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PRODUCTION. THRESHOLD EFFECTS AND FORECASTING 
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ABSTRACT 
 

 
  

We analyze the nonlinear behavior of the information content in the spread for future 
real economic activity. The spread linearly predicts one year ahead real growth in nine 
industrial production sectors of the US and four of the UK over the last forty years. However, 
recent investigations on the spread-real activity relation have questioned both its linear nature 
and its time-invariant framework. Our, in-sample, empirical evidence suggests that the spread 
real activity relationship exhibits asymmetries that allow for different predictive power of the 
spread when past spread values were above or below some threshold value. We then measure 
the out-of-sample forecast performance of the nonlinear model using predictive accuracy 
tests. The results show that significant improvement in forecasting accuracy, at least for one-
step ahead forecasts, can be obtained over the linear model. 
  
Key words: industrial production; yield spread; threshold model; forecasting; predictive 
accuracy 
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1 INTRODUCTION

Over the past few years researchers have discovered that differentials between long-term and short-

term nominal interest rates (term spread) have exhibited a systematic correlation with movements

in future economic activity in a number of countries and for a number of different time periods

in the post-war period (see, e.g., Stock and Watson, 1989; Estrella and Hardouvelis, 1991; Plosser

and Rouwenhorst, 1994; Estrella and Mishkin, 1997; Dotsey, 1998 and Galbraith and Tkacz, 2000).

The empirical evidence reported to date suggests that the term spread is one of the most consistent

predictors of future changes in real output and for horizons of a year or so ahead, has outperformed

other potential leading indicators of output change, such as the money stock, stock prices or interest

rates.

Recent theoretical work, by for instance Estrella (1998) and Estrella, Rodrigues and Schich

(2000), Hamilton and Kim (2001), suggest a number of different ways by which a positive link

between the term spread and future output change can emerge. Hamilton and Kim (2001) show

that the contribution of the spread can be decomposed into the effect of expected future changes in

short rates and the effect of the term premium where the respective contributions differ. Estrella

(1998) derives the reduced form relationship between changes in real output and the spread from a

simple linear structural model of the economy of the type specified by Fuhrer and Moore (1995).

Estrella (1998) demonstrates how the relationship between spread and real economic activity

depends, in part, on the preferences of the policymaker between inflation and output deviations

from target. In particular, when the authorities give higher weight to inflation the relationship

between the spread and future real activity is weakened. This is because the impact of any future

changes in expected inflation on future real activity is smaller. This is most easily seen by supposing

that the authorities give zero weight to output stabilization. In these circumstances, expected

inflation would be constant and the link between expected changes in future inflation and real

output eliminated. In the latter context it is interesting that Ben Salem and Collard (2000) found

that the empirical description of monetary policy by linear Taylor rules could be improved by

employing a smooth transition autoregressive (STAR) model. A nonlinear Taylor rule accords with

the hypothesis advanced by Orphanides and Wilcox (1996) who propose the so-called opportunistic

approach to disinflation. In their model, the weights given to inflation and output stabilization

by the monetary authorities are variable and dependent on the state of the economy, as measured

by whether output and inflation are above or below target. In particular, policymakers will react

more aggressively to bring inflation towards target whenever the inflation rate lies above or below

certain threshold level. This particular threshold level would depend on various factors such as
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the policymakers’ preferences about output deviations from potential or the slope of the Phillips

curve. As long as the inflation rate falls within the ”acceptable” boundaries, the policymaker will

concentrate on output stabilization. However, if inflation is either considered too high or too low,

policymakers would attempt to bring it back to a certain level. This behaviour, due to the variable

policy parameters, implies a nonlinear relationship between the spread and its forecasting ability

over future output. Following this theoretical argument, we expect to find in empirical work that the

spread has a stronger relationship with future output when the monetary authorities are relatively

more concerned with output than with inflation. This would occur for relatively small previous

values of the spread since they would be indicative of weaker current economic activity.3

Until recently one common feature of previous empirical work is that the relationship between

aggregate output change and the spread has typically been modelled in a linear framework without

investigating the possibility of asymmetric effects.

Galbraith and Tkacz (2000) report empirical evidence that is suggestive that the empirical rela-

tionship between the spread and aggregate output change may be nonlinear as the theoretical work

suggests. They test for asymmetry in the predictive content of the spread in the form of a threshold

effect. Their study finds evidence for the United States and Canada of the presence of an asymmetric

impact of the conditional expectation of output growth depending on the position (above or below

the threshold) of past spread values, though the reduced form they estimate includes other vari-

ables such as changes in government expenditure. Tkacz (2001) employs neural network models and

documents the improved forecast accuracy (in terms of lower forecast errors) that can be achieved

using nonlinear models to link the yield spread to aggregate output change. Venetis et al., (2001)

examine the strength of the link between the yield spread and aggregate output change over the last

forty years. This study confirms that threshold effects exist for a number of forecasting horizons

affecting the power of the spread as a leading indicator in the case of the US, Canada and UK.

It further shows a varying strength in the link with the spread-real activity relationship becoming

weaker (or non-existent) after the adoption of inflation orientated policies by the respective Central

Banks, something which is in line with the theoretical work of Estrella (1998).

Recently, Hansen (1997) has developed new statistical methods to aid in the estimation and

specification of nonlinear threshold autoregressive (TAR) models. In this paper, we follow the

methodology proposed by Hansen (1997) and we estimate and analyze the forecasting performance

of threshold models of the yield spread-real activity relationship, relative to linear alternatives, em-

ploying data for several different industrial sectors in the US and UK. The out-of-sample predictive

3We also experimented in our empirical work with inflation or output change in the transition function but the

results were superior employing the spread.
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accuracy of different models is statistically tested using the Diebold and Marianno (1995) test. A

number of other authors have examined the predictability of disaggregated output (Osborne et al.,

2002 and references cited therein). However as yet non has considered a threshold model employing

the theoretically appealing spread variable as the sole independent variable. We recognize from the

theoretical work that the relationship linking the spread to aggregate real activity can differ between

different economies dependent upon the policy regimes in operation and the different structural pa-

rameters between countries. Similarly any relationship between the spread and industrial production

in different sectors of the economy may be expected to differ given varying response rates of output

change to shocks. For instance, we may have different degrees of wage or price stickiness.

The rest of the paper is organized as follows. Section 2 presents the econometric methodology

employed in the estimation of the nonlinear TAR models. Section 3 describes the data and provides

empirical results for the linear and nonlinear estimations of the relationship between the term spread

and future real economic activity for different production sectors in the US and UK in the post-war.

Section 4 evaluates the out-of-sample forecast accuracy of both linear and nonlinear models. Finally,

section 5 concludes.

2 ECONOMETRIC METHODS

We start by specifying linear leading indicator models for the annualized real industrial production

growth over the next k months, ∆ykt = 100 × 12
k × (yt+k − yt) where yt is the logarithm of the

underlying production series and we set the horizon k = 12. The particular dating of the spread

variable, st, reflects its use as a leading indicator. As in many previous studies the basic model has

the general form:

∆ykt = a0 + a1st−1 + ut (1)

where ut represents a random disturbance term with mean zero and variance σ2. The spread slope

parameter represents an a1% increase on the average k− months forward growth to an 1% (100 basis
points) increase in the spread.

Next, we consider the threshold autoregression4 (TAR) model which will be compared with the

linear model (1). Specifically
4The idea of approximating a general nonlinear autoregressive structure by a threshold autoregression with a small

number of regimes is due to Tong (1983, 1990).
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∆ykt = a0 + a1st−1 + ut if zt−d ≤ c (2)

∆ykt = b0 + b1st−1 + ut if zt−d > c

The integer d is called the delay lag and typically it is unknown so it must be estimated. As we will

shortly explain, the least-squares principle allows d to be estimated along with the other parameters.

Parameter c is the “threshold” that distinguishes two regimes i) transition variable zt−d is below

c (lower regime) ii) transition variable zt−d is above c (upper regime). Then, parameter vectors

α = (a0, a1) and b = (b0, b1) determine the total production growth response to changes in last

period’s spread.

If the threshold value, c, were known, then to test for threshold behavior all one needs is to test

the hypothesis H0 : α = b. Unfortunately, the threshold value is typically unknown and, under the

null hypothesis, parameter c is not identified5. The second difficult statistical issue associated with

TAR models is the sampling distribution of the threshold estimate. Our model specification and

inference will closely follow Hansen (1997) who a) provides a bootstrap procedure to test H0, b)

develops an approximation to the sampling distribution of the threshold estimator free of nuisance

parameters and c) develops a statistical technique that allows confidence interval construction for c.

In particular, we write TAR model (2) compactly as,

∆ykt = xt(c) θ + ut (3)

where xt(c) = (xt1{zt−d ≤ c} xt1{zt−d > c}) with xt = (1, st−1) , 1{.} the indicator function and
θ = (α ,b ) . For a given value of c the least squares (LS) estimate of θ is

θ̂(c) = xt(c)xt(c)
−1

xt(c)∆y
k
t (4)

with LS residuals ξ̂(c)t and LS residual variance σ2T (c) = (1/T )
T

t=1
û2(c)t. Then the LS estimate of

c is the value,

ĉ = argmin
c∈C

σ2T (c) (5)

where C is an interval (usually trimmed) that covers the sample range of the transition variable.

Problem (5) can be solved by a direct search over C. The LS estimate of θ is then, θ̂ = θ̂(ĉ).

5Nothing can be learned about c from the data when the null hypothesis is true.
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Furthermore, the LS principle allows us to estimate the, typically, unknown value of d by extending

problem (5) to a search across the discrete space [1, d̄].

The hypothesis H0 : α = b is tested as follows: Let {et}Tt=1 be an i.i.d sequence of N(0, 1)
draws. Regress et on xt to obtain the residual variance σ̂2T and on xt(c) to obtain σ̂2T (c) and

compute F (c) = T
σ̂2T−σ̂2T (c)
σ̂2T (c)

. Then compute F = supc∈C F (c). Repeat the procedure n times

(we set n = 1000) and the asymptotic p-value of the test is given by the percentage of samples for

which F exceeds the observed FT ( is based on calculations using the observed data sample).

Finally, Hansen (1997) provides critical values and a method to construct asymptotically valid

confidence intervals. Estimate the model using the actual data for a set of values of c in the range C

and in each case calculate the likelihood ratio statistic LR(c) for that value of c against the value of

the likelihood obtained by unrestricted LS, that is, LR(c) = T σ̂2T (c)−σ̂2T (ĉ)
σ̂2T (ĉ)

. Notice that for c = ĉ

we get LR(c) = 0. Then plot LR(c) against c and draw a flat line that corresponds to the β-level

critical value c∗(β) given in Hansen (1997, table 1, p.5). For β = 5% we have c∗(β) = 7.35. The

confidence interval LRc is given by LRc = {c : LR(c) ≤ c∗(β)}.

3 ECONOMETRIC RESULTS

We apply model (2) to nine U.S monthly industrial production series for the period 1960.01-1999.03

and to four U.K. monthly real industrial production series. The yield spread is simply the difference

between the long- and short-term nominal interest rates at any point in time (10 year government

bond yield and 3-month treasury bill rate respectively). All data were obtained from the DATAS-

TREAM database. Industrial production series for U.S begin with an “s” and for U.K. with a “k”.

In particular, sip: industrial production, scg: consumer goods, sdg: durable goods, sig: investment

goods, sim: intermediate goods, smn: manufacturing goods, snd: non-durable goods, srm: raw

materials, ssc: supply goods. In the U.K. case we have, kip:1960.01-1999.02, kcg:1968.01-1995.04,

kig:1968.01-1999.02, and kim:1968.01-1999.02.

Given that the monthly spread is too volatile and given our focus on the asymmetry of the

yield-output link, we follow Galbraith and Tkacz (2000) and we set zt−d to be a function (moving

average) of past spread values. Four possible specifications of the threshold variable were employed,

zq,t−i = 1
(q−i+1)

q

j=i
st−j for (i, q) = ((1, 6), (1, 12), (6, 12), (6, 18)). In all cases the transition between

regimes depends on a moving average of past spread values. The search interval was set to be

C = [c
¯
, c̄] = [min{zq,t−i}+ 0.5,max{zq,t−i} − 0.5]. Notice that in order to “gain” observations, we

arbitrary add or subtract 0.5 to construct the boundaries c
¯
, c̄ and then we divided C into 200 discrete

admin
7



points. We experienced no problems when solving problem (5) although an alternative approach

would be to discard 15% of the observations in both ends of zq,t−i. Our final choice of zq,t−i was

based on the minimum residual variance and on the maximum F statistic.

Our results are reported in tables 1 (linear model) and 2 (nonlinear model). We will not comment

extensively on the linear model as it has been widely applied and it was adopted in our analysis

as a comparing and contrasting tool. Nevertheless, our findings are in accordance with the existing

literature with a1 being statistically significant and â1 being positive and economically significant.

For example in the U.S case an 1% increase in the spread last month over the sample period implies

on average 1.377% increase in real industrial production over the following 12 months. Our results

for the U.K. series are again not surprising. The slope parameter is less economically significant

at around 0.65 for most of the series but still statistically significant. Plosser and Rouwenhorst

(1994) suggested that for U.K. “the information in the nominal term structure about real activity is

obscured by variations in inflationary expectations” since the U.K. experienced relatively high and

volatile inflation.

The nonlinear estimations are reported in Table 2. The most relevant finding is the evidence of a

threshold effect in the leading indicator equation that implies different predictive ability depending

on whether the spread is above or below such a threshold. The F test uniformly and strongly rejects

the null of equal parameters above and below the threshold for all series. This result confirms the

asymmetry of the predicting power of the spread pointed out earlier in the literature regarding the

real GDP-yield spread link (see Galbraith and Tkacz, 2000; and Venetis et al., 2001). In the case

of the US, most of the estimated threshold values are around 1.4 percent, except for consumption

and non-durable goods where the threshold is almost half. The asymptotic 95 percent confidence

intervals are not particularly wide and the estimated thresholds are situated usually in the middle

of the interval reinforcing the robustness of the point estimates. Only for the durable goods case we

obtain a wide confidence interval pointing to some uncertainty regarding the point estimate.

A particular case is the investment goods sector where the estimated threshold is negative. This

finding could be due to the fact that the investment goods series have the highest volatility and large

negative values for rates of change of investment goods are found. We interpret such volatility in

the sense that investment goods proportionally over-react to economic expansions and slowdowns.

Nevertheless, the estimated slope parameters are significant either above or below the threshold

meaning that the spread correctly signals both expansions and recessions in investment goods.

For the rest of the U.S series, the estimated slope parameter when the spread is below ĉ is

always statistically and economically significant but when past spread values move above ĉ the

predictive ability of the spread ceases to exist. However, for most of the U.S series around 60% of

admin
8



the observations lie below, ( or equal) the threshold implying a consistent predictive ability over

production along time.

The ratio σ̂NL/σ̂L where σ̂
2
NL, σ̂

2
L are the residual variances of the nonlinear and linear models

respectively, provides a measure of in-sample fit comparison for the alternative models. Given that

it is less than one it implies better fit and as a rule of thumb if it is less than 0.90 suggests that

nonlinearity explains more than just exceptional observations in the sample. The non-linear models

appear to outperform the linear ones in all cases. For the US the ratio of standard errors is less than

0.90 except for the consumption goods series. For the durable and supply goods models it is as low

as 68%.

A different story emerges when we examine the U.K. results in table 2. The U.K. results differ

not only quantitatively but also qualitatively. The ratio σ̂NL/σ̂L is in all cases above or equal to

0.90 suggesting the nonlinear model is called to “explain” only exceptional circumstances. Notice

that most of the observations lie under the estimate threshold value which is 1.29 for kcg and 1.89

for kip and kim with the slope parameter being statistically insignificant. In the upper regime, the

spread slope parameter is statistically and economically significant. For the kim series b̂1 is as high

as 3.46. These estimates are in contrast with the results obtained for the U.S series. This difference

suggests that the asymmetry in the link between yield spread and growth is less intense in the case

of the UK over the sample period. This is supported by the fact that the spread is significant in

both the upper and lower regime (except in kim) and that the σ̂NL/σ̂L ratio does not go below 0.90.

The spread in the UK is then capable of predicting large economic expansions as well as slowdowns.

Only for the investment goods, kig, we obtained results comparable with the U.S ones. For the

kig model, the threshold is low at 0.36. In the lower regime spread has predictive power with a

coefficient of 2.13. In the upper regime, the predictive power disappears and we cannot reject the

hypothesis b1 = 0. Again, the low threshold value found in this series and its volatility plays a role

in the ambiguity of the results found in the investment goods sector.

4 COMPARING FORECASTING ACCURACY

In this section we provide a forecasting experiment. Our purpose is to compare the out-of-sample

forecasts of the two alternative models (1) and (2). We have already discussed in-sample fit issues

with the nonlinear model clearly dominating the linear one at least in terms of residual variance

minimization in the U.S case although the U.K. results are difficult to interpret.

For the U.S samples, we retain m = 183 observations for out-of-sample forecasting. In particular
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we will calculate one step ahead forecasts for the period 1983.01 onwards6. In order to reduce

parameter uncertainty, both linear and nonlinear models were re-estimated for each observation

added to the sample after the date 1983.01 and the forecasts are based on the “updated” parameter

estimates. For the U.K. samples, we also retain all observations after 1983.01 for re-estimation of

the leading indicator models and forecasting.

The forecast evaluation will be based on two different criteria. Let ŷT0+j|T0+j−1 denote the

forecast of ∆ykt , at time T0 + j given information up until time T0 + j − 1 where, for example, T0
corresponds to 1983.01 in the U.S forecasting experiment. The mean squared prediction error is

given by

MSPE =
1

m

m

j=1
(ŷT0+j|T0+j−1 − yT0+j)2 (6)

and the mean absolute deviation error is given by,

MAPE =
1

m

m

j=1
ŷT0+j|T0+j−1 − yT0+j (7)

Although these measures can provide a first indication on whether a certain model performs better

on average (in terms of minimizing the respective loss function), they cannot provide statistical

significance results on the difference of forecasts. In order to test the null hypothesis of equal

forecasting accuracy we will employ the following two tests. Consider the sample path {dj}m1 of a

loss differential series, that is, dj is a function of the difference of forecast errors produced by two

different models. For our application we chose the quadratic function,

dj = ((ŷT0+j|T0+j−1,NL − yT0+j)− (ŷT0+j|T0+j−1,L − yT0+j))2 (8)

although the absolute difference function did not qualitatively alter our results.

Following Diebold and Mariano (1995), the large sample studentized version of an exact finite

sample test, “the sign test” is given by,

S =
2√
m

m

j=1
(1{dj > 0}− 0.5) ∼ N(0, 1) (9)

The test compares the relative magnitudes of the prediction errors of the two models but a seri-

ally correlated loss differential is not allowed under the test’s assumptions. Diebold and Mariano
6This date is close to the estimated sample break in the predicting power of the US spread over GDP found in

Venetis et al. (2001).
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(1995) propose the use of an asymptotic statistic which tests whether the average loss differential is

significantly different from zero. Specifically they show that,

DM =
d̄

ω̂/m
→d N(0, 1) (10)

where ω̂ is an estimate of the long run covariance matrix of dj .

When forecasts are constructed from ARMA(p,q) models then the infinite moving average rep-

resentation produces h-step ahead prediction errors that are serially correlated up to order h-1. As

a result ω̂ = γ̂0(d) when the DM test is applied to 1-step ahead forecasts. Nevertheless, our model

is nonlinear and although h = 1 we found that in most cases dj was strongly correlated. For ex-

ample in the case of sip, γ̂1(d) = 0.928, γ̂2(d) = 0.840, γ̂3(d) = 0.756, .... For that reason we set ω̂

equal to the long run covariance matrix of dj and the Newey-West (1987) estimate is adopted with

ω̂NW = γ̂0(d) + 2
q

v=1
(1 − q

v+1)γ̂v(d). We chose the truncation lag q according to the correlation

structure of dj . As a rule of thumb we calculated the autocorrelation function of dj and then we

selected the value of q that reflected the number of lags with significant correlations. For example

in the sip model we set q = 7.

Our results are summarized in table 3. With the exception of the U.K. series of intermediate

goods, kim, the MSPE’s and MAPE’s produced by the nonlinear model are uniformly lower than

their linear model counterparts. In the case of U.S, the DM statistic, at least for the 10% significance

level, implies that for 7 out of 9 series the null hypothesis of equal predictive accuracy is rejected.

On the contrary, but in accordance with their poor relative in-sample performance, the DM statistic

for the U.K. series did not produce statistically significant results.

Figure 1 plots the actual (indicated by a plain line) and one step ahead nonlinear (line with

pluses) and linear forecasts (line with boxes) for the three of the U.S production series having

the largest, in absolute terms, DM statistics namely, scg, sim and snd. These plots illustrate the

improvement in fit that occurs when the nonlinear threshold model is considered. With the exception

of a (roughly) two year period that coincides with the latest U.S recession, the linear model forecasts

consistently “overshoot” predicting one year ahead growth that is constantly above the actual one.

On the contrary, the nonlinear forecasts move closely to the actual series and for many periods seem

to track the mean of the actual growth rates.

Finally, it is worth commenting on the difference between the sign, “S”, and DM statistics, the

latter being subjected to correlation correction. In a number of cases, the correction significantly

affects the magnitude of the statistics changing our decision relative to the null hypothesis. For

example, in the sig series model we get S = −4.36 but DM = −0.84.
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5 CONCLUSIONS

This paper analyses the asymmetry in the relationship between the yield spread and economic activ-

ity in the US and UK. In particular, linear and nonlinear (TAR) models present significant predicting

effects over nine and four different industrial production sectors in the US and UK respectively from

1960 to 1999. The nonlinear models appear to outperform the linear ones in the in-sample esti-

mations as the ratio between regression standard errors evidences. Nevertheless, the significance

difference between the two models appears to be much stronger in the case of the US industrial

sectors consistent with previous studies on the link between spread and aggregate rates of change

of real output. Recursive out-of-sample forecasts are also implemented for all different sectors from

1983 onwards comparing again the linear and the nonlinear models. The Diebold-Mariano forecast

accuracy tests, namely, the “sign-test” (S) and the DM test, exhibits a significance difference between

the two competing models. The forecasts using the TAR model produces more accurate values of

future industrial activity in most of the US industrial sectors. In the case of the UK the evidence

is weaker suggesting that there is not a significant superior forecast performance of the nonlinear

model. It is of course difficult to be certain of the rationale for this outcome. Perhaps a prime can-

didate, suggested by the theoretical models, is that the monetary regimes operating in the US have

been far more stable( or predictable) than in the UK. Whilst Clarida et al. (2001) find that Taylor

monetary rules have been relatively stable in the US over the post war period,Nelson ( 2000) finds

that Taylor rules have exhibited great instability in the UK over a similar period. As a consequence

estimation of any nonlinear( linear) relationship between real activity and the spread in the UK may

require much closer attention to the regimes in operation, e.g. Conservative or Labour Governments

and Independent Central Bank as a minimum. For economies, such as the US, with more stable

monetary regimes our results suggest that ‘a more simple nonlinear threshold relationship’ between

real activity and the spread may become more discernible and may help produce superior forecasts

to the linear alternative.
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â0 s.e(â0) â1 s.e(â1) σ̂L

sip 2.75 0.45 1.37 0.23 3.95

scg 2.44 0.37 0.77 0.16 3.29

sdg 3.12 0.59 2.40 0.31 5.35

sig 3.37 0.68 1.45 0.34 5.77

sim 2.46 0.49 1.22 0.25 4.20

smn 2.89 0.48 1.59 0.25 4.25

snd 2.62 0.40 0.75 0.21 3.45

srm 2.77 0.56 1.81 0.30 4.93

ssc 1.60 0.64 1.96 0.33 5.46

kip 1.17 0.40 0.66 0.23 3.90

kcg 0.92 0.53 0.63 0.27 4.25

kig 0.49 0.68 0.62 0.34 5.30

kim -0.53 0.54 0.78 0.25 5.14

Table 1. Ordinary least squares results for the linear model (1). In parentheses

we report the Newey-West (1987) standard error estimates of the parameters.
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â1 b̂1 ĉ F LRc %obs ≤ ĉ σ̂NL/σ̂L zq,t−i

sip 2.32 −0.23 1.42 145.23 [1.18 0.67 0.86 z12,t−1

0.12 0.31 [0.000] 1.53]

scg 1.57 0.29 0.87 76.23 [0.63 0.51 0.93 z12,t−1

0.12 0.22 [0.000] 1.11]

sdg 1.77 0.55 1.49 30.62 [1.25 0.69 0.68 z12,t−1

0.12 0.34 [0.000] 1.69]

sig 1.11 −0.71 −0.30 145.90 [−0.44 0.29 0.87 z12,t−1

0.25 0.24 [0.000] −0.20]
sim 2.23 −0.50 1.18 117.61 [0.90 0.60 0.89 z12,t−1

0.14 0.30 [0.000] 1.49]

smn 1.57 0.22 1.49 54.99 [1.28 0.69 0.74 z12,t−1

0.11 0.29 [0.000] 1.69]

snd 1.73 −0.25 0.70 113.05 [0.63 0.47 0.90 z12,t−6

0.12 0.19 [0.000] 1.28]

srm 3.01 0.18 1.42 154.18 [1.28 0.67 0.85 z12,t−1

0.14 0.38 [0.000] 1.49]

ssc 1.46 0.76 1.60 45.73 [1.46 0.75 0.68 z6,t−1

0.12 0.41 [0.000] 1.71]

kip 0.42 2.38 1.89 42.83 [1.74 0.79 0.93 z18,t−6

0.10 0.28 [0.000] 2.15]

kcg 0.38 1.21 1.29 29.42 [1.26 0.65 0.94 z18,t−6

0.15 0.24 [0.000] 1.52]

kig 2.13 −0.31 0.36 57.39 [0.03 0.33 0.91 z12,t−6

0.25 0.20 [0.000] 0.53]

kim 0.19 3.46 1.89 80.32 [1.52 0.74 0.90 z18,t−6

0.14 0.36 [0.000] 1.93]

Table 2. Least squares results for model (2). ĉ is the estimated threshold

parameter.In parentheses we report standard errors.F is the statistic to test the

null H0 : α = b using the bootstrap procedure of Hansen(1997) Squared brackets

enclose p-values for the F statistic.LRcdenotes the 95% asymptotic confidence interval

for c calculated as in Hansen (1997). %obs ≤ ĉ denotes the percentage of observations
below or equal to the threshold
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MSPE(L) MSPE(NL) MAPE(L) MAPE(NL) S DM

sip 17.89 9.85 3.48 2.35 −2.44 −1.83
scg 9.90 6.70 2.74 1.98 −4.21 −2.20
sdg 17.96 15.97 3.33 3.07 −0.52 −1.19
sig 32.58 28.10 4.59 3.87 −4.36 −0.84
sim 22.02 14.25 4.02 2.82 −3.03 −2.08
smn 10.85 8.50 2.71 2.17 −2.43 −1.69
snd 13.50 8.19 3.22 2.34 −4.36 −2.14
srm 24.07 12.92 3.90 2.84 −1.40 −1.65
ssc 20.55 17.84 3.61 3.11 −1.70 −1.95
kip 7.67 7.11 2.25 2.14 −3.11 −0.98
kcg 10.65 10.21 2.68 2.62 −1.20 −0.27
kig 24.06 20.04 3.77 3.53 −3.40 −1.43
kim 16.06 16.39 3.04 3.09 0.88 0.16

Table 3. One step ahead forecast comparison. The S and DM tests are

N(0, 1) distributed. The null hypothesis is equal forecasting accuracy for the

linear and nonlinear model forecasts.

In parentheses (L), (NL) denote linear and nonlinear models respectively.
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Figure 1. U.S. Observed one year ahead growth series (line) and nonlinear line
with “plus” symbols) and linear (line with “box” symbols) model one-step ahead
forecasts. Top: scg, middle: sim, bottom: snd
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