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Nonlinear models of deviations from PPP have recently provided an important, 

theoretically well motivated, contribution to the PPP puzzle. Most of these studies use 

temporally aggregated data to empirically estimate the nonlinear models. As noted by Taylor 

(2001), if the true DGP is nonlinear, the temporally aggregated data could exhibit misleading 

properties regarding the adjustment speeds. We examine the effects of different levels of 

temporal aggregation on\ estimates of ESTAR models of real exchange rates. Our Monte 

Carlo results show that temporal aggregation does not imply the disappearance of nonlinearity 

and that adjustment speeds are significantly slower in temporally aggregated data than in the 

true DGP. Furthermore, the autoregressive structure of some monthly ESTAR estimates 

found in the literature is suggestive that adjustment speeds are even faster than implied by the 

monthly estimates. 
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1 Introduction

At the time of publication of Rogoff’s (1996) influential survey on Purchasing
Power Parity (PPP), almost without exception, the vast amount of empir-
ical work reported was based on a linear framework. The empirical results
concerning the mean-reverting properties of PPP deviations were contradic-
tory. Whilst on the basis of standard unit root tests, the majority of studies
reported that real exchange rate deviations were mean reverting, I(0) pro-
cesses, a significant number of studies reported that they were described by
non mean-reverting, I(1), processes. Other studies reported that PPP devi-
ations were parsimoniously described by mean reverting fractional processes
that exhibited the long memory associated with this process (see e.g., Diebold
et al., 1991; and Cheung and Lai, 1993)2.
Though the literature on this issue disagreed on the appropriate degree

of integration of PPP deviations it did have a common feature. Short run
PPP deviations were undoubtedly very persistent. In his review, Rogoff
(1996) concluded that, on balance, the implied speed of adjustment of PPP
deviations to shocks was “glacially slow”. This fact constituted a puzzle
given the half life of shocks was some 3-5 years, seemingly far too long to be
explained by nominal rigidities.
Since 1996 a number of papers have reported empirical results which pro-

vide some explanation of the contradictory empirical results obtained when
employing the linear methodology. In these papers PPP deviations are par-
simoniously modelled employing two nonlinear models, namely the threshold
model of Tong (1990), and the Exponential Smooth Autoregressive model
(ESTAR) model of Ozaki (1985) (see e.g., Michael et al., 1997; Obstfeld and
Taylor, 1997; Taylor et al., 2001; and Kilian and Taylor, 2003). Whilst glob-
ally mean-reverting these nonlinear processes have the property of exhibiting
near unit root behavior for small deviations from PPP. This type of nonlin-
ear adjustment process captures the adjustment derived in the theoretical
analyses of PPP by a number of authors (see e.g., Dumas, 1992; Sercu et
al., 1995; O’Connell, 1998; and Berka, 2002). These theoretical analyses of

2Fractional processes allow the degree of integration of a series to be non-integer.
Standard unit root tests may exhibit low power against the fractional alternative. The
fractional processes are given by members of the class of ARFIMA(p, d, q) processes,
xt(1− L)d = ut, where ut is a stationary ARMA(p, q) process, and d is non-integer. The
autocorrelations of the fractional process exhibit hyperbolic rather than geoemetric decay.
For 0.5≤d<1 the process is non-stationary but mean reverting.
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PPP demonstrate how transactions costs, transport costs or the sunk costs
of international arbitrage induce nonlinear adjustment of the real exchange
rate. Essentially small deviations from PPP are left uncorrected if they are
not large enough to cover the costs of international arbitrage.
The nonlinear models can provide both an explanation of the contra-

dictory results reported on the integration properties of PPP deviations as
well as providing a different perspective on adjustment speeds. Taylor et
al. (2001) and Pippenger and Goering (1993) demonstrate that the standard
Dickey Fuller unit root tests have low power against data simulated from an
ESTAR model. Byers and Peel (2000, 2003) show that data that is gener-
ated from an ESTAR process can appear to exhibit the fractional property.
That this would be the case was an early conjecture by Acosta and Granger
(1995). Given that the ESTAR model has a theoretical rationale, whilst the
fractional process is, from an economic perspective, a relatively non intuitive
process, the apparent fractional property of PPP deviations might reasonably
be interpreted as a misspecification of a linear model relative to the DGP.3

An important property of the nonlinear models is that the impulse re-
sponse functions derived from them show that, whilst the speed of adjustment
for small shocks around equilibrium can be extremely slow, larger shocks
mean-revert much faster than the “glacial rates” obtained in the linear es-
timates (see e.g., Taylor et al., 2001; and Paya et al., 2003). Consequently
nonlinear models provide a theoretically well motivated and therefore impor-
tant contribution to explaining the PPP speed of adjustment puzzle outlined
in Rogoff (1996).
One issue not discussed in previous analysis is how temporal aggregation

will impact on the adjustment speed obtained from estimates of non linear
models. Taylor (2001) demonstrates that if the true data generating process
is a nonlinear threshold process, and if the data employed in estimation is
temporally aggregated, then linear estimates of adjustment speeds can be
substantially downward biased. He does not consider the implications of
temporal aggregation for estimates of adjustment speeds if the true data
generating process is a nonlinear process but a nonlinear model is estimated
on the temporally aggregated data. This issue seems to be of interest for
two reasons. First, as noted by Taylor (2001), much of the data employed
in PPP empirical work is temporally aggregated. Second, in the recent PPP
literature estimates of nonlinear models have been reported employing data

3See Granger and Terasvirta (1999).
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sampled at different levels of aggregation. For example, employing the ES-
TAR form, Baum et al. (2001), and Taylor et al. (2001) report results
employing monthly data, Kilian and Taylor (2003) quarterly data whilst
Michael et al. (1997), and Paya and Peel (2003a) report results employing
annual data.4 If the true data generating process (DGP) is nonlinear, it is
clearly of interest to examine the nature of the nonlinear models that occur
in temporally aggregated data. Conditional on the assumed DGP the results
obtained may shed light on the appropriate frequency of the adjustment pro-
cess in actual data. In addition, we can compare and contrast the estimated
speeds of adjustment obtained in the DGP and the temporally aggregated
process.5

These are the purposes in this article. We assume, based on a priori
considerations, that at the very highest data frequency the true DGP is given
by a particular, theoretically well motivated, ESTAR model. A Monte Carlo
analysis is conducted where we estimate ESTAR models derived from this
DGP at various degrees of temporal aggregation. The important point to
emerge is that, for the particular DGP assumed, temporal aggregation does
not lead, in general, to the disappearance of nonlinearity. In addition, the
temporally aggregated models exhibit a different ESTAR form to that in the
DGP and which is precisely that found in empirical estimates of quarterly
and annual data. Given that the DGP is as postulated we can infer from
estimates based on monthly data whether temporal aggregation has occurred
with consequent implications for adjustment speeds. We find that adjustment
speeds implied in the temporally aggregated data are much slower than the
adjustment speeds obtained in the true DGP and that true adjustment speeds
may be faster than those derived from monthly data, the highest frequency
available to us.
The rest of the paper is organized as follows. In section 2 we set out

the DGP for highest frequency data, our Monte Carlo methodology, and the
effect of temporal aggregation on nonlinear estimates of an ESTAR model.
Section 3 compares the Monte Carlo results with actual estimates. In section
4 we examine, employing nonlinear impulse response functions, the speeds
of adjustment to shocks obtained in the DGP and the estimated temporally

4In related work on the monetary model of exchange rate determination Taylor and
Peel (2000) estimate an ESTAR model on quarterly data.

5Very little work has been done on the effects of aggregation on Non-linear time series
models. Granger (1991), and Granger and Lee (1999) are notable exceptions. However
their analysis does not consider nonlinear processes involving symmetric adjustment.
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aggregated ESTAR models. Finally, section 5 summarizes our main conclu-
sions.

2 The True Structural Model and the Effect
of Time Aggregation on estimated nonlin-
ear parameters

We assume that at the highest frequency the DGP is given by an Exponential
Smooth Autoregressive model (ESTAR) model of Ozaki (1985). A smooth
rather than discrete adjustment mechanism is chosen for two reasons. First a
smooth adjustment process is suggested by the theoretical analysis of Dumas
(1992). Second, as postulated by Terasvirta (1994) and demonstrated theo-
retically by Berka (2002), in aggregate data, regime changes may be smooth
rather than discrete given that heterogeneous agents do not act simultane-
ously even if they make dichotomous decisions.6 The relevant ESTAR model
which is, a priori, appropriate for modelling PPP deviations at the highest
data frequency has the simplest possible structure within the class of ESTAR
models and is given by

yt = e
−γy2t−1yt−1 + ut (1)

where γ is a positive constant and ut is a white noise disturbance term.
Figure 1 is a deterministic plot of the relationship between ∆y = yt−yt−1

and yt−1 obtained from (1). We observe in Figure 1 that for small deviations
from equilibrium, adjustment may be modelled as a unit root process - “the
optimality of doing nothing” - but for large deviations from equilibrium there
is mean reversion. If the process spends a significant proportion of time in
or near the unit root region, it will exhibit strong persistence and near unit
root behavior. It is also interesting to note that the form of ESTAR model
we assume is precisely that which has been found to provide a parsimonious
fit to many monthly data sets.

6Even in high frequency asset markets the idea of heteregeneous traders facing different
capital constraints or percieved risk of arbitrage has been employed to rationalise employ-
ment of the ESTAR model. See, e.g. Tse (2001) for arbitrage between stock and index
futures.
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We simulate data from the ESTARmodel (1) where the disturbance term,
ut, is assumed to be normally distributed7.
Following Taylor (2001) we create arithmetic temporal aggregates from

the simulated data as8

y∗t =
(yt + yt−1 + yt−2 + ......+ yt−i)

i
(2)

where i = 2, 3, 12.

Two different assumptions about the true DGP are made. First, we
assume that the true DGP is a nonlinear ‘monthly’ ESTAR process and
simulate from this 120,000 observations. We replicate this experiment 1,000
times.
The range of standard deviations of the disturbance term is calibrated on

the monthly estimates of equation (1), the highest aggregate data frequency
available to researchers (see e.g., Taylor et al., 2001; and Venetis et al., 2002).
These studies report standard deviations (σ) of around 0.035. For purposes
of comparison we also simulate series with a much lower standard deviation
than found in the monthly data and employ values of σ of 0.01 and 0.035.
The adjustment parameter is given the values of γ = 0.5, 1. The estimates
obtained in actual monthly data tend to fall in this range.
Aggregating these observations three times, i = 3 (quarterly), or twelve

times, i = 12 (annual), yields 1,000 samples of 40,000 and 10,000 observa-
tions respectively. These samples will be used to analyze the ‘large sample’
behavior of aggregated nonlinear ‘monthly’ ESTAR models. To analyze the
small sample properties, we employ the same method but limit the sample

7We also consider nonnormal disturbances such as t-Student with 18 degrees of freedom
that in previous research appears to match the nonnormality of residuals (see Paya and
Peel 2003b). Results were qualitatively unchanged.

8If the data is in logarithmic form, then y∗t is the geometric mean instead of the arith-
metic mean of the real exchange rates. We compared the correlation between the arith-
metic and geometric means conditional on some price processes. The correlations were
close to unity and the results qualitatively similar. Given this for simplicity we follow
Taylor (2001) and employ the arithmetic mean for the temporally aggregated data.
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sizes to 120 for ‘quarterly’ (i = 3) aggregation and 200 for ‘annual’ (i = 12)
as these span the most common used samples in the literature.9

The second assumption made is that the true DGP given by (1) is for data
generated at either a fortnightly or ten days frequency that is aggregated to
monthly data (i = 2, or 3) respectively. Again 120,000 observations are sim-
ulated from (1) 1,000 times. In this case the standard errors of the residuals
in the true DGP are chosen as σ = 0.024, 0.028 so that the standard errors
of the residuals in the temporally aggregated data, i = 2, i = 3 match those
found in actual monthly estimates. Values of γ = 0.3, 0.4 were employed
which produced values of the speed of adjustment parameter in the aggre-
gate data similar to those observed in empirical work. In this exercise, the
large sample analysis was done with 10,000 observations of the aggregated
data10 and the small sample analysis with 360 observations matching the
sample size of monthly data on real exchange rates available from the post
Bretton Woods period and around the length of sample that has typically
been employed in previous empirical analysis.
On the aggregated data we estimate by nonlinear least squares the fol-

lowing model

y∗t = a+B(L)y
∗
t−1e

−γ(y∗t−1−a)2 + vt (3)

where B(L) is a polynomial lag operator of order up to five which ren-
dered the disturbance term vt empirical white noise,11 and a is a constant.
Empirical marginal significance levels of the estimated parameter γ has to
be obtained through Monte Carlo simulation as it is not defined under the
null. In particular, the model is assumed to follow a unit root linear autore-
gressive process12 and then a nonlinear ESTAR specification (equation 3) is
estimated, computing the appropriate confidence interval of significance for
γ.

9Samples of real exchange rates of 120 at quarterly data are available for the post
Bretton-Woods period. At annual frequency the longest data set available is from 1792 in
the case of Dollar/Pound and Dollar/French Franc (see Lothian and Taylor 1996).
10The results employing 60,000 or 40,000 appeared essentially the same than on a sample

using 10,000. We report results on samples of 10,000 as it was computationally much less
time consuming.
11On the basis of the LM test of Eitrheim and Terasvirta (1996).
12The number of autoregressive terms and the calibration of the slope parameters and

variance were obtained through a first estimate of a linear autoregressive process (restrict-
ing the parameters to add up to one).
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First, we examine the results obtained in the case of the large samples
described above. We observe in the results reported in Tables 1, 2a, 2b, and 3
that time aggregation induces higher order autoregressive terms in the fitted
models at lower frequencies than occur in the DGP. Moreover, the additional
autoregressive structure induced by time aggregation seems to have a limiting
number of terms. The second order autoregressive term is always significant.
Terms in an autoregressive process of order three are significant at least
95% of the time except for i=2 when it falls to 59%. Higher order terms
exhibit a steep fall in significance. The significance of the AR(4) parameter
varies between 37% and 7% with that of the AR(5) parameter between 5-7%.
The order of the autoregressive structure appears to be independent of the
range of standard errors of the disturbance term and the speed of adjustment
parameters imposed in the true DGP in our simulations.
The regression standard error and the point estimate of the speed of

adjustment parameter, γ, increase with the degree of aggregation. The speed
of adjustment parameter is always significant in the large sample estimates.
Another feature of the time aggregation is the finding of significant LM test
for ARCH. The greater the degree of aggregation and the higher the standard
error of the disturbance term in the DGP the more accentuated the finding of
a significant LM test for ARCH. Noting that the LM test for ARCH is a test
for model misspecification and that the errors in the DGP do not exhibit
ARCH, this suggests that specification (3) may become less parsimonious as
an appropriate way of modelling the temporally aggregated process (1) as the
degree of aggregation increases. We also note that the lower the frequency
and the higher the standard error of the disturbance term the lower the
goodness of fit parameter R2.
When the estimations are undertaken with smaller samples of observa-

tions of 120, 200 and 360,corresponding to quarterly, annual and monthly
data employed in empirical studies, the nonlinear estimates of (3) show the
following features. The fitted ESTAR exhibits significant AR(2) structure
between 50 and 89 percent of the time for i=2,3,12 dependent upon the noise
and the speed of adjustment in the true DGP. Autoregressive terms of order
greater than two are significant less than ten percent of times. Significant
LM tests for ARCH are not found in 90% of the fitted models. The esti-
mated speed of adjustment parameter are higher than in the large sample
simulations with larger standard errors and approximately forty percent are
significant at the 5% significance level. Consequently, small sample esti-
mations of nonlinear ESTAR models on temporally aggregated data could
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erroneously reject that the true DGP follows a nonlinear process.13

Nonlinear ESTAR models have been reported at various levels of aggre-
gation and the reported empirical results conform with those obtained on
the simulated data. Kilian and Taylor (2003) report AR(2) structure in all
ESTAR models fitted to quarterly data for seven OECD economies. Michael
et al. (1997) report AR(2) structure employing annual data. No one has re-
ported AR structure greater than two. Also significant LM tests for ARCH
are rarely reported.

3 Further Comparison between Simulated
Data and Empirical Estimates from Actual
Data

We now proceed to compare further the empirical results obtained from sim-
ulated data with those obtained from actual data. Table 4 presents monthly
estimates of ESTAR models for seven bilateral real exchange rates against
the Dollar in the post Bretton Woods era taken from Venetis et al. (2002).14

The estimated model corresponds to that of Equation (3). The estimates of
γ are between 0.16 and 0.8 and the standard deviation of the regressions is
around 0.033. We added the last column, where the p-value of the second AR
term in the estimates is included. For the majority of the cases, PPP devia-
tions appear parsimoniously described by the simple ESTAR structure given
by equation (1). However, it appears that in the case of the Dollar/Yen at
the five percent, the Dollar/Pound and Dollar/Lira at the fifteen percent, the
second AR term plays a significant role. Simulations presented above show
that time aggregation induces AR(2) structure in the estimated nonlinear
process. The fact that some of the monthly models have significant second
AR terms could imply that the true ESTAR model is appropriate at even
higher frequency than monthly. Of course, if there are already AR lags of
order two at the high-frequency DGP then this will not be the case. However
we feel that AR lags of higher order than one at the high frequency DGP

13Granger and Lee (1999) examine the effects of time aggregation on nonlinearity tests
drawing a similar conclusion. Nonlinearity could be rejected when the model has been
temporally aggregated.
14This represents the highest possible frequency on actual data on real exchange rates

as prices are provided monthly.
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do not make apriori sense. The significance of this point will be ultimately
determined by whether higher order lags can be generated theoretically in
the DGP.
Empirical results at different levels of aggregation (i = 3, i = 12) are

reported in Tables 5 and 6. The quarterly estimates are taken from Kil-
ian and Taylor (2003) and we also present annual estimates of Equation
(3) for Dollar/Pound and Dollar/Franc for two hundred years derived by
Lothian and Taylor (1996) and analyzed by Michael et al. (1997). The Dol-
lar/Deutsche Mark is for the Gold Standard -data source- reported in Paya
and Peel (2003a). We observe that the estimates of γ are higher than at
monthly frequency and similar to those suggested by the simulation exercise
above. We also note that the autoregressive structures have a significant
AR(2) component.15 This is interesting given our Monte Carlo showed that
in over fifty percent of simulations at “quarterly aggregation” and seventy five
percent of simulations at “annual aggregation” gave rise to this specification.

4 Generalized impulse response functions

A number of properties of the impulse response functions of linear models
do not carry over to the nonlinear models. In particular, impulse responses
produced by nonlinear models are; a) history dependent, so they depend on
initial conditions, b) dependent on the size and sign of the current shock, and
c) they depend on future shocks as well. That is, nonlinear impulse responses
critically depend on the “past”, “present” and “future”.
The Generalized Impulse Response Function (GIRF) introduced by Koop,

Pesaran and Potter (1996) successfully confronts the challenges that arise in
defining impulse responses for nonlinear models. The impulse response is
defined as the average difference between two realizations of the stochastic
process {yt+h} which start with identical histories up to time t − 1 (initial
conditions) but one realization is “hit” by a shock at time t while for the other
(the benchmark profile) no shock occurs. In a context similar to ours, Taylor
and Peel (2000) conduct GIRF analysis on the deviations of real exchange
rates from monetary fundamentals, and Baum et al. (2001), and Taylor et

15In the case of the Dollar/Franc the AR(2) term is insignificant but the residuals exhibit
better properties. It is worth noting that these estimations span a long period of time
with different exchange rate regimes. However, those nonlinear estimates have recently
been proved to be robust (see Lothian and Taylor, 2004; and Paya and Peel, 2004).
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al. (2001) use impulse response functions to gauge how long shocks survive
in real exchange rate nonlinear models. The GIRF of Koop et al. (1996) is
defined as,

GIRFh(h, δ,ωt−1) = E(yt+h|ut = δ,ωt−1)−E(yt+h|ut = 0,ωt−1) (4)

where h = 1, 2, .., denotes horizon, ut = δ is an arbitrary shock occurring
at time t and ωt−1 defines the history set of yt. Given that δ and ωt−1 are
single realizations of random variables, expression (4) is considered to be a
random variable. In order to obtain sample estimates of (4), we average
out the effect of all histories ωt−1 that consist of every set (yt−1, ..., yt−p) for
t ≥ p+1, where p is the autoregressive lag length, and we also average out the
effect of future shocks ut+h. In particular, for each available history we use
300 repetitions to average out future shocks, where future shocks are drawn
with replacement from the models residuals, and then we average the result
across all histories.16 We set the shocks on the log real exchange rate yt (equal
to ln(1 + k/100) with k = 10, 20, 30) which correspond roughly to 10%, 20%
and 30% shocks, respectively. The speed of real exchange rate convergence
will be measured with the half-life of shocks. In this case, the half-life of
shocks will be computed as the number of time periods that PPP deviations
need to settle below 50% the size of the shock.17 Accordingly, we will report
the half-lives of shocks defined as the time needed for GIRFh < 1

2
δ.18

We examine the implied speeds of adjustment to shocks for the Monte
Carlo experiments in Section 2 using the following procedure. First, we
generate ESTAR DGP’s with given parameters γ, and standard deviations
of error term, se. These correspond to the highest frequency of the ‘true’
process followed by PPP deviations. Following our discussion of the Monte
Carlo simulations and empirical results in previous sections, we consider three
cases: monthly, fortnightly and ten days. Parameters γ and se are fixed
accordingly. We estimate the models without aggregation and calculate the
average half-life of shocks for those processes.

16We found out that the difference with using 500 repetitions was quantitatively in-
significant. Without loss of generality, the impulse response horizon is set to max{h} = 48
in the future.
17For a full discussion on different measures of half-life shocks and estimating procedures

see Murray and Papell (2002) and Kilian and Zha (2002).
18This is the same definition as in Taylor et al. (2001). However, please note that

half-life of shocks could also, in theory, be oscillatory.
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Second, we aggregate the ‘true’ DGP at different levels: i = 3 and i = 12
in the case of the ‘monthly’ true DGP; i = 2 in the case of ‘fortnight’ true
DGP; and i = 3 in the case of ‘ten days’ true DGP. We estimate the ESTAR
models as in Equation (3) and calculate the average half-life of shocks for
the cases where a significant estimate of γ is found.
Table 7 reports the results of applying this procedure in the case of the

same large and small samples outlined above. For large samples, the half
life of shocks, for a 10% shock, is between 15 and 17 months for the true
DGP (lines 1, 4, and 6). However, the half-life of shocks of the temporally
aggregated data lie between 20 and 36 months (lines 2, 3, 5, and 7). In
the case of small samples, for a 10% shock, the true DGPs exhibit half-lives
between 6 and 13 months (lines 8, 11, and 13). The aggregated models show
much lower adjustment responses, between 16 and 36 months (lines 9, 10,
12, and 14).
In order to compare our simulation results with actual estimates, Tables

8, 9 and 10 show the half-life shocks for the nonlinear models estimated
on actual data reported in Tables 4, 5 and 6. Employing the simulations
results as a benchmark, we can then use these empirical estimates of half-
lives of shocks to try to approximate the nature of the true DGP of PPP
deviations. We will concentrate on the speed of adjustment to shocks of
the Dollar/Pound, Dollar/French Franc, and Dollar/Deutsche Mark. The
difference between the speed of adjustment to shocks in the monthly and
annual data is around twenty four months for the three different currencies.
The difference between the adjustment at quarterly and annual data is either
zero or twelve months. This pattern is the one followed by the Monte Carlo
results when we aggregate a true DGP from monthly to quarterly and annual
data.

5 Conclusions

Taylor (2001) demonstrated that if the DGP is a nonlinear threshold pro-
cess, and if the data employed in estimation is temporally aggregated, then
linear estimates of adjustment speeds can be substantially downward biased.
We have demonstrated in this article that a similar result holds for ESTAR
models estimated on temporally aggregated data when the true DGP is ES-
TAR. In addition, if the true DGP is as postulated, the significance of more
than one autoregressive term in some monthly estimates raises the possibility
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that adjustment speeds are even faster than obtained in monthly estimates.
Consequently, temporal aggregation provides a further potential solution to
the speed of adjustment puzzle raised by Rogoff.
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Table 1. Results for simulated aggregated data of ESTAR model

True DGP: yt = e
−γy2t−1yt−1 + ut

Estimated model: y∗t = a+B(L)y
∗
t−1e

−γ(y∗t−1−a)2

Aggregation i=12 (annual aggregation)
γ = 1 γ = 1
se = 0.035 se = 0.01
sample10, 000 sample 200 sample10, 000 sample 200

Mean γ 4.50 5.00 7.62 10.50
sd γ 0.45 3.85 0.70 6.80
t(γ) 1.000 0.240 1.000 0.370
R2 0.60 0.60 0.86 0.85
se 0.077 0.077 0.025 0.025
LM Arch 1.000 0.183 0.300 0.070
AR(2) 1.000 0.750 1.000 0.860
AR(3) 0.995 0.095 0.990 0.120
AR(4) 0.220 0.075 0.270 0.065
AR(5) 0.070 0.070 0.060 0.060

γ = 0.50 γ = 0.50
se = 0.035 se = 0.01
sample10, 000 sample 200 sample10, 000 sample 200

Mean γ 2.78 3.30 4.07 5.95
sd γ 0.24 2.00 0.38 4.58
t(γ) 1.000 0.360 1.000 0.340
R2 0.69 0.69 0.90 0.89
se 0.082 0.082 0.026 0.026
LM Arch 0.995 0.010 0.157 0.058
AR(2) 1.000 0.770 1.000 0.840
AR(3) 0.996 0.120 1.000 0.123
AR(4) 0.220 0.080 0.290 0.067
AR(5) 0.070 0.070 0.077 0.043
Notes: sd denotes standard deviation of coefficient γ. t(γ) denotes ratio of significant γ
parameter where empirical significance level is obtained through Monte Carlo. se denotes
standard error of equation. LM Arch is the ratio of rejection of the Lagrange Multiplier test
for ARCH in the residuals. AR(p) denotes ratio of significant autoregressive term
of order p
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Table 2a. Results for simulated aggregated data of ESTAR model

True DGP: yt = e
−γy2t−1yt−1 + ut

Estimated model: y∗t = a+B(L)y
∗
t−1e

−γ(y∗t−1−a)2

Aggregation i=3 (quarterly aggregation)
γ = 1 γ = 1
se = 0.035 se = 0.01
sample 40, 000 sample 120 sample 40, 000 sample 120

Mean γ 2.14 3.50 2.37 13.80
sd γ 0.09 3.00 0.17 19.50
t(γ) 1.000 0.390 1.000 0.270
R2 0.86 0.85 0.96 0.92
se 0.047 0.047 0.013 0.013
LM Arch 0.584 0.092 0.128 0.085
AR(2) 1.000 0.460 1.000 0.510
AR(3) 1.000 0.090 1.000 0.110
AR(4) 0.370 0.066 0.350 0.083
AR(5) 0.055 0.055 0.077 0.066

γ = 0.50 γ = 0.50
se = 0.035 se = 0.01
sample 40, 000 sample 120 sample 40, 000 sample 120

Mean γ 1.10 2.20 1.20 11.70
sd γ 0.05 2.54 0.09 19.25
t(γ) 1.000 0.375 1.000 0.240
R2 0.90 0.88 0.97 0.92
se 0.048 0.047 0.014 0.014
LM Arch 0.310 0.070 0.127 0.087
AR(2) 1.000 0.510 1.000 0.490
AR(3) 1.000 0.100 1.000 0.090
AR(4) 0.350 0.050 0.380 0.062
AR(5) 0.070 0.070 0.068 0.078
Notes: see notes in table 1
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Table 2b. Results for simulated aggregated data of ESTAR model

True DGP: yt = e
−γy2t−1yt−1 + ut

Estimated model: y∗t = a+B(L)y
∗
t−1e

−γ(y∗t−1−a)2

Aggregation i=3 (monthly aggregation)
γ = 0.3
se = 0.024
sample 10, 000 sample 360

Mean γ 0.71 1.09
sd γ 0.08 0.75
t(γ) 1.000 0.390
R2 0.95 0.93
se 0.033 0.033
LM Arch 0.114 0.100
AR(2) 1.000 0.890
AR(3) 0.950 0.110
AR(4) 0.130 0.080
AR(5) 0.052 0.055
Notes: see notes in table 1

Table 3. Results for simulated aggregated data of ESTAR model

True DGP: yt = e
−γy2t−1yt−1 + ut

Estimated model: y∗t = a+B(L)y
∗
t−1e

−γ(y∗t−1−a)2

Aggregation i=2 (monthly aggregation)
γ = 0.4
se = 0.028
sample 10, 000 sample 360

Mean γ 0.67 1.01
sd γ 0.08 0.76
t(γ) 1.000 0.390
R2 0.95 0.93
se 0.033 0.033
LM Arch 0.126 0.084
AR(2) 1.000 0.700
AR(3) 0.590 0.080
AR(4) 0.070 0.050
AR(5) 0.050 0.045
Notes: see notes in table 1
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Table 4. Results from ESTAR models of real exchange rates
montly observations 1973-2001.

δ̂0 β̂1 β̂2 γ̂ s p AR(2)

FRF -0.025 1.037 β2 = 0 0.779 0.031 0.55
(0.031) (0.022) (0.313)

BEF 0.005 1.018 β2 = 0 0.331 0.033 0.46
(0.048) (0.020) (0.185)

DEM -0.027 1.033 β2 = 0 0.625 0.033 0.27
(0.036) (0.021) (0.248)

ITL -0.045 1.017 β2 = 1− β1 0.336 0.030 0.15
(0.043) (0.022) (0.194)

JPY 0.479 1.105 β2 = 1− β1 0.155 0.033 0.05
(0.059) (0.053) (0.082)

NLG 0.041 1.022 β2 = 0 0.481 0.033 0.48
(0.046) (0.022) (0.236)

GBP 0.109 1.094 β2 = 0 0.595 0.031 0.16
(0.059) (0.069) (0.361)

Notes: Numbers in parentheses are Newey-West standard error estimates..

s denotes the residuals standard error. pAR(2) denotes p-value of second
autoregressive term.in the ESTAR estimation.

Source: Table from Venetis et al. (2002)
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Table 5. Results from ESTAR models of real exchange rates
quarterly observations 1973.I-1998.IV

δ̂0 β̂1 β̂2 γ̂ s

FRF 0.095 1.32 β2 = 1− β1 0.964 0.047
(0.033) (0.096) (0.152)

DEM 0.096 1.233 β2 = 1− β1 0.794 0.053
(0.036) (0.099) (0.125)

CAN 0.00 1.181 β2 = 1− β1 0.706 0.019
(0.078) (0.043)

ITL 0.00 1.154 β2 = 1− β1 0.909 0.054
(0.113) (0.247)

JPY 0.00 1.350 β2 = 1− β1 0.725 0.057
(0.103) (0.094)

SW 0.00 1.292 β2 = 1− β1 0.724 0.059
(0.099) (0.139)

GBP 0.00 1.144 β2 = 1− β1 1.069 0.052
(0.103) (0.324)

Notes: Numbers in parentheses are Newey-West standard error estimates..

s denotes the residuals standard error
Source: Table from Kilian and Taylor (2003)

Table 6. Results from ESTAR models of real exchange rates
on annual data.

δ̂0 β̂1 β̂2 γ̂ s

Dollar/FrF -0.083 1.12 β2 = 1− β1 4.03 0.076
1804-1992 (0.025) (0.15) (1.54)
Dollar/Pound -0.210 1.18 β2 = 1− β1 2.43 0.069
1792-1992 (0.019) (0.069) (0.54)
Dollar/DM -0.033 1.09 β2 = 1− β1 2.52 0.095
1795-1913 (0.032) (0.08) (0.60)

Notes: Numbers in parentheses are Newey-West standard error estimates..

s denotes the residuals standard error
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Table 7: Estimated half-lives of shocks in months from Temporally aggregated Data:
True DGP yt = e−γy

2
t−1 + ut where ut = N(0, se)

Shock: 10% 20% 30%
Months Months Months

Line Temporal Aggregation Large Sample
1 True DGP γ = 1, se = 0.035 : yt = e−y

2
t−1yt−1 17 15 12

2 i=3: γ = 2.14, se = 0.047 24 18 12
3 i=12: γ = 4.5, se = 0.077 36 24 12
4 True DGP γ = 0.4, se = 0.028 17 16 14
5 i=2 γ = 0.67, se = 0.035 21 19 16
6 True DGP γ = 0.3, se = 0.024 15 13 11
7 i=3 γ = 0.71, se = 0.035 20 17 14

Temporal Aggregation Small Sample
8 True DGP γ = 1.65, se = 0.035 13 11 8
9 i=3: γ = 3.5, se = 0.047 21 15 12
10 i=12: γ = 5, se = 0.077 36 24 12
11 True DGP γ = 0.7, se = 0.028 10 8 7
12 i=2: γ = 1, se = 0.035 19 17 14
13 True DGP γ = 0.5, se = 0.024 6 4 3
14 i=3: γ = 1, se = 0.035 16 13 9

Table 8. Estimated half-lives shocks in months
for monthly model 1973-2001

γ̂ Shock 10%
Real rate Months
FRF EST-AR(1) 0.78 12
BEF EST-AR(1) 0.33 25
DEM EST-AR(1) 0.62 13
NLG EST-AR(1) 0.48 18
JPY EST-AR(2) 0.15 40
ITL EST-AR(1) 0.30 39
ITL EST-AR(2) 0.34 36
GBP EST-AR(1) 0.50 24
GBP EST-AR(2) 0.54 22
Source: Table from Venetis et al. (2002)
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Table 9. Estimated half-lives shocks in months
for quarterly model. 1973.I-1998.IV

γ̂ Shock 10%
Real rate Months
FRF EST-AR(2) 0.86 36
DM EST-AR(2) 0.79 36
CA EST-AR(2) 0.71 40
IT EST-AR(2) 0.91 36
JP EST-AR(2) 0.73 40
SW EST-AR(2) 0.72 40
GBP EST-AR(2) 1.07 36
Source: Table from Kilian and Taylor (2003)

Table 10. Estimated half-lives shocks in months
for annual model

γ̂ Shock 10%
Real rate Months
FRF EST-AR(2) 1802-1992 4.04 36
GBP EST-AR(2) 1792-1992 2.44 48
DM EST-AR(2) 1794-1913 2.52 48
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Deterministic plot of ∆ y (vertical axis), 1ty − (horizontal axis) from ESTAR  
with γ  = 0.8. 
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