently viscous. The more integrated (less vis-
cous) societies are the more institutional pressures are needed to sustain strict
norms.

This point is made precise in the following corollaries: There are two critcial
levels of institutional pressures that can ensure the persistence of the pro-social
norm. These treshhold levels are given by A; =: 1_[";([(1;_1)07_(;(71@];;]& and A, =
alza — (a — d)] for the two mutually exclusive paramter constellations where
a + d < 1. Note that both treshholds are strictly increasing with o and vanish
if @ = 0. The reason is simply that for o = 0 social learning displays no payof-
bias. But if material payoffs are irrelevant for the evolutionary selection of
preferences any arbitrarily small level of institutional transmission will induce
global convergence to p = 1. Note also that both treshholds rise with x. The
intuition simply is that for strict norms more integration biases social learning
against the pro-social norm. Consequently institutional pressures need to be
higher to sustain it. Consider first the case where a + d < 1. This is the case
where material gains of unilateral defection are higher than the opportunity
costs of unilateral cooperation.

Corollary 1a If a+d < 1 the monomorphic equilibrium state p* = 1 is globally
stable iff A > Aq1.If A € [Ag, A1] cooperation survives in the polymorphic
equilibrium p = p;.

Proof. Appendix A =
In the second case where a + d > 1 we have:

Corollary 1b If a+d > 1 the monomorphic equilibrium state p* = 1 is globally
stable iff A > Aq. If A € [Aq, Ag] the monomorphism p = 1 is still locally
stable.

Proof. Appendix A =

Figure 2 displays the state equation as a function of p and x for varying
strengths of institutional pressures. 2% If A is small, as in Figure 2a, it is mainly
the degree of integration of the society that acts as a selecting force to determine
the set of locally stable equilibria of the system. It can be seen that for small x
only p* = 1 is locally stable, for intermediate = the globally stable equilibrium is
polymorphic and for high levels of = p* = 0 is globally stable. In Figure 2b the
forces of institutional pressures outweigh the forces of integration, so p* =1 is
globally stable, but for high = convergence is slow because of the weight of the
induced payoff-bias against the strict norm. In Figure 2c institutional pressures
dominate all other forces. Consequently p* = 1 is selected, convergence being
faster for higher levels of integration.

29The parameters used for the graphs are: a = 1/2, d = 1/4, and o = 1/2.
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We can sum up the findings of this subsection as follows:

Summary Strict norms for cooperation do either need separation (high popu-
lation viscosity) or sufficiently strong institutional pressures to persist in
a cultural population equilibrium.

Figure 2c: A =0.35
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As it should be clear by now that higher institutional pressures always en-
hance the evolutionary selection of the w-norm, I will focus in the following
sections on the special, but most interesting case where A is arbitrarily small
but strictly positive.

3.3 Intermediate Norm

If the norm is intermediate in strength, two mutually exclusive cases can arise
depending on the payoff-parameters.

3.3.1 a+d>1: Prisoners and Stag-Hunters

In this case the norm is intermediate whenever w € [1 — a, d]. The payoff matrix
A" then describes a stag-hunt game. Remember that this (bilateral) game has
two Nash-equilibria in pure strategies in which either both players cooperate or
both free-ride. To see what are the Nash equilibria of the population game first
note that Y is still a dominant strategy for a O-type. Clearly then the profiles
where all players defect ((Y,Y,p)) are Nash-equilibria Vp € [0,1]. The profiles
(Y, X, p) where w-types play X (and O-types Y) will be equilibria if and only if
the share of w-types in the population is sufficiently high. This can be seen by
noting that it will be optimal for a w-type to choose X in such an equilibrium
iff

(X, 2") > 7*(Y, 2") (11)
where 2* = (2§, 2%) = (Y, X). This is equivalent to

(1—w ;(Z)—’_—dell; d—a) —5 (12)

p=

We can state the following result:

Proposition 2 If w € [1 — a,d] the Nash-equilibria of the population game T’
are given by (Y,Y,p)¥p € [0,1] and (Y, X, p)Vp € [p, 1].

Obviously for p > p an issue of equilibrium selection arises. I will assume
that in this case the equilibrium (Y, X, p) is selected. This choice is rationalized
by noting that the equilibrium in which w-types cooperate pareto-dominates
the equilibrium in which there is full defection.39

Note that =z < ‘;Jrs:ll implies p < 0 what in turn implies that given our
assumption on equilibrium selection a w-type will cooperate unconditionally for
all population shares p. But then the analysis for this range of x corresponds
to the case with the strict norm discussed above.

Focus on the case where x > %ﬂl’—:ll. Then there exists a non-empty range
of population shares [0,p) in which w-types will find it optimal to free-ride,

30 Assuming that players coordinate on the inefficient equilibrium would also be plausible.
But then the parameter region is indistinguishable from that of the weak norm and the implied
dynamics is rather trivial. That is why I focus on this case.
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in this way depriving the O-types of their payoff advantage from unilateral de-
fection. Consequently if p < p both types will earn the same material payoff
in expectation and the dynamics of norm-adherence will be governed exclu-
sively by institutional transmission. This leads to a steady growth in norm-
adherence until the share of w-types reaches p. Obviously p = 0 is always un-
stable in this region. One can further subdivide this region into two subregions:
Ifx e (‘;rj:ll, %] the globally stable equilibrium is p = 1 as w-types earn on
average higher material payoffs than O-types under this parameter constellation.
This fact biases social learning in favor of the w-norm. Whereas for very high
z (x> max{ ‘Zilc‘l’__ll, ‘f%‘j ) the payoff-bias works against the w-norm rendering
p = 1 unstable and thus p = p globally stable.

As can be seen in the next proposition long-run cooperation is enhanced
compared to the case of strict norms.

Proposition 3 If w €[l —a,d], A >0 arbitrarily small and:
(i) if 0 < x < min{ &=L 2=4d1 the globally stable equilibrium is p* = 1.

atd—1>1—d
(i) if v € (‘fT_fil, ch‘l’:ll) the locally stable equilibria are p* = {0,1}.
(i3) if © € [‘;ifj:ll, ﬁi] the globally stable equilibrium is p* = 1.
(#1) if © > max ‘Z'rc’lj:ll, ‘f%g} the globally stable equilibrium is p* = p.

Proof. Appendizx A m

Under the conditions of this proposition and if the degree of integration
is sufficiently high (z > %) every stable equilibrium involves cooperation
(even if (A,x) — (0,1)). This is in stark contrast with the case of the strict
norm. With strict norms as (A,z) — (0,1) the set of locally stable equilibria
reduces to p* = 0 . Norms of intermediate strength though will always survive
in fully integrated societies (where x = 1). The reason for this difference lies
in the fact that for an intermediate strength of the norm, norm-adherers are
conditional cooperators, cooperating only if the share of norm-adherers p is high
enough. Consequently they cannot be as easily exploited by non-cooperators.

Note that the behaviour of an agent adhering to the intermediate norm in
these equilibria cannot be distinguished from the behaviour of an agent adhering
to the strict norm. ”Phenotypically” thus the equilibrium p = 1 is identical for
both strict norms and intermediate norms (with a+d > 1). Finally observe that
as the degree of integration rises p also rises implying that there will be more
cooperation in any stable polymorphic cultural equilibrium for higher degrees
of integration.

Next turn to the case where a +d < 1

3.3.2 a-+d<1: Prisoners and Chickens

The intermediate norm corresponding to this case is w € [d, 1 — a]. The game
form A" then represents a chicken game. This (bilateral) game has two asym-
metric Nash-equilibria in pure strategies in which one player plays X and one
player Y. This has as a consequence that in a population with ”many” w-types,
there is no Nash-equilibrium where all w-types choose the same action z. In any
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population equilibrium in this region a w-type will randomize. If on the other
hand the share of O-types is sufficiently high, a w-type will find it optimal to
play X. (As in this case he is matched with high probability with a 0-type who
has as a dominant strategy to play Y'). This case occurs whenever

(X, 2) > A (Y, 2°) (13)
where z* = (Y, X)) or equivalently iff

l-w—a)—z(l-d—a) _
z(a+d—1) -P

p <

We can state the following result:

Proposition 4 If w € [d,1 — a] the Nash-equilibria of the population game T’
are gwen by: (Y, X,p)Vp € [0,p] and (Y, (0%, (1 — o%*),p)Vp € (p, 1], where
w—d

oK = T ol
Proof. Appendix A m

Now w-types cooperate (play X) if there is a low level of norm-adherence
and randomize if p is high. Again for high degrees of viscosity (z < min{l —
4 1=d=w) fy]] norm-adherence to the w-norm (p = 1) is globally stable as in
this case norm-adherers will be mainly matched with other norm-adherers. For
intermediate degrees of integration a+d < 1 (meaning that the gain of unilateral
defection is higher than the (opportunity) cost of unilateral cooperation) implies
that if w-types are matched mainly with each other and if p > p s.th. they
use the mixed action o}, = (o'%*, (1 — o'%%*)) they will obtain a higher payoff
on average than 0-types mainly matched with each other. As the degree of
integration rises this material payoff advantage will diminish and finally reverse
in favor of the O-types. For p < p w-types will cooperate and obtain lower
material payoffs than O-types whenever integration is high. Consequently for
very high degrees of integration ( # > max{ 1*1551“’, 1- %}) p = 0 is globally
stable. We have the following proposition:

Proposition 5 If w € [d,1 — a] ,A > 0 arbitrarily small and

(1) if 0 < z < min{l — g, 1_1‘1?”} the globally stable equilibrium is p* = 1.

(i) if x € [1 — &, 159=0) the locally stable equilibria are p* = {0,1}.

a

(iii) if v € [1552, 1 — 2] the globally stable equilibrium is p* = p;.
(w) if x > max{ lz‘igw ,1— g} the globally stable equilibrium is p* = 0.

Proof. Appendiz A m

Now the pro-social norm does not survive as a preference trait in fully inte-
grated societies (as (A, z) — (0,1)), even though norm-adherers are conditional
cooperators. The reason lies in the fact that now w-types find it optimal to
cooperate whenever they are few. This maybe somewhat paradoxical result
comes from the incentives the payoffs in the chicken game provide. Let us com-
pare these incentives to those in the stag hunt game: In the stag-hunt game
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establishing joint cooperation is difficult because of "fear”. A w-type fears that
whenever he plays X he could be matched with someone playing Y and in this
way be exploited. On the contrary in the chicken game the problem is ”greed”
rather than "fear”: A w-type matched with someone who cooperates wants to
play Y because unilateral defection is still profitable in spite of the existence
of the pro-social norm. This incentive structure has as a consequence that in
the stag hunt game higher shares of norm-adherence enhance cooperation by
w-types, because a high share of norm-adherers can reduce the fear of being
exploited by making this more unlikely. In the chicken game context it is a high
population share of 0-types that enhances cooperation by w-types because the
probability of the match defecting is high. But this renders p = 1 unstable in
integrated societies while making p = 0 a global attractor.
Summing up the results from this section we have:

Summary If norms for cooperation are of intermediate strength they can sur-
vive the cultural evolutionary process in both scenarios: high viscosity and
high integration. High institutional pressures are necessary for the persis-
tence of the pro-social morm in integrated societies under some parameter
constellations but not under others.

4 Endogenous Norm-strength

4.1 Equilibria

The baseline case of exogenous norms illustrates that norm-strength matters
when it comes to determining the equilibrium share of norm-adherers. Typically
though norm strength will not be exogenous. Rather it will depend on the
informational environment such as for example the distribution of preferences
in an agent’s sample. In this section I endogenize norm-strength by linking it
to the share of norm-adherers in society.

In particular I will assume that the strength of internal punishment rises
with the number of norm-adherers in the sample of a particular w-type.®' 7 It’s
not right what I’'m doing, but as everybody else does so, it’s ok.” is a revealing
phrase that often accompanies norm-guided behaviour. Well-known examples
where the mere fact that a behaviour is common reduces the strength of internal
sanctions include not going to vote, minor tax evasion, welfare dependency, not
going to church, divorce or free-riding on public transport.3?

311t should be clear that the relevant number here is the number (or share) of norm-adherers
in a particular w-types sample and not the number of norm-adherers in the society. For
example the internal sanctions someone suffers because he did not go to vote might be quite
low if noone else he knows went to vote - independently of whether overall participation in
the election was high or low.

32Empirical support for such norms can be found in studies of norm-guided behaviour in
economics (Azar (2001), Nyborg and Rege (2003)), in the law-literature (Grasmick and Green
(1982), Liu (2003)) or in social psychology (Cialdini et al. (1990), Reno et al. (1993)). For
models employing similar norms in a different contexts see Benabou and Tirole (2005), Traxler
(2005) and Lindbeck,Nyberg and Weibull (1999). For a general discussion see Elster (1989).
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To formalize this idea denote the proportion of w-types in a w-type’s sample
by
s:=[1—-(1-p)x]

and let the strength of the norm be given by some function

w(s) : [0,1] — [0,1]

s.th. w(1) = 1, w(0) = 0, w(s) € C? and aggs) > 0. The sign of the derivative
expresses the fact that more norm-adherence tends to make a norm stronger.
The cultural equilibrium determines thus norm-strength which in turn deter-
mines the equilibrium. This sort of feedback-effects between equilibrium and
social norm are a characteristic pattern for norm-guided behaviour. In fact as
Benabou and Tirole (2005) emphasize it is sometimes the very fact that ”it is
just not done” that makes a given behaviour socially or morally unacceptable.
In this way norm-adherence determines the strength of the norm. On the other
hand the strength of a social norm affects peoples’ preferences, actions and the
likelihood that the norm is internalized. In this way the strength of the social
norm determines the cultural equilibrium. Focusing on only one of the two
aspects - equilibrium or norm - misses an important part of the picture.

The change in the strength of the norm is linked to the evolution of norm-
adherence as follows: 5

i =200, (14)

It can be seen that population viscosity enhances norm strength( % < 0).
Higher population viscosity implies that norm-adherers mainly interact among
each other, so in each norm-adherer’s sample the share of norm-adherers will be
very high and consequently the norm very strict.

This fact will strongly impact our previous results, as it breaks the monotone
relationship between viscosity and cooperation. Consider first the case where
the payoff matrix (1) is such that a+d > 1:

If the degree of integration is low norm- adherers almost exclusively interact
with other norm-adherers. This implies that the share of norm-adherers in any
w-type’s sample is high, the social norm strict and thus (as we know from Section
3.2) only sustainable through very high degrees of viscosity. In this sense rigidity
is self-reinforcing: Rigidity (viscosity) leads to strict norms which in turn need
even more rigidity (either viscosity or strong institutional pressures) to persist.
Whenever 0 < < min{1 — %, %}33 the society is sufficiently viscous
to sustain strict norms, as the benefits of pro-social behaviour fall disproportion-
ately on norm-adherers. In this parameter range the globally stable equilibrium
isp*=1.

Slightly higher degrees of integration will still lead to strict norms, but vis-
cosity will not be high enough to ensure a material payoff-advantage to norm-
adherers. Consequently the social norm will not be selected by the evolutionary

(1—w(s)—a)—x(l—d—a) —

335 denotes the solution to the following fixed point equation: PICET Y] p.
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dynamics. As the degree of integration further rises norm strength will fall.
Finally high degrees of integration will lead to intermediate norms sustained in
polymorphic equilibria.

Note that if z — 1 both monomorphic equilibria are unstable: The reason
is that if p — 1 the norm will be strict and thus not sustainable with high
integration. On the other hand if p — 0 the norm becomes weak driving the
dynamics away from p = 0. Fully integrated societies thus sustain a globally
stable polymorphic equilibrium with intermediate norm strength.

We have the following proposition:

Proposition 6 Ifa+d>1,A — 0 and

(i) 0 <z < min{l — 4, atw L

(ii)1 -4 <a< min{%, 2=43 the stable equilibria are p* = {0,1}

(iii) =2 < x < %j)ll the globally stable equilibrium is p* = 0

(iv) 2E2 aw@ ol g ca 1—d the locally stable equilibria are p* = {p, 1}

Tatd—1
(v) © > max{{=7, %j)ll} the globally stable equilibrium is p* =p

} the globally stable equilibrium is p* =1

Proof. Appendix B m

There are two scenarios in which cooperation survives in a globally stable
equilibrium: In very viscous society sustained by strict norms and correspond-
ing high levels of internal punishment and in very integrated societies sustained
by intermediate norms and correspondingly lower levels of internal punishment.
Note that only the latter equilibria are polymorphic. Maybe somewhat counter-
intuitively, integrated societies thus sustain heterogeneity while viscous societies
imply monomorphic equilibria. Also note that the share of norm-adherers for
any polymorphic equilibrium is maximized at x = 1.

With endogenous norm strengths the relation between viscosity and norm-
adherence (and thus cooperation) is not monotone. This contrasts with a com-
monly held opinion in the literature.* In biological contexts where preferences
for cooperation are passed on genetically, higher degrees of viscosity always
enhance the fitness of cooperators and thus make cooperative outcomes more
likely. In a context where cooperation is sustained through social norms and
where preferences for cooperation are transmitted culturally this ceases to be
true. The reason is that in this context viscosity affects preferences via two
channels: It affects behaviour and thus norm-adherence but it also affects the
strength of social norms. The strength of the social norm affects again behaviour
and norm-adherence.

34Bowles and Gintis (1997), Mitteldorf and Wilson (2000), Boyd and Richerson (2005),
Wilson and Sober (1994).
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To illustrate the results look at the following example:

Example I Consider the most simple case where norm strength depends lin-
early on norm-adherence, i.e. where w(s) =s. Assume that a = 3/4 and
d = 1/2. In this case a +d > 1, i.e. for a w-type the loss of unilateral
cooperation is higher than the gain of unilateral defection. As can be seen
in Figure 3 for x < 1/3 the norm is strict in equilibrium (w = 1) and
p = 1 is globally stable. For x € [1/3,1/2] both monomorphic equilibria
are locally stable with strict norms in both cases. In the equilibrium p =0
norm-strength is linearly decreasing in © (w=1—x). For x € (1/2,3/5]
norm strength is intermediate but only p = 0 is locally stable. The reason
is that for = < 3/5 norm-adherers are unconditional cooperators even for
intermediate norm-strengths. Finally for x > 3/5 norm-strength is inter-
mediate (w = 2/5) and the polymorphic equilibrium p=1— 5% is globally
stable.

1 1;
2/3
Norm-Adherence in \
2/9 Stable Equilibrium 2/5

Strenght of the Norm in
Stable Equilibrium

X 73 12 35 34 12

3 12 35 34 1

Fig. 3a: Locally stable equilibria Figure 3b: Norm Strength

The case in which a +d < 1 (where the material loss of unilateral cooper-
ation is smaller than the gain of unilateral defection) delivers qualitatively the
same result.?> Cooperation survives in very viscous society sustained by strict
norms in a monomorphic equilibrium and in very integrated societies sustained
by intermediate norms in a polymorphic equilibrium.

35The case a + d = 1 is described at the end of Appendix B.
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We can state the following proposition:

Proposition 7 Ifa+d <1,A — 0 and

(i) x < ‘f%‘j the globally stable equilibrium is p* =1

(it) x € [¢=4, min{1— 2, 1—w~1(d)}] the globally stable equilibrium is p* = p;

(iii) x € [1 — 4,1 —w=1(d)] the globally stable equilibrium is p* =0

(iv) x> max{l — w1 (d), =4} the globally stable equilibrium is

* __ o~ 17“’71(‘1)

pr=pi=l-—
Proof. Appendix B m

Note that for both cases a + d < 1 the long-run equilibrium in fully in-
tegrated societies (where matching is random) is always polymorphic. This
contrasts with what is obtained by relying on standard direct or indirect evo-
lutionary mechanisms. Furthermore in all these polymorphic equilibria w-types
are conditional cooperators. This is a behavioural pattern that is found also in
many experimental studies on cooperation problems in western societies.?%

We can sum up the results of this section as follows:

Summary With endogenous norm strength and for vanishingly low levels of in-
stitutional pressures cooperation always survives in the following two sce-
narios: In very viscous societies sustained by strict norms in monomorphic
equilibria and in very integrated societies sustained by intermediate norms
in polymorphic equilibria.

We have seen that with endogenous norm strengths the relation between
viscosity and cooperation is non-monotonic (in contrast to for example what is
obtained with direct evolutionary approaches). Exogenous institutional charac-
teristics which drive behaviour in a very straightforward and monotonic way as
long as preferences do not change can thus have interesting and non-monotonic
effects when preferences are allowed to adjust through some selection dynam-
ics. This has as a consequence that outcomes that seem (for policy makers)
impossible to induce if preferences are assumed to be fixed can be induced by
manipulating institutional characteristics if one carefully considers the evolution
of preferences. The possibility of manipulating institutional characteristics in
order to achieve a certain outcome is what motivates a welfare comparison of
the different cases.

4.2 Welfare

Welfare analysis is quite problematic in our context because of two main prob-
lems: First preferences of individuals are not fixed over time. This problem can
be tackled by comparing situations where preferences are stable, i.e. long-run
equilibria. Note though that if the population state is polymorphic, individual

36Fischbacher, Gichter and Fehr (2001) find that roughly 50% of the participants in their
public goods experiment are conditional cooperators, 30% always free-ride and only very few
cooperate unconditionally. See also the references contained in their paper.
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preferences are not fixed even in stable equilibria. What is fixed though in these
equilibria is the distribution of preferences in the population. If one is willing
to regard multiple "selves” as different individuals, the first problem can be
regarded as essentially the same as the typical aggregation problem arising in
welfare economics.

The second main problem with welfare analysis in our context is more severe
and relates to the treatment of psychological payoffs. Sticking to revealed pref-
erence theory psychological payoffs constitute nothing else but an enlargement
of the domain of preferences (in this way they are treated in this paper) and as
such they should be included in any measure of welfare. The problem is that no
assumption is (and maybe can be ?) made about the exact neural or psycho-
logical processes underlying these payoffs. In particular no point is made about
the relation of positive emotions stemming from norm-conformity to negative
feelings stemming from norm-violation. While this distinction is irrelevant for
optimal behaviour and thus does not impact the previous analysis, it is clear
that it has starkly differing welfare implications. This fact forces us to rely on
material payoffs when making welfare comparisons. One possibility is to look
at pareto-optimality.

We have the following result:

Proposition 8 The stable cultural equilibrium p = 1 is always pareto-optimal.
Furthermore p = p as well as p = p and p = p1 are pareto-optimal for some
parameter constellations. p = 0 is never pareto-optimal.

Proof. Appendix B m

As it can be seen the pareto-criterion is not very discerning between equi-
libria. Another possibility then is to aggregate preference through some welfare
function. I choose a classical utiliarianist criterion. With this criterion welfare
in a polymorphic equilibrium depends only on the distribution of preferences.
Using average material payoffs in long-run equilibrium as an indicator of welfare
we state the following proposition:

Proposition 9 (i) If a4+ d > 1 average material payoff is highest in any long-
run equilibrium where p* = 1 (independently of (A, x)).

(1) If a4+ d < 1 average material payoff is highest in a long-run equilibrium
p*=pe(0,1).

Proof. Appendix B =

The intuition is simply that in the first case where a + d > 1 the gains from
unilateral defection (1 — a) are smaller than the opportunity costs of unilat-
eral cooperation (d). Consequently the state where everyone cooperates assures
highest average payoffs independently of the value of (A, z). In the second case
where a + d < 1 this relationship reverses. Average material payoffs are maxi-
mized in a polymorphic equilibrium with high integration and a non-vanishing
level of institutional transmission.

The optimal choices of (A, z) for a policy-maker can also be guided by non-
welfarist criteria or by aspects that are out of the scope of the present paper:
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Obviously the degree of integration could constitute a policy goal per se. The
reason is that high degrees of viscosity can be associated with high social costs
as becomes clear if one reflects again about the introductory example of immi-
gration. Another possible non-welfarist criterium could be the strength of the
social norm. To the extent where strict social norms limit flexibility and impair
the capacity of economic agents to adapt to varying environments, policy makers
might be interested in bounding the strength of social norms. In short welfare
analysis will depend very much on the particular context and finding suitable
welfare-criteria is not straightforward in our context. It should have become
clear though from the analysis that achieving a maximum level of adherence to
the pro-social norm is not equivalent to maximizing welfare. In designing insti-
tutions policy makers have to account for the effect institutional characteristics
have on social norms prevailing in a society and on the evolution of preferences.

5 Conclusions

In this paper I propose and study a cultural selection mechanism for preference
traits. In particular I concentrate on social norms for cooperation and ask un-
der which conditions norm-adherers can survive when matched in cooperative
dilemmas with agents that do not adhere to these norms and thus do not co-
operate. The main question examined is how the institutions of a society and
in particular the degree of integration (as opposed to viscosity) impact norm
adherence in the long run.

To these ends I present a cultural transmission process, based on two facts: 1)
Agents adopt social norms from each other via processes of social learning. And
2) institutions affect the cultural learning process. One particular consequence
of institutions is highlighted, namely the pattern of interaction they impose on
the agents or more precisely the degree of integration. I find that strict norms for
cooperation, inducing high levels of internal punishment, need either population
viscosity or strong institutional pressures in order to survive. On the contrary
intermediate norms can survive even in completely integrated societies and with
vanishingly low levels of institutional pressures.

I endogenize the strength of the norm, assuming that it is positively corre-
lated with the (subjectively felt) level of norm-adherence in the society. The
results show that there are basically two scenarios under which cooperation can
survive: The first scenario is that of a rigid society, displaying a high degree of
viscosity and very strict norms sustained by strong internal punishment. Coop-
eration in this scenario is achieved through rigid population structures (viscos-
ity) that in turn lead to strict norms. In this sense rigidity is self-reinforcing.
The second scenario is one of an integrated society with intermediate norms
sustained by lower internal punishment and displaying heterogeneity of types in
equilibrium. Here integration stabilizes a polymorphic equilibrium with norms
that are not as strict. In fact in fully integrated societies all stable equilibria
are polymorphic. Furthermore there is always (conditional) cooperation in the
long-run equilibrium. This contrasts with results obtained by relying on stan-
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dard direct or indirect evolutionary mechanisms but is in line with experimental
results.

Lastly my finding that population viscosity is not necessary for the evolu-
tionary stability of pro-social norms also contrasts with results from the bio-
logical literature obtained by relying on replicator dynamics. Endogenizing the
strength of social norms I find that, contrary to what kinship models or models
of group selection suggest, it is not even clear that population viscosity locally
enhances cooperation. If social groups are not completely isolated viscosity can
be detrimental to cooperation. Given the recent revival of group-selection ideas
it important to see how the rationale of these models depend on the process of
cultural transmission assumed. With endogenous norm-strength viscosity and
cooperation are not linked in a monotone way.
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6 Appendix 0 (Conformist Transmission)

In this section I give an informal account of the effect of a conformist bias in
horizontal transmission on the set of locally stable cultural equilibria.?” Assume
thus that now the switching probabilities (6)-(7) display a conformist bias as

follows: ( ) ( 0y ;
_ 1—a)px + oIl —1I})1  if m=w
Pr(w|0); = { 0 if m—0 (15)

and

(1—a)(1—py)z+a(? —T¥) 1, if m=0

Pr(0lw) = { 0 i M (16)

Each individual weights the independent probability of adapting a norm with
the popularity that a norm enjoys in the individuals sample. The parameter
a now measures the relative importance of the conformist and the payoff-bias.
Typically « should be larger than 1/2, because if not even extremely beneficial

norms could never spread. The state equation with popularity weighting is given
by

p=p—pz[(1 - a)z(2p — 1) + a(I* —II°)(1 - pzA) + A (17)

The conformist bias can be nicely read from the first term in brackets.If
p > 1/2 jie. if there is a majority of norm-adherers this term is positive and
- ceteris paribus - the share of norm-adherers will rise. If p < 1/2 this term is
negative and thus norm-adherence will c.p. fall.

Obviously a conformist bias can locally enhance the stability of any monomor-
phic equilibrium. It is also clear though that this does not mean that polymor-
phic equilibria should dissappear. Whether they will depends on the relative
strength of o and A as well as on payoffs.

7 Appendix A (Exogenous Norm strength)

Proof of Proposition 1:

Proof. Assume a4+ d # 1. (The case a + d = 1 is treated below). There are
four zeros of (10): p* =0,p* =1 and

. _ (d=a—-d)+Aa(l —2x)—d)
Prp = 2(Az(1 —a—d))
[(a+d—1)ar —arA(a(l — 2) — d)]?
—4(a(a(l — z) — d) + A)(aAz*(1 — a — d)
2(aAz?(1 —a—d))

F

37To state a formal proposition is rather complicated, as now the results will depend also
qualitatively on the parameter a. Consequently many different cases and parameter constel-
lations would have to be examined.
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The derivative of the state equation evaluated at the two monomorphic equi-
libria is given by
f'(P)p=0 = 2(A+a((1 - z)a —d)

fP)p=1 = —2[A+a(l — Az)((a — d) — z(1 — d))]
') ip, ,» is a complicated expression. But we know that if a +d <1

. a(l —x)—d
hmpl/gzi( )

A—0 (1 —a—d)m b

whereas the other zero diverges (ima .o p2/1 = 00)
Furthermore we have that fa(p) as given by (10) converges uniformly to
f(p) = p(1 — p)za(l®¥ —T1°) as A — 0.38 This can be seen by noting that

|fa(p) — f(p)]
p(1 = p)aA(l — pz(II¥ —11°))

< %Vp €[0,1]

In addition f4 (p) uniformly f'(p). This allows us to write

Aiino IA (p)‘pl/z = f/(p)llimA_»o P1/2=P0
_Ma—d) —za)lz(1 —d) — (a - d)
l1-d—-a

Then it is easy to see that p* = 0 is locally stable iff
0<A<ald—(1-2z)a]:= A (18)

For A — 0 this condition reduces to z > 1 — d/a.
p* =1 is locally stable iff

a(z(l—d) —(a—d))

((a—d)—z(1—d)>0)V(A> T oa((a—d —2(—d) =:Ay) (19)
Again for A — 0 this condition reduces to z < (a — d)/(1 — d).
And (for A — 0 ) p = p 2 is locally stable iff

) wdlel—d)—@—d) _, o0

l1—-d—-a

38 Actually as fa(p) is a sequence of bounded functions mapping [0,1] into R and f(p)
is bounded and also maps [0, 1] into R uniform convergence is equivalent to convergence in
metric space (Fjg 1], d) where Flg 1) is the set of bounded functions from [0,1] — R and d is
the supremum metric.
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Consider the four cases of Proposition 1 in turn:

(i) In this parameter range f’(p),—o > 0 and f'(p)|,=1 < 0, so we have that
p* = 0 is unstable and p* = 1 is locally stable. Continuity of f(p) implies that
the number of regular interior equilibria has to be even. As a(IT¥ — I1°)(1 —
prxA)+A =: &(p, A) is a quadratic polynomial in p for any given A there are at
most two regular interior equilibria. Two constellations of the payoff parameters
have to be distinguished: If a+d < 1 we have that ps > 1.a+d >1= p; <O0.
As there can neither be exactly two nor exactly one interior solution, there has
to be none.

(ii) For the second part observe that in this parameter range f'(p),—o >
0 VA € [0,1] while f'(p)jp=1 < 0 iff A > A;. For A arbitrarily small both
monomorphic equilibria are thus unstable. a +d < 1 = p; € (0,1) while py
diverges. Note that the number of interior equilibria has to be odd. f’(p)
0 isimplied by a+d <1 (& (e —d)/(1 —d) <1 —d/a).

(iii) Observe that in this parameter range f'(p),—1 < 0 whereas f'(p)|,—0 <
0iff A < Ay. For A — 0, p* =1 and p* = 0 are stable. The interior equilibrium
po is unstable (as a + d > 1) and separates the basins of attraction of the two
locally stable equilibria.

(iv) In this region f’(p);,—1 < 0 whenever A > A, while f'(p)|,—o < 0 iff
A < Ay. For arbitrarily small A it is clear that only p = 0 is stable. f'(p)|p—p, >
0 implies that interior equilibria are unstable. m

Statement of result Case a+d=1:

With this parameter constellations cases (ii) and (iii) of Proposition 1 do not
arise. It follows from straightforward calculation that whenever x < 1 — g(:
‘f%g) the unique stable equilibrium is p* = 1 and whenever x > 1 — % the unique
stable equilibrium is given by

lp=po <

L1 ifAS A
P=Y0 ifa<na,

Proof of Corollary 1a:
Proof. "If”: It follows from (19) that A > A; is sufficient for local stability
of p = 1. A € [As,Aq] implies that both monomorphic states are unstable.
Exactly one regular interior zero thus exists. We know that if a +d < 1 this
polymorphic equilibrium is locally stable.

”Only if”: We know from (19) that local stability of p = 1 implies either
T < ‘f%g or A > Aj. But note that z < ‘f%g implies A1 < 0. m

Proof of Corollary 1b:
Proof. "If”: It follows from (19) that A > Ay > A; is sufficient for local
stability of p = 1. A € [Ay, As] implies that both monomorphic states are
locally stable.

"Ounly if”: We know from (18) and (19) that global stability of p = 1 is
sufficient for x < 1 — g < ‘f%‘j. But note that x < 1 — g implies Ay < 0. =

Proof of Proposition 3:
Proof. First note that (Y, X, p) is a Nash-equilibrium iff 7}’ (X, z*) > 73" (Y, 2*)
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where z* = (Y, X). Substituting from (2) into

(323) =0t () e )

it can be easily seen that 7}’(X, z*) > n{’(Y, 2*)

& [I-(-pla>[1-(1-p]l-w)+(1-pld-w)
l—-w—-a)—z(1—d—a)

>
< p= z(a+d—1)

=:p<l1

p>0iff z > % € [0,1]. Note also that if p < p the unique Nash-
equilibrium of the population game is (Y,Y, p).

Given our equilibrium selection the population dynamics is then given by

-:{ p(1—p)zA ifp<p
p p(1 — p)afa(I® —TI°)(1 — pzA) + A] ifp>p

In the case of arbitrarily small A there are two zeros of this dynamics: p* = 0
and p* = 1. Note that lima_,gp2 = pg < p and lima_,gp; = oo.
The derivative of the state equation is

(1—2p)zA ifp<p
flp) = (1 —2p)x[a(M¥ —T1°)(1 — pzA) + A] . -
g +p(1 — p)a(—zAa(II* — 1IY)) ifp=>p

Note that p = 0 is unstable whenever p > 0 and = > 0 as in this case
J'(P)jp=0 = A >0
Furthermore we know that p = 1 is locally stable iff
f'O)p=1 = —z[A+al—zA)(a—d(l—-2z)—-2)]<0

a—d a—d
< LB<m\/[SE>m/\A>A1]

Remember that z < ‘ff%d__ll & p < 0. If this is the case w-types are uncon-
ditional cooperators and the proof of case (i) and case (ii) can be read directly
from the Proof of Proposition 1.

Case (iii): = € (¢e=t, 2=4]. We have that

atd—1>1—d
at+w-—1 - ,
P =p>0= f'(p)p=0o >0
a—d
< 727 fP)p=1<0

Consequently p = 0 is unstable ( p > 0 Vp < p ) and p = 1 globally stable.
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Case (iv): 2 > max{2te=1 a=d1 . We have that

atd—1>1—d
a+w-—1 -
> ——— =p>0=f o >0
x atd—1 p f(p)\p—()
a—d

T > jf/(p)\pZI <0

1-d
Consequently both p = 0 and p = 1 are unstable. As furthermore there is
no interior regular equilibrium, p is stable with basin of attraction [0,1]. =
Proof of Proposition 4 and 5:
Proof. First note that (Y, X, p) is a Nash-equilibrium iff 7} (X, z*) > 73" (Y, 2*)
where z* = (Y, X)

[1-(=pla=[l-(1-p)](l-w)+(1-p(d-w)
(1—-w—-a)—z(1—d—a)
z(a+d-1)

=
& p< =p<l1

If p > p w-types will randomize using action o, = (6%¢*, (1—0%")). (X, 0) =
7 (Y, o) implies

[1-(-ploka = [1-1-pa]lox(l-w)+(1-0ox)(d-w)
+(1 = p)z(d —w)
wk w—d
< Ox =

[1-(1=p)](1-a—d

Exspected material payoffs of a w-type are thus given by

1—(1—py)z]a ifp, <p
n = ad—w(l[—w)—((1—p)(22l—](1—d)w);v if ' ~ (21)
(atd—1)(A-(1-p)2) upt >p
The exspected material payoff of a 0-type is
px + (1 — prx)d ifps <p
= Ao b oo (22)
T Teaa-(-pay TP:>D
Remember the population dynamics
fa(p) = p(1 = p)a[a(Il” —TI°)(1 - pzA) + A] (23)

where the payoffs are given by (21) - (22). We have

fa®)ip=0 = (A +a((1 - 2)a —d)

and
aw—d)z(l—d—w—z(1—d))

l—a—-d

fIA (p)|p:1 =
Then p = 0 is locally stable iff

0<A<ald—(1-2)a)=2
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and p =1 is locally stable iff

1—-d—w

r < -4

Inserting the payoff-difference into (23) it can be easily seen that in the limit
where A — 0 no interior regular equilibrium exists for the region where p > p.
In the region where p < p the unique regular interior equilibrium is given by
p1. Remember that lima_op1 = po < p,lima_gp2 = oo and that pyg > 0
is equivalent to x < 1 — % in this parameter region. Furthermore given that
r<1l-— g stability of p = p; requires

_Na—d) ~zaffz(1 ~d) — (a—d)]

0
1-d—a <

f/(p)\p:m
a—d

= >
o124

By noting that 1 — % > ‘f%‘j and 1_%;‘1 > ‘fT_‘ij € [d,1 — a] it can be easily

seen that in
(i) p = 0 is unstable just as p = p; and thus p = 1 is globally stable
Case (ii) p =0 and p = 1 are locally stable and p; < 0
(i
(

iii) p =0 and p = 1 are unstable and thus p = p; globally stable
iv) p =1 is unstable, p; < 0 and thus p = 0 globally stable. m

8 Appendix B (Endogenous Norm-strength)

In order to state the proof for Proposition 6 first note that p=0=s=1—=x
and p=1=-s = 1. Denote
(1—w(s)—a)—z(l—d—a)
z(a+d—1)

=:T(p)

and p the solution to I'(p) = p with corresponding norm strength w(s).The
following Lemma shows existence of such a solution:

Lemma 1 There exists T € [0,1] s.th. if = > T there is a unique fized point p
(solving T'(p) = p) with corresponding norm-strength w(s) € [1 — a,d].

Proof. First note that as w(s) € C?,w(0) = 0 and w(1) = 1 there exists 3 s.th.
w(s) € [1 — a,d]. Assume that

atw(s)—1

1—w '(1—a) 1—w1(d)

x

Furthermore note that w(s) € [1—a,d] implies p € [1—
Define



Obviously ¥(p) is a continous function of p. Under condition (24) we have that

- 1w (1-a)
U(p) maps the non-empty, compact and convex interval [1 — —*——=1 —

1_w;1 4] into R. Furthermore W( 1 — 1—w*;(1—a)) = 1_w7;(1_a) > 0. And
U(1- 1_“’71(60) = _w;l(d) < 0 under condition (24). Consequently Jp* €

x

= 1_“’7;(1_“) 1= 1_w;1(d)] s.th. ¥(p) = 0. Uniqueness can be seen by noting
that

—w'(s)
(a+d-1)

i.e. that U(p) is strictly decreasing. m

Proof of Proposition 6
Proof. From Propositions 1 and 3 it follows that given a + d > 1 the interior
zero po will always be unstable independently of the strength of the norm. Note
also that a+d>1<1—-d/a<(a—d)/(1—d).

Next examine the stability of the three candidates p =0, p=1and p=1p:

Focus first on the case where p = 0. Then we have that if z > 1 —w™1(1—a)
A" corresponds to a Prisoner’s dilemma payoff-matrix and consequently p = 0
is unstable. If z € [1 —w~!(d),1 —w~!(1 —a)] A¥ represents a stag-hunt game.
In this case p = 0 is stable iff z € [1 — £, %] Finally if z < 1 — w™!(d)
cooperation is a dominant strategy in game (2). Remember that in this case p =
0 is locally stable iff z > 1 — <. Noting that atw@ L S 0iffa < 1—w (1 —a)

' (p) = ~1<0

a+d—1
we can summarize that p* = 0 is locally stable iff
d a+w(s)—1
1l—— ——————|ANA<A 25
pell- 5 S A< (25)

On the other hand p = 1 implies w = w(1) = 1 > max{1 — a,d}. Then it is
clear that p* = 1 is locally stable iff

a—d a—d
$<mV{$>m/\A>AQ} (26)
atw(3)—1

Finally noting that <1& 2 >1—w1(d) we have for A — 0 that

p is locally stable iff

a+d—1

a+w(s)—1
a+d—1
Comparing conditions (25), (26) and (27) it can be seen that in
Case (i): p =0 and p are unstable and p = 1 is globally stable
Case (ii): both monomorphic equilibria are locally stable while p is unstable
Case (iii): p =1 and p = p are unstable and thus p = 0 globally stable
Case (iv): p = 0 is unstable while the other candidates are locally stable
Case (v): the monomorphic equilibria are unstable and p globally stable. m
Proof of Proposition 7
Proof. Observe first that (a —d)/(1 —d) < 1 — < in this parameter region.
Consider the equilibrium p = 0 : In this case whenever z > 1 — w=!(d) AY
corresponds to a Prisoner’s dilemma payoff-matrix and consequently p = 0 is

(27)
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unstable. If z € [1 —w™(1 —a),1 —w~1(d)] A represents a chicken game. In
this case p = 0 is stable iff z > 1 — £. Finally if 2 < 1 — w™!(1 — a) cooperation
is a dominant strategy in game (2). Remember that in this case p = 0 is locally
stable iff z > 1 — %.Summarizing thus p* = 0 is locally stable iff

A<A1/\x€[l—g,1—w’1(d)] (28)

By contrast p = 1 is locally stable iff

z <2 \/{x>%§AA>A2} (29)
Observe then that in
Case (i): p =1 is globally stable (independently of norm strength)
Case (ii): p = 1 and p = 0 are unstable and ¥p € [0, 1] the norm is either
strict or intermediate. Consequently p = p; is globally stable (Proposition 1)
Case (iii): p = 0 is globally stable (as 1 —w™!(d) > z > 1 — 4 > 2=4),
Case (iv): If p = 0 the norm is weak and consequently p = 0 is unstable,
just as p =1 (as x > 2=4). We have that Vp s.th. w(s) > d: p < 0. Whereas Vp

s.th. w(s) < d: p > 0.The globally stable equilibrium is thus the polymorphic
state where the norm switches from being weak to being intermediate. This is
the state where w(s) = d or equivalently where p =1 — 1_“’71(@ =:p. n
Statement of result Case a+d =1
For this parameter constellation only two situations can arise: Whenever
w < 1 — a defection is a dominant strategy for both types. Whereas whenever
w > 1 — a defection is a dominant strategy for a 0-type and cooperation for a
w-type.3? We have: If A — 0 and
Ho<z< ‘1‘%;(: 1-— g) the globally stable equilibrium is p* = 1
(ii) z € [¢=4,1 — w~1(d)] the globally stable equilibrium is p* = 0
(iii) 2 > 1 — w~!(d) the globally stable equilibrium is p* = 1 — w
Proof of Proposition 8
Proof. Simply look at the exspected material payoffs any non-zero measure
of agents receives in each of the locally (or globally) stable equilibria: In the
equilibrium p = 0 we have that H?p:O = d. While at p = 1 we have H%Zl =a.
Atp=p,II}f = (1 — (1 —p)z)a <a =1} _,and H% =px + (1 — px)d.
Note that H(I)ﬁ NN _a27a(d+z(17d)):gja(izélfd7w7m(lfd))

sw> (1—d)2(1—a;)+1(i;d)aa:—a(a—d) c [1 —a, d]

>0

Atp=p, Y = (o)’ (1-(1-p)z)at(1-0}) (0% (1-(1-p)z)(1-d)+d) <
a=1IIf _ and H(I)ﬁ =pro¥* + (1 — pz) + pr(l — o%¥*))d.
2
Note that I12 > a < w(s) > a(l=z(l-p)-a (tffz;p?w)_(l_d)d(l_x) €ld,1—al.

391f w = 1 — a = d the bilateral game represented by AY is trivial as all payoffs (matrix-
entries) are equal.
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At p=pi, Iy =1 - (1-pi)z)a <l <aand H?pl =pz+ (1 — p1z)d.

The latter expression is larger than H% for high enough A and some w(s). m
Proof of Proposition 9

Proof. (i) Consider first the case where a+d > 1 : Note that in this case all w-

types cooperate in the polymorphic equilibrium where p = p. Average material

payoff is thus given by
I(p) = p(1 = (1 —p)z)a+ (1 —p)pz + (1 - p)(1 - pz)d
We have that
- 1(1 __e-d
Pmin =3 (a+d—1zx
minimizes I(p). In addition a = TI(1) > TI(0) = d. Consequently II(p) is
maximized for p = 1.

(ii) In the case where a + d < 1 average material payoff in any polymorphic
equilibrium is given by

Mp) = ple)?(—(1-pr)at (1 o) oL (1 (1—pa)(1—d)+d)}
(1~ p){peot + (1 - pa) + pa(l — o%)d)
B plw—d)(1—d—w)
I ) Yy g v

This payoff is larger than a = I1(1) whenever

= (a—d)(1—a—d)(1—z)
P> s teae—dt—a—ma=ay € (O DVweld,1—a) m

) €(0,1)
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