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ABSTRACT 
 
We construct a vintage capital à la Whelan (2002) with both exogenous 

embodied and disembodied technical progress, and variable utilization of each 

vintage. The lifetime of capital goods is endogenous and it relies on the 

associated operation costs. Within this model, we identify the rate of age-related 

depreciation and the rate of scrapping. We study the properties of the balanced 

growth paths of the model. First, we show that the lifetime of capital is an 

increasing (resp. decreasing) function of the rate of disembodied (resp. 

embodied) technical progress. Second, we show that both the age-related 

depreciation rate and the scrapping rate increase when embodied technical 

progress accelerates. In contrast, the latter drops when disembodied technical 

progress accelerates while the former remains unaffected. 
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1 Introduction

The topic of replacement investment and capital depreciation has always
been a concern for economic theorists and practitioners. This concern comes
principally from the feeling that the assumption of a constant depreciation
rate (and therefore an assumption of a constant replacement investment to
capital ratio) is barely incorrect. This assumption is for example strongly
challenged by Feldstein and Rotschild (1974) and Nickell (1975) in pioneering
theoretical contributions. An early empirical assessment of this issue is due to
Griliches (1960) who studied the replacement of farm tractors and proposed
a way to measure capital depreciation in this context.

An obvious alternative to the constant depreciation rate assumption is the
well-known depreciation-in-use assumption. Typically, capital depreciation
is varying over time depending for example on the pace of economic activity.
There is a common view arguing that in good times, capital depreciation
should be higher than in recessions because capital goods are likely to be
more intensively used in the former case, inducing a higher deterioration.
This endogenous view of depreciation, often referred to as the depreciation
in use hypothesis, has been put forward by Epstein and Denny (1980) and
Bischoff and Kokkelenberg (1987). A higher level of economic activity im-
plies a higher rate of capital utilization, which accelerates the depreciation of
capital. Real business cycles models incorporating depreciation in use have
been also built up and simulated in order to assess the cyclical implications
of this hypothesis. Among others, the seminal contributions of Greenwood,
Hercowitz and Huffman (1988) and Burnside and Eichenbaum (1996).

While this approach is certainly worthwhile as compared with the traditional
framework based on constant capital depreciation rate, it does not seem to
be completely satisfactory for several reasons. First of all, the depreciation
in use assumption assigns a residual role to capital depreciation: It is quite
mechanically computed from the rate of capital utilization optimal paths
once the optimal investment plan of the representative firms characterized.
We believe that this is a wrong approach to depreciation and replacement
investment both at the firm and macroeconomic level. At the firm level, there
exists a large microeconomic literature on the importance of maintenance
and repair of cars (see for example, Hamilton and Macauley, 1998). At
this level, depreciation is no longer a residual variable: It is an important
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control variable, as important as investment itself, and the rate of utilization
of capital. Typically, firms choose an optimal operation and maintenance
policy together with their investment plan (see for example Boucekkine and
Ruiz-Tamarit, 2003).

Apart from these quite obvious microeconomic considerations, there is now
a growing view that depreciation is a crucial and nontrivial economic phe-
nomenon when accounting for the economic performances at the aggregate
level. An early contribution highlighting the role of replacement investment
is in Gylafson and Zoega (2001): using a World Bank data, they show that
average depreciation of fixed capital during the period 1970-1998, measured
as a proportion of GDP, is directly related to initial GNP per capita across
85 countries as well as to the average growth rate of output per capita.

On US data, the available evidence seems to suggest on one hand that the
depreciation rate of capital has not been constant in the recent period, and on
the other hand, that it was quite reactive to technological evolutions. Indeed,
using a data on capital depreciation built up by the Bureau of Economic
Analysis (BEA hereafter), it can be neatly shown that the depreciation rate
of US non-residential private fixed equipment and software has increased
from 1960.1 This increase in the depreciation rate has been accompanied by
an increase in the decline rate of the NIPA relative price of non residential
private fixed equipment and software (see Figure 1). The relative price of
investment can be seen as a proxy of the embodied technical progress (see
Greenwood, Hercowitz and Krusell, 1997). Therefore, Figure 1 suggests a
positive relationship between the depreciation rate of capital and the rate of
embodied technical progress.

This fundamental property can also be recovered using a cross-section analy-
sis based on Table 1, which is reported in the Appendix. This table summa-
rizes the magnitudes currently considered by BEA: It gives the depreciation

1The relative price of equipment is the ratio “NIPA price index of private nonresiden-
tial equipment and software" over “NIPA price index of non-durables consumption and
services". The depreciation rate is calculated as follows. Both the chain-type quantity in-
dex for the net stock of private nonresidential equipment and software, and the chain-type
quantity index for depreciation of private nonresidential equipment and software are mul-
tiplied by their respective historical cost in year 1996. The depreciation rate is calculated
dividing the chain-dollar series of depreciation by the chain-dollar series of the net stock
of equipment and software.
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rate, the service lifetime in years, and the decline rate of the relative price
of equipment and software by equipment types. Figure 2 and 3 illustrate the
main regularities entailed in Table 1. Figure 2 shows that there is a positive
correlation between the depreciation rates of the categories of equipment and
software used by BEA and the decline rate of their corresponding relative
price. Analogously Figure 3 shows that the service lifetime of the different
types of non-residential private equipment and software is negatively corre-
lated with the decline rate of their relative prices.

Last but not least, it is worth pointing out that BEA assumes constant
depreciation rates for all categories of non-residential private equipment and
software except computing equipment and autos. For equipment and
autos, BEA assumes non geometric depreciation schedules. Therefore, the
increase of the depreciation rate of non residential private equipment and
software is mainly due to a composition effect, with the sharply rising weight
of computers and autos in the stock of non-residential private equipment
and software. Whelan (2002) has already mentioned that the depreciation
rates for computing equipment are not constant and that they have increased
over time (see our Figures 4 to 7). Recently, Geske, Ramey and Shapiro
(2004) have studied the decomposition of non-financial user cost of personal
computers in the recent years in the US. They explicitly distinguish between
obsolescence, that it is economic depreciation, and age-related depreciation
(or deterioration). Applied to the recent US experience, they find that the
role of age-related depreciation is quite negligible while obsolescence turns
out to be a major source of change in the user cost of computers.

As pointed out by Whelan (2002), the “composition" of capital deprecia-
tion has some dramatic implications for growth accounting under technolog-
ical acceleration, notably when embodied technical progress accelerates. An
imperfect accounting of obsolescence effects in such a case may lead to an
over-estimation of the growth rate of capital accumulation and a misleading
estimation of total factor productivity growth. Whelan illustrates this point
clearly when measuring the usage effect of computers on US productivity.

Our paper builds on the latter Whelan’s contribution. As this author, we
consider a vintage capital model with endogenous capital goods’ lifetime. A
particular vintage is scrapped when its profitability is not enough to compen-
sate the corresponding operation costs. Whelan assumes that this operation
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cost is fixed. In contrast to Whelan, in our model the operation costs are
twofold, a fixed and a variable cost. The variable cost depends on an indica-
tor of the utilization of the vintages. No endogenous utilization indicator is
considered in Whelan, and we believe it plays a central role in the age-related
depreciation. Thanks to this difference, we are able to distinguish between
an endogenous age-related depreciation rate (depending mostly on the varia-
tion in the utilization variable) and an endogenous scrapping rate (depending
mostly on the variation in the lifetime of capital goods). In this context, we
study how both rates vary under an increase of the rate of embodied techni-
cal progress (or the obsolescence rate). One of the remarkable findings of the
paper is that the age-related depreciation rate is also an increasing function
of the rate of embodied technical progress (or the obsolescence rate), which
reinforces Whelan’s prescriptions and allows to explain the Geske, Ramey
and Shapiro’s finding. In contrast to the previous contributions, which are
mainly empirical, we produce a full analytical characterization, which is far
from a simple task as it will appear clearly along the way. The reason why
the analytical characterization is quite hard in this kind of models is men-
tioned in Boucekkine et al. (1998): A technological acceleration induces on
one hand an incentive to scrap the machines earlier in order to profit from
the increasing efficiency of new vintages, but on the other hand, a rising rate
of technological progress pushes the interest rate upward,2 which tends to
reduce the profitability of investment and requires a bigger lifetime service of
equipment in order to equalize the marginal profitability and marginal cost
of investment. This ambiguity gives rise to a real analytical problem.

The paper is organized as follows. Section 2 presents the model, and identi-
fies neatly the corresponding age-related depreciation rate and the scrapping
rate. Section 3 studies the balanced growth paths of the model, including
the existence-uniqueness issue. Section 4 is devoted to characterize how the
lifetime of capital goods, the rate of age-related depreciation and the rate of
scrapping move under embodied Vs disembodied technical progress accelera-
tions. In this section, we connect our framework with the findings of Whelan,
and Geske, Ramey and Shapiro. Section 5 concludes.

2This is a standard property in optimal growth models with exogenous technical
progress, it is typically reflected in the so-called Fisher equation.
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2 The model

New plants are built in each period. Each plant at time z is built with a
unit of capital. The production function at time t of a plant built at time z
(hereafter, a plant of vintage z) is Cobb-Douglas,

Yz,t = Aeγt
¡
eλzUz,t

¢α
L1−αz,t ,

where 0 < α < 1, Yz,t is output of a plant of vintage z at time t, Lz,t is
labor employed in an plant of vintage z at time t, A > 0 is the level of
disembodied technical knowledge which grows at the rate γ ≥ 0, eλz is the
state of embodied technical knowledge in vintage z and Uz,t is an index of
utilization of capital of the plant of vintage z at time t.

The operation cost of vintage z at time t, say Mz,t, depends mainly on its
utilization. More specifically, we assume that the operation costs function,
Mz,t (Uz,t), does satisfy the following properties: (i) it is an increasing and
convex function of utilization: M 0(U) > 0, M 00(U) > 0 for all positive U ,
(ii) M (0) > 0 which reflects the existence of a support cost. Hereafter, the
following function of operation costs is assumed in order to get analytical
results:

Mz,t (Uz,t) = βeχ(t−z)Uµ
z,t + η, (1)

where β > 0 , η > 0 and µ > 1. Note that we assume that the operation
costs can increase over time. Among other acceptable reasons, this might be
attributed to the fact that old machines become less compatible with new
ones. The following parametric assumption must be hold:

χ > 0 and/or λ > 0. (2)

The existence of the fixed cost, η > 0, together with assumption (2) are
needed to have a finite optimal lifetime of the vintage, as it will be clear
later.

The optimization problem of a plant

Profit of vintage z at time t are:

πz,t = Aeγt
¡
eλzUz,t

¢α
L1−αz,t −WtLz,t − βeχ(t−z)Uµ

z,t − η, (3)
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where Wt is wage at time t. Vintage z chooses Uz,t and Lz,t in order to
maximize its profits:

Wt = (1− α)Ae(1−α)gt
¡
e−λ(t−z)Uz,t

¢α
L−αz,t , (4)

αAe(1−α)gte−αλ(t−z)Uα−1
z,t L1−αz,t = βµeχ(t−z)Uµ−1

z,t , (5)

where g = αλ+γ
1−α . Equation (4) states that the marginal productivity of labor

equals wage in each period. Equation (5) states that the optimal utilization
of a vintage is such that its marginal productivity equals its marginal cost.
From equation (4) it follows that marginal productivity of labor is equal
across vintages and then:

Lz,t =
Uz,t

Ut,t
e−λ(t−z)Lt,t, (6)

which states that employment in a plant of age t− z equals employment in
a new plant times its relative utilization. Evaluating (4) in z = t, it follows
that employment in a new plant is given by:

Lt,t =

µ
Wt

A (1− α)
e−gt

¶− 1
α

e−gtUt,t (7)

From equations (4) and (5), and after a little some straightforward alge-
bra, one might conclude that capital utilization of a vintage is a decreasing
function of its age:

Uz,t = Ut,te−δ(t−z) (8)

where δ = χ+λ
µ−1 and the initial utilization of a new plant, Ut,t, is a decreasing

function of wage,

Ut,t =

µ
αA

µβ

¶ 1
µ−1
µ

Wt

A (1− α)
e−gt

¶− θ
µα

, (9)

with θ = µ(1−α)
µ−1 . Both utilization and employment of the plant fall when it

becomes older. The decline rates of employment and utilization are increasing
functions of the rate of embodied technical progress. This is the obsolescence
effect of embodied technical progress.
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Substituting (4) and (5) into (3) yields: πz,t =
µ−1
µ

α
1−αWtLz,te−(δ+λ)(t−z) − η.

And substituting from (6), (7), 8) and (9) into previous equation, one finally
gets:

πz,t = Ω

µ
Wt

A (1− α)
e−gt

¶− θ
α

e−(δ+λ)(t−z) − η. (10)

where Ω = µ−1
µ
αA

³
αA
βµ

´ 1
µ−1
. It is clear from the previous equation that

when the plant becomes older, its profits go down because its utilization and
employment decay due to obsolescence.

A vintage is scrapped in period z+Jz when it becomes unprofitable, πz,z+Jz =
0,

Ωe−(δ+λ)Jz
µ

Wz+Jz

A (1− α)
e−g(z+Jz)

¶− θ
α

= η. (11)

And it must be hold that the lifetime of vintage z equals the scrapping time
at time z + Jz:

Jz = Tz+Jz . (12)

There is free entry and exit of plants and the number of plants of a vintage
is determined by a zero profits condition:Z z+Jz

z

e−
R t
z rsds

Ã
Ωe−(δ+λ)(t−z)

µ
Wt

A (1− α)
e−gt

¶− θ
α

− η

!
dt = 1, (13)

where rs is the interest rate at time s, and which states that the discounted
sum of profits of a plant must be equal to the cost of a unit of capital.

Aggregating

The aggregate production at time t, Yt, is the sum of output of all plants
surviving at time t,

Yt =

Z t

t−Tt
IzAeγt

¡
eλzUz,t

¢α
L1−αz,t dz (14)

where Tt is the age of the oldest plants still in use at time t and Iz is the
number of plants of vintage z (and aggregate investment at time z). Aggre-
gate employment is the sum of employment of all plants surviving at time
t,

Lt =

Z t

t−Tt
IzLz,tdz, (15)
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Substituting from (4) into (15) after a little of algebra yields:

Wt = (1− α)AeγtKα
t L

−α
t (16)

where

Kt =

Z t

t−Tt
IzeλzUz,tdz, (17)

is the aggregate stock of capital per capita which equals the sum of all surviv-
ing investments weighted by their efficiency. Differentiating previous equa-
tion and after some algebra, we obtain the evolution law of the aggregate
capital,

d Kt

d t
= eλtUt,tIt − (δt + ξt)Kt, (18)

where

δt =
−1
Kt

Z t

t−Tt
eλzUz,tIz

d Uz,t

dt
1

Uz,t
dz (19)

is the age-related depreciation rate, which captures the decline of utilization
of capital when its age increases, while

ξt =

µ
1− dTt

d t

¶
eλ(t−Tt)Ut−Tt,tIt−Tt

Kt
(20)

is the fraction of capital scrapped at time t because it is not profitable, and it
is called the scrapping rate. Under our Cobb-Douglas assumption aggregate
output is a function of aggregate capital and aggregate employment:

Yt = AeγtKα
t L

1−α
t . (21)

Equation (21) has been obtained substituting (4) into (14) and using (16).

Closing the model

The aggregate operation cost is given by:

Mt =

Z t

t−Tt
Iz
¡
βeχ(t−z)Uµ

z,t + η
¢
dz, (22)

which corresponds actually to fraction of aggregate output plus the sum of
surviving investments times the fixed cost η:

Mt =
α

µ
Yt + η

Z t

t−Tt
Izdz (23)
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Equation (23) is obtained by substituting (5) into (22).

The representative household is composed of Lt individuals at time t. at any
period t, Lt grows at the constant rate n ≥ 0. The utility function of the
representative household is Ut =

R∞
0

Lte
−ρt C1−σt

1−σ dt, where Ct is consumption
per capita, σ > 0 is the intertemporal elasticity of substitution and ρ > 0 is
the discounted parameter The Euler condition of the maximization problem
of the representative household is:

d Ct
d t

Ct
=
1

σ
(rt − ρ) (24)

Finally, the resource constraint is

Yt = CtLt + It +Mt,

which states that output equals the sum of consumption, investment and
operation costs.

3 Balanced Growth Path

In this section, we study the existence and uniqueness of balanced growth
paths. We shall define a balanced growth path (BGP hereafter) as follows:

Definition 1 Along a BGP, the lifetime of vintages, T = J, is constant.
Consumption per capita, production per capita, investment per capita and
operation costs per capita grow at the same constant (steady state) rate g.

We now study whether our model admits such a solution. As usual in this
class of models (see for example, Boucekkine et al., 1998), this question turns
out to be whether the BGP restrictions stated above imply a unique solution
for the lifetime variable, the stationary levels of the other variables being
trivially computable when the value of capital’s lifetime is available. Before
moving to this mathematical issue, we will characterize the main economic
properties of the BGP of our model.

First of all, notice that under our definition, the capital stock grows at the
rate g+λ, which imply that both the age-related depreciation and the scrap-
ping rates are constant along a BGP. The steady state growth rate g can
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be therefore readily computed from the Cobb-Douglas production function
(21), g = γ+λα

1−α . Hereafter a lower case, x, denotes the corresponding vari-
able denoted by an upper case detrended and in terms per capita. We shall
impose the following condition:

(1− σ) g < ρ, (25)

which guarantees that the intertemporal utility is bounded.

We now look at some properties of the per vintage distributions in the BGPs.

Utilization per vintage

Along a BGP endogenous utilization of a vintage evolves according to:

Uz,t = U0e−δ(t−z) for all t− z ∈ [0, T ] , (26)

where

U0 = Ut,t =

µ
αA

βµ

¶ 1
µ−1

k−
1
µ
θ, (27)

is the initial utilization of a vintage and it is constant along a BGP because
the aggregate capital-labor ratio grows at the constant rate g along a BGP.
Equation (27) follows from substituting (16) into (9). Equation (26) shows
that the utilization of a vintage decreases with its age at the rate δ = λ+χ

µ−1 due
to obsolescence: when a vintage goes away from the technological frontier,
the firm optimally decides to devote less resources to operate it.

The long run depreciation rates

The age-related depreciation rate is given by equation (19). As explained
just above, the decline rate of utilization of a vintage is constant in the BGP
and equal to

δ =
λ+ χ

µ− 1 (28)

The age-related depreciation rate equals the rate at which utilization of cap-
ital declines when it becomes older.

The scrapping rate is given by equation (20), which along a BGP is constant
and given by

ξ = U0
i

k
e−(δ+g+n+λ)T (29)
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It follows from the evolution law of capital (18) that along a BGP investment
is such that capital per capita grows at the constant rate that λ+ g,

U0i

k
= (δ + ξ + n+ λ+ g) , (30)

Using (29) and (30), the scrapping can be written as:

ξ =
δ + n+ λ+ g

e(δ+n+λ+g)T − 1 . (31)

Characterizing a BGP

A BGP is characterized by the following set of equations together with (27),
(28), (30) and (31):

w = (1− α)Akα (32)

Ωe−(δ+λ)Tk−θ = η (33)

Ωk−θ − η = r + δ + λ+
(δ + λ) η

r

¡
1− e−rT¢ (34)

m =
α

µ
Akα +

η

g
i
¡
1− e−(g+n)T¢ (35)

r = σg + ρ (36)

Akα = c+ i+m. (37)

Equation (32) states that marginal productivity of labor equals wage. Equa-
tion (33) is the scrapping condition, and it states that a vintage will be
scrapped when its profitability is zero. Equation (34) states that the mar-
ginal productivity of capital equals its user cost, and it has been obtained,
using (32), by differentiating the zero profits condition (13) under the as-
sumptions characterizing a BGP. The user cost of capital is the sum of the
interest rate, r, the age-related depreciation rate, δ, the obsolescence rate,
λ, and a last term depending on the fixed operation cost, (δ+λ)η

r

¡
1− e−rT¢.3

Equation (35) gives the aggregate operation costs as a function of output,
investment and the optimal lifetime of capital. Equation (36) is the Euler
condition. And (37) is the resource constraint.

3The scrapping costs are not in equation (34) because the optimal choice of Uz,t implies
that when the vintage is T years old its profitability is zero.
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The steady state value for the lifetime of capital

The following proposition states that there is a lifetime of capital strictly
positive an it is unique.

Proposition 2 T > 0 exists and is unique.

Proof: Using (32), (33) and (36) the zero profits condition (13) along a
BGP becomes: Z T

0

¡
e−(δ+λ)(a−T ) − 1¢ e−(σg+ρ)ada = 1

η
(38)

The left hand side of (38) is a continuous and strictly increasing function of
T , and its limit when T goes to zero is 0 and when T goes to infinity is ∞.
The right hand side is a positive constant. Proposition 1 follows from the
theorem of the intermediate value.¤

Hence, our model admits a unique BGP. We are now ready to make our
point and in particular to study how the age-related and scrapping rates
move under exogenous technological accelerations. The next section is there-
fore exclusively devoted to the analysis of the comparative statics of the
depreciation variables (including scrapping time) with respect to the rates of
embodied and disembodied technological progress. Some more comparative
statics are added to better assess the properties of the BGP of our model.

4 Technical progress and depreciation

Since T is by construction a crucial determinant of depreciation, we start with
the former variable. We then study how the two forms of technical progress
affect the rates of age-related depreciation and scrapping respectively.

4.1 Embodied Vs disembodied technical progress and
the lifetime of capital

The following proposition states some properties of static comparative of the
lifetime of capital:
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Proposition 3 The lifetime of capital is an increasing function of σ, ρ and
µ, a decreasing function of χ and η, and it does not depend on A, β and n.

Proof: Equation (38) does not depend on β, A and n, therefore ∂T
∂β
= 0,

∂T
∂A
= 0, ∂T

∂n
= 0. From (38) follows that any parametric change increasing

(resp. decreasing) B (a) =
¡
e(δ+λ)(T−a) − 1¢e−(σg+ρ)a for all for all a ∈ [0, T )

implies a lower T . Differentiating B (a),

∂B

∂ (δ + λ)
= (T − a) e(δ+λ)(T−a)e−(σg+ρ)a > 0,

∂B

∂σ
= −ga ¡e(δ+λ)(T−a) − 1¢ e−(σg+ρ)a < 0,

∂B

∂ρ
= −a ¡e(δ+λ)(T−a) − 1¢ e−(σg+ρ)a < 0,

for all a ∈ [0, T ), and δ is a decreasing function of µ and an increasing
function of χ. Then it follows that ∂T

∂µ
> 0, ∂T

∂χ
< 0, ∂T

∂σ
> 0 and ∂T

∂ρ
> 0. The

right hand side of (38) is decreasing with η, then it follows from (38) that
∂T
∂η

< 0.¤

Since the population growth rate does not affect the marginal profitability of
vintages, it does not influence the lifetime of capital. The disembodied level
of productivity, A, and the level of the variable operation costs given the
utilization level, β, do not show up in the stationary value for the lifetime of
capital because changes in these parameters have two opposite effects on this
variable, which just offset. Actually, an increase in A (resp. a decrease of
β) rises the marginal profitability of any vintage, which tends to increase T ,
but this higher profitability stimulates investment, which ultimately induces
a drop in the marginal profitability of the vintage because wages increase,
and hence a lower T . Both effects just offset.

A lower elasticity of the variable operation costs with respect to the utiliza-
tion level, µ, or a higher growth rate of the variable operation costs with
the age of the vintage, χ, both imply a lower lifetime of capital. The reason
is that both parametric changes accelerate the decline of the utilization of
capital with the age of the vintage. A higher σ or ρ implies a higher interest
rate which reduces the present value of profits, and requires a higher T to
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equalize the marginal profitability and the marginal cost of investment and
to restore the optimal rule given by equation (38).

We now turn to the analysis of the more important relationship between
scrapping and technological progress. The integral equation (38) makes it
clear that this relationship might not be easy to characterize. We first state
the easier results.

Proposition 4 The lifetime of capital is an increasing function of the rate of
disembodied technical progress, γ. Moreover, the product λ T is an increasing
function of the rate of embodied technical progress, λ.

Proof: To ease the exposition, we shall call F (T, λ) the integral function
appearing in the left hand side of equation (38). Since g = γ+λα

1−α , g is an
increasing function of γ andB (a) =

¡
e(δ+λ)(T−a) − 1¢e−(σg+ρ)a is a decreasing

function of γ, then the left hand side of (38) is a decreasing function of γ for
all a ∈ [0, T ), it follows from (38) that ∂T

∂γ
> 0.

Unfortunately, the relationship between T and λ is much more complex.
However, we can prove that the product λ T is an increasing function of λ.
Indeed,

∂(λT )

∂λ
= T − λ

∂F
∂λ
∂F
∂T

,

which implies:
∂F

∂T

∂(λT )

∂λ
= T

∂F

∂T
− λ

∂F

∂λ
.

Given that ∂F
∂T

> 0, λT is increasing with λ if and only if ∆(T, λ) = T ∂F
∂T
−

λ ∂F
∂λ

> 0. Using the exact expressions of the involved partial derivatives of
function F , we find:

∆(T, λ) = (δ+λ) e(δ+λ)T
Z T

0

Te−(σg+ρ+δ+λ)a da− λ µ

µ− 1 e(δ+λ)T
Z T

0

(T−a)e−(σg+ρ+δ+λ)a da

+
σλ α

1− α

Z T

0

a e−(σg+ρ)a
¡
e(δ+λ)(T−a) − 1¢ da.
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Now, a quick look at the first two terms of the expression above is sufficient
to see that the positivity of ∆(T, λ) is ensured if δ+λ− λ µ

µ−1 > 0. The latter

property is clear because δ + λ− λ µ
µ−1 =

χ
µ−1 > 0. ¤

An increase in the rate of disembodied technical change γ has the same two
effects as an increase in A on the lifetime value T . As for the parameter A,
these two effects just offset. A third effect additionally arises: A higher γ
implies a higher interest rate which reduces the present value of profits. A
higher T is needed to equalize the marginal profitability and the marginal
cost of investment, so that the optimal rule (38) is re-established. An increase
in the embodied technical progress has an ambiguous effect on the lifetime
of capital. There are two opposite effects of a change in the rate of embodied
technical progress on the lifetime of capital. An increase of λ accelerates the
decline rate of the vintage utilization and vintage employment (with the age
of the vintage), which implies a lower lifetime of capital. However, a rise
of λ increases the interest rate which reduces the present value of profits,
and would require as before a higher T to equalize the marginal profitability
and the marginal cost of investment. Whether the first or the second effect
dominates is not clear at all.

However, the proposition states that even if T drops under an acceleration in
the rate of embodied technical progress, the size of this drop cannot be bigger
than the size of the acceleration. The next proposition exhibits a sufficient
condition under which the lifetime T is indeed a decreasing function of the
rate of embodied technical progress. As we shall see afterwards, this should be
the case when the parameters of the model take the values usually considered
in the literature.

Proposition 5 T is a decreasing function of λ provided T ≤ κ
δ+λ
, where

κ = 1−α
α σ

µ
µ−1 . A necessary and sufficient condition on the parameters for the

latter inequality to hold is: 1
η
≤ F ( κ

δ+λ
, λ).

Proof: The second part of the proposition is a direct consequence of the
monotonicity of function F (T, λ) with respect to the first argument, and
equation (38). The first part can be handled using the fact that function
F (T, λ) can be rewritten as:

F (T, λ) = e(δ+λ)T
Z T

0

Z T

z

(δ + λ) e−rz−(δ+λ)x dx dz,
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where r = σg + ρ. Differentiating F (T, λ) with respect to λ, one can readily
see that the sign of this derivative entirely depends on the sign of:Z T

0

Z T

z

·
(δ + λ)

µT

µ− 1 +
µ

µ− 1 + (δ + λ)

µ
−∂r

∂λ
z − µ

µ− 1x
¶¸

e−rz−(δ+λ)xdxdz,

which, using ∂r
∂λ
= σα

1−α , corresponds to the sign ofZ T

0

Z T

z

·
(δ + λ)

µT

µ− 1 +
µ

µ− 1 − (δ + λ)
µx

µ− 1 −
(δ + λ)σα

1− α
z

¸
e−rz−(δ+λ)xdxdz.

Since x ≤ T , the first term of the expression between brackets is bigger than
its third term. For the whole term to be positive, it is enough to impose the
following condition of the remaining terms, given that z ≤ T :

µ

µ− 1 ≥
(δ + λ)σα

1− α
T,

which gives the condition on T stated in the proposition. Under this condition
∂F
∂λ

> 0. Since ∂F
∂T

> 0, and ∂T
∂λ
= − ∂F

∂λ
∂F
∂T

, we get our result. ¤

The sufficient condition T ≤ κ
δ+λ

covers by far the usual parameterizations
considered in the literature. Indeed, the typical values for α and σ imply a
parameter κ = 1−α

α σ
µ

µ−1 generally bigger than 1, and since δ+λ is a relatively
small number, our sufficient condition turns out to be far from binding in
practice. For example, if the variable operation cost term is quadratic in the
efficiency and utilization index U , µ = 2, σ = 1 as in the usual calibrations in
macroeconomic models (see Beaudry and Wincoop, 1996, for an econometric
justification), and for a capital share α = 1

3
, then our sufficient condition

restricts T to be lower than 66 years when δ+ λ = 6%, and around 33 years
if δ + λ = 12%. This is not restricting at all if one has in mind the average
lifetime of private nonresidential equipment and software estimated by BEA
for the US economy, which goes from 3 years for software to 33 years for
electrical transmission, distribution and industrial apparatus.

Therefore, the capital lifetime T is a decreasing function of the rate of the
embodied technical progress for any economically admissible calibration of
our model. This deserves two comments. At first, we have to mention that
the latter property is indeed consistent with all the recent empirical and the-
oretical contributions connecting embodied technical change and investment,
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including the timing of replacement of obsolete goods (see Boucekkine et al.,
1998, for a theoretical inspection, and Whelan, 2002, for a more empirical
perspective). Second, it seems already clear that the two forms of technical
progress have quite distinct economic implications: while the capital lifetime
rises when disembodied technical progress accelerates in order to compensate
the loss in profitability resulting from the increase in the interest rate, the
latter effect is dominated by the increasing efficiency of new vintages un-
der an accelerating embodied technical progress, which on contrary leads to
shortening the capital lifetime. The next section highlights more differences
concerning depreciation and obsolescence.

4.2 The Depreciation Rates

We shall first state a proposition summarizing the comparative statics of
both the age-related depreciation rate and the scrapping rate with respect
to the two rates of technical progress, γ and λ. We will comment on these
properties just after.

Proposition 6 The age-related depreciation rate δ is an increasing func-
tion of the rate of embodied technical progress λ and does not depend on
the rate of disembodied technical progress, γ. The scrapping rate ξ is a
decreasing function of γ. In contrast, it is an increasing function of λ if
T ≤ Min

³
κ

δ+λ
, X0

δ+λ+n+g

´
, where κ = 1−α

α σ
µ

µ−1 and X0 a well-defined strictly
positive number depending on the parameters of the model.

Proof: The comparative statics for the age-related depreciation rate are
trivial, given equation (28). From (31) it follows that

ξ = H(T,Ψ) =
Ψ

eΨT − 1 , Ψ = δ + n+ λ+ g

and
∂H

∂T
=
−Ψ2e(δ+g)T

[eΨT − 1]2 < 0,
∂H

∂Ψ
=

eΨT − 1−ΨTeΨT

[eΨT − 1]2 < 0.

∂H
∂Ψ

is negative since ex − 1 − xex is a decreasing function which tends to
zero when x tends to 0 and is negative for all x > 0. Using logarithmic

18



differentiation of ξ = H(T,Ψ), one gets:

∂ξ
∂z

ξ
=

∂Ψ
∂z

Ψ
−

∂(eΨT−1)
∂z

eΨT − 1 ,

which yields after some algebra:

∂ξ
∂z

ξ
=

∂Ψ
∂z

Ψ
[1− Φ(ΨT )]− ξeΨT

∂T

∂z
,

where Φ(X) = XeX

eX−1 , and z = λ, γ. Notice that when z = γ, we know that
the second term is negative by Proposition 4. Since Ψ is increasing in γ and
function Φ(X) is strictly increasing from 1 for X ≥ 0, it follows that the
scrapping rate is a decreasing function of γ.
Things are much more complicated for λ. Because ∂T

∂λ
< 0 under the con-

ditions of Proposition 5, we have a priori an ambiguous outcome. Notice
however that since function Φ(X) is strictly increasing from 1, the total
effect should be positive, that it is the second term of the logarithmic differ-
entiation should dominate, if X = ΨT is small enough. This puts another
upper bound on T : There exists a cut-off value X0 > 0 so that ξ is an in-
creasing function of λ if ΨT ≤ X0 or T ≤ X0

Ψ
. Then the last part of the

proposition follows using Proposition 5. ¤

As in Proposition 5, the property of an increasing scrapping rate with λ
relies on a sufficient condition on the value of T . Although it is less clear
here compared to Proposition 5, this condition is again consistent by far with
the economically admissible parameterizations of the model.4

Again here, the age-related depreciation rate and the scrapping rate respond
quite differently to technological accelerations. For all the economically ad-
missible parameterizations, both scrapping and age-related depreciation rate
increase when the rate of embodied technical change rises: when equipment
becomes increasingly efficient, the lifetime of machines is shortened, pushing
scrappage upward, and raising the decline rate of utilization of the capital
goods, by equation (20), which increases age-related depreciation. How-
ever, while the latter does not depend on disembodied technical change, the

4We check the sufficient condition for the following wide range of reasonable parameter
values: α = 1/3, σ = 1, µ = 2, ρ = 0.04, n = 0.012 , γ ∈ [0.05, 0.03], χ ∈ [0.05, 0.12], and
η ∈ [0.001, 015]. We also obtain the same results on several alternative parameterizations.
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scrapping rate is shown to fall down when disembodied technical progress
accelerates. And this happens because an increase in γ leads to lengthen the
capital lifetime.

Some important comments to end the analysis. First of all, and following
a point made by Whelan (2002), our model makes clear that the total de-
preciation rate of capital is not reducible to age-relate depreciation, and in
particular, the scrapping part is a key component of it. Moreover, we show
clearly that the two components of depreciation (age-related depreciation and
scrapping) do not respond systematically in the same way to technological ac-
celerations, eg. when disembodied technical progress accelerates. Secondly,
our model has additionally the remarkable property that both rates increase
when embodied technical progress accelerate. This has a critical implication
for growth accounting: If the total rate of depreciation (δ+ξ) is not correctly
adjusted in such a case, then the growth rate of the capital stock will be over-
estimated, which ultimately would deliver a misleading figure for total factor
productivity growth, and explain part of the productivity slowdown puzzle.

The Geske, Ramey and Shapiro (GRS) finding

The relative price of a unit of capital of vintage z at time t equals the dis-
counted sum of its future returns. In our model:

ePz,t =

Z z+T

t

e−r(s−t)η
¡
e−(δ+λ)(s−z)e(δ+λ)T − 1¢ds, for all z ∈ (t− T, t] .

The relative price of of a unit of capital of vintage t at time t is

ePt,t =

Z t+T

t

e−r(s−t)η
¡
e−(δ+λ)(s−t)e(δ+λ)T − 1¢ds.

After some trivial algebra, one can extract the relationship between the rel-
ative prices of an old and a new capital good respectively

ePz,t = e−(δ+λ)(t−z)
h ePt,t + ηH (T, r, λ, δ, t− z) ,

i
where:

H (T, r, λ, δ, t− z) =

Z t+T

t

e−r(s−t)ds−e(δ+λ)(t−z)
Z z+T

t

e−r(s−t)ds−
Z t+T

z+T

e−(r+δ+λ)(s−t)e(δ+λ)Tds.
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Normalizing ePt,t = 1, one gets ePz,t =e−(δ+λ)(t−z) [1 + ηH (T, r, λ, δ, t− z)]. If
we define the adjusted-quality relative prices as Pz,t = ePz,te−λz and Pt,t =ePt,te−λt,the latter relationship becomes

Pz,t
Pt,t

=e−δ(t−z) [1 + ηH (T, r, λ, δ, t− z)].
We can define a sequence {φs}s=as=0 such that

qa = e−δa [1 + ηH (T, r, λ, δ, a)] = e−
R a
0 φsds

where qa = Pz,t/Pt,t, a = t− z, and φa is a function of the rate of embodied
technical progress and of the age of the vintage, φa = Φ (λ, a). φs is a function
of λ because (i) the lifetime is finite and it is a function of λ and/or because
(ii) δ is an increasing function of λ. And assuming that T is a decreasing
function of λ then φa is an increasing function of λ.

GRS estimate the following relationship ln qa = −
R a
0
φsds. And they obtain

that the estimated φs are high. In a second step, they estimate the modified
equation

ln qa = −
Z a

0

(φs − λs+ κ lnXs) ds

where κ lnXa is a proxy of λa, and is therefore a proxy of the obsolescence
rate, while Xa represents a vector of characteristics of the computers of age
a and can be consequently viewed as an index of their quality. GRS find
that the estimates φs − λ are near zero for all s, which is hardly surprising
because φs is an increasing function of λ as pointed out above.

If η = 0, the lifetime of capital is infinite. In such a case, qa =e−δa, and
the GRS finding is even clearer. The latter relationship can be expressed in
logarithms as ln qa = −δa. Taking into account that κ lnXa = λa, it can be
rewritten as

ln qa = − (δ − λ) a− κ (lnXt − lnXz) .

If the equation above is to be estimated, then the estimated age-related
depreciation rate is necessarily bδ = δ − λ = λ+χ

µ−1 − λ,which is clearly near
zero if µ close to 2, and χ is near zero. Also bκ = λ. Our model is therefore
fully compatible with the GRS finding. This is far from surprising because
obsolescence is the main determinant of the depreciation of capital in our
set-up.
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5 Conclusions

In this model, we build a vintage capital model à la Whelan, which incor-
porates endogenous operation costs. In contrast to Whelan, we have a fixed
and a variable cost, and more importantly, the variable cost depends on an
indicator of the utilization of the vintages. Thanks to this difference, we are
able to distinguish between an age-related depreciation rate and a scrapping
rate. We characterize the balanced growth paths of the model and put for-
ward many important properties, mostly consistent with the stylized facts.
First, the lifetime of capital goods is increasing (resp. decreasing) with the
rate of disembodied (resp. embodied) technical progress. Second, as men-
tioned in the previous section, the model has the remarkable property that
both the age-related depreciation and the scrapping rate do rise when em-
bodied technical progress accelerates. The key variable behind this result is
the utilization variable. As mentioned repeatedly along this paper, the fact
that the age-related depreciation rate is also an increasing function of the
rate of embodied technical progress (or the obsolescence rate) adds another
strong mechanism (to Whelan’s original setting) through which embodiment
affects capital depreciation.

More empirical and accounting work is needed to assess the quantitative
implications of this variable, notably via age-related depreciation, but we
have already shown that our set-up is roughly consistent with the empirical
findings recently put forward by Geske, Ramey and Shapiro.
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Appendix

Table 1: Depreciation rate, service lifetime (years) and decline rate of the
relative price (annual average 1959-2003) of equipment and software by types

Category Depreciation rate Service lifetime Decline rate

Computers and peripheral equipment 0.203
Software 0.4 4.33 0.049
Communication equipment 0.13 13 0.028
Medical equipment and instruments 0.135 12 0.012
Photocopy and related equipment 0.18 9 0.036
Office and accounting equipment 0.312 7 0.031
Fabricated metal products 0.092 18 0.006
Engines and turbines 0.129 20 0.001
Metalworking machinery 0.18 16 -0.001
Special industry machinery 0.103 16 -0.003
General industrial, equipment 0.107 16 0.002
Electrical transm., industrial apparatus 0.05 33 0.014
Trucks, buses and truck trailers 0.163 16.5 0.007
Autos 0.28 10 0.024
Aircraft 0.096 17.5 -0.002
Ships and boats 0.061 27 -0.001
Railroad equipment 0.059 28 0.003
Furniture and fixtures 0.138 12 0.006
Agricultural and machinery 0.118 14 -0.002
Construction machinery 0.155 10 -0.004
Mining and oilfield machinery 0.15 11 -0.004
Service industry machinery 0.158 10.5 0.010
Electrical equipment 0.183 9 0.018
Other 0.147 11 0.010

Data on depreciation rates and service lifetime of capital has been taken
from U.S. Department of Commerce, Bureau of Economic Analysis.
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Figure 1: Depreciation rate and relative prive of private nonresidential equipment
and software, 1929-2001
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Figure 2: Depreciation rate and decline rate of the relative price of private non-
residential equipment by types
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Figure 3: Service lifetime and decline rate of the relative price of private equipment
and software by types
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Figure 4: Depreciation rates of computers mainframes
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Figure 5: Depreciation rates of computer printers
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Figure 6: Depreciation rates of computer terminals and displays
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Figure 7: Depreciation rates of computers storage devices
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