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ABSTRACT 
 
 

We study a repeated game with asymmetric information about a 
dynamic state of nature.  In the course of the game, the better informed 
player can communicate some or all of his information with the other.  Our 
model covers costly and/or bounded communication.  We characterize the 
set of equilibrium payoffs, and contrast these with the communication 
equilibrium payoffs, which by definition entail no communication costs. 
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1. Introduction

Communication activities may resolve inefficiencies due to informa-

tion asymmetries between agents, but are themselves costly, e.g., due

to sending and processing costs. The study of optimal trade-offs be-

tween the costs and the benefits of communication is to a large extend

an open problem, and is the topic of this paper.

Communication equilibria, as proposed by Forges [For86] and My-

erson [Mye86], extend the rules of a game by adding communication

possibilities through arbitrary mechanisms at any stage of a multistage

game. This concept captures the largest set of implementable equilib-

ria when no restriction exists on the means of communication between

the players.

On the other hand, economic studies like Radner [Rad93] tell us that

in an organization like a firm, communication is a costly activity and

that a significant amount of resources is devoted to it. In these struc-

tures, the constant need for information updating entails important

costs.
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Starting with Forges [For90] and Bárány [Bár92], a body of literature,

including Urbano and Vila [UV02], Ben-Porath [BP03], and Gerardi

[Ger04], studies models of decentralized communication. An important

conclusion of this literature is that—under various assumptions—all

communication equilibria can be implemented through preplay decen-

tralized communication procedures. Hence, decentralized communica-

tion schemes can be used without any loss of efficiency if we consider

that a finite number of communication stages entails negligible costs

compared to the payoffs of the game to be played. Since the costs of

communication cannot be explained by considering decentralized com-

munication schemes as opposed to centralized ones, a new archetype of

costly communication is needed.

This paper puts the emphasis on this need for information updating,

and studies the communication dynamics in a model where the states

of nature evolve through time. One player, the forecaster, has superior

information to the other player, the agent, about the stream of states of

nature. The forecaster may choose to send messages and take actions

at any stage, and both components are described as part of the action

set of the forecaster. A repeated game then takes place between the

forecaster, the agent, and nature. The agent’s actions at any stage

may depend on all past actions and on all past states of nature. The

forecaster’s actions may depend on all past actions and on all past

states of nature, but also on all future states of nature. Hence, the

forecaster’s actions include a payoff component (since these actions

impact players’ payoffs), and an information component (since these

actions may inform the agent about future states of nature). At each

stage, the agent updates his information using his observation both of

the current state of nature and of the forecaster’s action.

A specification of players’ strategies induces a joint dynamics on

three elements called also action triple: the states of nature, the fore-

caster’s actions, and the agent’s actions. We study this dynamics
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through the average distribution Q of these three elements. This dis-

tribution contains all expected time average statistics of action triples,

and is important for strategic purposes since all expected average pay-

offs depend on players’ strategies through it only.

We characterize the set of distributions Q that are implementable

by any strategies of the forecaster and the agent. The fact that the

information used by the agent cannot exceed the information received

leads to an information-theoretic inequality expressed using the Shan-

non [Sha48] entropy function, and which we call the information con-

straint.

On the one hand, we prove that for all strategies of the forecaster

and the agent and for any n, the average distribution during the first n

stages fulfills the information constraint. On the other hand, we prove

that for any distribution Q that fulfills the information constraint, there

exists a pair of strategies for the forecaster and the agent such that the

long-run average distribution of action triples is Q. Hence, the infor-

mation constraint fully characterizes the set of implementable distri-

butions.

Our result has implications for the measure of communication inef-

ficiencies, in games both with and without common-interests.

The set of equilibrium payoffs in our model is in general a proper

subset of the set of communication equilibria. This reflects the fact

that communication is a costly activity, which consumes part of the

player’s resources.

The cost of communication inefficiencies can be measured in games

with common-interests, where the Pareto payoff for the team is the

natural solution concept. In the communication equilibrium extension

of our model, this Pareto payoff corresponds to the first-best in which

both players are perfectly informed of the state of nature at each stage.

In our game, the Pareto payoff is in general strictly less than this first-

best, and represents a “second-best” payoff which takes into account

the implementation costs of communication processes.
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Section 2 presents the model and examples of problems of optimal

communication. Section 3 introduces the information constraint and

the main results. In Section 4 we prove that using mixed or correlated

strategies (instead of pure strategies) will not change the analysis. The

main results are proved in Sections 5 and 6. Section 7 presents appli-

cations to games with and without common-interests, and we conclude

with a discussion in Section 8.

2. The model

Given a finite set A, ∆(A) represents the set of probability measures

over A, and |A| is the cardinality of A. Random variables will be

denoted by bold letters.

The finite set of states of nature is denoted by I. There are two

players: the forecaster, with finite action set J , and the agent, with

finite action set K. The stage payoff functions are gf , ga : I×J×K → R

for the forecaster and for the agent, respectively. We assume |J | ≥ 2

so that possibilities of communication from the forecaster to the agent

exist.

In the repeated game, the forecaster is informed beforehand of all

future states of nature. At each stage, the chosen action may depend

on past actions, as well as on the whole sequence of states of nature. A

(pure) strategy for the forecaster is thus a sequence (σt)t of mappings

σt : IN × J t−1 × Kt−1 → J , where σt describes the behavior at stage t.

The agent is informed of past realizations of nature and past actions

only. A (pure) strategy for the agent is thus a sequence (τt)t of map-

pings τt : I t−1 × J t−1 × Kt−1 → K, where τt describes the behavior at

stage t.

We assume that the sequence of states of nature is i.i.d. with stage law

µ. Let (it)t be random variables that represent the sequence of states

of nature. A pair of strategies σ, τ induces sequences of random vari-

ables (jt)t and (kt)t given by jt = σt((it)t, (j1, . . . , jt−1), (k1, . . . ,kt−1))

and kt = τt((i1, . . . , it−1), (j1, . . . , jt−1), (k1, . . . ,kt−1)). Let Pµ,σ,τ be
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the induced probability distribution over (I × J × K)N, and P t
µ,σ,τ the

marginal over stage t’s action triple.

The average distribution up to stage t is Qt
µ,σ,τ = 1

t

∑t

t′=1 P t′

µ,σ,τ . If

there is a strategy pair σ, τ such that Qt
µ,σ,τ → Q as t → ∞ we say

that Q is implementable and that the strategy pair σ, τ implements the

distribution Q.

2.1. Example: Coordination with nature. We consider a two-

player game with common-interests in which both players wish to co-

ordinate with nature. I = J = K = {0, 1}, µ is uniform. The common

payoff function to both players is given by

g(i, j, k) =











1 if i = j = k

0 otherwise

and can be represented by the payoff matrices

0 1

0 1 0

1 0 0

i = 0

0 1

0 0 0

1 0 1

i = 1

where nature chooses the matrix, the forecaster chooses the row, and

the agent chooses the column.

Consider the strategy of the forecaster that matches the state of

nature at every stage. This strategy conveys no information to the

agent about future states of nature. If the agent plays randomly, the

average distribution of action triples up to any stage is

0 1

0 1
4

1
4

1 0 0

i = 0

0 1

0 0 0

1 1
4

1
4

i = 1

The corresponding expected average payoff is 1
2
.

Consider now the strategy of the forecaster that matches nature at

even stages, and plays the next stage of nature at odd ones. At even
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stages, the agent is informed of the stage of nature by the previous

action of the forecaster, and thus can match it. At odd stages, the

agent has no information on the stage of nature, and we assume he

plays randomly. The distribution of action triples at odd stages is

0 1

0 1
8

1
8

1 1
8

1
8

i = 0

0 1

0 1
8

1
8

1 1
8

1
8

i = 1

and at even stages is

0 1

0 1
2

0

1 0 0

i = 0

0 1

0 0 0

1 0 1
2

i = 1

The long-run average distribution is then

0 1

0 5
16

1
16

1 1
16

1
16

i = 0

0 1

0 1
16

1
16

1 1
16

5
16

i = 1

The corresponding expected payoff is 5
8
. A natural question that arises

is what is the maximal payoff that corresponds to an implementable

distribution.

Our analysis will show that the following distribution

0 1

0 2
5

1
30

1 1
30

1
30

i = 0

0 1

0 1
30

1
30

1 1
30

2
5

i = 1

(with corresponding payoff 4
5
) is implementable, while the distribution

0 1

0 .41 .03

1 .03 .03

i = 0

0 1

0 .03 .03

1 .03 .41

i = 1
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(with corresponding payoff 0.82) is not implementable. Moreover, our

analysis enables us to compute the (unique) implementable distribution

that maximizes the corresponding payoff, and describes the implement-

ing strategies. This unique distribution is

0 1

0 x
2

1−x
6

1 1−x
6

1−x
6

i = 0

0 1

0 1−x
6

1−x
6

1 1−x
6

x
2

i = 1

with x satisfying H(x) + (1 − x) log2 3 = 1, where H is the entropy

function.1 Thus the corresponding payoff equals x, which is approxi-

mately 0.81.

3. The information constraint

The entropy of a discrete random variable x of law p with values in

X measures its randomness, and also the quantity of information given

by its observation. Its value is

H(x) = −
∑

x∈X
p(x = x) log p(x = x)

where the logarithm is taken in basis 2 and 0 log 0 = 0 by convention.

If x,y is a pair of discrete random variables with joint law p and

values in X × Y , the entropy of x given y measures the randomness of

x given the knowledge of y, or equivalently the quantity of information

yielded by the observation of x to an agent who knows y. Its value is

H(x|y) = −
∑

x,y∈X×Y
p(x = x,y = y) log p(x = x|y = y)

When we need to specify explicitly the probability Q of the probability

space under which the random variables x and y are defined, we shall

use the notations HQ(x) and HQ(x|y).

The main property of additivity of entropies states that

H(x,y) = H(x|y) + H(y)

1The entropy function H is given by H(x) = −x log
2
x − (1 − x) log

2
(1 − x) for

0 < x < 1.
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Let Q be a distribution over I × J × K. We say that Q fulfills the

information constraint when, considering a triple (i, j,k) of random

variables with joint law Q:

(1) HQ(i, j|k) ≥ HQ(i)

From the additivity of entropies, the information constraint can be

rewritten as

(2) HQ(j|i,k) ≥ HQ(i) − HQ(i|k)

The left-hand side of the inequality can be interpreted as the amount of

information received by the agent that observes the forecaster’s action,

j, given the observation of the state of nature i and his own action k.

It is then an amount of information sent by the forecaster to the agent.

The right-hand term of (2) is the difference between the randomness

of i and the randomness of i given the knowledge of k. It is thus the

reduction of uncertainty that k gives on i, or the amount of information

yielded by i on k. We interpret it as an amount of information used

by the agent on the state of nature.

Following this interpretation, the information constraint expresses

the fact that the information used by the agent cannot exceed the

information received from the forecaster.

Our first result states that, given any pair of strategies (σ, τ), the

corresponding average distribution fulfills the information constraint.

Theorem 1. For every strategy pair σ, τ , and t, Qt
µ,σ,τ fulfills the

information constraint, and every implementable distribution fulfills the

information constraint.

The next result shows a converse of the previous theorem when the

horizon of the game is large.

Theorem 2. Any distribution Q that fulfills the information constraint

and has marginal µ on I is implementable.
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Together, Theorems 1 and 2 show that the information constraint

fully characterizes the set of implementable distributions.

4. Mixed and correlated strategies

The following result implies that the set of implementable distri-

butions cannot be expanded by considering mixed, or even correlated

strategies of the forecaster and the agent.

Theorem 3. The set of distributions Q that fulfills the information

constraint and have a fixed marginal µ on I is convex.

The theorem follows from the next lemma. Indeed, observe that

HQ(i) is a constant c over all distributions Q having marginal µ on I,

and by setting X = K and Y = I × J in the lemma it follows that the

set of all distributions Q on I × J × K with HQ(i, j|k) ≥ c is convex.

Lemma 1. For any finite set X and Y , the function Q 7→ HQ(y|x) is

concave on the set of probability measures on X × Y .

Proof. Follows from the concavity of entropy. Let Q̄ =
∑

m λmQm be

a finite convex combination of distributions over X × Y . Consider a

triple of random variables α,β,γ such that P (γ = m) = λm, and α,β

has law Qm conditional on γ = m. Then

HQ̄(y|x) = H(β|α)

≥ H(β|α,γ)

=
∑

m
λmHQm

(y|x)

�

Any pair of correlated strategies is a distribution over pure strate-

gies. Therefore, the average distribution induced by a pair of correlated

strategies is a convex combination the average distributions induced by

those pure strategies, and hence fulfills, by Theorem 3, the information

constraint. We conclude that for every pair of correlated strategies σ, τ

and every t, Qt
µ,σ,τ fulfills the information constraint, and thus every
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distribution that is implementable by a pair of correlated strategies

fulfills the information constraint.

On the other hand, Theorem 2 shows that every distribution Q that

fulfills the information constraint and has marginal QI = µ is im-

plementable by pure strategies (and thus in particular by correlated

strategies).

5. Proof of Theorem 1

For any pure strategies σ and τ and any stage t,
∑t

t′=1
HP t′

µ,στ
(i, j|k) =

∑t

t′=1
H(it, jt|kt)

=
∑t

t′=1
H(it, jt,kt|kt)

≥
∑t

t′=1
H(it, jt,kt|i1, j1,k1, . . . it−1, jt−1,kt−1)

= H(i1, j1,k1, . . . it, jt,kt)

≥ H(i1, . . . it) = tH(µ)

where the first inequality follows from the fact that kt is a function of

(i1, j1,k1, . . . it−1, jt−1,kt−1). By Lemma 1,

HQt
µ,στ

(i, j|k) ≥
1

t

∑t

t′=1
HP t′

µ,στ
(i, j|k)

This completes the proof of the first part of the result. The second part

follows from the fact that the maps Q 7→ HQ(i, j|k) and Q 7→ HQ(i)

are continuous and therefore the set of distributions Q that obey the

information constraint is closed.

6. Proof of Theorem 2

Given a distribution Q that fulfills the information constraint and

that has marginal µ on X, we construct strategies σ, τ of the forecaster

and the agent such that the long-run average distribution induced ap-

proximates Q. Strategies are defined over blocks of length n. During

each block, the forecaster communicates to the agent which sequence

of actions to play during the next block. The sequences of actions for

the agent are chosen in a subset An of Kn called the set of action plans.
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The property required on the set of action plans is that, given the se-

quence x̃ of actions of nature during a block, there exists an element

z̃ in An such that the empirical distribution of (x̃, z̃) during a block is

close to QI×K . The possible set of messages Mn(x̃, z̃) for the forecaster

during a block corresponds to sequences of actions ỹ, such that (x̃, ỹ, z̃)

has an empirical distribution close to Q.

Our proof relies on estimates of the sizes of the sets of messages and

the set of action plans needed for the forecaster and the agent. The

key to the proof is that the information constraint implies that the set

of messages has cardinality larger than the set of action plans.

6.1. Typical sequences. Given a finite sequence b = (b1, . . . , bn) ∈

Bn over a finite alphabet B, the type ρ(b) of b is its empirical distribu-

tion (i.e., ρ(b)(c) = 1
n

∑n

i=1 Ibi=c, for c ∈ B). Given µ ∈ ∆(B), the type

set of µ is T µ(n) = {b ∈ Bn, ρ(b) = µ}. The set of types is Tn(B) =

{µ ∈ ∆(B), Tn(µ) 6= ∅}. The number of types is |Tn(B)| =
(

n+|B|−1
|B|−1

)

≤

n|B|. The following estimates the size of a type set µ ∈ Tn(B) (see, for

instance, Cover and Thomas [CT91, Theorem 12.1.3 page 282]):

(3)
2nH(µ)

(n + 1)|B|
≤ |T µ(n)| ≤ 2nH(µ)

Notation 1. Given two functions f, g : N → IR+ we denote by f
.
= g

the relation limn→∞
log f(n)
log g(n)

= 1.

The inequalities (3) imply that for every sequence µn ∈ Tn(B) we

have

|T µn(n)|
.
= 2nH(µn).

Let A and B be two finite sets and Q ∈ ∆(A × B), with marginal

distributions QA and QB on A and B, respectively. Fix n ∈ N and

Q ∈ ∆(A × B) such that TQ(n) is nonempty. It follows that the sets

TQA(n) and TQB(n) are also nonempty.

Notation 2. Given sequences ã = (a1, . . . , an) ∈ An, b̃ = (b1, . . . , bn) ∈

Bn, and c̃ = (c1, . . . , cn) ∈ Cn, (ã, b̃) and (ã, b̃, c̃) represent the points
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(a1, b1, . . . , an, bn) in (A×B)n and (a1, b1, c1 . . . , an, bn, cn) in (A×B×

C)n.

Notation 3. Given a probability measure Q over a product set A×B,

QA and QB represent the marginals of Q on A and B, respectively.

Lemma 2. For every ã ∈ TQA(n), we have

|A||A×B|2
(H(Q)−H(QA))n

(n + 1)|A×B|
≤ |{b̃ ∈ Bn : (ã, b̃) ∈ TQ(n)}| ≤ 2(H(Q)−H(QA))n

and thus in particular

|{b̃ ∈ Bn : ρ(ã, b̃) = Q}|
.
= 2(H(Q)−H(QA))n.

Proof. The point ã ∈ An partitions the set {1, . . . , n} into |A| dis-

joint subsets Na, a ∈ A: Na = {1 ≤ i ≤ n : xi = a}. For a ∈ A

we denote by Qa the conditional distribution on B given a, namely,

Qa(b) = Q(a, b)/
∑

b∈B Q(a, b). For every point b̃ ∈ Bn and a subset

N of {1, 2, . . . , n} we denote by (b̃|N) the N -vector (b̃j)j∈N . Note that

for every b̃ ∈ Bn we have ρ(ã, b̃) = Q if and only if for every a ∈ A we

have ρ(b̃|Na) = Qa. Therefore, it follows from (3) that

Πa∈A

2H(Qa)|Na|

(|Na| + 1)|B|
≤ |{b̃ ∈ Bn : ρ(ã, b̃) = Q}| ≤ Πa∈A2H(Qa)|Na|.

The result follows since Πa∈A(|Na| + 1)|B| ≤ (n + 1)|A×B|/|A||A×B| and

Πa∈A2H(Qa)|Na| = 2(H(Q)−H(QA))n. �

6.2. Set of action plans. We now prove for every Q the existence of

a sequence of subsets An of Kn of size

|An|
.
= 2(H(QI)+H(QK)−H(Q))n

such that for every x̃ ∈ TQI (n), there exists z̃ ∈ An with (x̃, z̃) ∈ TQ(n).

Lemma 3. For Q ∈ Tn(I ×K), there exists a subset An of TQK (n) of

size less than or equal to 1 + H(QI)n(n + 1)|I×K|2(H(QI)+H(QK)−H(Q))n

such that, for every x̃ ∈ TQI (n) there exists z̃ ∈ An with (x̃, z̃) ∈ TQ(n).

Proof. Let Q ∈ Tn(I × K). If H(QI) = 0 we set An = {z̃} where z̃ is

an arbitrary element of TQK (n). We now assume H(QI) > 0.
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Let (Zk)k≥1 be a sequence of TQK (n)-valued i.i.d. random variables

where Zk,1 is uniformly distributed on TQK (n). Let An be a random

subset of TQK (n) of size

α(n) = ⌈H(QI)n(n + 1)|I×K|2(H(QI)+H(QK)−H(Q))n⌉

containing {Z1, . . . ,Zα(n)}. Denote by P the induced probability over

realizations of the Zk’s. By Lemma 2, the number of elements z̃ ∈

TQK (n) such that (x̃, z̃) ∈ TQ(n) is no less than 2(H(Q)−H(QI ))n

(n+1)|I×K| . By

equation (3), |TQK (n)| ≤ 2H(QK)n. Therefore, for any x̃ ∈ TQI (n) and

1 ≤ k ≤ α(n)

P ((x,Zk) ∈ TQ(n)) ≥
2(H(QI)+H(QK)−H(Q))n

(n + 1)|I×K|

From this, we deduce that

P (∀z̃ ∈ An, (x̃, z̃) 6∈ TQ(n)) ≤ P (∀ 1 ≤ k ≤ α(n), (x̃,Zk) 6∈ TQ(n))

≤

(

1 −
2(H(QI)+H(QK)−H(Q))n

(n + 1)|I×K|

)α(n)

≤ exp(−nH(QI))

Hence, the expected number of x̃ ∈ TQI (n) such that ∀z̃ ∈ An, (x̃, z̃) 6∈

TQ(n) is at most exp(−nH(QI))|T
QI (n)|, which by equation (3) is

bounded by e−nH(QI)2nH(QI) < 1. Therefore, there exists a realization

An of the random set An that verifies the condition. �

6.3. Approximation of probabilities.

Lemma 4. ∀ε > 0 ∃N(ε) such that ∀ Q̃ ∈ ∆(I × J × K) ∀n ≥ N(ε)

∃Q ∈ Tn(I × J × K) such that

(4) HQ(i, j|k) − HQ(i) ≥ (1 − 3ε)(HQ̃(i, j|k) − HQ̃(i)) + ε

and

(5) ‖Q − Q̃‖1 < 7ε

Proof. Let A := J × K. The (real-valued) entropy functions R 7→

HR(i, j|k) and R 7→ HR(i) defined on ∆(I × A) are continuous, and

thus uniformly continuous. Therefore, for every ε > 0 there is N(ε) >
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|I ×A|/ε, such that for every R,R′ ∈ ∆(I ×A) with ‖R−R′‖1 ≤ |I ×

A|/N(ε) we have |HR(i, j|k)−HR′(i, j|k)| < ε and |HR(i)−HR′(i)| < ε.

Let R be the product distribution Q̃I ×UJ × Q̃K on I ×A where UJ is

the uniform distribution over J .

Then HR(i, j|k) = HQ̃(i)+ log |J |. Let Rε = 3εR+(1− 3ε)Q̃. Then,

using the concavity of the entropy function R 7→ HR(i, j|k) (Lemma

1), the equality Rε
I = Q̃I , and the inequality log |J | ≥ 1 (which follows

from |J | ≥ 2), we have

HRε(i, j|k) ≥ (1 − 3ε)HQ̃(i, j|k) + 3εH(Rε
I) + 3ε

which implies

HRε(i, j|k) − H(Rε
I) ≥ (1 − 3ε)(HQ̃(i, j|k) − H(Rε

I)) + 3ε

Let Q ∈ ∆(I × A) with TQ(n) 6= ∅ and ‖Q − Rε‖1 ≤ |I × A|/n.

Therefore, for n ≥ N(ε) we have |HQ(i, j|k) − HRε(i, j|k)| < ε and

|HQ(i) − HRε(i)| < ε and therefore

HQ(i, j|k) − HQ(i) ≥ (1 − 3ε)(HQ̃(i, j|k) − HQ̃(i) + ε

which proves (4). In addition

‖Q − Q̃‖1 < ‖Q − Rε‖1 + ‖Rε − Q̃‖1 ≤ 7ε

�

Lemma 5. Fix ν ∈ ∆(I) and n such that T ν(n) 6= ∅. For every

x̃ = (x1, . . . , xn) ∈ In there is x̃′ = (x′
1, . . . , x

′
n) ∈ T ν(n) such that

|{t : xt 6= x′
t}| ≤ n‖ρ(x̃) − ν‖1

Proof. By induction on the integer d(x̃) := n‖ρ(x̃) − ν‖1. If d(x̃) = 0

set x̃′ = x̃. Assume that d(x̃) > 0. There exist elements i, i′ ∈ I such

that ρ(x̃)(i) > ν(i) and ρ(x̃)(i′) < ν(i′). Pick t ∈ {1 ≤ t′ ≤ n : xt′ = i}

and define x̃′′ ∈ In by x′′
k = xk if k 6= t, and x′′

t = i′. It follows that

d(x′′) = d(x) − 2 and therefore by the induction hypothesis there is

x̃′ ∈ Tn(ν) such that |{t : x′′
t 6= x′

t}| ≤ d(x′′) and therefore |{t : x′
t 6=

xt}| ≤ d(x′′) + 2 = d(x). �
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Corollary 1. Fix ν ∈ ∆(I) and n such that T ν(n) 6= ∅. There exists

a map f : In → T ν(n) such that for µ ∈ ∆(I) we have

Pµ⊗n(
∑

1≤t≤n
Ixt 6=ft(x̃) > ‖ν − µ‖1n + εn) ≤

|I|2

ε2n

Proof. Let f : In → T ν(n) be the function that maps x̃ ∈ In to the

element x̃′ ∈ T ν(n), as in Lemma 5. For every i ∈ I we have |ρ(x̃)(i)−

µ(i)| ≥ ε
|I|

whenever |ρ(x̃)(i)− ν(i)| ≥ |µ(i)− ν(i)|+ ε
|I|

. Therefore, by

using Chebyshev’s inequality we have

Pµ⊗n(|ρ(x̃)(i) − ν(i)| ≥ |µ(i) − ν(i)| +
ε

|I|
) ≤

µ(i)|I|2

ε2n

and then

Pµ⊗n (‖ρ(x̃) − ν‖1 ≥ ‖µ − ν‖1 + ε) ≤
|I|2

ε2n

Hence the result, since
∑

1≤t≤n Ixt 6=ft(x̃) ≤ n‖ρ(x̃) − ν‖1. �

6.4. Construction of the strategies. Fix Q ∈ ∆(I × J × I) that

satisfies the conditions of Theorem 2. Note that it suffices to prove

that for every ε > 0 there exists a strategy profile σ, τ and t(ε, σ, τ)

such that

∀ t ≥ t(ε, σ, τ) ‖Qt
µ,σ,τ − Q‖1 < ε

Indeed, from a sequence of strategy profiles that approximate Q closer

and closer, one can construct a strategy that implements Q.

Let Q′ ∈ ∆(I ×J ×K) be as in Lemma 4 such that (4) and (5) hold.

By assumption we have HQ(i, j|k) ≥ HQ(i), and therefore we deduce

from (4) that

(6) HQ′(i, j|k) ≥ HQ′(i) + ε

By Lemma 3 there exists a set of action plans An ⊂ TQ′
K (n) for the

agent such that

|An| ≤ 1 + H(Q′
I)n(n + 1)|I×K|2(H(Q′

I)+H(Q′
K)−H(Q′))n

.
= 2(H(Q′

I)+H(Q′
K)−H(Q′))n

and such that for every x̃ ∈ TQ′
I (n), there exists an action plan z̃ ∈ An

of the agent such that (x̃, z̃) ∈ TQ′
I×K (n). For every (x̃, z̃) ∈ TQ′

I×K (n)

16



we set

M(x̃, z̃) = {ỹ ∈ TQ′
J (n) : (x̃, ỹ, z̃) ∈ TQ′

(n)}

By Lemma 2 we have

|M(x̃, z̃)| ≥
2(H(Q′)−H(Q′

I×K))n

(n + 1)|I×J×K|

.
= 2HQ′ (j|i,k)n

Since by (4) we have HQ′(j|i,k) > H(Q′
I) + H(Q′

K) − H(Q′) + ε, for

n sufficiently large |M(x̃, z̃)| ≥ |An|. Therefore there exist maps mx̃,z̃

from M(x̃, z̃) onto An. In what follows, m−1
x̃,z̃ stands for a function from

An into M(x̃, z̃) such that mx̃,z̃ ◦ m−1
x̃,z̃ is the identity on An.

By Corollary 1, for n sufficiently large (e.g., n ≥ |I|2/ε3), there exists

a projection f : In → TQ′
I (n) such that

Pµ⊗N(
1

n

∑n

t=1
Ixt 6=ft(x̃)) > 8ε) < ε

Let r : In → An such that (f(x̃), r(x̃)) ∈ TQ′
I×K (n) for every x ∈ In.

Fix a point (x̃(0), z̃(0)) ∈ TQ′
I×K (n) and for b > 1 define (x̃(b), ỹ(b), z̃(b))

to be the coordinates of the play at stages bn + 1, . . . , bn + n, namely,

(x̃(b), ỹ(b), z̃(b)) = (xbn+1, ybn+1, zbn+1, . . . , xbn+n, ybn+n, zbn+n)

The strategy σ of the agent plays at stages t = 1, . . . , n the sequence

of actions z(0). At stages t = (b+1)n+1, . . . , (b+2)n the agent plays the

sequence z(b + 1) = mf(x̃(b)),z̃(b)(ỹ(b)) if (f(x̃(j)), ỹ(j), z̃(j)) ∈ TQ′
(n)

and z(0) otherwise. The strategy τ of the forecaster plays at stages

t = 1, . . . , n the sequence of actions m−1
x̃(0),z̃(0)(r(x̃(1))), and at stages

t = bn + 1, . . . , bn + n the sequence m−1
f(x̃(b)),z̃(b)(r(x̃(b + 1))).

It follows that for every b ≥ 1 we have (f(x̃(b)), ỹ(b), z̃(b)) ∈ TQ′
(n).

Hence

‖ρ(x̃(b), ỹ(b), z̃(b)) − Q′‖1 ≤ ‖ρ(x̃(b)) − Q′
I‖

Therefore,

Pµ⊗n(‖ρ(x̃(b), ỹ(b), z̃(b)) − Q′‖1 ≥ 8ε) ≤ ε

and as ‖ρ(x̃(b), ỹ(b), z̃(b)) − Q′‖1 ≤ 2 we have

‖Eµ⊗n(ρ(x̃(b), ỹ(b), z̃(b)) − Q′‖1 ≤ 10ε

17



Hence, for sufficiently large t

‖Qt
µ,σ,τ − Q′‖1 ≤ 11ε

which implies

‖Qt
µ,σ,τ − Q‖1 ≤ 18ε

This ends the proof of Theorem 2.

7. Payoffs and equilibria

We show in this section how the information constraint yields char-

acterizations of 1) the set of feasible payoffs, 2) the best payoff a team

can achieve, and 3) the set of equilibrium payoffs in repeated games.

7.1. Feasible payoffs. Consider a fixed payoff function g defined on

action triples (g : I × J × K → R
2) and define the set F by

F = {EQg(i, j, k) : Q verifies the information constraint and QI = µ}

The objective of this section is to demonstrate that the set F is a good

approximation for the set of feasible payoffs of the discounted games.

The approximation applies not only to interstage-time-independent dis-

counting (i.e, a fixed discount factor), but also for interstage-time-

dependent discounting.

The commonly used discounting valuation is obtained by specifying

an interstage-time-independent discount factor 0 < λ < 1 and evaluat-

ing a steam (gt)t of payoffs according to its weighted average
∑∞

t=1 θtgt,

where θt = (1−λ)λt−1. The factor 1−λ is a normalization factor mak-

ing the sum of θt equal 1. Interstage-time-dependent discount factors

lead to a weighted average valuation
∑∞

t=1 θtgt, where θ = (θt)t is a

nonincreasing sequence with
∑∞

t=1 θt = 1.

If θ = (θt)t is a nonincreasing sequence of nonnegative numbers

summing to 1, then the expectation of the (θ)t-weighted sum of the

stage payoffs, g(θ, σ, τ) := EPµ,σ,τ

∑∞
t=1 θtg(it, jt, kt), equals the expec-

tation EQg(i, j, k) where Q is the distribution on action triples given by

Q =
∑∞

t=1 θtP
t
σ,τ . As the sum

∑∞
t=1 θtP

t
σ,τ equals

∑∞
t=1(θt − θt+1)tQ

t
σ,τ
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and
∑∞

t=1(θt − θt+1)t = 1 we deduce that Q is a convex combination

of Qt
σ,τ and thus obeys the information constraint, and obviously has

marginal µ on I. Therefore, if Σf and Σa denote the sets of strategies

of the forecaster and the agent, respectively, we have

Proposition 1. For every nonincreasing sequence θ = (θt) with (the

normalization)
∑∞

t=1 θt = 1, the set of θ-weighted feasible payoffs,

Fθ = {Eσ,τ,µ

∑∞

t=1
θtg(it, jt, kt) : (σ, τ) ∈ Σf × Σa}

is a subset of F . In particular, for every 0 < λ < 1, if Fλ is the

set of feasible payoffs of the λ-discounted game, i.e., Fλ = Fθ(λ) where

(θ(λ))t = (1 − λ)λt−1, then

Fλ ⊂ F

On the other hand, if Q is implementable then there is a strategy

pair σ, τ such that for every ε > 0 there exists N sufficiently large

so that ‖Qn
σ,τ − Q‖ < ε for every n ≥ N . Therefore, if θ = (θt)t is

a nonincreasing sequence summing to one and Qθ
σ,τ :=

∑

t θtP
t
σ,τ , then

‖Qθ
σ,τ −Q‖ = ‖

∑∞
t=1(θt−θt+1)t(Q

t
σ,τ −Q)‖ < 2Nθ1 +ε (by the triangle

inequality and the equality and inequalities 0 ≤
∑N

t=1(θt − θt+1)t =
∑N

t=1 θt − NθN+1 ≤ Nθ1), and therefore for sufficiently small θ1 the

distribution Qθ
σ,τ is within 2ε of the distribution Q. Therefore,

Proposition 2. Fθ converges (in the Hausdorff metric) to F as θ1

goes to 0. In particular, Fλ → F as λ → 1−.

7.2. Team games. Team games, in which players’ preferences are

identical, form an adequate setup for the study of inefficiencies due

the asymmetric information and the communication costs. As shown

for instance by Marschak and Radner [MR72] and by Arrow [Arr85], a

firm can be described as a team when one focuses on the question of

information transmission between its members.

In team games, our model allows us to measure the inefficiencies

arising from the need to transmit information. As a benchmark, con-

sider the situation in which the agent also has complete information

19



about the states of nature. Then, it is possible for the forecaster and

the agent to choose optimally an action pair at each stage given the

current state of nature. The corresponding expected payoff is the best

achievable under complete information.

In the game we analyze, both players can use a myopic behavior

that seeks to maximize at each stage the payoff of the current stage. In

this case, the forecaster’s actions are uninformative about the future

of the process, and so the agent’s belief on the current temporal state

of nature is his prior belief. Such behavior rules are not optimal in

general. Indeed, in most games the team can secure a better payoff

if the forecaster deviates from a myopic maximization rule in order to

convey information to the agent.

As we see, a good joint behavior for the forecaster must seek to

communicate maximal information with the slightest deviation from a

stage payoff maximization rule.

Therefore, the problem of finding a rule for the team that maximizes

the long-run expected payoff and of computing the exact value that

can be achieved is a difficult one. Yet it is made particularly simple by

an approach through the information constraint.

The long-run average payoff is the expectation of the stage payoff

where the expectation is with respect to the long-run average of action

triples. Therefore, for any (σ, τ) ∈ Σf × Σa, the expected long-run

payoff is the expectation of the stage payoff with respect to Qσ,τ – the

expected long-run average of the distribution of action triples induced

by σ, τ , and Qσ,τ obeys the information constraint.
∑∞

t=1 θtgt

Let vλ be the maximum payoff for the team when the discount factor

is λ, i.e., vλ = max{x : (x, x) ∈ Fλ, and let v = max{x : (x, x) ∈ F .

Propositions 1 and 2 imply that

Proposition 3. When λ goes to 1−, vλ goes to v.
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We are thus able to characterize the best achievable payoff to the

team, and its degree of inefficiency compared to the full information

case, and to construct strategies that achieve this maximal payoff.

Our model thus applies to the study of the impact of communication

costs on team games, which is an important question in the theory of

organizations (see van Zandt [vZ99] for a survey). The information

constraint does not depend on the specification of payoffs to the team.

Since it characterizes the set of achievable distributions, it allows us

to write the maximization problem faced by the team in a simple and

compact way for any payoff specification.

7.2.1. Example: bounded communication. The agent makes a decision

at each stage in K, and the payoff to the team depends on the state of

nature and on the agent’s action. The forecaster has incentives to send

the maximal information to the agent. Depending on µ and on the size

of J , it may or may not be possible to send all the relevant information

to the agent. A choice then needs to be made about what information

is to be sent, such that only the most important information reaches

the agent.

Consider, for example, the following common-interests game where

the state of nature specifies the matrix, the forecaster is the row player,

and the agent is the column player. The states of nature follow an

i.i.d. and uniform sequence. Payoffs of the team are given by

1 2 3

1 1 0 0

2 1 0 0

1

1 2 3

1 0 1 0

2 0 1 0

2

1 2 3

1 0 0 1

2 0 0 1

3

Let us illustrate the use of the information constraint in computing

the maximal payoff that the team of the forecaster and the agent can

approach. Let Q be an implementable distribution that maximizes

the common payoff; i.e., the distribution Q maximizes the probability

Q(i=k) subject to HQ(i, j|k) ≥ HQ(i). Obviously, by replacing the
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distribution Q with the product distribution of the uniform distribution

UJ on J and the marginal distribution QI×K we obtain a distribution

Q̂ with EQg(i, j,k) = EQ̂g(i, j,k) and HQ̂(i, j|k) ≥ HQ̂(i). Therefore

we can assume w.l.o.g. that Q is the product distribution UJ ⊗ QI×K ,

and thus the information constraint is

1 + HQ(i|k) ≥ HQ(i) = log 3

i.e.,

HQ(i|k) ≥ log
3

2

Note that the common payoff depends only on the values of Q(i=k=1),

Q(i=k=2), and Q(i=k=3), and equals their sum. By symmetry and by

concavity of the map Q 7→ HQ(i|k) (Lemma 1) we can assume w.l.o.g.

that x = Q(i=k=1) = Q(i=k=2) = Q(i=k=3). Given this inequal-

ity, the conditional entropy HQ(i|k) is maximized when Q(i=2|k=1) =

Q(i=3|k=1) and thus Q(i=j=k) = (1
3
−x)/2, Q(i=3|k=2) = Q(i=1|k=2) =

(1
3
− x)/2, and Q(=1|k=3) = Q(i=2|k=3) = (1

3
− x)/2. Therefore, we

can assume w.l.o.g. that the distribution of Q is given by

Q(i, k) =











x if i = k
1
3
−x

2
if i 6= k

and thus HQ(i|k) = H(3x) + 1− 3x, implying that the maximal payoff

is the solution v of the equation H(x) + (1 − x)/2 = log 3
2
.

The set of equilibrium payoffs of the repeated game is the set {(y, y) :

1
3
≤ y ≤ v} of all individual rational and feasible payoffs.

7.3. Games with different interests. We now consider general pay-

off functions gf , ga.

We compare the set of equilibrium payoffs of our model with the

“silent” equilibrium payoffs in which no information is transmitted,

and with the communication equilibrium payoffs.

Define the set of “silent” feasible payoffs as

F S = co {Eµ(gf (i, α(i), k), ga(i, α(i), k)), α : I → J, k ∈ K}
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where co stands for the convex hull. At the other extreme, the set of

feasible payoffs under full communication is

FC = co {Eµ(gf (i, α(i), β(i)), ga(i, α(i), β(i))), α : I → J, β : I → K}

Finally, define the set of feasible payoffs with internal communica-

tion as F ; recall that F = {EQg(i, j, k) : Q verifies the information

constraint and µ = QI}.

We have the inclusions

F S ⊆ F ⊆ FC

The set of distributions Q that verifies the information constraint is

convex by Theorem 3 and closed, and obviously the set of distributions

Q with QI = µ is convex and closed. Therefore the set of feasible

payoffs F is a closed convex subset of R
2. The closed convex set F is

defined by its support function

x 7→ max
y∈F

〈x, y〉 x ∈ R
2

where 〈x, y〉 stands for the inner product of x and y. Given x ∈ R
2,

the value maxy∈F 〈x, y〉 of the support function equals the maximal

payoff that the team of the forecaster and the agent can achieve in

the game with common-interests where the common payoff function

g(i, j, k) equals the inner product 〈x, (gf (i, j, k), ga(i, j, k))〉. Therefore,

solving for the feasible set F amounts to solving a family of (two-

person)2 common-interests games.

The individually rational level of a player is defined as the best payoff

that this player can defend against every strategy of the other player.

For the forecaster, this payoff is

vf = min
α∈∆(K)

max
β : I→J

Eµ,αgf (i, β(i), k)

For the agent, this payoff is

va = max
α∈∆(K)

min
β : I→J

Eµ,αga(i, β(i), k)

2In fact, as the implementing strategies in our proof are pure, it follows that solving
a family of two-person common-interests games suffices for computing the feasible
set of payoffs in the model where there are several forecasters and several agents.
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The situation is asymmetric between the two players. Indeed, the

forecaster possesses a double advantage over the agent. First, he can

use his private information concerning the states of nature in order

to defend a better payoff against the agent, which results in a higher

individually rational level for the forecaster. Second, he can use this

information against the agent when punishing him, which induces a

lower individually rational payoff for the agent. The better-informed

player possesses a strategic advantage over the less-informed one. Let

IR be the set of individually rational payoffs:

IR = {(xf , xa), xf ≥ vf , xa ≥ va}

The set F S ∩ IR corresponds to the set of equilibrium payoffs of

games with large discount factors in which the forecaster uses silent

strategies that may depend on the current state of nature, but not on

future ones. In these equilibria, the agent is uninformed as to future

states of nature.

The set FC ∩ IR is the set of communication equilibrium payoffs of

the repeated game with large discount factors. In this case, there is no

restriction on the communication possibilities, nor on the costs of this

communication.3

Finally, F ∩ IR is the set of equilibrium payoffs of our original game

with large discount factors, where all communication is internal to the

game. This set is convex, but not a polyhedron. It is computed directly

from the information constraint, and reflects the costs of communica-

tion between the players.4

7.3.1. Example: Secret Cournot collusion. Consider a production game

in which the forecaster and the agent form a Cournot duopoly, and

choose production levels qp, qa in finite sets Qp and Qa at unit costs

3should we explain more why the incentive constraints do note appear ? FF was
surprised.
4In the last two cases, all information sent by the forecaster concerning future states
of nature is eventually verifiable by the agent. Therefore the truthtelling incentive
constraints are not active.
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cp, ca. A state of nature is a pair of positive numbers (A,B). The

market inverse demand function is p = A − B(qp + qa), and profits

are gp = p(qp − cp), ga = p(qa − ca). Since the forecaster has better

information about future market demand, it may be profitable to share

part of this information with the agent. All explicit communication

between the firms (through phone lines for instance) is prohibited by

law. Nevertheless, nothing prevents the forecaster from transmitting

information through his choices of production levels.

8. Discussion and extensions

In order to preserve maximum transparency, we have tried to keep

the model of Section 2, henceforth the basic model as simple as pos-

sible. Notably, this has led to greatly simplified assumptions on the

forecasting ability, the signalling structure of the game, and the dis-

tribution of the process. The aim of this section is to present various

extensions and variations of the basic model, and to show how the

analysis of implementable distributions through the information con-

straint can be adapted to these cases. We first discuss relaxations of

the perfect and infinite forecast assumption. Second, we examine the

impact of the signaling structure of the one-shot game on the the set

of implementable distributions. Third, we show how autocorrelations

of the process of states of nature can reduce the need for information

transmission and expand the set of achievable distributions. Next, we

illustrate that our main result is robust in the sense that small devi-

ations from the main assumptions lead to a small change in the set

of implementable distributions. Finally, we discuss the possibilities of

asymmetric information on both sides as an open problem.

8.1. Limited forecasting abilities. The assumption of perfect and

infinite forecast can be relaxed in two ways. First, we can assume that

the forecaster is able to make predictions on a finite number of future
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stages of nature. Second, we may introduce possibilities of inaccurate

predictions.

8.1.1. Finite forecasts. Say that the forecaster has f forecast if, before

stage t, the forecaster is informed of it, . . . , it+f−1. Remark that any

strategy that is implementable with f forecast is implementable with

perfect forecast. Note also that the strategies constructed in the proof

of Theorem 2 use f forecast for larger and larger values of f . Hence,

the set of implementable distributions with f forecast converges as f

goes to ∞ to the implementable distributions of the basic model.

8.1.2. Imperfect forecasts. We now discuss the case where the forecaster

may be imperfectly informed of the states of nature. Let S be a set

of signals for the forecaster, and let R be a transition probability from

I to S. Assume that before the game starts, the forecaster observes

a sequence of signal (st)t where each signal st is drawn independently

according to the probability R(it). Following the plat at stage t the

agent observes a stochastic signal that includes the action jt of the

forecaster, and the forecaster observes a stochastic signal that depends

on the action triple (it, jt, kt). The basic model corresponds to the case

of perfect monitoring and perfect forecasts (where S = I and R is the

identity matrix).

In this case, a distribution Q ∈ ∆(J) × ∆(I × K) with QI = µ is

implementable if and only if there exists a distribution Q̂ ∈ ∆(S × I ×

J ×K) with Q̂(s|i) = R(i)(s) and marginal Q on I × J ×K such that

(1) Q̂(i|s, j, k) = Q̂(i|s)

(2) HQ̂(j) ≥ HQ̂(s) − HQ̂(s|k)

Condition(2) is the usual information constraints on Q. Condition

(1) expresses the fact that all information players have on the current

state of nature comes from the signal s of the forecaster.

If the signal to the agent, following the play at stage t, includes st in

addition to jt, then a distribution Q ∈ ∆(J × I × K) with QI = µ is
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implementable if and only if there exists a distribution Q̂ ∈ ∆(S × I ×

J ×K) with Q̂(s|i) = R(i)(s) and marginal Q on I × J ×K such that

(1) Q̂(i|s, j, k) = Q̂(i|s)

(2) HQ̂(j, s|k) ≥ HQ̂(s)

8.2. Signalling structures. , In the basic model, we have assumed

that the stage game has perfect monitoring in the sense that both the

forecaster and the agent were perfectly informed of the action triple

played at each stage.

As a general property, any reduction of the informational content

of the signals received by the forecaster or by the agent concerning

the action triple results in a reduction of the set of implementable dis-

tributions. In other words, all distributions that are implementable

with more informative signals are also implementable with less infor-

mative ones. This follows from the fact that implementable strategies

with less informative signals are also implementable when signals are

informative.

We now discuss the effects of a change either in the forecaster’s

observation of the agent’s action, or in the agent’s observation of the

forecaster’s action, or in the agent’s observation of the current state of

nature.

8.2.1. Unobservable agent’s actions. We discuss here the situation where

the forecaster observes at each stage a signal on the agent’s actions.

The basic model corresponds to the case where this signal is fully in-

formative. Consider the strategies constructed in the proof of Theorem

2. Since the agent uses a pure strategy, which depends on the observed

past states of nature and the forecaster’s actions only, and since this

information is available to the forecaster, the forecaster can reconsti-

tute this information even if the signal received on these actions is

completely uninformative. Hence, the designed strategies can still be

used. The set of implementable distributions is thus unchanged under
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the assumption that the forecaster has imperfect monitoring on the

agent’s actions.

In particular, the characterization of Proposition 3 of the limit Pareto

payoff to the team for a discount factor λ arbitrarily close to 0 remains

unchanged.

Note however that the set of equilibrium payoffs in the repeated

games with different interests is modified. Indeed, some deviations of

the agent that are detectable under perfect monitoring may become

undetectable under imperfect monitoring.

8.2.2. Noisy signal of forecaster’s action. We contemplate the situa-

tion where the agent observes the temporal states of nature but does

not have perfect monitoring of the forecaster’s actions. The distribu-

tion of the signal s ∈ S depends on the triple (i, j, k); the conditional

distribution of s given (i, j, k) is denoted by Ri,j,k (∈ ∆(S)).

Given a distribution Q on I×J×K we denote by Q̂ the distribution

on I×J×K×S whose marginal on I×J×K equals Q and Q̂(s|i, j, k)

equals the probability of the signal s given action triple i, j, k, namely,

Q̂(s|i, j, k) = Ri,j,k(s). Using this notation, Q is implementable if and

only if QI = µ and

(7) HQ̂(s|i,k) − HQ̂(s|i, j,k) ≥ HQ(i) − HQ(i|k)

Notice that in the case of the basic model, HQ̂(s|i,k) = HQ(j|i,k) and

HQ̂(s|i, j,k) = 0 and thus equation (7) particularizes to the information

constraint HQ(j|i,k) ≥ I(i;k).

Two special cases of the above characterization that are consid-

ered below are reformulations of classical results in information theory:

Shannon’s Noisy Channel Capacity theorem (see, e.g., [CT91, Theorem

8.7.1, p. 198]), and the Rate Distortion theorem for i.i.d. sources (see,

e.g., [CT91, Theorem 13.2.1, p. 342]).

First, consider the special case where the distribution Ri,j,k(s) de-

pends on j only and I = K. The information constraint 7 for a distri-

bution Q such that Q(i = k) = 1 is H(s) − H(s|j) = I(s; j) ≥ H(i).
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Note also that a distribution Q with Q(i = k) = 1 is implementable if

and only if it is implementable in the variant of the model where the

forecaster does not observe the actions of the agent and the agent does

not observe that states of nature. Define the capacity of a stochastic

signal s as the maximum over the random variable j of the mutual

information I(s; j). Thus, our result shows that there exists an im-

plementable distribution Q such that Q(i = k) = 1 if and only if the

capacity of s exceeds H(i). This is equivalent to the classical Shannon’s

Noisy Channel Capacity theorem for i.i.d. sources.

Second, assume that Ri,j,k(s) depends on j only. The information

constraint 7 for a distribution Q ∈ ∆(S) × ∆(I × K) is IQ̂(s; j) ≥

IQ(i;k). Indeed, for such a product distribution Q we have HQ̂(s|i,k) =

HQ̂(s) and HQ̂(s|i, j,k) = HQ̂(s|j). Therefore, the left hand side of

inequality 7 equals IQ̂(s; j). Note that IQ̂(s; j) depends only on QJ and

IQ(i;k) depends only on QI×K .

Fix µ ∈ ∆(I). Now assume that the payoff function does not depend

on j, i.e., g(i, j, k) = d(i, k), and let R(D) be the min of IP (i;k) when

P is a distribution on I × K such that PI = µ and EP d(i, k) ≥ D.

Let ν ∈ ∆(J). Our result implies that there exists an implementable

distribution Q ∈ ∆(J)×∆(I×K) with EQd(i, k) ≥ D and QI×J = ν⊗µ

if and only if IQ̂(s; j) ≥ R(D). Moreover, the implementability of a

distribution Q ∈ ∆(J) × ∆(I × K) does not depend on the agent

observing the states of nature. This generalizes the Rate Distortion

theorem for i.i.d. sources (see, e.g., [CT91, Theorem 13.2.1, p. 342]).

Indeed, when the agent observes the actions of the forecaster, i.e., s = j,

we have IQ̂(s; j) = Hν(j) and the 1/n fraction of the logarithm in base 2

of the number of typical words with the alphabet J of length n having

empirical distribution ν converges as n → ∞ to Hν(j).

8.2.3. Unobservable current state of nature. Consider now the case

where the agent observes the forecaster’s actions, but is uninformed

of the current state of nature.
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The characterization of the full set of implementable distributions

in this case is beyond the scope of this paper. However, consider the

subset R of distributions on I × J × K that are the product of a

distribution on J and a distribution on I × K.

Following a similar analysis to the one of our basic model, one can

prove that a distribution Q ∈ R is implementable if and only if

HQ(j) ≥ I(i,k)

If the agent also does not have perfect monitoring of the forecaster’s

actions, but receives a signal s as a function of forecaster’s action j,

we proceed as in Section 8.2.2. Consider the conditional distribution

of s given j by Rj ∈ ∆(S). Following the same notation we obtain

that a distribution Q that is a product of a distribution on J and a

distribution on I × K is implementable if and only if QI = µ and

HQ̂(s) − HQ̂(s|j) ≥ IQ(i,k) = HQ(i) − HQ(i|k)

8.3. State of nature processes. In a forthcoming paper we analyze

the variant of the basic model, where the temporal states of nature

follow a Markov chain. In that case the temporal distribution of the

state of nature in stage t + 1 is correlated to the distribution of the

state in stage t. The adequate element of study is the expected long-

run average Q of the distribution of the quadruple (it−1, it, jt, kt). Let

Q be a distribution on I×I×J×K, and (i′, i, j,k) have distribution Q.

A Markov chain eventually enters into an ergodic class of states.

As players observe past temporal states of nature, they are eventu-

ally informed of the ergodic class entered by the chain, and it suffices

to study the expected long-run average in the case of an irreducible

Markov chain. Let µ be the invariant measure on I and let T denote

the transition matrix of the Markov chain. The marginal on I×I of an

implementable distribution Q (on I × I × J × K) is deduced from the

law of the Markov chain: Q(i′ = i′, i = i) = µ(i′)Ti′,i. It turns out that

a distribution Q is implementable if and only if its marginal on I × I

coincides with the marginal imposed by the Markov chain transitions
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and

(8) HQ(i, j | k, i′) ≥ HQ(i | i′)

This last condition thus describes the information constraint when the

process of states of nature follows a Markov chain.

We now compare the set of implementable distributions under the

i.i.d. and the Markov assumptions. Assume that Q ∈ ∆(I × J × K)

has marginal µ on I and verifies the information constraint under the

i.i.d. assumption: HQ(i, j|k) ≥ HQ(i). Let T be the transition of an

irreducible Markov chain, and Q′ ∈ ∆(I × I × J × K) be the law of

(i′, i, j,k) where

a) (i, j,k) have law Q

b) the law of (i′, i) is deduced from the law of the Markov chain:

Q(i′ = i′ i = i) = µ(i′)Ti′,i

c) Q′(j = j,k = k|i = i, i′ = i′) = Q(j = j, k|i = i).

We now verify that Q′ verifies the information constraint under the

Markov model. Indeed

HQ′(j|i, i′,k) = HQ(j|i,k)

≥ HQ(i) − HQ(i|k)

= HQ(k) − HQ(k|i)

= HQ′(k) − HQ′(k|i, i′)

≥ HQ′(k|i′) − HQ′(k|i, i′)

= HQ′(i|i′) − HQ′(i|k, i′)

where the first and third equalities follow from (a) and (c), the first

inequality follows from the information constraint verified by Q, the

second inequality follows from the concavity of entropies, and the sec-

ond and last equality follows from instance from the chain rule of en-

tropies. The obtained inequality is then equivalent to the information

constraint for Markov chains 8 applied to Q.

The information constraint is satisfied in the Markov case whenever

it is in the i.i.d. case.
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Next consider the Markov chain with state I = {0, 1} moving from

state i to state 1 − i, i.e., alternates between the states 0 and 1. The

invariant distribution is 1/2, 1/2. If J = K = I then the distribution Q

on I×J×K with QI(0) = 1/2 and Q(i = j = k) = 1 is implementable.

However, it does not satisfy the information constraint.

This shows that the set of implementable distributions is augmented

when one takes advantage of the correlations between successive states

of nature. This is intuitive since in the Markov case, the need for

information transmission is not as important as it is in the i.i.d. case.

In the Markov chain case, the distribution of it given the sequence

of past states i1, . . . , it−1 is a function of it−1 only. Let νi be the distri-

bution of it given it−1 = i. Define the random partition of N, N = ∪Ni,

where Ni is the set of all stages t such that it−1 = i. For every i ∈ I

and a strategy pair σ, τ we define (for every positive integer n) the dis-

tribution Qi,n
σ,τ as the expected empirical distribution of action triples

in stages t ∈ Ni with t ≤ n. The marginal on I of the distribution

Qi,n
σ,τ is νi. Our proof (of the result of the basic model) implies the

following: If Qi ∈ ∆(I ×J ×K) verifies the information constraint and

has marginal νi on I and µ is the invariant distribution of the Markov

chain then the distribution Q =
∑

i µ(i)Qi is implementable. Indeed,

by considering the states in each Ni separately, the team can collate

the strategies that implement Qi to a strategy pair σ, τ in the Markov

chain games so that Qi,n
σ,τ converges to Qi and thus as |{t≤n:t∈Ni}|

n
→ µ(i)

as n → ∞ we deduce that Q =
∑

i µ(i)Qi is implementable.

Now we verify that the distribution Q′ on I × I × J × K defined

Q′(i′, i, j, k) = µ(i′)Qi′(i, j, k) (and therefore Q′
I×J×K =

∑

i µ(i)Qi)

verifies the information constraint under the Markov chain model.

HQ′(i, j|k, i′) =
∑

i′∈I
µ(i′)HQi′

(i, j|k)

≥
∑

i′∈I
µ(i′)HQi′

(i)

= HQ′(i|i′)
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Our characterization of the implementable distribution in the Markov

chain process implies however additional implementable distributions.

For every real number α say that a distribution Q on I×J×K obeys the

α-information-constraint if HQ(i, j|k) ≥ HQ(i)+α. Note that α can be

either positive or negative or zero. The characterization implies that Q

is implementable if and only if there are distribution Qi ∈ ∆(I×J×K)

with marginals ((Qi)I =) νi on I and constants αi such that 1) Qi obeys

the αi-information-constraint, 2)
∑

i µ(i)Qi = Q, and 3)
∑

i µ(i)ai = 0.

This comparison of the Markov chain case and the i.i.d. highlight

the need for the forecaster signaling at stages t ∈ Ni on states of nature

in stages t ∈ Ni′ where i 6= i′.

8.4. Robustness. We now prove that our characterization of imple-

mentable distributions is robust to small departures from the assump-

tions made in the basic model on the state of nature process, the fore-

sight ability of the forecaster, and the monitoring and forecasting possi-

bilities of the agent. Notice that the analysis of the previous extensions

demonstrate (indirectly) robustness to some specific departures in each

of these assumptions separately. We wish here to show robustness when

all assumptions are perturbed together and to alow for a wide variety

of perturbations.

We start by describing the dynamics of the temporal states of nature

and the signalling structure of the game: consider a stochastic process

with values (i1, i2, . . .) in I∞, with distribution P . Nature chooses a

point ω = (i1, i2, . . .) ∈ I∞ according to the distribution P . Before

the game starts, player n (n = 1, 2 in the two-player game) observes a

random signal sn
0 whose distribution depends on the infinite sequence

ω. At stage t player 1 takes action jt ∈ J and player 2 takes an action

kt ∈ K. Following the play at stage t player n observes the realization

of a random signal5 sn
t where the distribution of (s1

t , s
2
t ) depends on

5In fact, we can assume w.l.o.g. that the signals are moreover deterministic. Indeed,
we can ‘push’ all randomness into I; this will however require an infinite set of
temporal states.
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the triple (ω, jt, kt) of the infinite sequence of temporal states of nature

and the action pair (jt, kt) of the players and conditional on (ω, jt, kt)

is independent of all past signals. The payoff at stage t depends on the

temporal state of nature at stage t and the action pair at stage t.

A strategy of player 1, respectively player 2, specifies the action jt,

respectively kt, at stage t as a function of all his past information,

namely, as a function of s1
0, . . . , s

1
t−1, respectively s2

0, . . . , s
2
t−1.

In order to quantify a small perturbation in this general model we

introduce a proper definition to measure such perturbation. First, the

stochastic process (I∞, P ) is within δ of an i.i.d. process if there exists

µ ∈ ∆(I) and probability distributions P̂ [n] on (I × I ′)m, where I ′ is

a copy of I and m = [δ−2], s.t. (i′n+1, . . . , i
′
n+m) has distribution µ⊗m,

the projection of P̂ [n] on the m I-coordinates coincides with P , i.e.,

P̂ [n]In(in+1, . . . , in+m) = P (in+1, . . . , in+m|i1, . . . , in), and

EP̂ [n](
∑n+m

t=n+1
I(it 6= i′t)) ≤ δ−1 ∀ sufficiently large n

An example of a process (with values in IN) that is within δ of

and i.i.d. process is a non-stationary Markov chain (i.e., with time

dependent transitions) where the probabilities Tt(i
′, i) of transition at

stage t from state i′ to state i obey
∑

i∈I |Tt(i
′, i) − µ(i)| < δ| for all

sufficiently large t.

Second, we say that the forecaster has δ-perfect forecast if for all

sufficiently large t the forecaster can guess the future m := [1/δ−2]

temporal states of nature so that the expected number of errors is

≤ 1/δ. Formally, there are functions ft : (sf
0 , . . . , s

f
t ) 7→ In, t ≥ 0, such

that

E(
∑m

ℓ=1
I((ft)ℓ 6= it+ℓ)) ≤ 1/δ ∀ sufficiently large t

The agent has δ-perfect monitoring, if, for all sufficiently large t the

agent can guess the past m := [δ−2] (triples of) action profiles so that

the expected number of errors is ≤ 1/δ. Formally, there are functions
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at : (sa
0, . . . , s

a
t−1) 7→ (I × J)t−1, t ≥ 1, such that

E(
∑m

ℓ=1
I(at

t−ℓ 6= (it−ℓ, jt−ℓ))) ≤ δ−1 ∀ sufficiently large t.

The agent has δ-forecast if for every t ≥ 1, every ω = (i1, i2, . . .)

and ω′ = (i′1, i
′
2, . . .) (in I∞) with (i1, . . . , it) = (i′1, . . . , i

′
t), and every

(jt, kt) ∈ J × K, the distribution of s2
t given (ω, jt, kt) is within6 δ of

its distribution given (ω′, j′t, k
′
t).

Finally, we say that the game model Γ is δ-close to the basic model Γ′

if the process of temporal states of nature is within δ of the i.i.d. µ⊗N,

the forecaster has δ-perfect foresight, the agent has δ-perfect monitor-

ing and δ-forecast.

The robustness theorem states that the set of implementable distri-

butions of a small perturbation of one instance of the basic model is

close to the set of implementable distributions of that instance. For-

mally:

Theorem 4 (The robustness theorem). Let Γ′ be a basic model game.

For every ε > 0 there is δ > 0 such that if Γ is δ-close to Γ′ then

the set of implementable distributions of Γ are within ε of the set of

implementable distributions of Γ′.

Observe that the basic model is the special case where s1
0(ω) = ω,

s2
0(ω) is a constant independent of ω, and sn(it, jt, kt) = (it, jt, kt). The

classical model of repeated games with incomplete information is the

special case where it = it+1 for all t and sn(ω, jt, kt) depends only on

the triple (it, jt, kt).

Remark finally that an important ingredient of the model described

above is that the dynamics of temporal states of nature i ∈ I (where I

is the finite set of temporal states of nature) is independent of players’

actions. The even more general model, which is not discussed here,

enables the transition of temporal states to depend also on players’

6If the signal sa

t
takes values in a finite set Sa, then can use the norm distance

between distributions; in the general case we refer to the Kullback Leibler distance.
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actions, and generalizes not only the theory of repeated games with

incomplete information, but also the theory of stochastic games.

8.5. Complementary information. Another important characteris-

tic of the basic model, and of the extensions introduced above, is that

all information about future states of nature possessed by the agent is

also possessed by the forecaster. One may wish to consider extensions

of our models in which both players are partially informed beforehand

of the realized sequence of states of nature.

In such a case, sequential communication schemes, in which informa-

tion is sent back and forth between the players, may be more efficient

than simultaneous schemes in which each player sends information in-

dependently of the information sent by the other, see, e.g., [KN96].

The characterization of the set of implementable distributions in this

model is left as an open problem for future research.
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