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Tae-Hwan Kim and Christophe Muller 
 
 
 
 

A B S T R A C T 
 
 
 
  

In this paper we study how the Huber estimator can be adapted to the presence of 

endogeneity in a two stage equations setting similar to that of 2SLS. We propose an 

estimation procedure that is at the same time relatively (i) simple, (ii) robust and (iii) efficient. 

Moreover, we deal with the case of random regressors and asymmetric errors, two extensions 

rarely present in this literature. The preliminary scale correction is implemented with median 

absolute deviation estimator, which is consistent with our above criteria and is a very robust 

estimator of scale. The resulting estimator is termed as the Two-Stage Huber (2SH) estimator. 

  

We explicitly establish the conditions for consistency and asymptotic normality of the 

2SH estimator and we derive the formula of the asymptotic covariance matrix. We conduct 

Monte Carlo simulations whose results indicate that the 2SH estimator has smaller standard 

errors than the Two-Stage Least Squares (2SLS) estimator and than the Two-Stage Least 

Absolute Deviations (2SLAD) estimator in many situations. On the whole, the 2SH estimator 

appears to be a simple and useful alternative to 2SLS and 2SLAD in cases of two-stage 

estimation to deal with endogeneity when there are concerns for both robustness and 

efficiency. 
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1 Introduction

The endogeneity problem in model estimation is usually dealt with by con-
ducting the estimation in two stages. In the first stage, reduced form equa-
tions are estimated and the fitted values of endogenous variables are calcu-
lated. Then, these fitted values are used as regressors in the second stage
and the covariance matrix of the estimated parameters is corrected for the
replacement of the initial regressors by their fitted values. The use of two-
stage least-squares (2SLS) to treat the endogeneity problem in a linear model
is an example of this approach. Estimation methods in two stages have been
studied for many M-estimators. For example, see Malinvaud (1970), Heck-
man (1978), Amemiya(1985), Krasker and Welsch (1985), Newey (1985, 89,
94), Krasker (1986), Pagan (1986), Duncan (1987). In this paper, we extend
the class of two-stage robust estimators in the context of a linear regression
model under endogeneity of some explanatory variables.

The motivation of this research is to provide an estimation procedure
that is at the same time relatively (i) simple to implement, (ii) robust, (iii)
efficient. Moreover, we want this estimation procedure to be able to deal
easily with the cases of asymmetric errors and random regressors arising
in two-stage setting of equations familiar to empirical researchers who fo-
cus their interest on the ‘structural equation’. This seems a reasonable
requirement for a method to be used in applied work in many situations.

The preliminary scale correction is implemented with median absolute
deviation estimator, which is consistent with our above criteria and is some-
times considered as the ‘most robust estimator of scale’.

We are interested in the case in which the two stages are implemented
by using the Huber estimator (Huber, 1964, 1981), one of the main robust
estimators, which guarantees the robustness of the procedure with respect
to error terms. We denote this procedure Two-Stage Huber (2SH) Esti-
mator. Typically, robust estimators attempt to respond to a variety of
problems: outliers generating heavy tails errors in the dependent variable;
true distributions of errors deviating from the assumed distribution (gener-
ally Gaussian distribution); other model misspecifications1. Using the same
Huber estimator in the first stage not only makes the procedure simple to
implement, but also eliminates the potential influence of non-normality or
outliers in the first stage.

A few authors have tackled the problem of robust estimation for si-
multaneous equation systems. Krasker and Welsch (1985), Krasker (1986),
Koenker and Portnoy (1990), Krishnakumar and Ronchetti (1997), Maronna
and Yohai (1997), Flavin (1999) propose estimators based on weighted in-
strumental variables or on bounded influence regressions. Krasker and
Welsch propose weighted IV resistant estimators defined by implicit equa-

1See for example Huber (1964, 1966), Krasker and Welsch (1985).
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tions. These estimators have attractive robust properties but can only be
calculated through an iterative procedure. Koenker and Portnoy (1990)
study weighted LAD estimators that improve efficiency as compared to sim-
ple LAD estimators. Krishnakumar and Ronchetti propose B-robust (i.e.
with bounded influence function) estimators as a good compromise between
efficiency and robustness. Their estimators are based on the application of
the Huber function to a residual that is an affine combination of the score of
the considered system when errors are normal. As for Krasker and Welsch
estimator, the calculus of the estimator is not simple in that it requires an
iterative procedure. In an empirical paper, Flavin (1999) robustifies the
first-order conditions of an IV estimator, and uses the Median Absolute De-
viation (MAD) as a scale estimator. Maronna and Yohai (1997) review some
of these methods and identify three different estimating strategies; robusti-
fying three-stage least squares, robustifying the full information maximum
likelihood method and generalizing multivariate τ -estimators.

Rather than following these strategies, we focus on a natural extension
of the Huber estimator to the two-stage setting used in most applied em-
pirical work. Indeed, the two-stage setting is the one likely to be used by
applied researchers who are predominantly interested in the second stage es-
timates. Moreover, the successive Huber estimation is simple to implement,
as opposed to many other robust estimators. Krasker (1986) proposes to
robustify the two-stage least-square method by replacing each OLS stage
by a bounded influence estimator and to apply it to simultaneous equa-
tions. We follow this approach by replacing each OLS stage with a modified
Huber estimator for which we use the mean absolute deviation estimator
(MAD) as preliminary rescaling estimator for the errors at each estimation
stage. This feature modifying the classical Huber estimator has the advan-
tage of being simple and quick to apply, and therefore to allow estimation
procedures only based on usual Huber, Least-Squares and Least-Absolute
Deviation estimators, all for which readily usable commands are available
in many statistical packages (e.g. Stata). In a sense, our procedure is akin
to that of Krishnakumar and Ronchetti, while it differs in that we apply
the Huber function to each component of the modified system (the first and
second stage equations in our case) and not to the score of the whole system
together. Moreover, we replace the simultaneous estimation of scale and
location by simple preliminary scale estimators. These modifications allow
us to keep most of the robustness benefit of the Huber function in a context
of two-stage estimation, while avoiding calculus complications.

Our contribution in this paper is to develop the 2SH estimator, to derive
its asymptotic and small sample properties. This work program is carried
out in the case of random regressors and possibly asymmetric errors, weaker
restrictions than what is often available in the literature for robust estima-
tion.

The simplicity of the estimation of parameter estimates is one of the
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main motivation of our work, Indeed, the requirement of simplicity is im-
portant for practitioners in the context of robust estimation, as stressed for
example in Flavin (1999). Our estimator belongs the small class of the avail-
able robust estimators for estimation problems with endogenous explanatory
variables. It is easily tractable. The practical gain obtained by using a two-
stage estimation approach and well-known procedures used by practitioners
should help contributing to the dissemination of robust methods.

Another interest of our approach is that we keep a simple link with
the most popular robust estimator, the Huber estimator, allowing for nat-
ural comparisons. Although different methods have been used to obtain
robustness in system estimation, the Huber estimator remains a central ref-
erence because of its optimal minimax properties (established in Huber,
1964). It has been exploited in more complex frameworks in Krishnaku-
mar and Ronchetti (1997) to derive B-robust estimators. However, Huber
and B-robust estimators minimax properties have generally been established
only in the case of symmetric errors and small contamination of normal er-
rors. Although these cases are clearly central references, it is less clear if
they correspond to the realistic situations of interest for the use of robust
estimators. Moreover, B-robust estimators may be complicated to imple-
ment, as are variants of the resistant estimators by Krasker and Welsch,.
as compared with the use of simple Huber estimators that are available in
common statistical package. We deal with this issue by sticking to simple
estimation procedures without emphasizing minimax properties that always
depend on debatable distribution benchmarks. Other approaches could be
to use least-squares or least absolute deviations regressions, which can both
be readily implemented in several common statistical packages, as the basis
of each estimation stage. Though, with 2SLS substantial robustness issues
may arise, while with 2SLAD much efficiency may be lost. Recently, more
sophisticated two-stage estimators have been proposed in the framework of
quantile regressions and LAD estimators in order to deal with endogene-
ity of treatment effects (Abadie et al., 2001; Chernozhukov and Hansen,
2001). We do not deal with these sophistications and remain in the usual
setting of two-stage estimation methods, in part because we are concerned
about robustness and not about treatment effects differing across quantiles.
So, the estimator we propose corresponds to a convenient trade-off between
simplicity of implementation, efficiency and robustness. However, as most
of the other robust estimators in this context, our estimator only protects
against local distribution alternatives, but not against large and pervasive
departure from normality. The latter situation should be dealt with other
methods, for example methods with high breakdown point.

The aim of this paper is to propose and study the 2SH estimator. In
Section 2, we define the model and the estimation method. We derive the
asymptotic representation of the 2SH estimator in Section 3. In Section 4, we
analyse the asymptotic normality of the 2SH estimator. Some Monte Carlo
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simulation experiments are presented in Section 5. Both asymptotic and
Monte Carlo results exhibit situations where the 2SH estimator is superior
to the 2SLS and to the 2SLAD developed by Amemiya (1982) and Powell
(1983). Asymptotic and finite sample results are important because they
are first the base of inferences using our estimator, and second because they
show that the 2SH estimator is a useful alternative to 2SLS and 2SLAD
estimators.

In practice, when there is a suspicion that the data may be contaminated
and that the 2SLAD may yield too inefficient estimates (e.g. when the non-
contaminated part of the data follows a distribution close to the normal
law), then our estimator may provide an interesting procedure for models
where some explanatory variables are deemed to be endogenous and when
ancillary equations based on exogenous regressors can be used to replace
the endogenous regressors of the first stage with their fitted values. Finally,
Section 6 concludes. All the technical proofs are collected in the Appendix.

2 The model and the estimator

2.1 The model

We consider a structural equation given by

yt = Y
�
t γ0 + x

�
1tβ0 + ut; t = 1, 2, ..., T, (1)

where yt is the dependent variable, Yt is a G × 1 vector of endogenous
variables, x1t is a K1 × 1 vector of random exogenous variables and ut is
the error term. We are interested in estimating and making inference on the
structural parameters α0 = (γ�0,β

�
0)
�.We denote by x2t the K2× 1 vector of

exogenous variables that are absent from the equation in (1). Let us assume
that Y �t = (Y1t, Y2t, ..., YGt) admits a reduced-form representation for each
Yjt:

Yjt = x
�
tΠ0j + Vjt ; j = 1, 2, ...,G, (2)

where x�t = (x�1t, x�2t), Π0j is a K × 1 vector of unknown parameters with
K = K1 + K2, Vjt is the error term. Note that (2) can be written as
Y �t = x�tΠ0 + V �t where Π0 = [Π01,Π02, ...,Π0G] and V �t = (V1t, V2t, ..., VGt).
Then, yt has the following reduced-form representation:

yt = x
�
tπ0 + vt, (3)

where

π0 = Π0,
IK1

0
α0
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and vt = ut + V �t γ0. Note that (3) can be rewritten as

yt = z
�
tα0 + vt, (4)

where z�t = x�tH(Π0) and

H(Π0) = Π0,
IK1

0

is a K× (G+K1) matrix. Hence, if the true value of Π0 were known, the
structural parameter vector α0 could be directly estimated using (4). The
essence of the two-stage approach is to replace Π0 with an estimator Π̂ from
the first stage. We now turn to the definition of the 2SH estimator.

2.2 The estimator

The reduced-form equation in (2) is used for a first-stage Huber estimation
that yields estimator Π̂j of Π0j , and delivers exogenous predictions of Yjt:
Ŷjt = x

�
tΠ̂j . In this situation, the usual Huber estimator would be obtained

as the solution to: min
Πj

T
t=1 ρ(Yjt − x�tΠj), where

ρ(z) =
1

2
z21[|z|<k] + (k|z|−

1

2
k2)1[|z|≥k],

where k > 0 is a threshold value fixed in advance. This function, often called
the Huber function, has the first derivative

ψ(z) = z1[|z|<k] + 2k(
1

2
− 1[z≤0])1[|z|≥k].

However, using the Huber function ρ(z) does not deliver a regression-equivalent
estimator. In order to obtain such an estimator, the Huber function must
be modified using some scale estimator of the error term. Indeed, the basic
Huber estimator, as most M-estimators, is not scale invariant. Following
Bickel (1975) and Flavin (1999), we use the standardized median absolute
deviation to obtain the required scale estimators as follows:

σ̂2 = median{|et −median{et}|}/Φ−1(3/4)
σ̂2j = median{|ejt −median{ejt}|}/Φ−1(3/4)
j = 1, 2, ...,G,

where et are the residuals obtained from the LS regression of yt on xt and
ejt are the residuals from the LS regression of Yjt on xt. Using a preliminary
scale estimate is possible in our problem because it is based on consistent
fitted values. Then, σ̂2 and σ̂2j are consistent. In these conditions, plugging
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them into the optimisation program defining Huber estimator does not affect
the consistency of the estimation procedure.

For symmetric distributions, the median absolute deviation (MAD) is
asymptotically equivalent to half the interquartile range, is minimax with re-
spect to bias and has the best breakdown properties under ε−contamination
in the class of M-estimators (Huber, 1981). Note that this choice of scale es-
timator is different from Huber proposal2, or from B-estimators that follow
Huber approach (Krishnakumar and Ronchetti, 1997). The advantage of
Huber and B-estimator approaches is to ensure minimax properties for both
scale and location parameters, that is, to minimise the variance of these es-
timators under a ‘least-informative distribution’ of the contaminated errors.
The drawback of this approach is to lead to unattractive calculus compli-
cation, perhaps one reason why these estimators are relatively little used
despite their interesting properties. One of the calculus complication comes
from the simultaneous estimation of the location and the scale. Moreover,
the optimality of these location and scale estimators is only reached when
the reference distribution is the ‘least-informative one’, and not for other
alternatives that may be more plausible. Meanwhile, the minimax proper-
ties refer to symmetric contamination and normal uncontaminated errors.
Finally, minimax approaches may not protect as well against heavy-tails er-
rors that may be more likely than ‘least-informative distributions’. Since the
breakdown properties of simultaneous estimators of scale and location, or
of estimators with preliminary scaling, are mainly determined by the break-
down properties of the scale estimator (See Huber 1981), it seems a good
idea to use the MAD as scale estimator. Indeed, the MAD has the largest
breakdown point (1/2) of all M-estimators. So, we explore another route in
this paper, namely using the MAD as preliminary scale estimator of each
stage of a two-stage estimation context to deal with endogeneity issues. An-
other reason to consider the MAD is that it can be considered as the ‘most
robust estimator of scale’ (see Huber, 1981, p122) in the sense that it is the
limit of the Huber estimator of scale when the contamination grows up to
almost all the observations.

Then, the first-stage Huber estimator Π̂j is defined as the solution to the
following:

min
Πj

T

t=1

ρσ̂j (Yjt − x�tΠj),

where ρσ̂j (z) = ρ(z/σ̂j). The corresponding first-order condition is:

T−1/2 T
t=1 xtψσ̂j (Yjt−x�tΠ̂j) = 0 for j = 1, . . . , G, where ψσ̂j (z) = ψ(z/σ̂j),

dropping the factor 1/σ̂j .

2An M-estimator S of scale defined by χ(x/S(F ))F (dx) = 0 with χ(x) = x2 − β for
|x| ≤ β and χ(x) = k2−β for |x| > β , with β such that χ(x)Φ(dx) = 0, all with Huber’s
obvious original notation.
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Let us now turn to the second stage of the estimation. The 2SH estimator
α̂ of α0 is the solution to the following minimisation programme:

min
α
ST (α, Π̂) =

T

t=1

ρσ̂(yt − x̂�tα), (5)

where, x̂�t = x�tH(Π̂) with Π̂ = [Π̂1, Π̂2, ..., Π̂G] incorporates the first-stage

predictions of the endogenous variables. Alternatively, the 2SH estimator
can be defined as a solution to the first-order condition: T

t=1H(Π̂)
�xtψσ̂(yt−

x̂�tα) = 0. The same Huber estimator (i.e. the same parameter k) is used for
both stages consistently with our requirement of simplicity. Alternatively,
different values for k could be used for the two stages, little changing the
properties of the estimator. In the next section, we derive the asymptotic
representation of the 2SH estimator. The following conditions are needed
for this task.

Assumption 1. (i) The entire sequence {(vt, Vt, xt)} is independent and
identically distributed with σ2 = E(v2t ) ∈ (0,∞), σ2j = E(V 2jt) ∈ (0,∞) and
σ2u = E(v

2
t ) ∈ (0,∞).

(ii) E (nxtn)3 <∞ where nxtn = (x�txt)1/2.

Assumption 2. (i) vt has a conditional cdf F (·|x) that is Lipschitz con-
tinuous for all x.
(ii) E [ψσ(vt)|xt] = 0.
(iii) Q = E {g(0|xt)xtx�t} is finite and positive-definite where g(0|xt) =
G�(0|xt) with G(z|xt) = E [ψσ(vt + z)|xt].
(iv) H(Π0) is of full column rank.

The iid condition in Assumption 1(i), which may be interpreted as a
description of the sampling scheme, is imposed for presentation simplicity.
It can be relaxed to include heteroskedasticity and serial correlation. In such
a case, our covariance matrix in Proposition 2 further on should be modified
by using the Newey-West type covariance matrix. Assumption 1(ii) is the
moment condition on the vector of exogenous variables. It is useful to estab-
lish the asymptotic representation of all considered estimators by applying
a theorem of stochastic equicontinuity for the relevant empirical process.
We also use it to obtain the boundedness of the asymptotic covariance ma-
trix of parameter estimates. This condition and the other conditions of the
exogenous regressors are weaker that what is sometimes done in two-stage
estimation papers, where the exogenous regressors are assumed fixed (e.g.
in Powell, 1983).

Assumption 2(i) simplifies the demonstration of convergence of certain
remainder terms to zero. It is used to derive the asymptotic representation
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of our estimator. Assumption 2(ii) says that the trimmed conditional mean
of vt is zero. If ψ were instead the quantile function (as in Powell, 1978), it
would mean that the conditional quantile of v is zero. In the case of OLS,
ψ would be the identity and the restriction would correspond to the nullity
of the conditional mean. Assumption 2(ii) is satisfied if vt is symmetric
and E(vt|xt) = 0, which is commonly assumed for Huber estimators (e.g.
Bickell, 1975, Carroll and Ruppert, 1982). Here, even if the distribution
of vt is not symmetric, when the conditional density of vt is not equal to
zero over a large support and when there is an intercept in the model, this
condition can be considered as an inoccuous normalisation of the intercept.
Therefore, it should be satisfied in applications where there are intercepts in
the model equations, the usual case. Indeed, in that case E (ψ(vt)|xt) = 0
and E (ψ(vt)|xt) 9= 0 correspond to isomorphic statistical structures that
distinguish themselves only by the value of the intercept term. They are
observationally equivalent structures. Therefore, it is possible to impose
E (ψ(v)|xt) = 0, and thus to fix the value of the intercept, without loss of
generality. Assumption (iv) is an identification condition, which is standard
for simultaneous equations models.

Assumption A2(iii) is the counterpart of the usual condition for OLS
that the mean cross-product of the regressor vectors converges towards a
finite positive definite matrix. Here, the cross-product matrix is weighted
by a coefficient that characterises how fast the trimmed conditional mean of
vt changes around zero along the change in vt. This conditions is necessary
for consistency and for the inversion of the relevant empirical process in
order to establish the asymptotic normality. We do not need conditions
about the densities of vt and Vjt around zero because such conditions are
implied by the condition of positive definiteness of matrices Q and Qj .

The structural equation in (1) is identified if the number of zero restric-
tions (K2) is not less than the number of endogenous variables (G). Noting
that H(Π0) is a (K1+K2)× (K1+G) matrix, Assumption (iv) implies that
K2 ≥ G, which includes the exact identified case (K2 = G) and the over-
identified case (K2 > G). This assumption is needed when proving that the
2SH estimator α̂ is consistent for the true parameter α0.

It is now time to return to the consequences of the possible endogeneity of
Yt. If the Yt3s are exogenous in the general sense, we have E ψσu(ut)|Yt, xt =
0 where ψσu(z) = ψ(z/σu) and σu is the preliminary scale estimator. Then,
the truncation of outliers, via the Huber function, in terms of the error terms
makes intuitive sense. However, if the Yt3s are endogenous, we expect in gen-
eral that E ψσu(ut)|Yt, xt 9= 0 as a consequence of the non-separation of the
marginal laws of the Yt3s and of the ut3s. It is unclear what the truncation
of the error terms means in this situation, and therefore what is estimated.
Our 2SH estimator ensures that at each stage of the estimation, the trun-
cation eliminating outliers applies to well-defined error terms that can be
interpreted as prediction errors from a set of exogenous variables.
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3 The asymptotic representation

As in Hjort and Pollard (1993), consistency and asymptotic normality can be
delivered in one unique step. For this, we derive the asymptotic derivation
of the estimator based on the following empirical process MT ( · ):

MT (∆) = T
−1/2

T

t=1

xtψσ(vt − T−1/2x�t∆) = T−1/2
T

t=1

mσ(wt,∆),

where ∆ is a K × 1 vector, wt = (vt, x
�
t)
� and mσ(wt,∆) = xtψσ(vt −

T−1/2x�t∆). We can apply Theorems 1-3 in Andrews (1994) because of the
bounded variations of function ψσ, of the iid condition in Assumption 1(i)
and of the moment condition on xt in Assumption 1(ii). As a result, we
have the following preliminary lemma.

Lemma 1 Suppose that Assumptions 1 and 2(i) hold. Then, for some finite
L > 0, we have the following:

sup
||∆||≤L

||MT (∆)−MT (0) +Q∆|| = op(1).

Lemma 1 together with the remaining conditions in Assumption 2 is used
to obtain the following asymptotic representation for the 2SH estimator.

Proposition 1 Suppose that Assumptions 1 and 2 hold and that T 1/2(Π̂−
Π0) = Op(1). Then, we have the following:

T 1/2(α̂− α0)

= Q−1zz H(Π0)
�{T−1/2

T

t=1

xtψσ(vt)−QT 1/2(Π̂−Π0)γ0}+ op(1),

where Qzz = H(Π0)�QH(Π0).

In the above proposition, a high level condition on Π̂ has been imposed,
namely T 1/2(Π̂−Π0) = Op(1). This condition can be seen as a consequence
of the following Assumption 3.

Assumption 3. (i) Vjt has a conditional cdf Hj(·|x) for j = 1, . . . , G that
is Lipschitz continuous for all x.
(ii) E[ψσj (Vjt)|xt] = 0 for j = 1, . . . , G, where ψσj (z) = ψ(z/σj)
(iii) Qj = E {gj(0|xt)xtx�t} are finite and positive-definite, j = 1, . . . , G,

where gj(0|xt) = G�j(0) with Gj (z) = E ψσj (Vjt + z)|xt .

Assumptions 3(i)-(iii) are similar to Assumptions 2(i)-(iii). So, the same
justification applies. We start the analysis of the asymptotic properties of
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the 2SH estimator with the derivation of its asymptotic representation from
which we shall deduce the asymptotic normality and the asymptotic covari-
ance matrix. It can easily be shown that g(0|xt) = F (k |xt)−F (−k |xt) and
gj (0|xt) = Hj(k|xt)−Hj(−k|xt) for j = 1, . . . , G. To simplify we eliminate
from now the conditioning from the notations for functions G,Gj , g, gj .

Proposition 2 Suppose that Assumptions 1-3 hold. Then, the 2SH estima-
tor α̂ has the asymptotic representation:

T 1/2(α̂− α0) = DT
−1/2

T

t=1

Zt + op(1),

where D = Q−1zz H(Π0)�[I,−QQ−11 γ01, ...,−QQ−1G γ0G], Zt = Wt ⊗ xt, and
Wt = [ψσ(vt),ψσ1(V1t), . . . ,ψσG(VGt)]

�.

Let us now compare this result with the following asymptotic representations
of 2SLS, denoted α̂2SLS , and 2SLAD, denoted α̂2SLAD. It is easy to show
under some regularity conditions3 comparable to Assumptions 1-3 that

T 1/2(α̂2SLS − α0) = D
LST−1/2

T

t=1

ZLSt + op(1),

whereDLS = QLS−1zz H(Π0)
�[I,−γ01I, . . . ,−γ0GI], QLSzz = H(Π0)�QLSH(Π0),

QLS = E {xtx�t} and ZLSt =WLS
t ⊗xt, andWLS

t = [vt, V1t, . . . , VGt]
�. More-

over,

T 1/2(α̂2LAD − α0) = D
LADT−1/2

T

t=1

ZLADt + op(1),

where
DLAD = QLAD−1zz H(Π0)

�[I,−QLAD(QLAD1 )−1γ01, . . . ,−QLAD(QLADG )−1γ0G],
QLADzz = H(Π0)

�QLADH(Π0), QLAD = E {f(0|xt)xtx�t},
QLADj = E {hj(0|xt)xtx�t} , for j = 1, . . . , G, ZLADt =WLAD

t ⊗ xt,
WLAD
t = [ψLAD(vt),ψLAD(V1t), . . . ,ψLAD(VGt)],

ψLAD(z) = 0.5 − 1[z ≤ 0], and f(·|x) and hj(·|x) are the conditional
pdf’s of vt and Vjt respectively.

3The complete list of regularity conditions can be found in Kim and Muller (2004).
Among the regularity conditions, the crucial ones that ensure the consistency of the
2SLS and 2SLAD estimators are E[vt|xt] = 0, E[Vjt|xt] = 0, E[ψLAD(vt)|xt] = 0, and
E[ψLAD(Vjt)|xt] = 0. They are essentially two differences in the assumptions for the
consistency and asymptotic normality of 2SLS, 2SLAD and 2SH: first, the semiparametric
restriction, second the existence and positive definiteness of matrices incorporating cross-
products of regressions. The only differences for these matrices lies in the presence of a
different weighing factors. It does not seem to us that this fundamentally changes the
scope of cases to consider. As for the semiparametric restriction, as long as the support of
the errors is broad enough, and that there is an intercept term in the model, they can all
be considered as mere normalisation of the intercept coefficient, and the slope estimates
can be validly compared.
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4 Asymptotic normality and covariance matrix

We now show the asymptotic normality of the 2SH estimator by applying
the Lindeberg-Levy CLT.

Proposition 3 Suppose that Assumptions 1-3 hold. Then,

T 1/2(α̂− α0)
d→ N(0,DΩD�),

where Ω = E (WtW
�
t ⊗ xtx�t).

These asymptotic results show the differences in the asymptotic proper-
ties of 2SH, 2SLS and 2SLAD. The proof of the asymptotic representation
for the 2SLAD with random regressors can be found for example in Kim and
Muller (2004). The differences in assumptions in part boil down to different
normalisation rules (of the type E[ψ(vt)|xt] = 0) for the intercept, which
we assume from now. So, the comparison makes sense for the slope coef-
ficients at least, which are generally the coefficients of interest for applied
researchers since they convey the effects of the explanatory variables. First,
the influence function of 2SLS, easy to read from the empirical processes of
the asymptotic representation, is not bounded, as opposed to that of 2SH
and of 2SLAD that are robust methods. Then, the 2SLS is not appropriate
for example when the errors are seriously contaminated. Second, for each
estimation method it is possible to exhibit corresponding error distributions
for which the method is efficient and dominates the other two estimation
methods: Normal distributions for 2SLS, Laplace distributions for 2SQR
and minimax Huber distributions for 2SH estimator (Huber, 1964). There-
fore, no method can be considered to be best in all cases in terms of efficiency
and 2SH inherits minimax properties from the Huber estimator. 2SLAD is
known to suffer from particularly low efficiency in situations close to the
Gaussian case. Also, it is apparent that low values of f(0|xt) and hj(0|xt)
for 2SLAD can degrade the efficiency of these estimators. On the whole,
2SH appears as an interesting compromise between the properties of robust-
ness of the 2SLAD and the efficiency of 2SLS under normality. In the next
section, we present a simulation study that enables us to compare small
sample properties of 2SH with that of 2SLS and 2SLAD.

5 Monte Carlo simulation

Using Monte-Carlo simulations, we examine the small sample behaviour
of the Huber estimator for the structural parameters (γ0,β0), on the one
hand when the endogeneity problem is ignored and on the other hand when
the problem is treated by using the 2SH estimator. We also compare this
behaviour with that of 2SLS and 2SLAD in small samples.
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We base our simulations on the simplest possible model: a simultaneous
equation system with two simple equations so as to be able to naturally
inject endogeneity into the model. The first equation, which is the equa-
tion of interest, contains two endogenous variables (including the dependent
variable) and two exogenous variables including a constant. Four exogenous
variables are present in the whole system.

The structural simultaneous equation system can then be written

B
yt
Yt

+ Γxt = Ut,

where
yt
Yt

is a 2×1 vector of endogenous variables, xt is a 4×1 vector of
exogenous variables with the first element equal to one. Then, we have an
intercept term in the model and the semiparametric restrictions of the three
estimators correspond to three different normalisation of the intercept coeffi-
cient. Therefore, we are mostly interested in the comparison of the slope co-
efficients. Ut is a 2×1 vector of error terms. We specify the structural param-
eters as follows: B =

1 −0.5
−0.7 1

and Γ =
−1 −0.2 0 0
−1 0 −0.4 −0.5 .

The system is over-identified by the zero restrictions Γ13 = Γ14 = Γ22 = 0.
Hence, the first equation is

yt = Ytγ + x
�
1tβ + ut = 0.5Yt + 1 + 0.2x12t + ut

where γ = −B12 = 0.5, β� = (β0,β1) = (−Γ11,−Γ12) = (1, 0.2), x1t is the
2 × 1 subvector consisting of the first two elements of xt (1 and x12t), and
ut is the first element of Ut. The second equation is therefore

Yt = 0.7yt + 1 + 0.4x13t + 0.5x14t +wt

where x13t and x14t are respectively the third and fourth elements of xt,
and wt is the second element of Ut.

The choice of the parameter values is led by the following considerations.
Since we are not so much interested in the intercepts, we simply choose
them to be equal to 1 for all equations and all normalisations. Only slightly
attenuated effects are chosen for the cross effects of the two endogenous
variables (coefficients 0.5 and 0.7) so that the endogeneity be interesting
but not extreme. Identification restrictions and overidentification drive the
appearance of exogenous variables in the equations. Moderate but non-
negligible and relatively comparable effects are allowed for these variables
(coefficients 0.2, 0.4, 0.5). In that way, a balanced situation is obtained
where endogenous and exogenous influences should all matter. Thus, we
expect that all parameter values in B and Γ play important roles, except
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perhaps for the intercept parameter, and especially the interaction between
endogenous variables.

We can rewrite the system in a matrix representation [ y Y ]B� =
−XΓ�+U , which yields the reduced-form equations [ y Y ] = X[ π0 Π0 ]+

[ v V ], where [ π0 Π0 ] = −Γ� (B�)−1 and [ v V ] = U (B�)−1. Using
[ π0 Π0 ] = −Γ� (B�)−1, we obtain π�0 = (2.3, 0.3, 0.3,−0.15) and Π�0 =
(2.6, 0.2, 0.6,−0.3).

The errors [ v V ] are drawn from the standard normal N(0, 1), the
Student-t with 3 degrees of freedom, t(3), and the Lognormal errors with
log-mean µ = 0 and log-standard deviation σ = 1, denoted by LN(0, 1),.in
such a way that Assumptions 2(ii) and 3(ii) are satisfied. We draw the
second to fourth columns in X from the normal distribution with mean
(0.5, 1,−0.1)�, variances equal to 1, cov(x2, x3) = 0.3, cov(x2, x4) = 0.1 and
cov(x3, x4) = 0.2. The variances are chosen equal to 1 for normalisation
purposes, while the correlations between the exogenous variables are neither
extreme nor negligible. Given X, [ v V ] and [ π0 Π0 ], we generate the
endogenous variables [ y Y ] by using the reduced-form equations.

We use 1000 replications and the sample size is of 50. For each replica-
tion, we estimate the parameter values γ and β = (β0,β1)

� and we calculate
the deviation of the estimates from the true values. Then, we compute the
sample mean and sample standard deviation of those deviations based on
the 1000 replications.

The simulated means and simulated standard deviation for the estimated
γ,β0 and β1 of the one-stage Huber estimator, the 2SH, the 2SLS and the
2SLAD are displayed in Table 1 for Gaussian errors, Table 2 for t(3) errors
and Table 3 for LN(0, 1) errors. The tables show the deviations from the true
value for the simulated means. For Huber estimator, we use two different
values of parameter k(k = 2 or k = 4).

As mentioned above, we are mostly interested in the slope coefficients
since strictly speaking the intercept coefficients are not comparable across
methods. However, it remains interesting to confront the accuracy of the
various intercept estimators even when corresponding to different normali-
sations. Indeed, the order of magnitude of these estimates should be similar
since they all represent central tendencies.

For all three parameters, the Huber estimator is characterised by a sys-
tematic bias in finite samples, which does not vanish as the sample size
increases from 50. By contrast, the means of the 2SH, 2SLS and 2SLAD
estimates (in deviation to the true value) are much closer to zero than the
means of the one-stage Huber estimator for the two considered distributions.
The endogeneity problem appears well corrected by the 2SH even with small
samples in the studied cases.

As expected, for the Gaussian errors, the 2SLS performs better than the
2SLAD. Indeed, the 2SLS is very close to the 2SH for k = 2 (2SLS is only
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marginally more precise) and is almost identical to 2SH for k = 4. In the
case of the Student errors, the 2SLS is clearly less accurate than the 2SH
and than the 2SLAD that are less sensitive to heavy tails. Meanwhile, the
simulated means for the 2SH are less precise than that obtained with the
2SLAD for k = 4, but the reverse result is observed for k = 2. In the case
of the Lognormal distribution, two interesting observations emerge. First,
as expected for all two-step estimators, only the intercept estimate (β̂0)
becomes biased. However, as we mentioned above, the bias of the different
estimators are not comparable since they refer to different central tendencies.
Secondly, when considering the remaining unbiased components (γ̂ and β̂1),
the 2SH estimator is substantially more accurate than the 2SLS and the
2SLAD for k = 2, while only marginally better for k = 4. Then, adjusting
parameter k may help to tune in the efficiency-robustness properties of 2SH
as compared with 2SLS and 2SLAD. This is an additional advantage of
2SH, which could be systematically investigated to yield a rule for fixing k
in different cases of interest.

Clearly, there exist cases easy to exhibit where 2SH dominates 2SLS or
2SLAD in terms of variance of estimated slope parameters, even without
introducing arbitrary outliers. This supports the contention that 2SH is
a useful complement to the toolbox of two-stage estimation methods for
systems of equations with endogeneity problems.

6 Conclusion

In this article we propose and study the Two-Stage Huber (2SH) estimator
in the case of random regressors and possibly asymmetric errors. The error
scale is corrected by preliminary uses of the Median Absolute Deviation es-
timator at every stages. We derive the formula of the asymptotic covariance
matrix for the parameters of interest. The comparison of the asymptotic
properties and of Monte Carlo simulation results for the 2SH estimator,
the 2SLS estimator and the 2SLAD estimator indicates that none of these
estimators dominates the other ones even for a few simple distributions,
whether asymptotically or for finite samples. In this situation, the 2SH esti-
mator provides a convenient compromise between requirements of simplicity
of implementation, robustness and efficiency. Asymptotic and finite sample
results are important because they are first the base of inferences using our
estimator, and second because they show that the 2SH estimator is a useful
alternative to 2SLS and 2SLAD estimators.

In practice, when there is a suspicion that the data may be contaminated
and that the 2SLAD may yield too inefficient estimates (e.g. if the non-
contaminated part of the data follows a distribution close to the normal
law), then our estimator may provide an interesting procedure for models
where some explanatory variables are deemed to be endogenous and when
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ancillary equations based on exogenous regressors can be used to replace the
endogenous regressors of the first stage with their fitted values.

A practical difficulty however, as for any other two-stage method, is
that specific calculations must be carried out to estimate the asymptotic
covariance matrix of the parameters. Arguably, the formula of the matrix
is complex enough. However, convenient estimators of this matrix can be
obtained by plugging residual and nonparametrix estimators of expressions
involving densities, similarly to what is done in Kim and Muller (2004) for
two-stage quantile regressions. Alternatively, bootstrap estimators of the
covariance matrix could be explored, perhaps on the lines proposed by Hahn
(1995) for quantile regressions. Finally, an other useful extension would be
the analysis of the inaccuracy coming from the preliminary scale estimation
for each stage.

Appendix

Proof of Lemma 1. We first define VT (∆) = T−1/2 T
t=1[mσ(wt,∆)−

E{mσ(wt, ∆)}] =MT (∆)−E(MT (∆)). In order to apply Theorem 1 in An-
drews (1994) to the empirical process VT (∆), we need to check the following
two conditions: (i) m(wt,∆) satisfies Pollard’s entropy condition with some

envelop M̄(wt); (ii) For some δ > 2, lim
T→∞

T−1 T
t=1E M̄(wt)

δ
<∞.

We define f1(wt,∆) = xt and f2(wt,∆) = ψσ(vt − T−1/2x�∆) so that
mσ(wt,∆) = f1(wt,∆)f2(wt,∆). We note that each element of f1(wt,∆) is
Type I class with envelope ||xt|| (see Andrews, 1994, for the definition of
Type I class) and f2(wt,∆) is also Type I class with envelope C = 1∨k where
∨ is the maximum operator. Hence, the productmσ(wt,∆) satisfies Pollard’s
entropy condition with envelope M̄(wt) = C(||xt|| ∨ 1) by Theorem 3 in
Andrews (1994), which ensures the first condition. By Assumption 1(i) we

have lim
T→∞

T−1 T
t=1E M̄(wt)

δ
= CδE (||xt|| ∨ 1)δ , which is bounded

by Assumption 1(ii). Hence, by applying Theorem 1 in Andrews (1994), we
obtain the following:

sup
||∆1−∆2||≤L

||VT (∆1)− VT (∆2)|| = op(1), (6)

for some finite L > 0. Setting ∆1 = ∆ and ∆2 = 0 in (6) yields

sup
||∆||≤L

||MT (∆)−MT (0)− {E(MT (∆))−E(MT (0))} || = op(1). (7)

We now show that E(MT (∆)) − E(MT (0)) → −Q∆. Using the law of
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iterated expectation and the mean value theorem, we have that

E(MT (∆))−E(MT (0)) (8)

= E T−1/2
T

t=1

xt G(−T−1/2x�t∆|xt)−G(0|xt)

= −E T−1
T

t=1

G(−T−1/2x�t∆|xt)−G(0|xt)
−T−1/2x�t∆

xtx
�
t ∆

= −E T−1
T

t=1

g(ξT |xt)xtx�t ∆,

where ξT,t is between zero and−T−1/2x�t∆. Since one can show that g(λ|x) =
σ−1{F (−λ + σk|x) − F (−λ − σk|x)}, Assumption 2(i) implies that g(λ|x)
is Lipschitz continuous in λ for all x; that is, for some constant L0 ∈ (0,∞)

and for all x, |g(λ1|x)− g(λ2|x)| ≤ L0|λ1−λ2|. Now we consider the (i, j)th
element of E T−1 T

t=1 g(ξT |xt)xtx�t −E {g(0|xt)xtx�t} , which is given
by

E T−1
T

t=1

(g(ξT |xt)− g(0|xt))xtixtj (9)

≤ L0T
−1

T

t=1

E(|T−1/2x�t∆| × |xti| × |xtj |),

where the inequality is obtained by the triangle inequality, the Jensen’s in-
equality, the Lipschitz continuity and the fact that 0 ≤ |ξT,t| ≤ |T−1/2x�t∆|.
By the moment condition in Assumption 1(ii), the last expression in (9) con-

verges to zero, which implies thatE T−1 T
t=1 g(ξT |xt)xtx�t → E {g(0|xt)xtx�t}.

Hence, we have E(MT (∆))−E(MT (0))→ −Q∆ as T →∞. Then, we sub-
stitute E(MT (∆)) − E(MT (0)) in (7) with its limit −Q∆ to obtain the
conclusion of the lemma. QED.

Proof of Proposition 1. We first define ∆̂0 =
√
T (Π̂ − Π0)γ0. Then,

∆̂0 = Op(1) by assumption. Hence, by Lemma 1, we have MT (∆̂0) =
MT (0)−Q∆̂0 + op(1). The first term is given by

MT (0) = T
−1/2

T

t=1

xtψσ(vt),

which converges in distribution to a normal random variable by the Lindeberg-
Levy CLT under Assumptions 1 and 2(ii). Since MT (0) = Op(1) and
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Q∆̂0 = Op(1), using Lemma 1, we obtain

MT (∆̂0) = Op(1). (10)

Next, we define

∆̂1(δ) = H(Π̂)δ + ∆̂0 (11)

where δ ∈ RG+K1 . It is easily shown that Lemma 1 implies

sup
||δ||≤L1

||MT (∆̂1(δ))−MT (0) +Q∆̂1(δ)|| = op(1) (12)

for some finite L1 > 0. We further define M̃T (δ) = H(Π̂)�MT (∆̂1(δ)) and
||H(Π̂)||2 = tr(H(Π̂)H(Π̂)�) = Op(1). By using the argument displayed be-
tween (A.7) and (A.8) in Powell (1983), it is shown that (10) and (12)
together imply that

sup
||δ||≤L1

||M̃T (δ)−H(Π0)�MT (∆̂0) +Qzzδ|| = op(1) (13)

where Qzz = H(Π0)
�QH(Π0). The next step of the proof is to show δ̂ =

T 1/2(α̂−α) = Op(1) in order to plug into (13). For this, we use Lemma A.4.
in Koenker and Zhao (1996), which can be applied under the following condi-
tions: (i) −δ�M̃T (λδ) ≥ −δ�M̃T (δ) for λ ≥ 1, (ii) ||H(Π0)�MT (∆̂0)|| = Op(1),
(iii) M̃T (δ̂) = op(1), where δ̂ = T 1/2(α̂ − α0), (iv) Qzz is positive-definite.
With these conditions, Lemma A.4 in Koenker and Zhao will deliver the
desired results: δ̂ = T 1/2(α̂ − α) = Op(1)

4. First, we note that the follow-
ing function h(λ) is convex in λ: h(λ) = T

t=1 ρσ(vt − T−1/2x�tH(Π̂)δλ −
T−1/2x�t∆̂0).Since −δ�M̃T (λδ) is the gradient of the above convex function,
it is non-decreasing in λ. Hence, condition (i) is satisfied. The result in (10)
implies condition (ii). To prove (iii), we note that

T 1/2M̃T (δ̂) =
∂ST
∂α α=α̂ −

+ op(1) (14)

where ∂ST
∂α α=α̂ −

is the vector of left-hand-side partial derivatives of the

objective function ST in (5) evaluated at the solution α̂. Hence,
∂ST
∂α α=α̂ −

=op(1).

The difference of order op(1) in (14) comes from the fact that the scaled es-
timator σ̂ is used on the right-hand-side (i.e. in the objective function ST )
while the true value σ is used on the left-hand-side (i.e. in the definition of
M̃T (δ̂)). Since σ̂

p→ σ, the difference converges to zero in probability as T

4Once we show δ̂ = Op(1), the consistency of α̂ for α0 follows by a by-product.
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goes to infinity. Hence, T 1/2M̃T (δ̂) = op(1) and condition (iii) is satisfied.
The final condition (iv) is ensured 2(iii) and by the identification condition
in Assumption 2(iv). Therefore, we have T 1/2(α̂−α0) = Op(1). This result
combined with (13) results in

T 1/2(α̂− α0) = Q
−1
zz H(Π0)

�MT (∆̂0) + op(1)

which delivers the desired result in the proposition by using the above de-
composition of MT (∆̂0) provided by Lemma 1.:

T 1/2(α̂− α0) = Q−1zz H(Π0)
�{T−1/2

T

t=1

xtψσ(vt)

−QT 1/2(Π̂−Π0)γ0}+ op(1), (15)

which completes the proof.5 QED.

Proof of Proposition 2. In a fashion similar to Proposition 1 the condi-
tions in Assumption 3 together with Assumptions 1 and 2(iv) are sufficient
to show that the first stage Huber estimator Π̂j has the following represen-
tation: T 1/2(Π̂j −Π0j) = Q−1j T−1/2
T
t=1 xtψσj (Vjt) + op(1). Hence, T

1/2(Π̂−Π0)γ0 = G
j=1Q

−1
j T

−1/2
T
t=1 xtψσj (Vjt)γ0j+op(1), which is in turn plugged into (15) to deliver the

following result:

T 1/2(α̂− α0) = T−1/2
T

t=1

Q−1zz H(Π0)
�xtψσ(vt)

−T−1/2
T

t=1

Q−1zz H(Π0)
�QQ−11 xtψσ1(V1t)γ01

...

−T−1/2
T

t=1

Q−1zz H(Π0)
�QQ−1G xtψσG(VGt)γ0G + op(1)

= DT−1/2
T

t=1

Zt + op(1), (16)

where D = Q−1zz H(Π0)�[I,−QQ−11 γ01, ...,−QQ−1G γ0G], Zt = Wt ⊗ xt, and
Wt = [ψσ(vt),ψσ1(V1t), . . . ,ψσG(VGt)]

�. QED.

5Since the objective function in the second stage is convex, an alternative proof to the
presented one might have been obtained using the insightful approach of Hjort and Pollard
(1993). We use Koenker and Zhao (1996) instead of Hjort and Pollard (1993) because we
are more familiar with Koenker and Zhao (1996) on the one hand, and on the other hand
because a parallel can thus be drawn with the proof in Kim and Muller (2004) for the
two-stage quantile regression.
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Proof of Proposition 3. We first derive the distributional limit of
T−1/2 T

t=1 Zt. Assumption 1(i) implies that Zt is independent and
identically distributed. Using Assumptions 2(ii), 3(ii) and the law of it-
erated expectation, one can show that E(Zt) = 0. Finally, we note that
var(Zt) = E (WtW

�
t ⊗ xtx�t) and all the elements in WtW

�
t are bounded by

a constant. Hence, Assumption 1(ii) is sufficient to confirm that var(Zt) is
bounded. Therefore, we now can apply the Lindeberg-Levy’s CLT to obtain
T−1/2 T

t=1 Zt → N(0,Ω). The conclusion of the proposition follows. QED.
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Table 1.  Simulation Means and Standard Deviations of the Deviations from the True Value  
with: N(0,1) 
                     Huber  2SH 2SLS   2SLAD  
        

         γ̂  Mean -0.4345 0.0037 0.0033 0.0032  
 Std   (0.1317) (0.3002) (0.2984) (0.4052)  
        

0β̂  Mean 1.3786 -0.0181 -0.0167 -0.0065  
 Std   (0.4451) (0.9802) (0.9754) (1.2975)  
        

1β̂  Mean 0.1630 0.0024 0.0021 -0.0001  

 
 
k =  2 

 Std   (0.1587) (0.2054) (0.2050) (0.2612)  
        

         γ̂  Mean -0.4353 0.0033 0.0033 0.0032  
 Std   (0.1314) (0.2984) (0.2984) (0.4052)  
        

0β̂  Mean 1.3812 -0.0168 -0.0167 -0.0065  
 Std   (0.4435) (0.9754) (0.9754) (1.2975)  
        

1β̂  Mean 0.1629 0.0021 0.0021 -0.0001  

 
 
k =  4 

 Std   (0.1576) (0.2050) (0.2050) (0.2612)  
True values: β0 = 1, β1 =0.2, γ = 0.5 
 
Table 2.  Simulation Means and Standard Deviations of the Deviations from the True Value  
with: t(3) 
                     Huber 2SH 2SLS 2SLAD  
        

         γ̂  Mean -0.4987 -0.0076 -0.0282 0.0043  
 Std   (0.1194) (0.3957) (0.6176) (0.4880)  
        

0β̂  Mean 1.5965 0.0382 0.1045 -0.0022  
 Std   (0.4359) (1.2683) (1.9703) (1.5557)  
        

1β̂  Mean 0.1829 -0.0041 -0.0035 -0.0043  

 
 
k =  2 

 Std   (0.2031) (0.2827) (0.4051) (0.3132)  
        

         γ̂  Mean -0.5129 0.0017 -0.0282 0.0043  
 Std   (0.1318) (0.5617) (0.6176) (0.4880)  
        

0β̂  Mean 1.6456 0.0142 0.1045 -0.0022  
 Std   (0.4833) (1.7668) (1.9703) (1.5557)  
        

1β̂  Mean 0.1855 -0.0092 -0.0035 -0.0043  

 
 
k =  4 

 Std   (0.2196) (0.3380) (0.4051) (0.3132)  
True values: β0 = 1, β1 =0.2, γ = 0.5 
 


