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ABSTRACT 
 

In general models, the strong quasi-concavity of the objective function, sufficient for 

theoretical properties of demands in consumer theory, is often arbitrary. Then, 

weaker global concavity conditions that preserve such properties are desirable for 

such models. We propose a new global concavity condition that implies, for models 

with  several nonlinear constraints: the local uniqueness and the smoothness of the 

decision functions, and the negativity of the generalised substitution matrix. This 

condition can be used to specify more general and more flexible economic models. 
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1. Introduction

The global uniqueness, the smoothness of the demands and the negative semi-

definiteness of the substitution matrix are among the main theoretical restrictions

in consumer theory. The strong quasi-concavity of the utility function (SQC) is a

sufficient global condition for these restrictions1. It is a cornerstone of consumer

and general equilibrium theories. As a matter of fact, global concavity assump-

tions in economics or in other domains are often responsible for many crucial

properties of the used models. They play an essential role in that they largely

express the structure of the model, without which a direct empirical approach

excluding any formal theory could as well be pursued. Global conditions are im-

portant because, as opposed to local conditions, one can impose or check them a

priori excluding any knowledge of the optimal decisions.

Although theoretical properties can also be developed for demand correspon-

dences, the uniqueness of the demands considerably simplifies the analysis2. It

enables one to separate considerations related to the inaccuracy of choices, from

the study of decision changes with characteristics of agents and environment. In

consumer theory, the uniqueness of the demands is global. The same legitimate

1Arrow and Enthoven (1961), Debreu (1972, 1976) discuss these quasi-concavity
assumptions.

2Ellis (1976).
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desire of focusing on the law of decisions is valid for general models. However,

global uniqueness is not necessarily appropriate for a decision problem with several

constraints. Consider for example the consumption of a person who can obtain

his consumption from two distinct domestic technologies. Assume that only the

production frontier is observed. Assume also that one technology is enjoyable

but has low productivity, while the other technology has opposite characteristics.

Then, if the arguments of the person’s utility are the penibility of domestic work

and consumption, she may be indifferent between two solutions corresponding

each to one of these technologies. One does not wish to artificially eliminate this

reasonable situation by imposing a unique global solution. Then, what is required

is that the decisions are locally unique. The smoothness of the decision functions

is also important since it allows an easy study of the comparative statics and

other variational properties of decisions. All this explains why SQC or similar

assumptions are fundamental in consumer economics.

The negativity of the substitution matrix is another a major theoretical restric-

tion. In economic theory, many authors stress the importance of the negativity

and symmetry restrictions of the Slutsky matrix in consumer theory3. Other au-

3e.g. Barten (1977), Afriat (1983), Varian (1984), Takayama (1985), Beavis and
Dobbs (1990), El-Hodiri (1991). Shapiro and Braithwait (1979) begin their article with
a quotation of Samuelson (1961): “The assumption that [the Slutsky matrix is] ...

3



thors use the negativity of the Slutsky matrix, or similar properties, to derive

sufficient conditions for the law of aggregate demand, which supports the exis-

tence of the competitive equilibrium of the whole economy4. In the study of price

dynamics in general equilibrium, negativity restrictions or related conditions en-

sure globally stable equilibria5. In applied work, these restrictions are used to

incorporate theoretical results in estimated models6.

Unfortunately, the strong quasi-concavity of the utility function that delivers

all these restrictions has few theoretical or empirical bases. The quasi-concavity

of the utility is related to preference by individual of ‘mixtures’ of commodities

to unbalanced consumption structures. However, various authors are dissatis-

fied with the hypothesis of strict convexity of preferences (equivalent to the strict

quasi-concavity of the utility function, itself very close to SQC)7. Also, experimen-

symmetrical and negative semi-definite completely exhausts the empirical implications
of utility analysis. All other demand restrictions can be derived as theorems from this
single assumption”.

4e.g. Hildenbrand (1983), Grandmont (1987), Quah (1997).
5Khilstrom, Mas-Colell, Sonnenschein (1976).
6See Samuelson (1947), Kalman and Intriligator (1973), Chichilnisky and Kalman

(1978), Deaton and Muellbauer (1980), Varian (1984), Chung (1994). Kodde and Palm
(1987) discuss a parametric test of the negativity of the substitution matrix. In the con-
text of cost function estimation, Gallant and Golub (1984), Diewert and Wales (1987),
Koebel et al. (2003) propose methods for imposing curvature conditions on specific flex-
ible functional forms. The latter ones insist on the importance of imposing concavity
globally, consistently with economic theory. Imposition or verification of the negativity
in applied demand systems is common practice.

7e.g. Kirman (1982). Other ‘technical’ conditions on preferences have been attacked
as altering the empirical content of models (Ghirardato and Marinacci, 2001).
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tal evidence contradicts the convexity of preferences8. In fact, the convexity of

consumer preferences is intuitive only when comparing standard average baskets

with extreme consumption choices concentrated only in few commodities. When

comparing two rather balanced commodity baskets, the intuition is somewhat lost

and SQC looks rather arbitrary.

Even if we admitted SQC for the consumer case, this would be less tolerable

for other models. Thus, the presence of heterogenous arguments in the objective

function may allow for different ‘life styles’ or strategies, which may imply non-

convexities in preferences. For example, this is the case for the fertility choice

between having a large family with limited human capital, or a small family with

educated and healthy members. Collective settings for aggregate household deci-

sions may also contradict the convexity of household preferences9. In trade theory,

in resource economics or in macroeconomics, a country objective function is not

necessarily quasi-concave10. Finally, in some models the decisions are the charac-

teristics of contracts or preferences may directly incorporate some constraints11.

There is no reason why the objective function should be quasi-concave in these

cases. Clearly, it is desirable to dispose of alternative conditions to the SQC.

8Tversky and Kahneman (1991).
9Chiappori (1988), Browning and Chiappori (1998).
10Dawid and Kopel (1997).
11e.g. Stiglitz and Weiss (1992), Heim and Meyer (2004).
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In this paper, we provide a new global generalised concavity condition adapted

to models with several constraints, possibly non-linear. These models are used in

several economic fields. The New Household Economics12 and agricultural house-

hold models13 involve production and budget constraints. Models with non-linear

budget constraints arising from quality effects14, non-linear taxation15, labour

supply with work costs16, productive consumption17, nonlinear wage schedules18,

rationing19, and non-linear pricing by firms with monopoly power, are also charac-

terised by non-linear constraints. Finally, international trade theory, the study of

first-best and second-best optima20, collective household models21, or other types

of bargaining or incentive models, may include several non-linear constraints for

agents’ optimal choices.

In general settings, no global generalised concavity condition is known that

would be as weak as possible for the negativity of the substitution matrix and

12Becker (1965), Lancaster (1966).
13Sen (1966), Barnum and Squire (1980), Pitt and Rosenzweig (1985), Singh, Squire

and Strauss (1986), Benjamin (1992).
14Houthakker (1952), Edlefsen (1981, 1983).
15Hausman (1985), Weymark (1987).
16Heim and Meyer (2004)
17Suen and Hung Mo (1994).
18Blomquist (1989).
19Madden (1991).
20Ben-Israel, Ben-Tal, Charnes (1977), Dixit (1985).
21Chiappori (1988, 1992), Browning and Chiappori (1998).
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the smoothness and local uniqueness of decisions22. Is there such a condition and

what are its properties? The aim of this paper is to answer these questions so as

to improve the specification of general economic models. In Section 2, we present

the general optimisation problem. In Section 3, we recall the consequences of SQC

in consumer theory and we analyse a new global generalised concavity condition

for optimisation programmes with several constraints. In Section 4, we study the

properties of the decision functions under this condition. Finally, we conclude in

Section 5. The proofs are given in the appendix.

2. The Optimisation Problem

General behavioural models with several constraints can be represented by the

following programme:

max
x

U(x, θ) subject to : g(x, θ) ≤ 0q, (2.1)

where U is the objective function, which is often assumed to be strictly quasi-

concave (or strictly concave, e.g. in Varian, 1984). x ∈ Rn is the n-dimensional

22Silberberg (1974), Hatta (1980), Caputo (1999) and Drandakis (2000) study prob-
lems with several constraints by using dual methods, although they do not deal with
global concavity conditions.
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vector of decision functions, θ ∈ Rp is the vector of parameters that may be

prices and incomes as well as any characteristics of the environment or of the

agent. We allow for parameters common to the objective and the constraints23.

However, these parameters will be omitted for the presentation when they are

not necessary. g is a q-dimensional vector of constraint functions. The decisions

may be of any type, including possibly negative values, as for variables such as

netputs or net trading positions. Positive decisions can be accounted for in the

constraints. The set of choices, X, defined by the constraints, is often assumed

to be convex. Appendix 1 contains the definitions of the generalised concavity

notions that we use in this article, with their properties that are employed.

To be able to use the first-order Kuhn-Tucker conditions (KTC) as necessary

for the existence of a solution, one must assume a constraint qualification con-

dition. We follow the common practice of assuming that the gradient vectors of

the components of g are linearly independent. Despite their intrinsic interest,

changes in regime may correspond to discrete discontinuity jumps of decisions,

23Often, exogenous variables or random effects influence preferences as well as con-
straints. This is useful for applied agricultural household models (Singh, Squire and
Strauss, 1986, Pitt and Rosenzweig, 1985), for evolutionary economics (Lesourne, 1993,
Young, 1993) and for models in which preferences depend on random states of Nature
that may also affect constraints (Viscusi and Evans, 1990). Finally, for Pareto optima,
bargaining and incentives models, objective and constraints that all include utility func-
tions, may incorporate the same common characteristics of preferences.
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which would justify not paying much attention to negligible marginal substitu-

tion effects. In these situations, the negativity property and the smoothness of

decisions lose most of their appeal as theoretical restrictions. At solutions where

the strict complementarity slackness fails, comparative statics may be problem-

atic because the set of binding constraints may change as the parameter changes,

destroying the differentiability of the solutions. To avoid these problems, prac-

titioners generally assume that non-negativity constraints would not bind, but

all other constraints always bind. Moreover, researchers are often concerned only

with the solutions of one specific regime of interest (one set of binding constraints).

This leads us to focus on the following Lagrange conditions, which are the KTC

associated with such a specific regime.

Ux − gx λ = 0n

g(x, θ) = 0q

(2.2)

where 0q is the q-dimensional vector null and λ is the q-dimensional vector of

the Lagrange multipliers. The Lagrange function associated with the problem is

L = U− λ0g .We now discuss global concavity conditions for behavioural models,
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first by examining the link of global conditions and local properties of decisions.

3. Global Concavity Conditions

Theoretical restrictions for the decisions similar to those obtained with SQC in de-

mand theory can be obtained from the sufficient second-order conditions (SSOC)

of the optimisation programme, for example in Blackorby and Diewert (1979).

However, without a global concavity condition this approach involves several

shortcomings. Firstly, the derived decision functions may not satisfy desirable

global properties. For example, flexible functional forms used in consumer analy-

sis have been criticised on the grounds that they did not easily allow the global

imposition of the convexity of preferences (Diewert and Wales, 1987). Secondly,

the consistency of the local duality structures presupposes some global concavity

properties (Blackorby and Diewert, 1979). Thus, for the consumer problem the

expenditure function must be concave in prices over its domain or the direct utility

function must be quasi-concave over its domain. Without these global concavity

conditions there is no correspondence of the respective second-order approxima-

tions of the expenditure function and of the direct utility function. Meanwhile,

the global conditions alleviate difficulties that may arise for the coincidence of the

10



domains of the local utility function and of the other local dual representations of

preferences. Therefore, even if local approximations are useful, they do not allow

for a precise control of global properties of objective and constraints and of the

consistency of the dual. Thirdly, global concavity conditions are used to incor-

porate decision models in general equilibria frameworks describing the economy

by a unique and stable solution. On the whole, one needs global generalised con-

cavity conditions on the optimisation problem, even for obtaining desirable local

properties of decision functions. This has been a fertile approach in the economic

literature, notably to obtain local uniqueness and differential properties of deci-

sions24. Besides, local uniqueness, smoothness and semi-definite negativeness of

decisions are global properties when they must be satisfied for the whole domain.

In the consumer problem, the only constraint (to simplify the exposition we

ignore any positivity constraint) is the linear budget constraint and x is the vec-

tor of consumption. The utility function U is generally assumed to be of type

C2, strictly increasing in the consumption of every commodity and strictly (or

strongly) quasi-concave. Under these assumptions, the vector of demands is de-

rived from the Lagrange first-order conditions of the optimisation programme.

24e.g. Debreu (1972), Arrow and Enthoven (1961), Laroque (1981), Smale (1982),
Dana (1999), Shannon and Zame (2002).
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From the budget constraint, one can derive the adding-up and homogeneity re-

strictions that are somewhat specific to the consumer problem. The other theo-

retical restrictions characterise the Slutsky matrix S and are discussed in Afriat

(1983). The symmetry property (S is a symmetric matrix) results from the sepa-

ration structure of the optimality problem. The negativity property results from

the assumption of strong quasi-concavity of U (Diewert, Avriel and Zang, 1981),

which implies the sufficient second-order conditions (SSOC): S is orthogonal to

the price vector and is negative definite in the hyperplane orthogonal to the price

vector. However, the SSOC would not satisfy us because we search for a global

condition.

For general models, SQC may be weakened. Weakening the conditions for

properties of optimal solutions is important in mathematical programming25 and

in economics26 since it limits arbitrary restrictions. We search for a generalised

global concavity condition that is as weak as possible and implies the local unique-

ness and smoothness of decision functions and the negativity of the generalised

substitution matrix.

The necessary (respectively sufficient) local second-order conditions correspond

25Avriel (1976), Hiriart-Urruty (1996), Auslender (2000).
26Debreu (1983).
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to the local negative semi-definiteness (respectively the local negative definiteness)

of the Hessian matrix of the Lagrange function with respect to decisions at the

optimum (respectively, at the optimum for directions in the tangent space to the

constraints)27. However, we are not interested by local concavity conditions but by

global ones. Moreover, because each constraint function and objective function

is separately specified in economic models and sometimes separately estimated

from different datasets, we look for a condition that can be explicitly expressed

in terms of these functions, rather than in terms of the Lagrange function. Next,

we recall the definition of the strong quasi-concavity.

Definition 3.1. Let U be a directionally differentiable real function defined over

a convex subset X of Rn. U is called Strongly Quasi-Concave over X if and

only if

[x0 ∈ X, v0v = 1, t̄ > 0, x0 + t̄v ∈ X,DvU(x
0) = 0]⇒

[∃ε > 0,∃α > 0, ε < t̄, ∀t ∈ [0, ε], U(x0 + tv) < U(x0)− αt2] ,

where Dv denotes the directional derivative operator in direction v.

Equivalent notions have been used28. If U is twice differentiable, an equivalent

definition is the following (Diewert, Avriel and Zang, 1981).

27See Afriat (1971) for a discussion.
28Dhrymes (1967), Barten, Lempers and Kloek (1969), Newman (1969), Ginsberg

(1973), McFadden (1978). See also Barten and Böhm (1982) for a discussion of the
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Definition 3.2. Let U be a twice differentiable real function defined over a convex

subset X of Rn. U is Strongly Quasi-Concave (SQC) if and only if ∀(x, y) ∈

X2, such that x 6= y,

(∇U(x)0(y − x) = 0)⇒ (y − x)0∇2U(x)(y − x) < 0.

We now introduce a new notion of generalised concavity by changing the

premises of this definition.

Definition 3.3. The twice differentiable objective function U subject to a differ-

entiable vector of constraint functions g, is called

Constraint− StronglyQuasi−Concave (CSQC29 ) with respect to g if

and only if U is twice differentiable on X convex subset of RN , and

∀(x, y) ∈ X2 such that x 6= y and g(x) = 0q,

(∇g(x)(y − x) = 0 and ∇U(x)0(y − x) = 0) =⇒

(y − x)0∇2U(x) (y − x) < 0. (3.1)

The CSQC must be checked for all points x satisfying the constraints, in

properties of strongly quasi-concave utility functions in consumer theory. Crouzeix,
Ferland and Zalinescu (1997) extend this notion to sets and relate it to inf-compactness.
Quasi-concave functions in a non-differentiable context are discussed in Calzi (1992).
29To simplify the presentation, we use CSQC both for ‘Constraint-Strong Quasi-

Concave’ and ‘Constraint-Strong Quasi-Concavity’.
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particular for x non-optimal. This is a crucial requirement, since, at the stage

of model specification, the actual optimum may be unknown. The CSQC differs

from the SSOC by several elements. First, it is global. Second, an orthogonality

condition involving the gradient ∇U intervenes in the premises of the CSQC and

not in that of the SSOC. Third, the negativity condition in the conclusion of the

CSQC is for ∇2U , whereas it is for ∇2L in the SSOC. Also, the CSQC differs

from the SQC by the presence in the premises of the choice set and orthogonality

conditions with respect to the constraint gradients.

The fact that the constraints intervene in the CSQC is more natural than it

may seem at first sight, because both objective and constraints characterise the

optimisation problem and they should therefore be considered together. Novshek

(1980) states that “the second-order conditions impose constraints on the curva-

ture of level sets for f relative to the curvature of level sets for g [here f describes

the objective and g describes the constraints]. The absolute properties of [f ij(x)]

(positive definite, negative definite, corresponding to a saddle point, etc.) are

unimportant. The properties of [f ij(x)] relative to [gij(x)] are important.” This

quote is consistent with the definition of the CSQC in which the curvature prop-

erties of U are considered relatively to g 30.

30See also Ben-Tal (1980) for second order conditions involving Hessian functions and
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The tangent subspace at x to the constraints and to the indifference hyper-

surfaces (i.e. the subspace orthogonal to the gradients of functions gi(i = 1, ..., q)

and U) generates a differential manifold, as x varies along the frontier of the con-

straints. This manifold is generally nonlinear and is neither a hyperplane as in

consumer theory with one linear constraint, nor a sub-vector space as when con-

sidering only local conditions with several constraints. It is exclusively along this

manifold that the negativity of ∇2U is imposed by the CSQC.

The sole consideration of the frontier of the constraints in the definition of the

CSQC is motivated by the search for as weak a condition as possible. Indeed,

since the objective function is generally specified as increasing in its arguments, it

is generally useless to incorporate restrictions occurring at points that are never

reached at the equilibrium because they are not at the frontier.

Some functions U and g may yield an empty set of directions corresponding

to the premises of the definition of the CSQC. When that is the case, essentially

no arbitrary restriction of generalised concavity is imposed on the optimisation

problem. However, this seems unlikely to happen in models of interest. In order

to characterise the CSQC by the shape of the graph of the objective function, we

need an additional definition.

curvatures.
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Definition 3.4. f : X convex set ⊂ R → R attains a strong local maximum

(SLM) at t0 ∈ X if and only if ∃α > 0,∃ ε > 0, ∀t ∈ [t0 − ε, t0 + ε] ∩X, f(t) ≤

f(t0)− α(t− t0)
2.

Intuitively, a function attains a SLM when its curvature to the origin at the

maximum is at least as strong as that of a quadratic function. Definition 3.1 shows

that a strongly quasi-concave function U is such that for directions v orthogonal

to ∇U in x0, h(t) ≡ U(x0 + t v) attains a SLM at t = 0. We now show that

the CSQC can also be characterised in terms of SLM in some directions. By

considering particular values of α, one can extend this characterisation to define

properties of ‘α-constraint-quasiconcavity’, similarly to the α-quasiconvexity in

Crouzeix, Ferland and Zalinescu (1997).

Proposition 3.5. Let U be a twice differentiable function over X. Then,

U CSQC with respect to g over X if and only if

(x0 ∈ X, v0v = 1, t̄ > 0, x0+ t̄ v ∈ X, ∀i = 1, . . . , q, gi(x0) = 0 and ∇gi(x0)0v =

0 and ∇U(x0)0v = 0)⇒ h(t) ≡ U(x0 + t v) attains a SLM at t = 0 .

It is well known that the convexity of a function f(x) is equivalent to the

convexity of its epigraph, Ep(f), the set of couples (x, y) where y ≥ f(x). The

following proposition characterises the epigraph in the case of CSQC.
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Proposition 3.6. Let the function U, from X convex set of Rn to R, be CSQC

with respect to the vector of constraints g. We consider the graph of U:

∂Ep(U) = {(x1 ,. . . , xn, U(x1 ,. . . , xn)) | (x1 , . . . , xn) ∈ X},

and we define a “g—U-admissible” direction at x, as d ∈ Rn such that ∇gi(x)0d =

0, for all i and ∇U(x)0d = 0 (i.e. a direction of the domain generated by the tan-

gent space to the constraints and to the indifference hypersurfaces). Then,

(a) the frontier of the epigraph of U is strictly below all its tangent hyperplanes,

in any g—U-admissible direction at the frontier of constraints;

(b) the curvature (to the origin) of the frontier of the epigraph of U in any

g-U-admissible direction at the frontier of constraints is strictly positive;

(c) the dimension of the subspace spanned by the ∇gi (i = 1, . . . , q), which is

q because of the constraint qualification condition, is greater than the number of

positive or null eigenvalues of ∇2U at the frontier of constraints.

Condition (b) can be shown to correspond to a strictly positive curvature

of the objective function obtained by substituting the constraints in the initial

objective, as in Afriat (1971). Condition (c) illustrates that the more constraints

the less restrictive is the CSQC. The index ‘n − (the number of positive eigen-

values of ∇2U )’ can be used as an index of non-convexity31. In a von Neumann-
31More general indices of non-convexity are proposed by Thach and Konno (1995).
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Morgenstern framework, the CSQC is related to risk aversion in the domains of

choices defined by the constraints and by the indifference hypersurfaces. It is worth

noting, as the next proposition shows, that CSQC utility functions can be ordinal

and therefore that they correspond to relevant restrictions on the representation

of preferences.

Proposition 3.7. The CSQC is an ordinal property of the preferences.

In the next section, we examine the consequences of the CSQC for the deci-

sions.

4. The Properties of the Decision Functions under CSQC

4.1. The Link of CSQC with SQC and the Second-Order Conditions

We now turn to the link of the CSQC with the SQC and the SSOC, not only

because of the intrinsic interest of these conditions, but also because the SSOC is

a convenient intermediate to derive some properties of decisions. First, the CSQC

and the SQC can be ranked.

Proposition 4.1. If function U is strongly quasi-concave, then it is CSQC.

19



The reciprocal proposition is not true because, even at the optimum,∇U 0
v = 0

does not generally imply ∇gi0v = 0 for all i. When there are several constraints,

the CSQC is a weaker condition than the strong quasi-concavity, because it is

associated with a local curvature that is strictly positive only in a sub-space of

dimension n − q or generally n − q − 1, and only at the frontier of the con-

straints, while this curvature must be strictly positive in a whole hyperplane for

U strongly quasi-concave. The CSQC is an assumption that does not locally im-

pose any structure on the preferences in a subspace of dimension q at least, and

therefore globally in a large domain. Moreover, out of the frontier of the con-

straints, the CSQC is tantamount to the absence of restrictions32. We now turn

to the relationship between the CSQC of the Lagrange function and the CSQC

of the objective function, as a first step towards the second-order conditions of

optimality.

32The case of families of constraint and utility functions with θ varying instead of
given a priori, leads to obvious generalisations and stronger global conditions, although
still weaker than SQC. These generalisations do not change the core of our results.
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Proposition 4.2.

If g is quasi-convex, the CSQC of the utility function implies the CSQC of the

Lagrange function associated with the optimisation programme, whether calculated

with optimal or non-optimal Lagrange multipliers.

The CSQC of the Lagrange function is important because it characterises the

shape of the optimisation problem under CSQC of the objective function. How-

ever, the Lagrange function cannot be directly used to impose structural condi-

tions, because of its dependence on a priori unknown Lagrange multipliers. More-

over, applied researchers want to impose restrictions on objective and constraint

functions independently, not on a combination of them. The following proposition

shows that CSQC ensures that the second-order conditions are satisfied when the

choice set is convex33.

Proposition 4.3. If g is quasi-convex, then U CSQC implies the sufficient local

second order conditions of optimality.

The contention that g is quasi-convex is little restrictive since it is equivalent

to assume that the choice set is convex. By contrast with the necessary second-

33This does not imply that any optimal situation must satisfy the CSQC. For example,
(x− 2)4 does not satisfy the CSQC, but it has a minimum at x = 2.
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order conditions, the SSOC are not necessary the consequences of any optimi-

sation programme. A condition like CSQC is required to obtain the SSOC. Lo-

cally, SSOC implies the negativity of the generalised substitution matrix (Pauwels,

1979). However, without global conditions one would have to know the optimum

to be able to a priori check SSOC in a tractable way. We are now ready to examine

the properties of the decision functions under CSQC.

4.2. The Properties of the Decision Functions

In consumer theory, the budget set is bounded, therefore compact in finite di-

mension. This implies that there is always a solution to the maximisation of an

upper semi-continuous utility function. In general models, the choice set inside

a given regime is defined as C = {x ∈ Rn, g(x, θ) = 0q} and is no longer neces-

sarily bounded. Firstly, we consider a non-empty choice set C to avoid absurd

situations. Secondly, the problem optimum is given by the KTC and corresponds

to a tangential contact point of the constraint frontier with an indifference hy-

persurface. The CSQC yields strict curvatures that seems to geometrically imply

the existence of the optimum. Surprisingly, this is not the case34 and additional

34Indeed, in the following example there is no optimum. Let be a 2-dimensional vector
of decisions x = (x1, x2)

0 ∈ R2, and a constraint vector of one dimension described by
the equation: x1 + x2 = 1. Assume that the objective function U is strictly increasing
and differentiable in x1 and x2, and CSQC. Because the constraint is a unique line, this
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assumptions are necessary to guarantee the existence of the optimum. Since U

and g are continuous, if one assumes that the decisions belong to a bounded set

Ξ, then the choice set C is compact and is not empty by hypothesis, and an upper

semi-continuous utility function has a maximum in this set. Another possibility is

to assume that U is coercive, upper semi-continuous on a closed feasible set with

at least one point where U is finite.

We now present a characterisation of the CSQC in terms of a bordered Hessian,

similarly to consumer theory with strong quasi-concavity (Barten & Böhm, 1982).

This is interesting first because this type of characterisation is usual for various

concavity conditions, and also because determinants can be easily calculated from

data to check these concavity conditions. The non-singularity of another related

bounded Hessian will be necessary to the derivation of properties of decisions.

Proposition 4.4. Let be

is obtained with U strongly quasi-concave. But there exist families of strongly convex
indifference curves that satisfy these conditions and are asymptotically tangent to the
constraint when x1 goes to +∞ or x2 goes to -∞. In that case, there is no optimum
since the contact point is at the infinite.
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H =



Uxx g1x · · · gqx

g10x 0 0

... 0

gq0x 0 0


and J =



Lxx g1x · · · gqx

g10x 0 0

... 0

gq0x 0 0


.

(a) If U is CSQC, then H is non-singular at any solution of the KTC.

(b) If U is CSQC and g is quasi-convex, then J is non-singular at any solution

of the KTC.

The non-singularity of H characterises the CSQC at the optimum. The non-

singularity of J enables us to use the implicit function theorem under the CSQC

when g is quasi-convex, and we exploit it in the next proposition.

Proposition 4.5. Let (x 0, λ0, θ0) be such that the KTC of Problem 2.1 are sat-

isfied with U CSQC and g quasi-convex. Then,

(a) ∃V0 open neighbourhood of θ0, ∀V ⊂ V0, open and connected neighbour-

hood of θ0, there is a unique function h: V → R2n, such that

(x0, λ0) =h( θ0) and ∀ θ ∈ V,∃ (x ,λ) ∈ R2n, (x, λ) = h(θ)

and KTC[ h( θ), θ] = 0, where KTC[.] is the vector of functions corresponding

to the equations in the KTC.
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(b) h is of type C 1 in V and its derivative is

h0(θ) = − [Dx ,λKTC[ h(θ), θ]]−1 ◦ [DθKTC[ h(θ), θ]] .

(c) If moreover, U and g are of type C p+1 in a neighbourhood of (x0, λ0, θ0),

then h is of type C p in a neighbourhood of θ0.

(d) If moreover, U and g are analytic in a neigbourhood of (x0, λ0, θ0), then

h is analytic in a neigbourhood of θ0.

The first component of h defines the vector decision functions. Proposition

4.5 proves the local uniqueness and smoothness of the decision functions. It also

justifies the usual calculus of the derivatives of the decision functions. We now

discuss the negativity property.

Proposition 4.6. Under the CSQC and the convexity of the choice set, the gen-

eralised substitution matrix, S, is negative semi-definite and is negative definite in

the tangent space to the constraints.

The negative semi-definiteness of matrix S at the optimum is related to the

local stability of the equilibrium that is ensured when matrix Lxx is negative

definite in the tangent space to the constraints. At the optimum, the CSQC
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jointly with the quasi-convexity of g is, to our knowledge and for the moment, the

weakest available global condition for the negativity of the substitution matrix in

a general context.

In practice, the definition of the CSQC suggests to verify the semi-definite

negativity of ∇2U only in a limited domain. In particular, the knowledge of all

decisions and all multipliers is not needed, and neither are verifications over the

whole spaces of decisions, multipliers and directions. Because firstly multipliers

need not be considered, and secondly decisions and directions need be checked

only in reduced domains, checking globally the CSQC may often be tractable.

Proposition 4.4 (a) provides a necessary condition on a bordered determinant

that could be used for the test. However, this test would be only valid for the

solutions of the KTC, which may be hard to calculate. Checking CSQC can also

be directly implemented by using a grid of the domain of decisions, calculating

for each knot of the grid all the eigen-values of ∇2U in the (U − g)−admissible

directions and verifying that they are all negative. Statistical tests are available

(Kodde and Palm, 1987) to account for approximations done in the model or with

the grid. In some cases, a grid may not be necessary if the functional forms used

for U and g lead to simplifications. Then, the CSQC may sometimes be easier to

test than the SQC because the domain to explore for this test is much smaller.
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5. Conclusion

In general models, the strong quasi-concavity of the objective function, which is

sufficient for theoretical properties of demands in consumer theory, is often ar-

bitrary and weaker global concavity conditions are desirable. We propose a new

global concavity condition, the ‘constraint-strong quasi-concavity (CSQC)’ of the

objective function that implies, for models with several non-linear constraints,

the local uniqueness and the smoothness of the decision functions as well as the

negativity of the generalised substitution matrix when used jointly with the con-

vexity of the choice set. CSQC is weaker than the strong quasi-concavity and

is parsimonious because it is strictly based on what is required globally for the

negativity of the generalised substitution matrix. Indeed, it does not restrict the

curvature of the objective function in directions that are not compatible with the

constraints or not compatible with the augmentation of the objective level. More-

over, the CSQC may be easier to check numerically for specific models than the

strong quasi-concavity. Finally, using the CSQC allows the extension of the set

of possible functional forms as compared with the strong quasi-concavity, thereby

increasing modelling flexibility.

Several extensions of this paper are possible. First, ‘α-CSQC’ notions could
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be developed to (1) extend the analysis from functions to sets, (2) produce weaker

notions of generalised concavity, (3) build the bridge between the CSQC and no-

tions of generalised strict quasiconcavity. Second, the CSQC can be related to the

degree of non-convexity in optimisation problems (as defined in Thien Thach and

Konno, 1997). Third, in consumer theory, the negativity of the Slutsky matrix is

related to revealed preferences axioms (Kihlstrom, Mas-Colell and Sonnenschein,

1976). We conjecture that analog results could be derived by limiting the decisions

to the constrained choice set (as in Chavas and Cox, 1993). Such results would

express the curvature properties embodied in the CSQC hypothesis. Fourth, since

imposing strong concavity globally jeopardises the flexibility of usual flexible func-

tional forms for cost functions and utility functions, one could investigate if, in

the presence of several constraints, imposing only the CSQC would permit to pre-

serve the flexibility of such functional forms. Finally, game theory problems and

equilibria problems seem likely to be fertile application fields of the CSQC.
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Definitions of the generalised concavity notions

The generalised convexity properties for a function f are given by the
corresponding generalised concavity properties of -f.

Let X be a convex set of RN .

f : X -> R, a differentiable function, is called concave if and only if

∀(x, y) ∈ X2, f(y)− f(x) ≤ ∇f(x)(y − x).
f : X -> R, a differentiable function, is called strictly concave if and

only if

∀(x, y) ∈ X2, x 6= y, f(y)− f(x) < ∇f(x)(y − x).

f : X -> R, a differentiable function, is called quasi-concave if and only
if

∀(x, y) ∈ X2, (f(x) ≤ f(y)) ⇒∇f(x)(y − x) ≥ 0.
This is equivalent by contraposition to
∀(x, y) ∈ X2,∇f(x)(y − x) < 0⇒ (f(x) > f(y)).
Moreover, if f is quasi-concave and twice differentiable then
∀(x, y) ∈ X2, such that x6= y,∇f(x)(y − x) = 0⇒
(y − x)0fxx(x)(y − x) ≤0.
f : X -> R, is called strictly quasi-concave if and only if

∀(x, y) ∈ X2, x 6= y, ∀λ ∈]0, 1[, f(y) ≤ f(x) ⇒ f(x) < f((1 −
λ)x+ λy).

Then, f is strictly quasi-concave and, if, moreover, it is twice differ-
entiable, it satisfies the same second-order condition as any quasi-concave
function.

f : X -> R, a twice differentiable function, is called strongly quasi-
concave if and only if ∀(x, y) ∈ X2, such that x 6= y,
(∇f(x)(y − x) = 0)⇒ (y − x)0fxx(x)(y − x) < 0.
Then, f is strictly quasi-concave.
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f : X -> R, a twice differentiable function, is called constraint-strongly
quasi-concave (CSQC) with respect to g, where g : X -> Rm is a differen-
tiable vector function, if and only if
∀(x, y) ∈ X2 such that x 6= y and g(x) = 0q, (∇g(x)(y − x) = 0 and

∇f(x)(y − x) = 0)⇒ (y − x)0fxx(x)(y − x) < 0.

Proofs

Proof of Proposition 3.5:
=⇒] Let U be CSQC overX, let x0 ∈ X, v0v = 1, t̄ > 0, x0+t̄v ∈ X,

∀i = 1, . . . q, gi(x0) = 0q, ∇gi(x0)0v = 0, ∇U(x0)0v = 0.
Let h(t) ≡ U(x0 + tv). We calculate j(t) ≡ h(t)− h(0) = U(x0 +

tv)− U(x0).
A second order Taylor expansion of U(x0 + tv) gives
j(t) = (t2/2)v0∇2U(x0)v + t2ε(t) because ∇U(x0)v = 0.
U CSQC implies that for x0 and v such that ∀i = 1, . . . , q, gi(x0) =

0q, ∇gi(x0)0v = 0 and ∇U(x0)0v = 0, we have v0∇2U(x0)v < 0. Then,
since ∇2U is continuous by hypothesis, j(t) < 0 when t is small
enough. Therefore, h(t) attains a SLM at t = 0 for any 0 < α <
Min{−1

2
v0∇2U(x0)v : v0v = 1}.

⇐=] Let be x0 ∈ X, v0v = 1, t̄ > 0, x0+t̄v ∈ X, (∀i = 1, . . . , q, gi(x0) =
0 and ∇gi(x0)0v = 0)⇒ h(t) ≡ f(x0 + t v) attains a SLM at t = 0.
Then, ∃α > 0,

j(t) + α t2 ≤ 0. (1)

Besides, a second order Taylor expansion of U(x0 + t v) about x0

yields

U(x0+t v) = U(x0) + t2

2
v0∇2U(x0) v+t2 ε(t) where ε(t)→ 0 when

t→ 0 because v
0∇U(x0) = 0.

Therefore,

j(t) =
t2

2
v0∇2U(x0) v + t2 ε(t) (2)
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Eqs. 1 and 2 imply that 1
2
v0∇2U(x0) v ≤ −α − ε(t), which gives

for t small enough v0∇2U(x0) v < 0, which proves that U is CSQC.
QED.
Proof of Proposition 3.6:
(a) Let d be a (g−U)−admissible direction at x at the frontier of

the constraints, then from a Taylor expansion of U at x, we have
U(x + d) = U(x) + ∇U(x)0 d + 1

2
d0∇2U(x) d + kdk2 ε(d) where

lim ε(d) = 0 when kdk → 0. Because U is CSQC we have at the
frontier of the constraints d0∇2U(x) d < 0. Choosing α small enough
shows that the hypersurface ∂Ep(U) is strictly below all its tangent
hyperplanes in (g − U)−admissible directions at the frontier of the
constraints.
(b) is deduced from the fact that the curvature of the epigraph in

a direction d at x can be associated with −d0∇2U(x)d with a positive
factor of proportionality to adjust for the local metric of the hyper-
surface. Under the CSQC, all points of the frontier of the constraints
are ‘elliptic’ for U in any g−U−admissible direction, while they may
be ‘parabolic or hyperbolic’ in the whole space.
(c) is a direct consequence of the definition of the CSQC and of

the fact that since ∇2U is symmetric there exists an orthogonal ba-
sis of eigenvectors of ∇2U whose first q vectors generate the subspace
spanned by the ∇gi (theorem of the incomplete base). The orthog-
onality condition with respect to ∇U generally enables one to add a
unity from the number of possible positive or null eigenvalues of ∇2U ,
although not for an optimum since in that case the KTC are satisfied
and ∇U is a linear combination of the ∇gi.
Proof of Proposition 3.7:
V = FoU gives ∇V = (F 0oU).∇U ,
and ∇2V = (F 0oU)∇2U + (F 00oU)∇U∇U 0 .
Then, with F 0 > 0, and moreover ∀ i = 1, . . . , q, ∇gi0v = 0 and

∇U 0v = 0 at the frontier of constraints implies v0∇2Uv < 0, we have
v0∇2V v < 0 . Therefore, V is CSQC. QED.
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Proof of Proposition 4.1:
The premises of the definition of the CSQC imply that of the def-

inition of the SQC. QED.
Proof of Proposition 4.2:
We first give the proof for one constraint function g only. U is

CSQC and g is quasiconvex. Then, for all x and y such that x 6=
y, g(x) = 0q,∇g(x)(x−y) = 0 and ∇U(x)(x−y) = 0, we have (x−y)0
∇2U(x)(x − y) < 0 and (x − y)0∇2g(x)(x − y) ≥ 0. Then, for all
vectors λ ≥0, for all x and y such that g(x) = 0q,∇g(x)(x − y) =
0 and ∇U(x)(x − y) = 0, we have (x − y)0∇2L(x, λ)(x − y) < 0
and the Lagrange function is CSQC for any vector of non-negative
multipliers. In particular, this result is true for optimal solution and
with optimal Kuhn-Tucker multipliers. The extension of the proof to
several inequality constraints is straightforward because the Hessian
matrix of a linear combination of functions is the linear combination
of the Hessian matrices of these functions. QED.
Proof of Proposition 4.3: Consequence of Proposition 4.2, ap-

plied at an optimal solution. QED.
Proof of Proposition 4.4:
(a) Assume that H is singular. Then, ∃ z ∈ Rn, ∃ r ∈ Rq, such

that

Uxxz +

qX
i=1

rig
i
x = 0 (3)

(z0, r0)0 6= 0n+q (4)

gi0xz = 0,∀i = 1, . . . , q (5)

z = 0 and r 6= 0 is impossible since
P

i rig
i
x = 0, is a system of

n equations with q unknown variables (ri, i = . . . , q), which implies
ri = 0 for all i because of the hypothesis of constraint qualification
(∇g is full rank).

z 6= 0 is also impossible because from eqs. 3 and 5 we would obtain
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z0Uxxz = 0 and gi0xz = 0, ∀i = 1, . . . , q, in contradiction to the
CSQC for a solution of the KTC, ∇U lies in the vector space gen-
erated by ∇g. Therefore, no non-null vector (z0, r0)0 exists such that
(z0, r0)H = 0, which implies that H is non singular.

(b) The proof is similar to that of (a), taking advantage of the fact
that gi0xz = 0,∀i = 1, . . . , q implies z0gi0xxz ≥ 0, ∀i = 1, . . . , q.
Proof of Proposition 4.5:
The system describing the KTC has n+ q equations whose vector

function is denoted KTC[.], and n+ q+ p variables (x, λ, θ). Because
∇U, ∇g and g are of type C1, KTC[.] is of type C1. Since Rn+q+p is
an open set (this is as well the case if the regime of interest is defined
by strict inequality for non-binding constraints) and since |J |, which is
the Jacobian determinant associated with the KTC for their solution
in (x, λ), is non-singular at a solution of the KTC when U is CSQC
and g is quasiconcave, we can apply the theorem of implicit functions.
This generates all the results of the proposition. QED.

Proof of Proposition 4.6: The CSQC implies the SSOC and
the SSOC implies S negative semidefinite in the tangent space to
the constraints and orthogonal to the constraint gradients (Pauwels,
1979).
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