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ABSTRACT 
 

This paper analyzes the effects caused by outliers on the identification and estimation of 
GARCH models. We show that outliers can lead to detect spurious conditional 
heteroscedasticity and can also hide genuine ARCH effects. First, we derive the asymptotic 
biases caused by outliers on the sample autocorrelations of squared observations and their 
effects on some homoscedasticity tests. Then, we obtain the asymptotic biases of the OLS 
estimates of ARCH(p) models and analyze their finite sample behaviour by means of 
extensive Monte Carlo experiments. The finite sample results are extended to GLS and ML 
estimates ARCH(p) and GARCH(1,1) models. 
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1 Introduction

Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) mod-

els were introduced by Engle (1982) and Bollerslev (1986) to represent the

dynamic evolution of conditional variances. However, when these models

are fitted to real time series, the residuals often have excess kurtosis, which

could be explained, among other reasons, by the presence of outliers; see, for

example, Friedman and Laibson (1989) and Franses and Ghijsels (1999).

Previous results on the effects of outliers on the identification and estima-

tion of conditional heteroscedasticy are somehow confusing. Some authors

argue that outliers generate spurious heteroscedasticity. For example, Balke

and Fomby (1994) conclude that outliers in several macroeconomic series of

the US economy are able to explain most of the observed non-linearities. A

similar conclusion is reached by Franses and Gijsels (1999) for macroeconomic

series and Aggarwal et al. (1999) and Franses et al. (2004) for financial re-

turns. On the other hand, other authors suggest that the presence of outliers

may hide genuine heteroscedasticity; see, for example, Mendes (2000) and Li

and Kao (2002) for an empirical application with exchange rates returns.

We show in this paper that additive outliers in uncorrelated GARCH se-

ries may generate spurious heteroscedasticity when they appear in patches,

and hide legitimate heteroscedasticity when they are isolated. Consequently,

both the size and power of tests for conditional homoscedasticity can be dis-

torted in the presence of outliers. Also, they bias the sample autocorrelations

of squares and the estimators of the parameters of the conditional variance

as well as their standard deviations.
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The paper is organized as follows. Section 2 analyses the effects of level

outliers, that do not affect the conditional variance, on the sample autocor-

relations of squared observations and on several tests for conditional het-

eroscedasticity. Section 3 derives the asymptotic bias of the Ordinary Least

Squares (OLS) estimator of the parameters of ARCH(p) models contami-

nated by level outliers. We also analyse their effects on the finite sample

properties of the Generalized Least Squares (GLS) and the Maximum Like-

lihood (ML) estimators by means of extensive Monte Carlo experiments.

These results are also extended to the ML estimator of the parameters of

GARCH(1,1) models. Section 4 illustrates the results by analyzing real se-

ries of financial returns. Finally, Section 5 concludes the paper.

2 Effects of outliers on the identification of

conditional heteroscedasticity

Suppose that the series of interest, yt, is generated by a GARCH(1,1) model

given by

yt = εtσt (1)

σ2
t = α0 + α1y

2
t−1 + βσ2

t−1

where εt is a Gaussian white noise with mean zero and variance one. The

parameters α0, α1 and β are assumed to satisfy the usual restrictions to guar-

antee the positiveness, stationary and existence of the fourth order moment

of yt; see, for example, Bollerslev et al. (1994). It is often useful to write the

GARCH(1,1) model as an ARMA(1,1) model for squares
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y2
t = α0 + (α1 + β)y2

t−1 + νt − βνt−1 (2)

where the noise, νt = σ2
t (ε

2
t − 1), is a zero mean uncorrelated sequence.

However, it is conditionally heteroscedastic and, consequently, it is non-

independent and non-Gaussian. The acf of y2
t has the shape of the acf of

an ARMA(1,1) model with autoregressive parameter α1 + β and moving av-

erage parameter β. From (2) it is also clear that when the ARCH parameter

α1 = 0, the parameter β is not identified. In this case, the series yt is ho-

moscedastic.

Alternatively, the conditional variance of yt can be specified as an ARCH(p)

given by

σ2
t = α0 +

p∑
i=1

αiy
2
t−i (3)

where the parameters αi should also be restricted so that σ2
t is positive and

yt is stationary with finite fourth order moment. The ARCH(p) model is an

AR(p) for squared observations given by

y2
t = α0 +

p∑
i=1

αiy
2
t−i + νt. (4)

Therefore, the acf of y2
t has the same shape as the acf of an AR(p) model

with autoregressive parameters αi, i = 1, ..., p.

Given that ARCH(p) and GARCH(1,1) models are uncorrelated, the tra-

ditional distinction between additive and innovative outliers is not relevant.

However, it is important to distinguish whether an outlier affects or not fu-

ture conditional variances. Hotta and Tsay (1998) introduce two types of

outliers in GARCH models: level (LO) and volatility (VO). In this paper
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we focus on LO that affect only the level of the series and have no effect on

the conditional variance; see also Sakata and White (1998). Therefore, if the

series yt is contaminated from time τ ownwards by k consecutive outliers of

size ω, the observed series is given by

zt =

{
yt + ω if t = τ, τ + 1, . . . , τ + k − 1

yt otherwise.
(5)

but the conditional variance is like in (1) and depends on the underlying series

yt and not on the observed series zt. Similarly, the conditional variance is

given by (3) when dealing with an ARCH(p) model.

On the other hand, VO are defined in such a way that the underlying

conditional variance depends on the observed series. We expect that similarly

to what happens in the context of linear models, the effects of VO should be

less important as they are transmitted by the same dynamics as the rest of

the series; see, for example, Peña (2001).

Other alternative approaches of defining outliers in GARCH models can

be found in Friedman and Laibson (1989) and Franses and van Dijk (2000).

It is also interesting to point out that Li and Kao (2002) and Zhang (2004)

propose to use influence measures in GARCH models to define outliers.

2.1 Effects on the correlogram of squares

The autocorrelation of order h, h ≥ 1, of the squared observations of the

contaminated series in (5) is estimated by

r(h) =

T∑
t=h+1

z2
t z

2
t−h − T−h

T 2

(
T∑

t=1

z2
t

)2

T∑
t=1

z4
t − T−1

(
T∑

t=1

z2
t

)2 . (6)
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If the sample size, T, is large relative to the order of the estimated auto-

correlation, h, the numerator of r(h) can be written as follows

∑

t∈T(h)

y2
t y

2
t−h +

h−1∑
i=0

(yτ+i + ω)2y2
τ+i−h +

k−1∑

i=h

(yτ+i + ω)2(yτ+i−h + ω)2 +

+
k+h−1∑

i=k

y2
τ+i(yτ+i−h + ω)2 − T−1


 ∑

t∈T(0)

y2
t +

k−1∑
i=0

(yτ+i + ω)2




2

(7)

where T(s) = {s + 1, ..., τ − 1, τ + k + s, ..., T}. Similarly, the denominator

can be written as

∑

t∈T(0)

y4
t +

k−1∑
i=0

(yτ+i + ω)4 − T−1


 ∑

t∈T(0)

y2
t +

k−1∑
i=0

(yτ+i + ω)2




2

(8)

If the order of the autocorrelation is smaller than the number of consec-

utive outliers, i.e., h < k, then the third summation in (7) contains k − h

terms which depend on ω4. Therefore, it is easy to see that expression (7) is

equal to (k−h− k2

T
)ω4 + o(ω4). However, if h ≥ k then the third summation

in (7) disappears and the numerator of r(h) is equal to −k2

T
ω4 + o(ω4). On

the other hand, expression (8) is equal to (k − k2

T
)ω4 + o(ω4). Then

lim
ω→∞

r(h) =

{
1− h

k(1− k
T

)
if h < k

k
k−T

if h ≥ k
(9)

Therefore, one single large outlier (k = 1) always biases towards zero all

the autocorrelations of squares while a set of k large consecutive outliers

generate positive autocorrelations of squares for all the orders smaller than k

and zero for the others. For example, two large consecutive outliers generate

an autocorrelation of the squares of order one approximately equal to 0.5,

being all the others close to zero. It is important to notice that the limits in

(9) are valid for both homoscedastic and heteroscedastic series. Therefore, if a
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heteroscedastic series is contaminated by a large single outlier, the detection

of genuine heteroscedasticity is going to be difficult. On the other hand,

when a homoscedastic series is contaminated by several large consecutive

outliers, the positive autocorrelations of squares generated by the outliers

can be confused with conditional heteroscedasticity.

As an illustration, we have simulated 1000 replicates of size T = 1000

of a Gaussian white noise process with zero mean and variance one and

another 1000 replicates from a GARCH(1,1) model with parameters α0 =

0.1, α1 = 0.1 and β = 0.81. First, we have contaminated each series by

one single LO of size 15 at time t = 500 and, second, by two consecutive

outliers of the same size as before at times t = 500 and 5012. The top panels

of Figure 1 plot the mean correlogram of squared observations through all

Monte Carlo replicates corresponding to the homoscedastic Gaussian white

noise. It can be seen that although the series are uncorrelated, the mean

of the first estimated autocorrelation is approximately 0.5 when they are

contaminated by consecutive outliers. The bottom panels of Figure 1 plot

the same quantities together with the acf of squares of the GARCH(1,1)

model, and we observe the same result.

2.2 Testing for conditional heteroscedasticity

Many popular tests for conditional homoscedasticity are based on autocorre-

lations of squares. Therefore, if these autocorrelations are biased, the prop-

erties of the tests will be affected. In this subsection we analyze the behavior

1Similar results have been obtained generating series by alternative conditional het-
eroscedastic models like EGARCH and Stochastic Volatility.

2Similar results have been obtained when outliers appear in other positions.
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Figure 1: Biases caused by outliers on the correlogram of squared observa-
tions
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Figure 2: Effects caused by outliers on the size and power of conditional
homoscedasticity tests
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of two tests for conditional homoscedasticity, namely, the McLeod and Li

(1983) and the robust version of the Lagrange Multiplier (LM) test proposed

by Van Dijk et al. (1999)3.

McLeod and Li (1983) proposed to test for conditional heteroscedasticity

using the Box-Ljung statistic for squared observations given by

Q(m) = T (T + 2)
m∑

j=1

r2(j)

(T − j)
. (10)

Under the null hypothesis of conditional homoscedasticity, if the eighth

order moment of yt exists, Q(m) is approximately distributed as a χ2 with

m degrees of freedom.

Later, Van Dijk et al. (1999) show that, in the presence of consecutive

additive outliers, the LM test rejects the null hypothesis too often. Further-

more, large isolated outliers lead to an asymptotic power loss of the LM test;

see also Lee and King (1993). They propose an alternative robust statistic

(RLM) with better size and power properties; see also Franses et al. (2004)

for an empirical illustration with series of financial returns.

We consider first the properties of the McLeod-Li test in (10) when the

series yt is affected by an isolated large outlier. In this case, from (9), the

limit of the estimated autocorrelations of any order is zero, so that the null

is never rejected. Thus, if the series is homoscedastic the size is zero while if

the series is heteroscedastic, the power is also zero.

When the series is affected by k consecutive outliers, from (9) we know

3Results for the LM test of Engle (1982) and the test proposed by Peña and Rodriguez
(2002) are similar to the ones obtained for the McLeod-Li test. They are not reported to
save space but are available from the authors upon request.
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that the limit of the order one autocorrelation is 1− T
k(T−k)

. Then,

lim
ω→∞

Q(1) =
T (T + 2)

(T − 1)

(
1− T

k(T − k)

)2

−→
T→∞

∞,

and the null will always be rejected. Thus, if the series is truly homoscedastic,

the asymptotic size is, in this case, one. On the other hand, if the series is

heteroscedastic, the power is also one.

To analyze the finite sample effects of moderate outliers on these tests,

we have simulated 1000 Gaussian white noise series of sizes T = 500, 1000

and 5000 that have been contaminated first, by one single outlier and then,

by two consecutive outliers of the same size. For each simulated series, we

test the null hypothesis of conditional homoscedasticity using the Q(20) and

the RLM(1) test. The top panel on the left of Figure 2 plots the empirical

sizes of both tests as a function of the outlier size when it is isolated and the

nominal size is 5%. This plot shows that, for T = 500 or 1000, the size of

Q(20) is zero for outliers larger than 7 standard deviations while the size of

RLM(1) is around 9%, i.e. nearly double the nominal, independently of the

outlier size. However, when T = 5000, the size of Q(20) only goes to zero

if the outlier is larger than 10 standard deviations while the size of RLM(1)

is around 25%. The robust test is clearly oversized in large samples. Lee

and King (1993) find similar size distortions in the robust test proposed by

Wooldridge (1990).

The right panel on top of Figure 2 plots the empirical sizes of both tests

when the Gaussian series are contaminated by two consecutive outliers. In

this case, the behavior of the robust test is similar to the one observed when

there is just one outlier. However, for relatively small outliers sizes, like for
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example, 5 standard deviations, the size of the non-robust tests is almost 1

for any of the three sample sizes considered. Therefore, rather small con-

secutive outliers in homoscedastic series make the tests to detect conditional

heteroscedasticity even for relatively large samples.

The power of the tests for isolated outliers is shown in the left bottom

panel of Figure 2. Now the series are generated by the same GARCH(1, 1)

model considered above. This figure shows that if the outlier size is smaller

than 4 or 5 standard deviations, the power of the portmanteau test is larger

than the power of the robust test when the sample size is T = 500 or 1000.

For these sample sizes, the power of the Q(20) test decreases very rapidly with

the size of the outlier. If this size is larger than approximately 7 standard

deviations, the power is negligible. However, if T = 5000, then a very large

outlier is needed for the RLM(1) test to have more power than the Q(20)

test. In our experiments, the power of the Q(20) test is affected only if the

outlier is larger than 10 standard deviations. We have also contaminated

the GARCH series with two consecutive outliers. The empirical powers have

been plotted in the right bottom panel of Figure 2. As we can see, for all

sample sizes and outlier sizes chosen, the power of the robust test is clearly

lower than the power of the non-robust test considered. A similar result is

obtained by Lee and King (1993) comparing the power of the robust test

proposed by Wooldridge (1990) with the LM test.

Summarizing, relatively small consecutive outliers are able to generate

spurious heteroscedasticity while large isolated outliers are required to hide

genuine heteroscedasticity when standard tests are used for testing for con-

ditional homoscedasticity. On the other hand, the available robust LM test
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seems to be of little help because it suffers from important size distortions

that get worse with the sample size.

3 Effects of outliers on the estimation of ARCH

and GARCH models

The ARCH(p) model often requires a large number of lags, p, to adequately

represent the dynamic evolution of the conditional variances. However, this

model is attractive because it is possible to obtain a closed-form expression for

the OLS estimator of its parameters. In the following subsection, we quantify

the effects of level outliers on the OLS estimates of ARCH(p) models. In

subsection 3.2, we also analyze the effects of outliers on the GLS estimator.

Finally, the results are extended in the next subsections to ML estimators

for ARCH and GARCH models.

3.1 OLS estimator

The OLS estimator of the parameters of the ARCH(p) model defined in (4)

is given by

α̂OLS = (X ′X)−1(X ′Y ) (11)

where α = (α0 α1 . . . αp)
′, Y = (y2

p+1 y2
p+2 . . . y2

T )′ and

X =




1 y2
p y2

p−1 · · · y2
1

1 y2
p+1 y2

p · · · y2
2

...
...

...
. . .

...
1 y2

T−1 y2
T−2 · · · y2

T−p




Weiss (1986) shows that if the 4th order moment of yt exists, α̂OLS is consis-

tent. Furthermore, if the 8th order moment is finite, the asymptotic distri-
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bution of α̂OLS is given by

√
T (α̂OLS − α)

d→ N(0, Σ−1
XXΣXΩXΣ−1

XX)

where PlimX′X
T

= ΣXX and PlimX′V V ′X
T

= ΣXΩX with V = (ν2
p+1 ν2

p+2 . . . ν2
T )′;

see Engle (1982) for sufficient conditions for the existence of higher moments

of yt when εt is Gaussian.

A consistent estimator of the asymptotic covariance matrix of α̂OLS is

given by

(X ′X)−1S(X ′X)−1 (12)

where

S =




T∑
t=p+1

ν̂2
t

T∑
t=p+1

ν̂2
t y

2
t−1 · · ·

T∑
t=p+1

ν̂2
t y

2
t−p

T∑
t=p+1

ν̂2
t y

4
t−1 · · ·

T∑
t=p+1

ν̂2
t y

2
t−1y

2
t−p

. . .
...

T∑
t=p+1

ν̂2
t y

4
t−p




and ν̂t are the residuals from the OLS regression in (4).

Next, we analyze how a single outlier affects the asymptotic properties of

α̂OLS. We then consider the effects of patches of outliers.

3.1.1 Isolated outliers

Consider a series generated by an ARCH(p) model which is contaminated at

time τ by a single level outlier of size ω, as in (5) with k = 1. Then, α̂OLS in

(11) will be computed using the contaminated observations z2
t instead of y2

t .

It is shown in the Appendix that

lim
ω→∞

α̂OLS
i =

{
∞ for i = 0

− 1
T−2p

for i = 1, . . . , p.
(13)
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The limit in (13) shows that if the sample size is large enough: (i) the

estimated unconditional variance, given by α̂0/(1 −
∑p

i=1 α̂i), tends to in-

finity when the outlier size tends to infinity; (ii) all the estimated ARCH

parameters tend to zero and, consequently, the dynamic dependence in the

conditional variance disappears. Notice that the persistence of the volatility

in an ARCH(p) model, measured by
∑p

i=1 αi, also decreases as the size of

the outlier increases. Finally, it is also important to notice that if the sample

size is not very large, it is possible to obtain estimates that do not satisfy

the usual non-negativity restrictions.

3.1.2 Patches of outliers

When the original series, yt, is contaminated by k consecutive outliers as in

(5), the effects on the OLS estimator depend on the relationship between the

number of outliers and the order of the ARCH model. First, let us consider

k ≥ p, i.e., there are at least as many outliers as the number of lags in the

ARCH model. In this case, it is necessary to consider separately the cases

where p = 1 and p > 1. This is because in the first case, the parameter

α1 receives the whole effect of the outliers while in the latter, this effect is

shared by all the parameters.

We consider first the effect of k consecutive outliers on the estimates of the

parameters of an ARCH(1) model. In this case, it is shown in the Appendix

that

lim
ω→∞

α̂OLS
i =

{
∞ for i = 0

(T−1)(k−1)−k2

(T−1)k−k2 for i = 1
(14)

Notice that if k = 1, we obtain the same result as in (13). If the number

of consecutive outliers is large, the estimated ARCH parameter, α̂1, tends to
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one when the outliers size tends to infinity. Therefore, given that in ARCH(1)

models, the persistence to shocks to volatility is measured by α1, the presence

of long patches of large outliers can lead to infer that the volatility is char-

acterized by a unit root and, consequently, that yt is not stationary. Notice

that patches of large outliers can overestimate or underestimate the ARCH

parameter depending on its original value. For example, if the sample size

is moderate and there are two large consecutive outliers, α̂1 tends to 0.5.

Therefore, if α1 < 0.5, the OLS estimator will have a positive bias while if

α1 > 0.5, the bias will be negative. However, notice that in cases of empirical

interest in the context of financial time series, the ARCH parameter is usually

rather small, never over 0.3, and then with patches of consecutive outliers,

the OLS estimator will overestimate the ARCH parameter. In particular,

if the series is truly homoscedastic, i.e. α1 = 0, then the estimated ARCH

parameter will be close to 0.5 and can lead to conclude that the series is con-

ditionally heteroscedastic. Finally, it is also important to point out that the

limit in (14) increases very quickly with the number of consecutive outliers.

For example, if k = 3, α̂1 tends to 0.66 while if k = 4 the limit is 0.75.

Next, we consider the effect of k ≥ p consecutive outliers in an ARCH(p)

model with p > 1. It is shown in the Appendix that the limit of the estimates

when the size of the outliers tend to infinity is given by

lim
ω→∞

α̂OLS
i =





∞ for i = 0
−2k2+(2k−p)(T−p)
−2k2+(2k−p+1)(T−p)

for i = 1

0 for i = 2, . . . , p− 1
−(T−p)

−2k2+(2k−p+1)(T−p)
for i = p

(15)

The estimated parameters, α̂i, tend to zero, except α̂1 and α̂p. If the number

of consecutive outliers is large relative to the order of the model, then α̂1
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tends to a quantity close to one and α̂p tends to zero. Consequently, the

estimated persistence, given by
∑p

i=1 α̂i, tends to −2k2+(2k−p−1)(T−p)
−2k2+(2k−p+1)(T−p)

which

is close to one. Notice that if p = 1, the limit of the persistence coincides

with the limit of α̂1 given in (14). Consider, for example, an ARCH(2) series

contaminated by 2 large consecutive outliers. In this case, if the sample

size is moderately large, α̂1 tends approximately to 0.66 and α̂2 to −0.34

and, consequently, the persistence tends to 0.32. However, if the number of

consecutive outliers is 5, α̂1 tends to 0.89 and α̂2 to −0.11 and the persistence

tends to 0.78. On the other hand, if there are 5 consecutive outliers in an

ARCH(4) series, α̂1 tends to 0.86 and α̂4 to −0.15 and the persistence to

0.71. It is also important to notice that in the presence of patches of outliers,

the estimates may easily violate the non-negativity restrictions.

3.2 Generalized Least Squares estimator

The OLS estimator is not efficient because the noise νt is conditionally het-

eroscedastic. Taking into account this heterogeneity, it is possible to obtain

a better estimator. Model (4) can be expressed in matrix form as follows,

Y = Xα+V

and pre-multiplying by P , where P ′P = Ω−1 and Ω = diag(σ4
p+1, · · · , σ4

T )

the following expression is obtained

PY = PXα+PV (16)

The GLS estimator is obtained by estimating by OLS the parameters α in

equation (16). In practice given that the matrix Ω is unknown, it can be
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substituted by Ω̂ = diag(σ̂4
p+1, · · · , σ̂4

T ), where σ̂2
t = α̂OLS

0 + α̂OLS
1 y2

t−1 + ... +

α̂OLS
p y2

t−p. Therefore, the GLS estimator is given by

α̂GLS = (X ′Ω̂−1X)−1(X ′Ω̂−1Y ) (17)

The GLS estimator is very easy to obtain and its asymptotic efficiency

is equivalent to the ML estimator. Bose and Mukherjee (2003) derive the

asymptotic distribution of α̂GLS and show that if the sixth order moment of

yt is finite, then
√

T
(
α̂GLS − α

) d→ N(0, Σ−1
Ω ) (18)

where PlimX′Ω−1X
T

= ΣΩ.

Suppose that there is a single outlier in an ARCH(1) series. Then, we

have seen before that α̂OLS
1 will be close to zero. Consequently, the weights

σ̂−4
t for the GLS estimator will be almost constant and therefore the GLS

and OLS estimates will be very similar. To illustrate this behaviour we

have generated 1000 series of sizes T = 500, 1000 and 5000 by an ARCH(1)

model with parameters α0 = 0.8 and α1 = 0.24. All the series have been

contaminated with a single LO of size ω with ω = 5, 10 and 15 standard

deviations. Figure 3 plots kernel estimates of the density of the OLS and

GLS estimators of α0 and α1 obtained through all Monte Carlo replicates.

Comparing the kernel densities of the estimates of α0, we can observe that in

small or moderate samples both estimators have similar sample distributions.

The estimates of α0 are positively biased. However, when T = 5000, the bias

of the GLS estimator is negligible even if ω = 15, while the OLS estimator

4Similar results have been obtained when the series are generated by ARCH(p) models
with p > 1.
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Figure 3: Kernel estimates of the density of estimators of an ARCH(1) model
with a single outlier
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has large biases for rather small outliers. For example, when the outlier size

is 10, the means of the OLS estimator of α0 for T = 500, 1000 and 5000 are

1.18, 1.06 and 0.91 respectively.

Looking at the results for the OLS and GLS estimators of α1, we can

observe that the negative bias of the OLS estimator is large for moderate

outliers even if the sample size is large. However, the GLS estimator of α1

is more robust against outliers than the OLS estimator. For example, when

T = 5000, the GLS estimator is unbiased in the presence of outliers as large

as 15 standard deviations. However, the means of the OLS estimator when

ω = 10 are 0.02, 0.04 and 0.11 when T = 500, 1000 and 5000 respectively.

We have also analysed how an isolated outlier affects the small sample es-

timates of the asymptotic variances of the OLS and GLS estimators. Figure 4

plots the ratio between the empirical variances, and the estimated asymptotic

variances of both estimators of α0 and α1 averaged through all Monte Carlo

replicates. With respect to the variance of α̂OLS
0 , it is possible to observe that

the White variances in (12) overestimate the empirical variances. The bias is

larger, the larger the outlier size. When estimating the variance of α̂OLS
1 , the

results in Figure 4 suggest that biases are rather small for moderate sample

sizes. However, if the sample size is large, the empirical variance tends to

zero and it is clearly overestimated using the White estimator. With respect

to the variances of the GLS estimator, the ratio is larger than one, meaning

that the asymptotic variance underestimates the empirical variance.

If there are consecutive outliers, we have seen that α̂OLS
1 will be overes-

timated and therefore the weights σ̂−4
t will down-weight the outliers. Thus

the GLS estimator will be more robust than the OLS because of this down-
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Figure 4: Ratio of variances of estimators of an ARCH(1) model with a single
outlier
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weighting. To illustrate these results, we have generated 1000 series by the

same ARCH(1) model as before. Each series has been contaminated by 2

consecutive outliers. Figure 5 plots kernel estimates of the densities of the

OLS and GLS estimators of α0 and α1 respectively. Although in the limit,

α̂OLS
0 increases with ω, notice in this figure that for small outliers, α0 can be

underestimated. For example, consider T = 500 or 1000, then if the outlier

size is 5 standard deviations, the mean of the estimates α̂OLS
0 is 0.75, below

the true value of 0.8. However, if the size of the outlier is 15, the mean is

0.98. Consequently, for the outlier sizes typically encountered in empirical

applications, the constant can be underestimated in the presence of patches

of outliers. Remember that in the presence of a single outlier, the OLS esti-

mates of α0 tend monotonically to infinity. Therefore, although the effect in

the limit is the same, in practice, isolated outliers overestimate the constant

while consecutive outliers underestimate the constant. However, α̂GLS
0 is un-

biased for all the outliers sizes considered in this paper as far as the sample

size is large enough. When the sample size is small or moderate, large con-

secutive outliers increase the dispersion of the α̂GLS
0 estimates in such a way

that the inference is useless.

Looking at the results for α̂OLS
1 , observe that in concordance with the

limit in (14), they tend to 0.5 when k = 2. Furthermore, for all the sample

sizes considered, the limit is reached for sizes of the outliers relatively small.

For example, for T = 500, the mean of the estimates of α1 is 0.31 when ω = 5,

0.46 when ω = 10 and 0.49 when ω = 15. Once more, the GLS estimates of

α1 are unbiased for T = 5000. However, if the sample size is moderate and

the outliers are large, then α̂GLS
1 can take any value between 0 and 1, being
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Figure 5: Kernel estimation of the density of estimators of an ARCH(1)
model with two consecutive outliers
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possible that α1 is underestimated or overestimated.

Finally, the ratios of the empirical variances and the estimated asymp-

totic variances of the OLS and GLS estimators are plotted Figure 6, where

we can see that for both estimators, α̂OLS
0 and α̂OLS

1 , this ratio tends to zero

with the size of the outlier. Therefore, the asymptotic variance of the OLS

estimator, estimated using (12), is overestimating the true variance, which

tends to zero with the size of the outlier. Notice that in this case, the biases

are larger than in the presence of a single outlier. However, the estimated

asymptotic variances of the GLS estimator, strongly underestimates the em-

pirical variances for consecutive outliers larger than 5 standard deviations.

3.3 Maximum likelihood estimator of ARCH models

Engle (1982) proposed to estimate the parameters of the ARCH(p) model

by ML. The distribution of yt conditional on Yt−1 = {yt−1, yt−2, · · · , y1} is

N(0, σ2
t ) and consequently, ML estimation of their parameters is straightfor-

ward maximizing the log-likelihood function given by

L = −T − p

2
log(2π)− 1

2

T∑
t=p+1

(
log σ2

t +
y2

t

σ2
t

)
. (19)

If the errors are not Gaussian, the estimates obtained by maximizing

(19) are Quasi-Maximum Likelihood (QML) estimates. The consistency and

asymptotic normality of the QML estimator was established by Ling and

McAleer (2003) assuming that the second order moment of yt is finite. Then,

√
T

(
α̂ML − α

) d→ N(0, [I(α)]−1) (20)

where I(α) = E[− ∂2L
∂α∂α′ ] is the Information matrix.
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Figure 6: Ratio of variances of estimators of an ARCH(1) model with two
consecutive outliers
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The QML is fully efficient when εt is Gaussian. However, there are not

close form expressions of the QML estimators of the parameters α0, α1,...,αp

and the numerical maximization of the Gaussian log-likelihood function is

difficult because it is rather flat unless the sample size is very large; see,

for example, Shephard (1996). Consequently, the analysis of the effects of

outliers on the ML estimator has been carried out by simulation; see, for

example, Muller and Yohai (2002) who show that the Mean Squared Error

of the ML estimator of the parameters of ARCH(1) models is dramatically

influenced by isolated outliers.

Consider the simplest ARCH(1) model. In this case, the log-likelihood

function is given by

L = −T − 2

2
log(2π)− 1

2

T∑
t=2

(
log(α0 + α1y

2
t−1) +

y2
t

(α0 + α1y2
t−1)

)

which leads to the following ML equations to obtain the estimated parameters

T∑
t=2

yt
2

σ̂4
t

=
T∑

t=2

1

σ̂2
t

T∑
t=2

y2
t−1yt

2

σ̂4
t

=
T∑

t=2

y2
t−1

σ̂2
t

Multiplying and dividing the right hand side by σ̂2
t = α̂0 + α̂1y

2
t−1 we obtain

α̂0

T∑
t=2

1

σ̂4
t

+ α̂1

T∑
t=2

y2
t−1

σ̂4
t

=
T∑

t=2

yt
2

σ̂4
t

and

α̂0

T∑
t=2

y2
t−1

σ̂4
t

+ α̂1

T∑
t=2

y4
t−1

σ̂4
t

=
T∑

t=2

y2
t−1yt

2

σ̂4
t

These equations represent the ML estimates as the result of solving the same

system as the GLS considered in previous subsection by substituting in the
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denominator the OLS estimate of σ2
t by the ML estimator. Therefore, as

ML and GLS are asymptotically equivalent, the effects of outliers on both

estimators should be similar for large samples. To illustrate this result, Figure

3 plots kernel estimates of the densities of the ML estimators of α0 and α1

when the ARCH(1) series are contaminated by a single outlier. Notice that,

for sample sizes of T = 500 and 1000 and outliers of sizes 10 and 15 standard

deviations, the kernel estimated density of both α̂ML
0 and α̂ML

1 are bimodal

and non-symmetric. Hence, tests based on normality will be inadequate.

Looking for example at the last row of Figure 3, we can see that in the

presence of an outlier of size 15 standard deviations in a sample os size

T = 500, α̂ML
1 could take any value between 0 and 1, although values close

to zero seem to be more probable, like what we had for α̂OLS
1 and α̂GLS

1 .

Finally, if the sample size is 5000, the sample distributions of the GLS and

ML are similar. Therefore, it is important to point out that the results in

Figure 3 suggest that, in moderate samples, the GLS estimator has certain

advantages over the ML estimator in the presence of large isolated outliers.

In particular, both estimators have similar negative biases but the dispersion

of the GLS is smaller.

Figure 4 plots the ratio of the empirical variance and the estimated

asymptotic variance averaged through all Monte Carlo replicates for α̂ML
0

and α̂ML
1 respectively. We can see that this ratio is larger than the ratio

of the GLS estimator. Therefore, the asymptotic variance of the ML esti-

mator underestimates in the presence of large isolated outliers the empirical

variance more than the GLS estimator.

The Monte Carlo densities when the series are contaminated by two con-
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secutive outliers appear in Figure 5. As we can see in the plots, the effects

caused by two consecutive outliers on the ML estimators are very similar

to the effects caused by a single outlier. Finally, the effects of consecutive

outliers on the estimated variances of the ML estimator are weaker than for

the GLS estimator; see Figure 6.

3.4 Maximum Likelihood estimator of GARCH(1,1)
models

The Gaussian log-likelihood of a GARCH(p, q) model is also given by (19).

Ling and McAleer (2003) show that the QML estimator is consistent if the

second order moment of yt is finite and it is asymptotically normal if the

sixth order moment is finite.

In this subsection, we carry out detailed Monte Carlo experiments to ana-

lyze the biases caused by isolated and consecutive LO on the QML estimates

of the parameters of GARCH(1,1) models.

Figure 7 contains the kernel estimates of the density of α̂ML
0 , α̂ML

1 , β̂ML

and α̂ML
1 + β̂ML based on 1000 replicates, for a GARCH(1,1) model with

parameters α0 = 0.1, α1 = 0.1 and β = 0.8, contaminated with a single

outlier of sizes ω = 5, 10 and 15 standard deviations. As we can see in

this figure, for large sample sizes, like T = 5000, ML estimators seem to be

robust to the presence of outliers. Notice that they are unbiased even when

the series is contaminated by an outlier of size 15 standard deviations. This

is not true for smaller sample sizes, like T = 500 or 1000, where just one

outlier seems to bias towards zero the estimated α̂ML
1 and towards one the

estimated value β̂ML. The same conclusion is obtained by Mendes (2000)
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Figure 7: Kernel estimation of the density of ML estimators of GARCH
models with a single outlier
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Figure 8: Ratio of variances of Maximum Likelihood estimators of a
GARCH(1,1) model with a single outlier

0 10 20
0

5

10

15
T=500

α 0M
LE

0 10 20
0

5

10

15

20

25

α 1M
LE

0 10 20
0

5

10

15

Size of the outlier

βM
LE

0 10 20
0

5

10

15
T=1000

0 10 20
0

5

10

15

20

25

0 10 20
0

5

10

15

Size of the outlier

0 10 20
0

5

10

15
T=5000

0 10 20
0

5

10

15

20

25

0 10 20
0

5

10

15

Size of the outlier

admin
29



and Sakata and White (1998) while it contradicts the results in Gregory and

Reeves (2001) and Verhoeven and McAleer (2000). Finally, Figure 7 also

plots kernel estimates of the densities of the estimated persistence. Notice

that for large outliers and small sample sizes, the estimated persistence is

also overestimated although there is a large tail to the left. Therefore, the

distortions on the sample distribution of the ML estimates of the parameters

also affect the overall persistence.

When α̂ML
1 and β̂ML take values close to zero and one respectively, there

are problems in computing the asymptotic variance since the determinant of

the Information matrix is very close to zero and then it is not possible to

compute the asymptotic variance of the ML estimators. Figure 8 contains the

ratio of the empirical variance and the estimated asymptotic variance aver-

aged through all Monte Carlo replicates for α̂ML
0 , α̂ML

1 and β̂ML for the series

where this variance was finite. As we can see, like what we had found before

for ARCH models, the ratio is greater than one meaning that the asymptotic

variance strongly underestimates the empirical variance especially, for α1.

Figure 9 plots kernel estimates of the density of α̂ML
0 , α̂ML

1 , β̂ML and

α̂ML
1 + β̂ML based on 1000 replicates, for the same GARCH(1,1) model but

now contaminated with two consecutive outliers, it seems that α̂ML
0 and α̂ML

1

are overestimating the true parameters, and β̂ is underestimating the true

β. However, even more important is to realize that if the outliers are large

and the sample size is moderate, the sample densities of α̂ML
1 and β̂ML are

such that standard inference is not reliable. Furthermore, Figure 9 shows

that large consecutive outliers can have dramatic effects on the estimated

persistence. For example, when ω = 15 and T = 500 or 1000, the estimated
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Figure 9: Kernel estimation of the density of ML estimators of GARCH
models with two consecutive outliers
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Table 2: Estimates of the GARCH(1,1) Model
Series S&P 500 NIKKEI 225

original 0.012
(0.001)

∗ 0.027
(0.003)

∗

α0

corrected 0.006
(0.001)

∗ 0.018
(0.002)

∗

original 0.078
(0.002)

∗ 0.140
(0.003)

∗

α1

corrected 0.046
(0.003)

∗ 0.101
(0.005)

∗

original 0.915
(0.003)

∗ 0.862
(0.004)

∗

β
corrected 0.948

(0.004)

∗ 0.895
(0.005)

∗

original −7299.6 −8145.9
Log-Likelihood

corrected −7217.2 −8040.9
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density of α̂ML
1 + β̂ML has two modes, one around zero and another close to

one. The estimates of the persistence are only reliable for very large sample

sizes. Finally, the biases caused by consecutive outliers on the estimated

variance of the ML estimators is similar to the biases caused by a single

outlier.

4 Empirical application

This section illustrates the previous results by analyzing two world indexes.

We consider daily series of returns of the S&P500 index of US and the

Nikkei225 index of Japan, observed from October 20, 1982 to May 17, 2004

and from January 4, 1984 to May 19, 2004 respectively5. Figures 10 and

11 plot the return series and the correlogram of squared observations for

the original series and for the series corrected for large outliers. Series have

been corrected by substituting the corresponding outliers by the uncondi-

tional mean. In the S&P500 series there is one observation which is exactly

22 times the standard deviation. This observation corresponds to the 19th

of October, 1987, also known as “October black monday”, the biggest fall

in all the history of Wall Street. The other two outliers correspond to the

following days, October, 21 and 26. The size of these two observations is

around 8.5 standard deviations. In the Nikkei225, there are two consecutive

outliers corresponding to the same “October black monday”, 19th and 20th of

October, 1987. In this case, the corresponding return was 11 times the stan-

dard deviation. The third outlier in this series corresponds to 2nd October

1990, and this observation is 8 times the standard deviation.

5Series have been obtained in the webpage http://finance.yahoo.com/.
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Figure 10: Series and correlogram of squares of daily returns of S&P500 index
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Figure 11: Series and correlogram of squares of daily returns of Nikkei 225
index
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As we can observe in both figures, correcting the series by these extreme

observations makes more clear the structure in the squared observations. In

the case of the S&P500, we can see how just one observation biases towards

zero all correlation coefficients of squared observations, and in the Nikkei

225, two consecutive outliers overestimate the first order autocorrelation and

underestimate all the others. The value of the McLeod-Li, Q(20), statis-

tics are higher in the corrected series, 1847 and 1558, for the S&P500 and

Nikkei225 series respectively, than in the original series of returns, 390 and

797 respectively. This is a sign of a more clear structure in the corrected

squared observations.

To analyse the effects of these extreme observations on the OLS, GLS

and ML estimates of the series considered in this section, Table 1 contains

estimated parameters for the ARCH(9) model while Table 2 contains the

ML estimates of the GARCH(1,1) model. We can see that, as expected, the

constant, α0 is overestimated in the original series. On the other parameters,

αi, for i = 1, 2, . . . , 9, notice that, although the differences in the original and

corrected series are not very big when we look at the point estimates, the

non negativity restrictions are violated when the parameters are estimated

by OLS in the contaminated series S&P 500. Also, remember that outliers

affect the estimates and the variances of the estimators.

Consider now the results for the Nikkei225. The first conclusion from

Table 1 is that for the three estimators, there is a positive bias in the esti-

mated constant that decreases when the outliers are corrected. Furthermore,

the OLS and ML estimates of α1 are larger in the original series than in

the corrected series while for all the other parameters, the estimates in the
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Table 1: Estimates of the ARCH(9) Model
S&P 500 NIKKEI 225

OLS GLS MLE OLS GLS MLE
original 0.71

(0.11)

∗ 0.45
(0.04)

∗ 0.27
(0.01)

∗ 1.05
(0.10)

∗ 0.52
(0.07)

∗ 0.34
(0.01)

∗

α̂0

corrected 0.42
(0.04)

∗ 0.26
(0.04)

∗ 0.29
(0.01)

∗ 0.78
(0.07)

∗ 0.48
(0.09)

∗ 0.35
(0.02)

∗

original 0.09
(0.01)

∗ 0.16
(0.03)

∗ 0.10
(0.01)

∗ 0.22
(0.01)

∗ 0.19
(0.04)

∗ 0.23
(0.01)

∗

α̂1

corrected 0.08
(0.01)

∗ 0.13
(0.03)

∗ 0.04
(0.01)

∗ 0.07
(0.01)

∗ 0.19
(0.04)

∗ 0.11
(0.01)

∗

original 0.13
(0.01)

∗ 0.05
(0.03)

0.11
(0.01)

∗ 0.05
(0.01)

∗ 0.10
(0.02)

∗ 0.12
(0.02)

∗

α̂2

corrected 0.11
(0.01)

∗ 0.13
(0.03)

∗ 0.11
(0.01)

∗ 0.09
(0.01)

∗ 0.15
(0.04)

∗ 0.13
(0.02)

∗

original 0.03
(0.01)

∗ 0.06
(0.02)

∗ 0.09
(0.01)

∗ 0.05
(0.01)

∗ 0.09
(0.03)

∗ 0.11
(0.01)

∗

α̂3

corrected 0.07
(0.01)

∗ 0.10
(0.03)

∗ 0.07
(0.01)

∗ 0.11
(0.01)

∗ 0.11
(0.04)

∗ 0.13
(0.01)

∗

original −0.02
(0.01)

0.00
(0.01)

0.10
(0.01)

∗ 0.03
(0.01)

0.06
(0.02)

∗ 0.08
(0.01)

∗

α̂4

corrected 0.06
(0.01)

∗ 0.11
(0.03)

∗ 0.10
(0.01)

∗ 0.03
(0.01)

∗ 0.08
(0.03)

∗ 0.08
(0.01)

∗

original 0.13
(0.01)

∗ 0.11
(0.03)

∗ 0.08
(0.02)

∗ 0.03
(0.01)

0.11
(0.02)

∗ 0.10
(0.01)

∗

α̂5

corrected 0.10
(0.01)

∗ 0.09
(0.03)

∗ 0.09
(0.02)

∗ 0.11
(0.01)

∗ 0.09
(0.04)

∗ 0.11
(0.01)

∗

original −0.01
(0.01)

0.03
(0.02)

0.08
(0.01)

∗ 0.04
(0.01)

∗ 0.08
(0.02)

∗ 0.06
(0.01)

∗

α̂6

corrected 0.03
(0.01)

∗ 0.08
(0.02)

∗ 0.08
(0.01)

∗ 0.06
(0.01)

∗ 0.05
(0.04)

0.07
(0.01)

∗

original −0.03
(0.01)

∗ 0.02
(0.01)

∗ 0.07
(0.01)

∗ 0.02
(0.01)

0.09
(0.02)

∗ 0.12
(0.02)

∗

α̂7

corrected 0.07
(0.01)

∗ 0.07
(0.03)

∗ 0.08
(0.01)

∗ 0.06
(0.01)

∗ 0.08
(0.04)

∗ 0.13
(0.02)

∗

original 0.03
(0.01)

∗ 0.10
(0.02)

∗ 0.10
(0.01)

∗ 0.01
(0.01)

0.04
(0.02)

0.07
(0.01)

∗

α̂8

corrected 0.06
(0.01)

∗ 0.09
(0.03)

∗ 0.11
(0.01)

∗ 0.01
(0.01)

0.05
(0.03)

0.06
(0.01)

∗

original 0.03
(0.01)

∗ 0.05
(0.02)

∗ 0.07
(0.01)

∗ 0.02
(0.01)

0.03
(0.02)

0.05
(0.01)

∗

α̂9

corrected 0.02
(0.01)

0.04
(0.02)

∗ 0.06
(0.01)

∗ 0.04
(0.01)

∗ 0.04
(0.04)

0.06
(0.01)

∗
40
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corrected series are larger. Notice that the biases are smaller for the GLS

estimator. Therefore, as we have seen in the simulations, the GLS estimates

are more robust in the presence of consecutive outliers than the OLS or ML

estimates. Finally, it is important to notice that in Table 1, the estimated

asymptotic standard deviations of the GLS estimator are larger in the cor-

rected series. This empirical result is also in concordance with the Monte

Carlo results in Figure 6 where we showed that the estimated asymptotic

variances underestimate the sample variances of the GLS estimator in the

presence of large consecutive outliers. With respect to the ML estimates of

the GARCH(1,1) parameters in Table 2, it is possible to observe that α0 and

α1 are also overestimated in the original series while β is underestimated.

5 Conclusions

This paper shows how in the presence of large isolated outliers, the size of

the McLeod-Li test for conditional homoscedasticty is close to zero while its

power is also close to zero if the sample size is relatively small. The effect of

consecutive outliers is to reject the conditional homoscedasticity hypothesis

even if the series is truly homoscedastic and the sample size is large. Ef-

fects of outliers on the estimation of ARCH and GARCH models have been

analyzed finding that the biases caused by these observations can be very

different depending on the size and position of the outliers in the series. We

have also shown that outliers affect not only to estimated parameters but

also the estimated variance of the estimators. For GLS and ML estimators,

the asymptotic variance tends to underestimate the variance while for OLS
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estimator, the asymptotic variance overestimates the empirical variance. All

theoretical results have been illustrated by analyzing daily series of returns

of the S&P 500 and the Nikkei 225 indexes.

Appendix: Asymptotic limits of OLS estima-

tor of ARCH(p) models

Isolated outliers in ARCH(p) models

The OLS estimator of α in the AR(p) representation of the ARCH(p) model

contaminated by one isolated outlier is given by




α̂0
OLS

α̂OLS
1
...

α̂OLS
p


 =




T − p
T−1∑
t=p

z2
t · · · ∑T−1

t=p z2
t−p+1

T−1∑
t=p

z2
t

T−1∑
t=p

z4
t · · ·

T−1∑
t=p

z2
t z

2
t−p+1

...
...

. . .
...

T−1∑
t=p

z2
t−p+1

T−1∑
t=p

z2
t z

2
t−p+1 · · ·

T−1∑
t=p

z4
t−p+1




−1 


T∑
t=p+1

z2
t

T∑
t=p+1

z2
t z

2
t−1

...
T∑

t=p+1

z2
t z

2
t−p




Taking into account that z2
τ = ω2 + o(ω2), z4

τ = ω4 + o(ω4) and zr
t = o(ω)

for t 6= τ and ∀r ≥ 0, the matrix X ′X can be written as

(
T − p (ω2 + o(ω2))1′

(ω2 + o(ω2))1 (ω2 + o(ω2))F

)

and consequently (X ′X)−1 can be written as

1

(T − 2p)ω4p

(
ω4p + o(ω4p) (−ω4p−2 + o(ω4p−2))1′

(−ω4p−2 + o(ω4p−2))1 V

)

where 1 is a p × 1 column vector of ones, F is a p × p symmetric matrix

with fii = ω2 for i = 1, . . . , p and all other elements are equal to one. V is a

p × p symmetric matrix with all its elements equal to o(ω4p−2). Finally, all
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elements in X ′Y are equal to ω2 + o(ω2). Consequently,

lim
ω→∞

α̂OLS = lim
ω→∞

1

(T − 2p)ω4p

(
ω4p+2 + o(ω4p+2)
(−ω4p + o(ω4p))1

)
=

( ∞
− 1

T−2p
1

)
.

Consecutive outliers in ARCH(1) models

The OLS estimator of the parameters of the ARCH(1) model is given by

(
α̂0

OLS

α̂OLS
1

)
=




T − 1
T−1∑
t=1

z2
t

T−1∑
t=1

z2
t

T−1∑
t=1

z4
t




−1 


T∑
t=2

z2
t

T∑
t=2

z2
t z

2
t−1




If there are k consecutive outliers of size ω, then
∑T−1

t=1 z2
t = kω2 + o(ω2)

and
∑T−1

t=1 z4
t = kω4 + o(ω4) and the following result is obtained

lim
ω→∞

α̂OLS = lim
ω→∞

1

((T − 1)k − k2)ω4

(
kω4 + o(ω4) −kω2 + o(ω2)
−kω2 + o(ω2) T − 1

)(
kω2 + o(ω2)

(k − 1)ω4 + o(ω4)

)
.

Hence,

lim
ω→∞

α̂OLS =

(
∞

(T−1)(k−1)−k2

(T−1)k−k2

)
.

Consecutive outliers in ARCH(p) models with k ≥ p > 1

Consider again the OLS estimator of the parameters of the ARCH(p) model.

If the series is contaminated by k consecutive outliers, then
∑T−1

t=p z2
t ,

∑T−1
t=p z2

t−1, . . . ,
∑T−1

t=p z2
t−p+1

are equal to kω2 + o(ω2),
∑T−1

t=p z4
t ,

∑T−1
t=p z4

t−1, . . . ,
∑T−1

t=p z4
t−p+1 are equal to

kω4 + o(ω4) and
∑T−1

t=p z2
t z

2
t+1 = (k − 1)ω4 + o(ω4), . . .,

∑T−1
t=p z2

t z
2
t−p+1 =

(k − p + 1)ω4 + o(ω4). Therefore, the X ′X matrix is given by

(
T − p (kω2 + o(ω2))1′

(kω2 + o(ω2))1 (ω4 + o(ω4))M

)

where M is a p× p symmetric matrix with mij = k + i− j for i = 1, . . . , p,

j = i, . . . , p. Consequently, the OLS estimator is given by
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(
2p−1(k−(p−1)/2)

2p−2(−2k2+(2k−p+1)(T−p))
− 1

ω4
k

−2k2+(2k−p+1)(T−p)
`′

− 1
ω4

k
−2k2+(2k−p+1)(T−p)

` (ω4 + o(ω4))D

)(
kω2 + o(ω2)

(ω4 + o(ω4))B

)

where D is a p× p symmetric matrix with d11 = dpp = 1
2ω4

−2k2+(2k−p+2)(T−p)
−2k2+(2k−p+1)(T−p)

,

dii = 1
ω4 for i = 2, . . . , p − 1, dii+1 = − 1

2ω4 for i = 2, . . . , p − 1, d1p =

1
2ω4

T−p
−2k2+(2k−p+1)(T−p)

and dij = 0 otherwise, ` = (1 0 0 . . . 0 1)′ and

B is a p× 1 column vector such that bi = k − i for i = 1, . . . , p. Then,

lim
ω→∞

α̂OLS
i =




∞
−2k2+(2k−p)(T−p)
−2k2+(2k−p+1)(T−p)

0
...
0

−(T−p)
−2k2+(2k−p+1)(T−p)




.
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