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ABSTRACT 
 
Recent research has reported the lack of correct size in stationarity test 

for PPP deviations within a linear framework. However, theoretically well 
motivated nonlinear models, such as the ESTAR, appear to parsimoniously fit 
the PPP data and provide an explanation for the PPP “puzzle”. Employing 
Monte Carlo experiments we analyze the size and power of the nonlinear tests 
against a variety of nonstationary hypotheses.  We also fit the ESTAR model to 
data from high inflation economies. Our results provide further support for 
ESTAR specification. 
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1 Introduction

A number of authors (see e.g. Dumas, 1992; Uppal, 1993; Sercu et al., 1995;
Ohanian and Stockman, 1997; O’Connell, 1998; and Berka, 2002) have devel-
oped theoretical models which investigate the nature of the PPP adjustment
process when agents face transactions costs or there are sunk costs of interna-
tional arbitrage. They demonstrate that such factors induce nonlinear adjust-
ment towards equilibrium PPP. Whilst globally mean reverting this nonlinear
process has the property of exhibiting near unit root behavior for small de-
viations from equilibrium. Two parametric models that capture this type of
nonlinear adjustment are the threshold autoregressive (TAR) model or the ex-
ponential smooth transition autoregressive (ESTAR) model. The models differ
in that in the TAR model adjustment between regimes is assumed to occur
abruptly whereas in the ESTAR model adjustment occurs smoothly. A smooth
adjustment process is explicitly suggested in some theoretical models (e.g. Du-
mas, 1992; and Anderson, 1997). Also, as postulated by Terasvirta (1994), and
demonstrated theoretically by Berka (2002), in aggregate data, regime changes
may be smooth rather than discrete given that heterogeneous agents do not act
simultaneously even if they make dichotomous decisions.
Empirical results suggest that TAR or ESTAR models produce parsimonious

fits to a variety of different PPP data sets2 [see e.g. Balke and Fomby, 1997;
Michael et al., 1997; Obstfeld and Taylor, 1997; Kilian and Taylor, 2003; and
Paya et al., 2003]. These models also provide some explanation of the “Pur-
chasing Power Parity puzzle” outlined by Rogoff (1996).3

In spite of the theoretical and empirical evidence in favour of a nonlinear
specification there are a significant number of papers that suggest that PPP
deviations may be explained by non-stationary linear or other nonlinear alter-
natives. For instance, Engel (2000) has shown, using artificial calibrated data
from a linear structural model which embodies a permanent PPP component,
that unit root (and cointegration tests) have serious size biases. The standard
unit root tests reject the null hypothesis of a unit root too much, even when a
substantial random walk component that accounts for 42% of an assumed 100

2Estimates of the nonlinear models have been reported employing data sampled at different
levels of aggregation. For example, Taylor et al. (2001), report ESTAR models employing
monthly data, Kilian and Taylor (2003) quarterly data whilst Micheal et al. (1997), and Paya
and Peel (2003) report results employing annual data. Paya and Peel (2004) show that the
empirical results obtained at different degrees of temporal aggregation are consistent with
the nonlinear data generating process (DGP) obtained at the highest frequency observable
(monthly).

3Rogoff drew attention to the fact that in linear models it is difficult to reconcile high short-
term volatility of real exchange rates with extremely slow convergence to PPP. The average
reported half-life of PPP deviations based on linear models is around 3-5 years, seemingly far
too long to be explained by nominal rigidities. An important property of the nonlinear models
is that their impulse response functions show that whilst the speed of adjustment for small
shocks around equilibrium can be extremely slow, larger shocks mean-revert much faster than
the “glacial rates” obtained in the linear estimates (see e.g. Taylor et al., 2001, and Paya et
al., 2003).
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year forecast variance is present.4 Bleaney et al. (1999, 2003) model PPP de-
viations5 as a stochastic unit root process Others have modelled real exchange
rates for developed and less developed economies as nonstationary but mean
reverting fractional processes (see e.g. Diebold et al., 1991; and Holmes, 2002).
Whilst these alternative models to the nonlinear TAR or ESTAR models also

appear to provide a parsimonious fit to the data the authors did not compute the
standard statistical tests for threshold nonlinearity or estimate TAR or ESTAR
models.6 It seems of interest to examine the properties of some tests that a
researcher would employ in reporting a parsimonious nonlinear ESTAR model,
if in fact, the true DGP is generated from the alternative models.7 If the tests
for parsimony of the nonlinear models have good size and power characteristics
when applied to such models this would provide further evidence in support of
the nonlinear adjustment mechanism, which is the only one of the competing
models with a proper micro-theoretic basis. That is the purpose in this paper.
We consider four different DGP’s that have been proposed for modelling PPP
deviations these are (a) a random walk, (b) an ARIMA(1,1,1) motivated by
Engel (2000), (c) a nonstationary but mean reverting fractional process, (d) a
stochastic unit root process.
The rest of the paper is organised as follows. In the next section we set out

the design of our Monte Carlo experiments and discuss the findings. Section
3 reports empirical results on nonlinear models of real exchange rates in high
inflation economies. The last section is a brief conclusion.

2 Monte Carlo Experiments

Other studies have examined the size and power of linearity tests (see Terasvirta,
1994, Luukkonen et al., 1988, and Escribano and Jorda, 1999). These studies
have usually simulated general STAR processes where three main parameter
values have to be calibrated, namely, the autoregressive parameters, the speed
of adjustment parameter, and the variance of the noise term. However, their
results are limited to processes with the characteristics described by those para-
meter values. In this paper, we calibrate the parameter values based on explicit
ESTAR processes in the literature on PPP adjustments.
All our Monte Carlo experiments described below are based on 10,000 repli-

cations, for sample sizes of T = 360 and 120.8 The shocks are assumed to be

4Taylor et al. (2001) and Pippenger and Goering (1993) demonstrate that the standard
Dickey Fuller unit root tests have low power against data simulated from an ESTAR model.

5For both high-inflation economies and also for bilateral real exchange rates against the
US Dollar under the post war float

6Byers and Peel (2000) show that data that is generated from an ESTAR process can
appear to exhibit the fractional property (as conjectured by Acosta and Granger, 1995) thus
potentially providing an explanation of the results reported employing the fractional processes.

7Caner and Kilian (2001) examine the size distortions of stationarity tests within the PPP
framework. However, their study assumes linear stationary real exchange rates.

8These sample sizes would correspond to available data at monthly or quarterly frequency
for the post-Bretton Woods period. The actual sample size in each replication were of 1,360
and 1,120 data points, respectively. We then discard the first 1,000 data points.
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i.i.d. N(0,σ2), where σ2 is calibrated on actual magnitudes reported in the liter-
ature for monthly and quarterly estimates of real exchange rates (see Taylor et
al., 2001; Kilian and Taylor, 2003; and Paya et al., 2003). All results presented
are based on a 5 percent nominal significance level. We generate 10,000 artificial
series given by the following DGPs:
(a) A Random Walk

qt = qt−1 + ut (1)

where q is the real exchange rate. q0 = 0 and σ2
u = 0.035 for sample sizes of 360

and σ2
u = 0.05 for sample sizes of 120.

(b) An ARIMA(1,1,1) process as postulated by Engel (2000) in his calibrated
example

∆qt = φ∆qt−1 + ut − θut−1 (2)

where∆ = qt−qt−1, q0 = 0 and σ2
u = 0.035 for sample sizes of 360 and σ

2
u = 0.05

for sample sizes of 120.
We set φ = 0.95, 0.8; and θ = 0.8, 0.7, based on the values in Engel. The

different parameterization of φ and θ serve to give an impression of the size and
power of the tests under different “persistence” in the real exchange rate data.
(c) A fractional process described by

(1− L)dqt = ut (3)

with q0 = 0 and σ2
u = 0.035, for sample sizes of 360 and d = 0.8, 0.5.

These values of d imply the real exchange rate is non-stationary but mean
reverting.
(d) A stochastic unit root process based on Bleaney et al. (1999):

qt = (1 + δt)qt−1 + vt (4)

where vt ∼ N(0, 0.0316) δt ∼ N(0, 0.1732).
We mimic the procedure a researcher might follow in determining whether

data was generated from a ESTAR model of the general form

qt = a+ (β1(qt−1 − α) + β2(qt−2 − α))e−γ(qt−1−a)2

+ ωt (5)

where a, β1, β2 and γ are constants and ωt is white noise. This form
spans all the estimates reported in the empirical literature. For monthly data
typical results reported suggest that the constraint β1 = 1, β2 = 0 cannot be
rejected (see e.g. Taylor et al. 2001) and for quarterly and annual data that
the constraint β1 + β2 = 1 cannot be rejected (see e.g., Michael et al., 1997;
Killian and Taylor, 2003; and Paya and Peel, 2003). Paya and Peel (2004)
demonstrate that temporal aggregation of an assumed ESTAR process at the
highest frequency of data generates exactly this pattern of coefficient restrictions
in the great majority of simulated data.9

9The ESTAR process is of the form qt = b+ qt−1e−γ(qt−1−b)2
+ ut
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We analyze the properties of various specification tests if a nonlinear ESTAR
model is fitted to one of the four models described above. In order to do that,
we follow the following procedure:
(1) First compute the LM tests for nonlinearity in the real exchange rate

data, qt. Whilst the ESTAR is suggested on theoretical criteria we compute the
general nonlinearity test which includes both the ESTAR and LSTAR forms,
since it is of interest for other applications. Escribano and Jorda (1999) extended
the familiar nonlinearity test procedure formulated by Terasvirta (1994) and
proposed a new specification strategy to choose between ESTAR and LSTAR
models. This new procedure appears to be consistent and to generate much
higher correct selection frequencies than that of Terasvirta (1994). We estimate
the following equation:

qt = δ0 + δ1xt + λ1xtzt−d + λ2xtz
2
t−d + λ3xtz

3
t−d + λ4xtz

4
t−d + υt (6)

where xt = (qt−1, ...., qt−p)0 and zt−d is the transition variable, in our case
equals to qt−d, where d is the delay parameter. The null hypothesis of linearity
is H1

0:λ1 = λ2 = λ3 = λ4 = 0. The computation of the test is done using the
F version of the test.10 Once linearity is rejected, we followed the Escribano
and Jorda procedure to discriminate between models. We test the null HE0 :
λ2 = λ4 = 0 with an F-test (FE). We also test the null HL0 : λ1 = λ3 = 0 with
an F -test (FL). If the minimum p-value corresponds to FL, we select LSTAR,
otherwise, if it corresponds to FE, we select ESTAR.
When computing the LM test for nonlinearity one has to decide upon an

appropriate lag length p in (6).11 Various approaches can be used for this
purpose, including information-based rules such as the familiar Schwarz and
Akaike information criteria, and deterministic rules based solely on the sample
size T. Here we use the “general-to-specific” approach proposed by Hall (1994).
We do not assume that the correct lag length is known in the Monte Carlo
experiments, but rather we determine the lag length for each individual series
employing the general-to-specific approach.12

(2) We estimate the nonlinear ESTAR model as in (5). We then check how
many times the ESTAR model would be accepted in terms of a significant speed
of adjustment, γ.13 We finally check the residual diagnostics of the estimated
nonlinear model. We compute the test for autocorrelation for lags 1, 4 and
12 using the Eitrheim and Terasvirta (1996) LM test for autocorrelation in
nonlinear series, and the LM test for remaining ARCH effects.

10The χ2 version of the test yielded similar results.
11 See Terasvirta (1994) when d is unknown.
12We start by a maximum number of 6 lags and the minimum lag length is one.
13Empirical marginal significance levels of the estimated parameter γ has to be obtained

through Monte Carlo simulation as it is not defined under the null. In particular, the model
is assumed to follow a unit root linear autoregressive process and then a nonlinear ESTAR
specification (equation 5) is estimated, computing the appropriate confidence interval of sig-
nificance for γ. See Paya and Peel (2004) for a detailed description of the procedure.
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2.1 Discussion of Results: Size

Table 1 provides the simulation results.14 Each table displays three different
statistics. We first consider the rejection rate of the linearity test (6) for the
real exchange rate, qt, . Out of those cases we compute the number of times that
the ESTAR model would be accepted as opposed to the LSTAR model and then
express this value as a proportion of the total. From these cases, we then show
the number of times (again over the total) that an estimated ESTAR model
would pass all diagnostics tests. In particular, whether the estimated ESTAR
model provides a significant speed of adjustment, γ, at the five percent level.
In the cases that the ESTAR is considered a significant model, we then look at
the diagnostic statistics for autocorrelation and ARCH effects up to twelve lags.
Therefore, the last figure of the table (labelled as diagnostics) represents the
proportion of times an ESTAR model would be fully accepted when the true
DGP is either a Random Walk, ARIMA, fractional process or stochastic unit
root process.
The size of the linearity test is slightly above nominal size for the random

walk, ARIMA and fractional models and it is evident that the size distortions
are slightly larger for more “persistent” processes.15 The ESTAR nonlinearity
form would only be accepted around five percent of the time in these cases,
matching the nominal size. Moreover, we would successfully fit an ESTAR
model below three percent of the time when diagnostic tests are taken into
account in these three cases. The size of the tests is not significantly different
between the “monthly” case (sample of 360) or “quarterly” case (sample of 120).
The size of the linearity test is very low when the true DGP is a stochastic

unit root.16 ’17In this case around sixty percent of the time we would accept
an ESTAR model. However, the diagnostic statistics play a significant role in
this case. The high autocorrelation in the residuals would lead us to accept the
nonlinear model in some fifteen percent of the cases.
Overall these results show that linearity tests do not excessively spuriously

reject the null of linear nonstationary models in small samples, especially if they
are generated by a random walk, ARIMA or fractional process.

14The results reported correspond to the restricted cases where β1 = 1, β2 = 0 in the
“monthly”case of samples of 360, and β1 + β2 = 1 in the “quarterly” case of samples of 120.
The results of the unconstrained cases are quantitatively similar and available upon request
from the authors.
15 See Kapetanios et al. (2003) for a new developed test for nonlinearity when processes

are nonlinear STAR models. Their tests has better power than the tests used in this paper
against the random walk hypothesis. However, it can only be used to discriminate between
unit root and globally mean reverting STAR processes.
16We also estimated the model Qt = (1+δt)Qt−1 +v, where qt = Qt−0.17qt−1. The results

were quantitatively similar to the case above and available upon request from the authors.
17Taylor and Van Dijk (2002) demonstrate that the stochastic unit root tests of McCabe and

Tremayne (1995) appear to display little or no power against threshold unit root processes.
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2.2 Discussion of results: Power

To further investigate the properties of the nonlinearity tests we analyse the
power of the tests. We consider another set of experiments in which the true
DGP is given by the nonlinear ESTAR process (5) with β1+β2 = 1, γ = {1, 2},
and σw = {0.035, 0.05}. We check the power of the nonlinearity test based on
the size-adjusted critical values using the previous simulation results. For each
different null hypothesis we compute the size-adjusted five percent critical level
and see how many times the nonlinearity test would reject linearity when the
true DGP is ESTAR. Table 2 shows that the power is lower than expected,
between nine and thirty percent, for the random walk, ARIMA and fractional
process and is nil for the stochastic unit root case. When the size distortions of
linearity tests are corrected using the appropriate finite sample critical values
we observe a further loss of power.
This finding would create a problem if we believed that the real exchange

rate is generated by any of the models (a) to (d) described above and linearity
was not rejected by the data. In this case, we would not know whether we
do not reject the null hypothesis of linearity because the model is actually a
linear nonstationary process or because of the lack of power. Only in the case
of a rejection of the null hypothesis can we be confident, from a statistical
perspective, that the linearity test sheds light on the question of whether real
exchange rate are a linear nonstationary process.18

3 High Inflation Economies: Further Empirical
Evidence

Our Monte Carlo results show that for data simulated from a stochastic unit
root process the size and power properties of the nonlinearity tests were very
poor. Bleaney et al (1999) report results on the properties of real exchange
rates for five high-inflation countries. They suggest that all of them do not ex-
hibit mean reverting behavior and four of them can be described by stochastic
unit root processes. Given the difficulty, from a statistical perspective, to cor-
rectly discriminate between linear stochastic unit root and non-linear globally
mean-reverting processes, we report new results on the PPP deviations in high
inflation economies. In Table 3 we report ESTAR specifications for four of their
economies.19 The ESTAR provides a parsimonious fit to three of the data sets
and has appropriately signed coefficients for another one of them.20 Given that

18Except in the case of a stochastic unit root null hypothesis.
19Data kindly provided by Michael Bleaney. Bleaney et al. (1999) reported that data for

Brazil was a pure unit root process. We fit a parsimonious ESTAR process to that data set.
On the other hand, they report a stochastic unit root process for Chile but we cannot fit a
parsimonious ESTAR process to data for that country.
20Panel B in Table 3 provides the half-lives of shocks to the nonlinear ESTAR model using

the Generalized Impulse Response Function (GIRF) introduced by Koop, Pesaran and Potter
(1996) that successfully confronts the challenges that arise in defining impulse responses for
nonlinear models. Taylor et al. (2001) and Paya et al. (2003) report similar estimates of
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Table 1 Effective size of Linearity and ESTAR tests for the nominal 5%
level of the null of linear nonstationary process denoted below

Random Walk, ∆qt = ut
ut ∼ N(0, 0.035) sample 360 ut ∼ N(0, 0.05) sample 120

Linearity Test 0.121 0.085
ESTAR Test 0.055 0.037
Diagnostics 0.014 0.001

ARIMA, ∆qt = φ∆qt−1 + ut − θut−1, ut ∼ N(0, 0.035) sample360
φ = 0.95, θ = 0.91 φ = 0.8, θ = 0.7

Linearity Test 0.123 0.093
ESTAR Test 0.061 0.044
Diagnostics 0.002 0.004

ARIMA, ∆qt = φ∆qt−1 + ut − θut−1, ut ∼ N(0, 0.05) sample 120
Linearity Test 0.099 0.082
ESTAR Test 0.051 0.037
Diagnostics 0.006 0.003

ARFIMA, qt = (1− L)dqt−1 + ut ut ∼ iid
d = 0.8 d = 0.5

Linearity Test 0.122 0.085
ESTAR Test 0.054 0.042
Diagnostics 0.033 0.033

Stochastic Unit Root, qt = (1 + δt)qt−1 + vt
vt ∼ N(0, 0.0316) δt ∼ N(0, 0.1732)

Linearity Test 0.831
ESTAR Test 0.589
Diagnostics 0.159
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Table 2 Power of Linearity tests of the null of ESTAR process
based on size-adjusted critical values based on the
following processes

Random Walk, ∆qt = ut
ut ∼ N(0, 0.035) ut ∼ N(0, 0.05)

Linearity Test 0.122 0.089
ESTAR Test 0.011 0.070

ARIMA, ∆qt = φ∆qt−1 + ut − θut−1, ut ∼ N(0, 0.035)
φ = 0.95, θ = 0.91 φ = 0.8, θ = 0.7

Linearity Test 0.236 0.285
ESTAR Test 0.206 0.247

ARIMA, ∆qt = φ∆qt−1 + ut − θut−1, ut ∼ N(0, 0.05)
φ = 0.95, θ = 0.91 φ = 0.8, θ = 0.7

Linearity Test 0.162 0.177
ESTAR Test 0.124 0.136

ARFIMA, qt = (1− L)dqt−1 + ut, ut ∼ iid
d = 0.8 d = 0.5

Linearity Test 0.243 0.295
ESTAR Test 0.212 0.256

Stochastic Unit Root, qt = (1 + δt)qt−1 + vt
vt ∼ N(0, 0.0316) ωt ∼ N(0, 0.1732)

Linearity Test 0.000
ESTAR Test 0.000
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Table 3: Panel A: Results from ESTAR models of real exchange rate against US Dollar for
high inflation economies. 1972-1993 monthly observations.
Panel A δ̂0 β̂1 β̂2 β̂3 γ̂ s Q(1) Q(4) Q(12) A(1) A(4) A(12)

Argentina -1.006 0.85 β2= 1− β1 β3= 0 0.40 0.147 0.99 0.82 0.85 0.00 0.01 0.00
(0.057) (0.139) (0.15)

Brazil -5.28 0.92 β2= 1− β1 β3= 0 0.48 0.046 0.99 0.68 0.13 0.13 0.66 0.76
(0.049) (0.11) (0.19)

Israel -2.32 1 β2= 0 β3= 0 1.53 0.033 0.36 0.61 0.75 0.46 0.93 0.95
(0.027) (0.68)

Colombia 4.97 1.26 -0.03 β3= 1− 0.29 0.011 0.92 0.55 0.12 0.01 0.00 0.00
(0.027) (0.09) (0.13) β1−β2 (0.19)

Panel B Estimated half-lives of shocks in months Nonlinearity Test
10% 20% 40% FNL FL FE

Argentina 5 5 4 0.000 0.006 0.037
Brazil 22 20 14 0.016 0.009 0.002
Israel 14 12 7 0.020 0.011 0.300
Colombia 47 47 27 0.381 0.140 0.141
Notes: Numbers in parentheses are Newey-West standard error estimates. s denotes the residual standard
error. Q(l) corerspond to the p-value of the Eitrheim and Terasvirta (1996) LM test for autocorrelation up to
olag l. A(1) correspond to the p-value of the LM test for ARCH effects up to lag l.
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the ESTAR model has a theoretical rationale, unlike the stochastic unit root
process, the apparent stochastic unit root property of PPP deviations in high
inflation economies might reasonably be interpreted as a misleading property.

4 Conclusions

Recent empirical work has shown that ESTAR models, which are well motivated
theoretically, provide a parsimonious empirical fit to a variety of PPP data
sets. We have shown in this paper that when the null of a non-stationary linear
process for the real exchange rate is rejected in favour of a parsimonious ESTAR
process for the real exchange rate a researcher can be quite confident about his
results given our findings on the size properties of the tests. However if the
priors of the researcher are for a non-stationary linear process then the power
properties of the tests reveal that non-rejection of linearity test would not be
confirmation of his priors.
Overall our results provide further support for the conjecture that PPP

deviations are a nonlinear mean reverting process.

nonlinear impulse response functions for bilateral and effective real exchanges at monthly
frequencies for post-Bretton Woods period.
Panel B also reports the nonlinearity tests. However, the results of previous section show

that those tests do not have the appropriate size and power to discriminate between stochastic
unit root process and globally mean reverting nonlinear ESTAR.
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