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ABSTRACT 
 
 

 

In Barrett's (1994) paper on transboundary pollution abatement is shown that if the 

signatories of an international environmental agreement act in a Stackelberg fashion, then, 

depending on parameter values, a self-enforcing IEA can have any number of signatories 

between two and the grand coalition. Barrett obtains this result using numerical simulations 

and also ignoring the fact that emissions must be non-negative. Recent attempts to use 

analytical approaches and to explicitly recognize the non-negativity constraints have 

suggested that the number of signatories of a stable IEA may be very small. The way such 

papers have dealt with non-negativity constraints is to restrict parameter values to ensure 

interior solutions for emissions. We argue that a more appropriate approach is to use Kuhn-

Tucker conditions to derive the equilibrium of the emissions game. When this is done we 

show, analytically, that the key results from Barrett's paper go through. Finally, we explain 

why his main conclusion is correct although his analysis can implicitly imply negative 

emissions. 
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1 Introduction

Over the last two decades, one of the factors driving an increased sense of interdepen-
dence between countries is the need to tackle global environmental problems such as
climate change, ozone depletion, loss of biological diversity amongst others. Tackling
such problems requires some form of agreement between countries, and the Framework
Convention on Climate Change, the Montreal Protocol on Substances that Deplete the
Ozone Layer, and the Convention on Biodiversity are important examples of such In-
ternational Environmental Agreements (IEAs). However, the very different experience
of these agreements illustrates the crucial importance of understanding how to design
agreements which give countries incentives to both join and abide by such agreements.
Economists have emphasized two important features: agreements must be profitable,
that is there must be potential gains to all signatory countries; more importantly, in
the absence of any international authority, agreements must be self-enforcing, i.e. there
must be incentives for countries acting in their own self-interest to want to join or stay
in an agreement.
One of the earliest definitions of a self-enforcing agreement was the concept of a

stable IEA, which means that no individual signatory country has any incentive to leave
the IEA, and no non-signatory country has an incentive to join, taking as given the
membership decisions of all other countries.1 Models based on this concept include
Carraro and Siniscalco (1991,1993), Hoel (1992), Barrett (1994), Na and Shin (1998)
amongst many others. Carraro and Siniscalco (1991) and Hoel (1992) have shown that
if signatory countries act in Cournot fashion with respect to non-signatories, then a stable
IEA consists of 3 countries when marginal environmental damage is constant (i.e., when
the countries’ best-replay functions are orthogonal), and of 2 countries when marginal
damage increases with emissions (i.e., when the best-replay functions have a negative
slope), in both cases irrespective of the number of countries affected.2 If they act in a
Stackelberg fashion, then, depending on parameter values, a stable IEA can have any
number of signatories between two and the grand coalition of all countries. But the gain
in global welfare from the stable IEA relative to the non-cooperative outcome is inversely
related to the number of signatories. See Barrett (1994).3 The rationale for the difference
in outcomes between Cournot and Stackelberg models is that if one country was to leave
the IEA, with Cournot behaviour, the non-signatories expand their emissions and the

1There are a number of other concepts of what makes an agreement self-enforcing. Chander and
Tulkens (1995, 1997) draw on cooperative game concepts. See Tulkens (1998) for a systematic compari-
son of these two approaches. Other concepts, such as far-sightedness, have been developed, for instance,
by Ecchia and Mariotti (1997,1998), Ray and Vohra (2001) and Diamantoudi and Sartzetakis (2002b);
see Finus (2001) and Wagner (2001) for excellent overviews, and, more recently, Barrett (2003) for a
broad exposition of the strategy of environmental treaty-making.

2Carraro and Siniscalco (1991,1993) also show that the number of signatory countries can be increased
by means of self-financed transfers. However, expanding coalitions requires some form of commitment.
Petrakis and Xepapadeas (1996) extend this result to the case in which the countries are not identical
using an emissions game with orthogonal best-replay functions as the one studied by Hoel (1992). Hoel
and Schneider (1997) point out that the prospect of receiving a transfer tends to reduce the incentive a
country might have to commit itself to cooperation so that if the disincentive is strong, total emissions
will be higher with side payments. More recently, Barrett (2001) has shown that with strong asymmetry
side payments become the vehicle for increasing participation in a cooperative agreement.

3These results apply to the case with increasing marginal damage. For the case of constant marginal
damage, it is easy to show that the Cournot and Stackelberg equilibria coincide so that leadership does
not increase the level of cooperation attained by a Cournot-IEA.
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remaining signatory countries parti ally accommo date this by reducing their emissions.
On the other hand with Stackelberg behaviour, if a signatory was to leave the IEA the
remaining signatories would expand their emissions. Thus the incentives to leave an IEA
are greater with Cournot behaviour than with Stackelberg.
Since this model has become something of a workhorse tool to study IEAs, it is im-

portant that its properties are well understood. There are two, related, weaknesses in
the early paper developed by Barrett (1994). First, it relied on numerical simulations
to derive the main findings. Second, it ignored the need to ensure that emissions would
be non-negative (or, equivalently, in an abatement game, that abatement did not ex-
ceed the unabated level of emissions).4 Recent papers have attempted to correct these
weaknesses and to evaluate how they could affect the results. Finus (2001) presents an
analytical generalization of Barrett’s results and shows that the higher the level of envi-
ronmental damages, the greater the size of the stable IEA. However, his proof assumes
interior solutions, and it is easy to show that high environmental damages imply that,
unconstrained, emissions will become negative. Diamantoudi and Sartzetakis (2002a)
and Rubio and Casino (2001) also use analytical approaches, but recognize the need to
ensure that emissions are non-negative. They reach even more pessimistic conclusions -
that even with Stackelberg behaviour the number of signatories of a stable IEA will be
small - no greater than four.
However the way Diamantoudi and Sartzetakis deal with the non-negativity con-

straint is to compute an interior solution and then restrict parameter values to ensure
that the resulting emissions are always strictly positive. It is not surprising that this
restriction on parameters restricts the number of signatories in a stable IEA. Rubio and
Casino go further and restrict parameters to ensure that payoffs are non-negative, which
is difficult to justify. We argue that neither of these approaches is appropriate. In this
paper we also use an analytical approach and deal with the non-negativity constraint
by simply imposing it directly on the choice of emissions by both signatory and non-
signatory countries and using Kuhn-Tucker conditions to derive the equilibrium of the
game. Then for some parameter values, the emission game will result in corner solutions.
Our findings show for the Stackelberg equilibrium of the emissions game that when

the marginal damage is high enough the unique stable IEA is the grand coalition and that
the number of countries in a stable IEA is directly related to the level of marginal damage
so that when marginal damage is low enough a stable IEA consists of at most 3 countries.5

The rationale for this kind of relationship is given by the fact that the interdependence
among the countries occurs through the damage function. Thus when the marginal
environmental damage cost is relatively high, the countries in the agreement choose
emission levels which induce the non-signatories to select low emissions, making exit
from the agreement unprofitable. With lower marginal environmental damage cost, these

4These weaknesses do not appear in Carraro and Siniscalco’s (1991) paper. These author develop an
analytical solution for a symmetric Cournot equilibrium. In their model they assume an environmental
damage function that is quadratic with respect to the local emissions but linear with respect to the
imported emissions, i.e., environmental damage depends on the product between local emissions and
total emissions that affect the country. As a result of this specification the solution of the game yields
always interior solutions. In this paper, we focus on a global environmental problem so that we assume
that the environmental damage is a quadratic function of the aggregate emissions.

5We have also shown analytically that when the environmental damage is a quadratic function of
the aggregate emissions and the non-negativity constraints are taken into account, the previous results
obtained by Carraro and Siniscalco (1991) for the Cournot equilibrium are unaffected. See Rubio and
Ulph’s (2002a) working paper.
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effects are weakened, so that some countries find it profitable to leave the agreement,
i.e. the free-riding cannot be avoided by the leadership. Finally, we clarify the previous
results in the literature which have been derived assuming interior solutions. According
to our results restricting parameter values to guarantee interior solutions is a sufficient
condition to get stable IEAs with a small number of signatories but it is not a necessary
condition. In this paper we show that a stable IEA with a small number of countries
can involve a corner solution. In other words, our results establish that what is really a
necessary and sufficient condition to get stable IEAs with a small number of signatories
is that the marginal environmental damage be low.
Thus we have shown in this paper that the results derived for the model of stable IEAs

in paper by Barrett (1994), which used numerical calculations on the linear-quadratic
version of the model and ignored the issue of non-negative emissions, carry through when
derived analytically in a model which takes seriously the need to ensure that emissions
are non-negative. The reason why taking account of non-negative emissions does not
change the main results of the literature is that, as we shall show, the definition of a
stable agreement depends on the sign of the difference between payoffs to signatories
and non-signatories as the number of signatories varies. Taking account of the need
for emissions to be non-negative obviously changes the value of these payoffs, but not
the sign of differences in payoffs. Thus this paper not only derives analytically results
for the Barrett (1994) model using an appropriate treatment of non-negative emission
constraints, but disproves the claim that taking account of such constraints makes a
significant difference to known results.
Finally, we would like to clarify three issues. Firstly, we want to recognize explic-

itly that our results have been obtained assuming that all countries are identical as
in Barrett’s (1994) paper. This assumption, although restrictive, allows us to get an
analytical solution of the game and thus to advance in the analysis of the stability of
IEAs.6 Secondly, we want to highlight that it is important, at least for one case, to
extend the analysis in order to consider the possibility of zero emissions not only from a
mathematical point of view but also from an economic point of view. We are thinking
about the case of non essential emissions. In a partial equilibrium analysis as the one we
develop in this paper emissions are non essential when the marginal benefit from emis-
sions is positive but finite for zero emissions. For this type of emissions if the marginal
damage is big enough it makes sense to consider that emissions can be completely elim-
inated. This means that there exists a substitute so that if the damage is big enough,
emissions of a particular pollutant can be zero. This is the case studied in this paper
where we assume that the benefit from emissions is given by a quadratic-linear function
so that the marginal benefit is positive for zero emissions but finite. Finally, following
the approach adopted by Carraro and Siniscalco (1993), Barrett (1994) and Chander
and Tulkens (1997) among others we focus our analysis on the case where only one IEA
is formed and the only question remaining is the size of the self-enforcing agreement.
This approach is justified in this paper because our aim is to review Barrett’s (1994)
numerical analysis in order to evaluate analytically the robustness of his results when the
non-negativity constraints are taking into account. Nevertheless, this assumption does
not seem so strong for global environmental problems, as the climate change problem,
for which IEAs are usually unique and launched by the United Nations. In the last
analysis, it could be interpreted as an institutional constraint.

6Really in this kind of models the countries are identical only ex-ante because ex-post, in the equilib-
rium, there are two types of countries, signatories and non-signatories, whose behaviour is not symmetric.
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In section 2 we present the basic model of an international emissions game, solve for
the cooperative and non-cooperative equilibria and introduce the definition of a stable
international environmental agreement. In section 3 we derive the stability results for
Stackelberg behaviour. Section 4 concludes.

2 An International Emissions Game

2.1 The Basic Model

In this section we present the basic linear-quadratic model of an international emissions
game.7 There are N identical countries, i = 1, ..., N. We define qi ≥ 0 as the level of
emissions generated by country i, Qi ≡ k �=i qk the total emissions generated by all
countries other than i, and Q = k qk = Qi + qi as the total emissions generated by
all N countries. Each country derives a gross benefit from its emissions (think of the
economic benefits of burning fossil fuels) denoted: B(qi) ≡ αqi − (β/2)q2i . Each country
also suffers environmental damage which depends on the global level of emissions, and
the damage cost function for each country is denoted: C(Q) ≡ (γ/2)Q2. Then each
country has a net benefit(payoff) function:

π(qi, Qi) ≡ αqi − β

2
q2i −

γ

2
(qi +Qi)

2.

We assume that α > 0, β > 0 and γ > 0. It should be clear that w.l.o.g. we can normalize
one of the parameters and we choose to normalize by setting γ = 1. To emphasize this
normalization we rewrite the net benefit function as:

π(qi, Qi) ≡ aqi − b
2
q2i −

1

2
(qi +Qi)

2. (1)

We shall think of b as β/γ - the ratio of the (absolute) slope of the marginal benefit curve
and the slope of the marginal damage cost curve, so a low value of b is to be interpreted
as a (relatively) high marginal damage cost.

2.2 Cooperative and Non-Cooperative Outcomes

When all countries cooperate, emissions for each country are chosen to maximize ag-
gregate net payoffs. As is well known this requires that emissions for each country are
chosen so that the marginal benefit it derives from an extra unit of emissions equals the
additional damage cost it imposes on all countries. It is straightforward to check that
the cooperative levels of emissions and per country payoff are given by:

q∗ ≡ a

b+N2
; π∗ ≡ a2

2(b+N2)
. (2)

7In this model, as in the early papers discussed in the introduction, we deal with a flow pollutant.
For analysis using a stock pollutant see Rubio and Ulph (2002b, 2003). Note also that while we work
with an emission game, it is trivial to show that this is equivalent to a model of an abatement game
with given level of unabated emissions. The only thing that it is necessary to go from the emission game
to the abatement game is to properly define the level of unabated emissions. In our linear-quadratic
emissions game this level is given by the emissions that maximize the gross benefit then abatement is
defined as the difference between this level of emissions and the current emissions.

admin
6



When countries act non-co op eratively, each country takes as give n the emissions s et by
other countries, and chooses its own emissions to maximize its own net benefit. It will
set its emissions so that the marginal benefit it derives from an extra unit of emissions
equals the additional damage cost it imposes on itself. It is straightforward to check
that the non-cooperative levels of emissions and per country payoff are given by:

q̄ ≡ a

b+N
; π̄ ≡ a

2[b−N(N − 2)]
2(b+N)2

. (3)

As expected, q̄ > q∗, π̄ < π∗, so non-cooperative behaviour leads to higher emissions and
lower payoffs than cooperative behaviour. Note also that emissions are strictly positive
in both cases, so we have not worry about non-negativity constraints.
Finally we define the gains to full cooperation by:

G ≡ π∗ − π̄

π̄
=

N2(N − 1)2
(b+N2)[b−N(N − 2)] . (4)

It is clear that the gains from cooperation are greater the smaller is b, i.e. the greater are
marginal damage costs (relative to the (absolute) slope of the marginal benefit curve).
This makes sense - the more damaging is global pollution the greater are the gains from
cooperating to deal with it.
However, as noted in the introduction, it is not sufficient to show that countries will

be better off if they cooperate than if they do not cooperate (the profitability issue). One
also needs to ensure that entering an agreement is in the interest of the countries who
do so- an agreement must be self-enforcing. In this paper we use the notion of stability
of an IEA as our concept of an IEA being self-enforcing. We define this formally in the
next subsection.

2.3 Stable International Environmental Agreements

We model an International Environmental Agreement as a two-stage game, in which
in the first stage (the Membership Game) each country decides whether or not to join
an IEA, and in the second stage (the Emissions Game) each country determines its
emissions. We describe each game briefly, in reverse order.
The Emissions Game
Suppose that, as the outcome of the first-stage game, there are n signatory countries

(a typical signatory being denoted by s) and N − n non-signatory countries (a typical
non-signatory being denoted by f, for fringe or free-rider). Non-signatory countries
choose emissions in the same way that countries did when acting non-cooperatively -
each country takes as given the emissions of all other countries and chooses its emissions
to maximize its own net benefits. Using symmetry, this will define a non-signatory
reaction function linking the emissions of a typical non-signatory country to the emissions
of a typical signatory country. Signatory countries choose emissions in the same way
countries did when they acted cooperatively - the emissions of each signatory are chosen
to maximize the aggregate payoff of the n signatories.
Two issues need further clarification. First, there is the question of the timing, or

really commitment, of the emissions of signatories relative to non-signatories. Following
Barrett (1994) we argue that membership of an IEA acts as a form of commitment
device, which we model by thinking of signatories setting their emissions before non-
signatories. In that case signatories can calculate what emissions non-signatories will
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choose (in terms of the non-signatory reaction function), and choose their own emissions
to maximize aggregate net benefit. This is the Stackelberg model.8

The second issue is that emissions by signatories and non-signatories have to be non-
negative and we just impose these as constraints on the decision problems of signatories
and non-signatories. So for some parameter values the emissions of either a signatory or
non-signatory could be zero (a corner solution).
The outcome of the emission game then, is that, for any number of signatories n we

can define the equilibrium payoffs to signatory and non-signatory countries: πs(n),πf(n).
The Membership Game
We follow Hoel (1992), Carraro and Siniscalco (1993), Barrett (1994) and others

in saying that an IEA is self-enforcing if it is stable, where the concept of stability
is borrowed from the literature on cartel stability (d’Aspremont et al (1983)). For
2 ≤ n ≤ N we define ∆(n) = πs(n)− πf(n− 1); then:

Definition 1 An IEA with n signatories is stable if it satisfies the conditions: Inter-
nal Stability: ∆(n) ≥ 0, i.e. πs(n) ≥ πf(n − 1); External Stability: ∆(n + 1) ≤
0, i.e.πf(n) ≥ πs(n+ 1).

Internal stability simply means that any signatory country is at least as well off
staying in the IEA as quitting, assuming that all other countries do not change their
membership decisions. External stability similarly requires that any non-signatory is at
least as well off remaining a non-signatory than joining the IEA, again assuming that
all other countries do not change their membership decision.
We can also think of a stable IEA as a Nash equilibrium of a simultaneous open

membership game where the strategies for each country are to sign or not sign.9 A
country takes as given the membership decisions of all other countries. Suppose these
have resulted in a membership of m, 0 ≤ m ≤ N − 1. Then the payoffs to a country are
πs(m+ 1) if it signs and πf(m) if it does not. So it will join if πs(m+ 1) ≥ πf(m) and
not join otherwise. For an IEA with n∗ members to constitute a Nash equilibrium of the
Membership Game, it must have paid each signatory to sign, so πs(n∗) ≥ πf(n∗ − 1).
Similarly it must have paid each non-signatory not to join, so πf(n∗) ≥ πs(n∗+1). These
are just the conditions for Internal and External Stability.
In this next section we analyse stable IEAs for the Stackelberg model with non-

negative emissions.

3 Stable Stackelberg IEAs with Non-Negative Emis-
sions

In this section we analyse stable IEAs when signatory countries act collectively as a
Stackelberg leader and emissions are restricted to be non-negative. We begin with the
emissions game.

8We would like to explicitly acknowledge that this notion of equilibrium for the emissions game is the
Stackelberg version of the “Partial Agreement Nash Equilibrium (PANE) with respect to a coalition”
defined by Chander and Tulkens (1997)

9In open membership games, any player is free to join or leave a coalition. In our case each country
chooses one of the two possible strategies and the agreement is formed by all players who choose to sign.
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3.1 Stackelberg Emissions Game with Non-Negative
Emissions

Suppose there are n signatories and N − n non-signatories. A non-signatory country k
takes as given Qfk and chooses qfk to solve:

max
qfk≥0

πfk = aqfk −
b

2
q2fk −

1

2
(qfk +Qfk)

2.

The first order condition is:

∂πfk
∂qfk

= a− bqfk − (qfk +Qfk) ≤ 0, qfk ≥ 0, qfk ∂π
f
k

∂qfk
= 0. (5)

(5) defines the non-signatory reaction function for a country, k = 1, ..., N − n, allowing
for the fact that emissions must be non-negative, so part of the reaction function has
qfk = 0. Now signatories are assumed to coordinate in order to maximize their collective
net benefits taking into account the reaction function of the followers:

max
qs1,...,qsn,qf1,...,qf,N−n≥0

Πs =
n

i=1

πsi =
n

i=1

[aqsi − b
2
q2si −

1

2
(qsi +Qsi)

2].

s.t. − a+ bqfk + (qfk +Qfk) ≥ 0.
Under the assumption of symmetry we have that qf1 = ... = qf(N−n) = qf , qs1 = ... =
qsn = qs and Q = nqs + (N − n)qf , so that the previous optimization problem reduces
to:

max
qs≥0, qf≥0

nπs = n[aqs − b
2
q2s −

1

2
(nqs + (N − n)qf)2]

s.t. − a+ bqf + nqs + (N − n)qf ≥ 0, (6)

The Lagrange function for the problem is

L = n[aqs − b
2
q2s −

1

2
(nqs + (N − n)qf)2]

+λ (−a+ bqf + nqs + (N − n)qf) ,
and the KTCs are

∂L

∂qs
= n[a− bqs − n(nqs + (N − n)qf) + λ] ≤ 0, (7)

qs ≥ 0, qs
∂L

∂qs
= 0,

∂L

∂qf
= −n(N − n)(nqs + (N − n)qf) + λ(b+N − n) ≤ 0, (8)

qf ≥ 0, qf
∂L

∂qf
= 0,

∂L

∂λ
= −a+ bqf + nqs + (N − n)qf ≥ 0, (9)

λ ≥ 0, λ
∂L

∂λ
= 0.
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Equilibrium in the emissions game involves solving (7)-(9) simultaneously, taking
account of non-negativity constraints. In principle there are three possibilities:
(i) Interior Solution (qs > 0, qf > 0). From (7)-(9) we obtain:

qs =
a [b2 − (N − n)(n− 2)b+ (N − n)2]

b[(b+N − n)2 + bn2] , (10)

qf =
a [b2 + (N + n2 − 2n)b− (N − n)n]

b[(b+N − n)2 + bn2] , (11)

so that qs > 0, qf > 0 iff

g(b, n) = b2 − (N − n)(n− 2)b+ (N − n)2 > 0,
h(b, n) = b2 + (N + n2 − 2n)b− (N − n)n > 0.

(ii) Signatory Corner Solution (qs = 0, qf > 0). From (7)-(9) this requires:

qf =
a

1 + c(N − n) , g(b, n) ≤ 0. (12)

(iii) Non-Signatory Corner Solution (qs > 0, qf = 0). From (7)-(9) this requires:

qs =
a

n
, h(b, n) ≤ 0. (13)

It is easy to show that for the Stackelberg equilibrium a solution qs = qf = 0 does
not satisfy the KTCs. Given the emissions for each kind of solution the net benefits can
be obtained by substitution.
(i) Interior Solution:

πs (n) =
a2

2b
1− N2b

(b+N − n)2 + bn2 , (14)

πf (n) =
a2

2b
1− (b+ 1)N

2(b+N − n)2
[(b+N − n)2 + bn2]2 . (15)

(ii) Signatory Corner Solution:

πs(n) = − a2(N − n)2
2(b+N − n)2 , πf(n) =

a2[b− (N − n)(N − n− 2)]
2(b+N − n)2 . (16)

(iii) Non-Signatory Corner Solution:

πs(n) = −a
2(b+ n(n− 2))

2n2
, πf(n) = −a

2

2
. (17)

Now note that for the interior solution the full-cooperative level of emissions is given
by Eq. (10) for n = N and that the full-noncooperative Cournot level of emissions is
given by Eq. (11) for n = 0. In these two cases we have an interior solution, for this
reason we focus in the rest of this Section on n = {1, 2, ..., N − 1}.
We now want to determine more precisely for which parameter values the three

different solutions occur. In other words, we try to study the parameter space in order
to characterize the different regions where each kind of solution occurs. This analysis
is developed in the next pages and the final results are represented in Fig. 3. The
results clearly depend on the signs of g(b, n) and h(b, n). The next proposition fixes
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n and considers for which values of b we get each of the three solutions, and shows
that there are no values of b and n for which both g(b, n) ≤ 0 and h(b, n) ≤ 0. For
given n, h(b, n) = 0 presents a unique positive root that we denote by b1(n), g(b, n) is
always positive for b > 0 if n = {1, 2, 3}, if n = 4 g(b, 4) is zero for b = N − 4 and
positive otherwise, and if n > 4 g(b, n) = 0 presents two positive roots that we denote
by b2(n), b3(n) such that b1(n) < b2(n) < b3(n). Then we have:

Proposition 1 For any n, there exists a unique solution to the Stackelberg emissions
game with non-negative emissions as follows: (i) for n = {1, 2, 3}, there exists b1(n)
defined above such that for b ≤ b1(n) the equilibrium is the non-signatory corner solution
while for b > b1(n) the equilibrium is the interior solution; (ii) For n = 4, we have that
b1(4) < b = N − 4 so that: (a) for b ≤ b1(4) the equilibrium is the non-signatory corner
solution, (b) for b1(4) < b < N−4 the solution is the interior solution, (c) for b = N−4
the equilibrium is the signatory corner solution, (d) for b > N − 4 the equilibrium is
the interior solution; (iii) For 4 < n < N , we have that b1(n) < b2(n) < b3(n) so
that : (a) for b ≤ b1(n) the equilibrium is the non-signatories corner solution, (b) for
b1(n) < b < b2(n) the equilibrium is the interior solution, (c) for b2(n) ≤ b ≤ b3(n) the
equilibrium is the signatories corner solution, and (d) for b > b3(n) the solution is the
interior solution.

Proof: See Appendix A
This Proposition allows us to know, for a given value of n, which are the critical values

of b that determines one type of solution or another. For instance, we already know that
if b is enough big the Stackelberg equilibrium is an interior solution for any value of n. So
in order to complete the analysis of the parameter space we now characterize functions
b1(n), b2(n) and b3(n).
For b1(n) we have that b1(0) = b1(N) = 0 and it is easy to show that the function

presents a unique extreme in the interior of the interval (1, N−1) which is a maximum.10
Then there exists, at least, one integer, n̂, in that interval that maximizes b1(n) so that
b1(n̂) is the maximum value of the function given by an integer in domain {1, 2, ..., N −
1}.11 Given this behaviour of function b1(n) we are able of establishing for a given b
what is the solution to emissions game for non-signatories for different values of n. For
b ≤ b1(n̂), define x1 ≤ x2 as positive roots of b = b1(n) and n̄1 = I1(x1) as the smallest
integer no less than x1 and n̄2 = I2(x2) as the biggest integer not greater than x2.12 In
this case we obtain the following results:

Lemma 1 (i) If b > b1(n̂) we have that for all n, 1 ≤ n ≤ N − 1, the equilibrium will
be an interior solution; (ii) If b ≤ b̂1(n̂), there exist n̄1, n̄2 defined above such that the
equilibrium will be an interior solution for n such that 1 ≤ n < n̄1, n̄2 < n ≤ N − 1 and
a corner solution for n when n̄1 ≤ n ≤ n̄2.
10In order to study the behaviour of b1(n) in that interval we assume that n is a real number and

once we know the properties of b1(n) then we are able to characterize the values of b1(n) with respect
to n but now with n restricted to be an integer number. The same approach is followed to study b2(n)
and b3(n).
11If n̂ in the domain {1, 2, ...,N − 1} maximizes b1(n) in the interval [1,N − 1] then n̂ is unique.

However, if this is not the case, there could be two extremes, n̂1 and n̂1+1, only in the case that b1(n)
be a symmetric function.
12If n̂ in the domain {1, 2, ...,N −1} maximizes b1(n) in the real interval [1,N −1] then b1(n̂) = b1(n)

yields x1 = x2 = n̂. However, if the value of n that maximizes b1(n) is not an integer number then
b1(n̂) = b1(n) yields x1 < x2 and one of these two values is equal to n̂. If b1(n) is a symmetric function
then there are two extremes such that x1 = n̂1 and x2 = n̂1 + 1.
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Proof: See Appendix B
Moreover, as b1(N − 1) is the minimum value of b1(n) for n = {1, 2, ..., N − 1} we

can establish that:

Corollary 1 If 0 < b ≤ b1(N − 1), n̄1 = 1 and n̄2 = N − 1 so the only interior
solutions are n = 0 and n = N. In other words, the equilibrium is a corner solution for
non-signatories for all n, 1 ≤ n ≤ N − 1.

Proof : See Appendix C
We illustrate these results in Figure 1.13

For signatories emissions depend on whether b belongs to the interval [b2(n), b3(n)]. b2(n)
is a strictly convex, decreasing function defined in the interval [4, N ] with b2(4) = N − 4
and b2(N) = 0. Then for n = {4, 5, ..., N − 1} the maximum value of the function is
N − 4 and the minimum value is b2(N − 1).
On the other hand, b3(n) is a strictly concave function with a maximum value equal

to N(N − 4)/4 in interval (4, N) with b3(4) = N − 4 and b3(N) = 0. Then there exists
a unique integer, n∗, that maximizes b3(n). We denote by b3(n∗) the maximum value of
this function given by an integer in the domain {4, 5, ..., N − 1}.
For b2(N − 1) ≤ b ≤ N − 4, define x3 as the unique positive root of b = b2(n) and

x4 > x3 as the unique positive root of b = b3(n). Associated with this values, define
n̄3 = I3(x3) as the smallest integer no less than x3 and n̄4 = I4(x4) as the biggest integer
not greater than x4. For N − 4 < b ≤ b3(n∗), defines x3 ≤ x4 as the positive roots of
b = b3(n) and n̄3 = I3(x3) and n̄4 = I4(x4) as above. Then we have:

Lemma 2 (i) If b > b3(n∗) we have that for all n, 1 ≤ n ≤ N − 1, the equilibrium will
be an interior solution;(ii) If b2(N − 1) ≤ b ≤ b3(n∗), there exist n̄3, n̄4 defined above
depending on whether b is greater or less than N − 4 such that the equilibrium will be an
interior solution for n when 1 ≤ n < n̄3, n̄4 < n ≤ N−1 and a signatory corner solution
for n when n̄3 ≤ n ≤ n̄4;(iii) If 0 < b < b2(N−1), we have that for all n, 1 ≤ n ≤ N−1,
the equilibrium will be an interior solution.

Proof : See Appendix D
We illustrate this Lemma in Figure 2.14

Now we can completely characterize the parameter space. The next Proposition
summarizes Lemmas 1 and 2.

Proposition 2 (i) If b > b3(n∗) we have that for all n, 1 ≤ n ≤ N − 1, the equilibrium
will be an interior solution for signatories and non-signatories; (ii) If b1(n̂) < b ≤ b3(n∗),
the equilibrium will be an interior solution for non-signatories for all n, however for
signatories there exist n̄3, n̄4 defined above such that the equilibrium will be an interior

13In order to simplify the graphical representation we assume that the maximum value of real function
b1(n) is the integer number n̂.
14In order to simplify the graphical representation we assume that the maximum value of real function

b3(n) is given by the integer n∗.
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Figure 1: Corner solutions for non-signatories 
 

 
 
 

Figure 2. Corner solutions for signatories 
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solution for n when 1 ≤ n < n̄3, n̄4 < n ≤ N − 1 and a corner solution when n̄3 ≤
n ≤ n̄4;(iii) If b2(N − 1) ≤ b ≤ b1(n̂), there exist n̄1, n̄2, n̄3 and n̄4 defined above such
that the equilibrium will be an interior solution for non-signatories and for n when 1 ≤
n < n̄1, n̄2 < n ≤ N − 1 and a non-signatory corner solution for n when n̄1 ≤ n ≤ n̄2,
moreover the equilibrium will be an interior solution for signatories and for n when
1 ≤ n < n̄3, n̄4 < n ≤ N−1 and a signatory corner solution for n when n̄3 ≤ n ≤ n̄4;(iv)
If b1(N − 1) < b < b2(N − 1), the equilibrium will be an interior solution for signatories
for all n and a corner solution for non-signatories also for all n except for n = N−1;(v)
If 0 < b ≤ b1(N − 1), the equilibrium will be an interior solution for signatories for all
n and a corner solution for non-signatories also for all n.

Proof : See Appendix E
We illustrate this Proposition in Figure 3.15

As can be seen the parameter space is divided into five regions which are defined by
four critical values of b. The first one is the maximum value of b3(n). Above this value
the equilibrium will be an interior solution for signatories and non-signatories. Under
this value the corner solutions appear. The second critical value is the maximum value
of b1(n). Between these two critical values the equilibrium will be a corner solution for
signatories for some values of n. The third critical value is the minimum value of b2(n),
i.e. b2(N − 1). In this third region the type of equilibrium depends on n. For low values
of n we will find a corner solution for non-signatories. However for high values of n the
signatories will choose zero emissions. Finally, the last critical value is b1(N − 1) which
defines a transition region almost identical to the bottom region for which the equilibrium
will be an interior solution for signatories and a corner solution for non-signatories.
Thus for any parameters N and b, Proposition 2 indicates for, any number of signa-

tories n, what type of solution there is to the Stackelberg emissions game, with corner
solutions to take account of non-negative emissions constraints. Next using these re-
sults and the corresponding outputs and equilibrium payoff functions for signatories and
non-signatories we conduct the stability analysis.

3.2 Membership Game for StackelbergModel with Non-Negative
Emissions

In this Section we show that the scope of the international cooperation for controlling
an environmental problem depends critically on the level of the marginal environmental
damage. We begin analyzing the stability for (relatively) high marginal damages, i.e.,
for low values of b.

Proposition 3 If b ≤ b1(N − 1) the unique stable IEA of the Stackelberg model with
non-negative emissions is the grand coalition.

15In order to simplify the graphical representation we assume that the maximum values of real func-
tions b1(n) and b3(n) are given by the integers n̂ and n∗. Notice that as b2(n) is a decreasing, strictly
convex function and b2(N) = b1(N) = 0, b1(n) must be also a strictly convex function for big enough
values of n. The previous results apply for N > 5 although with minimal changes they are also valid
for N = 5.
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Proof : See Appendix F
The intuition is simply that, as we know from Proposition 2, for this range of pa-

rameter values, for n = N the equilibrium of the emissions game is the cooperative
equilibrium, in which all signatories get a positive payoff, while for n < N the equilib-
rium of the emissions game is the non-signatories corner solution, in which, from (13),
there is a fixed total of emissions independent of the number of signatories. Thus, for
all n < N non-signatories will get a negative payoff which is less than the payoff to
signatories (since signatories get the benefit of producing emissions), so it does not pay
a signatory to leave the grand coalition, and it always pays non-signatories to join.
Next we show that the grand coalition cannot be a stable agreement for lower values

of damage costs.

Proposition 4 If b ∈ [b2(N − 2), b2(4) = N − 4], there exists an upper bound given by
n̄3 for the number of countries that belong to a self-enforcing IEA. This upper bound
decreases when b increases.

Proof: See Appendix G
This result establishes that the scope of cooperation is very sensitive to changes in

the level of marginal environmental damage. So that we have to expect that a reduction
in the marginal damage leads to a reduction in the level of cooperation reached by a
self-enforcing IEA. The explanation for this kind of relationship is given by the fact that
the interdependence among the countries occurs through the damage function. Thus,
when the marginal environmental damage is relatively high (a low b), the leadership of
the countries in the agreement is strong and the signatories choose emission levels which
induce non-signatories to select low values of emission, making exit from the agreement
unprofitable. These effects are weakened as environmental damage costs get smaller.
Finally, we focus on the scope of cooperation when b > N − 4.

Proposition 5 There exists a critical value b̄ higher than N−4 such that if b ∈ [N−4, b̄],
then an IEA of three countries is self-enforcing. If b > b̄, only two countries can sign a
self-enforcing IEA.

Proof: See Appendix H
Comparing N(N−4)/4 and b̄ we obtain that N(N−4)/4 < b̄ for N in interval (5,26)

and that the relationship is the contrary for N ≥ 26.16 Consequently we can conclude
that:

Corollary 2 If b > N(N − 4)/4, i.e., when the Stackelberg equilibrium is an interior
solution for signatories and non-signatories, the number of countries in a self-enforcing
IEA is three if N is lower than 26 and two if N is greater than or equal to 26.

These conclusions clarify the previous results in the literature which have been derived
assuming that there are interior solutions. According to our results restricting parameter
values to guarantee interior solutions is a sufficient condition to get stable IEAs with a
small number of signatories but it is not a necessary condition. We have obtained that it
is enough with b > N −4 to have a maximum of three countries in an IEA. But between
N − 4 and N(N − 4)/4 the Stackelberg equilibrium is a corner solution for different

16Remember that N(N − 4)/4 is the maximum value for b3(n). This means that b > N(N − 4)/4 is
a sufficient condition to have an interior solution for signatories and non-signatories.
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values of n depending on the value of b. This means that what is necessary and sufficient
to get a small degree of cooperation is a high value of b and not interior solutions for
signatories and non-signatories.
Thus we have shown that even if we take seriously non-negative emission constraints,

the Stackelberg model can have stable IEAs as large as the grand coalition and as low
as a bilateral agreement depending on the value of the marginal environmental damage.
Finally, although we have shown that, allowing for non-negative emission constraints,

it is still possible to get the grand coalition as a stable IEA, it could still be the case that
imposing non-negative emissions has a significant effect on the size of a stable IEA in
the sense that for any particular set of parameter values the size of IEA is significantly
smaller than would be calculated if one simply ignored the constraints. To test this we
have taken values of a = 1000, values of N = 10, 20, , 150, and 1500 values of b. For each
set of parameter values we calculated the size of the stable IEA imposing non-negative
emission constraints and without imposing such constraints. Three points emerged:
(i) first, we confirmed, that, for all N , by varying b the maximum size of stable IEA
obtained was the grand coalition, whether or not the non-negative emission constraints
were imposed; (ii) for any set of parameter values, the size of the stable IEA with the
non-negative emissions constraints imposed was never greater than the size of stable IEA
when the constraints were ignored; (iii), but crucially, the differences in size of stable
IEA were small. We illustrate this in Table 1 by showing for a range of values of N
the average size of stable IEA (averaged over different values of b) with and without the
constraints. As can be seen the difference in average size by imposing the constraints is
tiny. One has to go to the third decimal place to detect a difference in average size.

Table 1
Average Size of Stable IEA

With and Without Constraints
N With Constraints Without Constraints
10 6.268 6.272
30 16.677 16.680
50 27.148 27.151
70 37.629 37.631
90 48.110 48.111
110 58.589 58.590
130 69.068 69.069
150 79.545 79.546

4 Conclusions

In this paper we have provided analytical proofs of the main results of the linear-
quadratic version of the widely used model of stable IEAs introduced by Carraro and
Siniscalco (1991) and Barrett (1994). Moreover, we have shown, analytically, that these
results are robust to the introduction of constraints that emissions must be non-negative.
While such constraints significantly complicate the analysis, they leave the main find-
ings of the original literature almost completely unaffected. Since it is clearly right that
such non-negative constraints should be taken into account, it is important to know the
original results are robust and this is one of the contributions of our paper. Another con-
tribution is that our results disprove the claim by Diamantoudi and Sartzetakis (2002a)
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that imposing non-negative emissions constraints significantly reduces the size of the
stable IEAs that can be found with non-negative emissions. This paper argues that
these claims are wrong and arise from the inappropriate way non-negative emissions
constraints were taken into account.
Of course there are many other respects in which the original models of stable IEAs

need to be extended - richer concepts of self-enforcing agreements, asymmetric countries,
concepts of fairness, dealing with stock pollutants, allowing for uncertainty and learning
- and the authors of the original papers and many others have made important contri-
butions to addressing these extensions (see again Finus (2001) for an excellent survey).
We too have addressed some of these extensions (Rubio and Ulph (2002b, 2003), Ulph
(2002 a, b)). However, since the basic model continues to attract interest, it is important
to make sure that its properties rest on thorough analysis, and this paper contributes to
that purpose.

A Proof of Proposition 1

In this Appendix we show that there does not exist any value of b such that g(b, n), h (b, n) ≤
0 for a given value of n. For given n h(b, n) is strictly convex with respect to b with a
minimum for a negative value of b and an intersection point with the vertical axis also
negative. This implies that h(b, n) = 0 has only a positive real solution given by

b1(n) =
1

2
−(N + n2 − 2n) + (n4 − 4n3 + 2Nn2 +N2)1/2 , (18)

so that h(b, n) will be negative if b ∈ (0, b1(n)) and positive for b > b1(n).
On the other hand, function g(b, n) is strictly convex with respect to b and presents

a minimum for b = (N − n)(n − 2)/2. For this minimum the value of the function is
n(N − n)2(4− n)/4 which implies that g(b, n) > 0 for n = {1, 2, 3} and b > 0. Then we
can conclude that there does not exist any value of b such that g(b, n), h(b, n) ≤ 0 for
these values of n since g(b, n) is always positive. For n = 4, g(b, 4) = 0 for b = N − 4
and positive for b 9= N − 4. Moreover b = N − 4 is bigger than b1(4) if N > 4, so that
if b ≤ b1(4) we have that the Stackelberg equilibrium yields qs(4) > 0 and qf(4) = 0, if
b1(4) < b < N − 4 then yields qs(4), qf(4) > 0, if b = N − 4 then yields qs(4) = 0 and
qf(4) > 0, and finally if b > N − 4 then yields qs(4), qf(4) > 0. Thus, it does not occur
that signatories and non-signatories select zero emissions at the same time. If N = 4,
the interesting cases are n = {1, 2, 3} and we know that for these cases g(b, n) is positive
since the minimum value of the function is positive. For n > 4, g(b, n) = 0 has two
positive real solutions

b2(n) =
1

2
(N − n) n− 2− (n2 − 4n)1/2 , (19)

b3(n) =
1

2
(N − n) n− 2 + (n2 − 4n)1/2 (20)

and g(b, n) will be negative if b ∈ (b2(n), b3(n)).
Finally, we show that b1(n) is lower than b2(n). Let’s suppose now that b1(n) ≥ b2(n)

which yields

−(N + n2 − 2n) + (n4 − 4n3 + 2Nn2 +N2)1/2

≥ (N − n)(n− 2)− (N − n)(n2 − 4n)1/2 > 0, (21)
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simplifying terms we have that

(n4 − 4n3 + 2Nn2 +N2)1/2 ≥ N(n− 1)− (N − n)(n2 − 4n)1/2 > 0.
Then squaring and simplifying terms again we get

n(n2 − (3 +N)n+ 3N) ≥ −(n− 1)(N − n)(n2 − 4n)1/2,
where the left-hand side of the inequality is negative for n ∈ (4, N), then multiplying by
−1 we obtain

0 < −n(n2 − (3 +N)n+ 3N) ≤ (n− 1)(N − n)(n2 − 4n)1/2.
Finally, squaring again and simplifying terms we get a contradiction

4n(n2 − 2Nn+N2) ≤ 0,
since n2− 2Nn+N2 is positive for n < N. Consequently, we can establish that b1(n) <
b2(n) for all n > 4.
Given this relationship we can order the critical values of b : b1(n) < b2(n) < b3(n),

so that if b > b3(n) we have that the Stackelberg equilibrium yields qs > 0, qf > 0,
if b ∈ [b2(n), b3(n)] then yields qs = 0, qf > 0, if b ∈ (b1(n), b2(n)) then yields again
qs > 0, qf > 0, and finally if b ≤ b1(n) then yields qs > 0, qf = 0. Thus, summarizing we
can conclude that for a given value of n there does not exist any value of b such that
g(b, n), h(b, n) ≤ 0.

B Proof of Lemma 1

The results in Lemma 3 are shown from the properties of b1(n). Thus, what we show
first is that b1(0) = b1(N) = 0 and that b1(n) presents a unique extreme in the interval
(1, N − 1) which is a maximum. As we have written in the main text we assume that n
is a real number and once we know the properties of b1(n) then we focus on the values
of b1(n) for n = {1, 2, ..., N − 1}.
By substitution it is easy to check that b1(0) = b1(N) = 0. To show that the unique

extreme of b1(n) is a maximum we use the inverse function of b1(n) = 0. In order to
obtain this function we rewrite h(b, n) as

h(b, n) = (b+ 1)n2 − (2b+N)n+ (b+N)b,
and then from h(b, n) = 0 we get:

n =
2b+N ± (N2 − 4b3 − 4b2)1/2

2(b+ 1)
. (22)

So that for N2−4b3−4b2 ≥ 0 we can define n+(b1) and n−(b1) and their first derivatives:

dn+

db1
= −2b

3 + 6b2 + 4b+N2 + (N − 2)(N2 − 4b3 − 4b2)1/2
2(b+ 1)2(N2 − 4b3 − 4b2)1/2 ,

dn−

db1
=

2b3 + 6b2 + 4b+N2 − (N − 2)(N2 − 4b3 − 4b2)1/2
2(b+ 1)2(N2 − 4b3 − 4b2)1/2 .
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On the other hand, it is easy to show that N2 − 4b3 − 4b2 = 0 has a unique positive
solution that we represent by b̃. For this value we have that

lim
b→b̃−

dn+

db1
= −∞; lim

b→b̃−
dn−

db1
= +∞,

which implies that db1/dn = 0 when n = ñ that is the value defined by (22) for b̃ :

ñ =
2b̃+N

2(b̃+ 1)
.

Then given the sign of the limits we can establish that ñ is a maximum for b1(n) in the
real interval (1, N − 1) so that b1(n) is increasing for n < ñ and decreasing for n > ñ. In
order to show that ñ belongs to that interval the only thing that we need to do is to
calculate the differences ñ− 1 and N − 1− ñ.
ñ may or may not be an integer. If ñ is an integer ñ = n̂ and b1(n̂) = b1(n) has a

unique solution x1 = x2 = n̂ where x1 and x2 stand by the solutions to the equation. If
ñ is not an integer then there will exist an integer n̂ such that b1(n̂) yields the maximum
value of b1(n) for n = {1, 2, ..., N − 1}. In that case equation b1(n̂) = b1(n) has two
solutions 0 < x1 < x2 and one of them will be equal to n̂ by definition. If the function
is symmetric there will be two extremes such that x1 = n̂1 and x2 = n̂1 + 1. In both
cases according to (13) from the main text the emissions of non-signatories are zero
only when n = n̂ since for n 9= n̂, b1(n̂) > b1(n). Remember that b1(n) characterizes
the pairs (b, n) that satisfy h(b, n) = 0 and that for b > b1(n) Proposition 1 establishes
that the equilibrium is the interior solution for non-signatories, i.e. h(b, n) > 0. If
b < b1(n̂), b = b1(n) has two solutions and Ii(xi) = n̄i, i = 1, 2 define two integers
such that n̄1 < n̄2. Then given the properties of b1(n) we have that b ≤ b1(n) for those
values of n in the interval [n̄1, n̄2] so that according to Proposition 1 the equilibrium is a
corner solution. For the rest of values of n, b > b1(n) and again according to Proposition
1 the equilibrium for non-signatories is an interior solution. Finally, it is obvious that
the distance x2−x1 increases when b decreases which implies that n̄2− n̄1 also increases
although not monotonically.

C Proof of Corollary 1

This result is immediate from Lemma 1 always that b1(N − 1) be the minimum value
of b1(n) for n = {1, 2, ..., N − 1}. As b1(n) is first increasing for n < ñ and afterwards
decreasing. This will occur if b1(N − 1) is lower than b1(1).
First we calculate these two values:

b1(1) =
1

2
−(N − 1) + (N2 + 2N − 3)1/2 ,

b1(N − 1) =
1

2
−(N2 − 3N + 3) + (N4 − 6N3 + 15N2 − 14N + 5)1/2 .

Let´s suppose now that b1(1) ≤ b1(N − 1) which yields

−(N − 1) + (N2 + 2N − 3)1/2 ≤ −(N2 − 3N + 3) + (N4 − 6N3 + 15N2 − 14N + 5)1/2,
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simplifying terms we have that

0 < N2 − 4N + 4 + (N2 + 2N − 3)1/2 ≤ (N4 − 6N3 + 15N2 − 14N + 5)1/2.
Then squaring and simplifying terms again we get

0 < 2(N2 − 4N + 4)(N2 + 2N − 3)1/2 ≤ 2N3 − 10N2 + 16N − 8.
Finally, squaring again and simplifying terms we get a contradiction

0 ≤ −16N5 + 144N4 − 512N3 + 896N2 − 768N + 256,
since the right-hand side of the inequality is negative for N ≥ 3. Then we can conclude
that b1(1) > b1(N − 1).

D Proof of Lemma 2

As with Lemma 1, the proof of Lemma 2 derives from the properties of the functions
b2(n) and b3(n). By substitution we get that b2(4) = N − 4 and b2(N) = 0. Remember
that signatories’ emissions are always positive for n = {1, 2, 3} and b > 0.
On the other hand, if we take the first derivative of b2(n) (see (19) in the proof of

Proposition 1) we obtain

db2
dn

=
1

2
N − 2n+ 2 + 2n

2 − (6 +N)n+ 2N
(n2 − 4n)1/2 ,

that presents the following limits:

lim
n→4

db2

dn
= −∞,

lim
n→N

db2

dn
=

1

2
−(N − 2) + N(N − 4)

(N2 − 4N)1/2 < 0 for N > 4.

Moreover, its second derivative is:

d2b

dn2
=
1

2
−2 + 2n

3 − 12n2 + 12n+ 4N
(n2 − 4n)1/2 .

Let ´s suppose that this second derivative is negative or zero. This implies that

0 < 2n3 − 12n2 + 12n+ 4N ≤ 2(n2 − 4n)1/2,
squaring and reordering terms we obtain the following inequality

4n6 − 48n5 + 192n4 + (16N − 288)n3 − (96N − 140)n2 + (96N + 16)n+ 16N2 ≤ 0.
It is easy but tedious to show that the left-hand side of this inequality if positive for
n ≥ 4 yielding a contradiction. So that we can conclude that d2b2/dn2 > 0 which allows
us to establish that db2/dn is increasing and, consequently, that b2(n) is a decreasing,
strictly convex function in interval [4, N ]. Thus, for b2(N − 1) ≤ b ≤ N − 4, b = b2(n)
has a unique solution that we call x3.
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Next, we study the properties of function b3(n) (see (20) in the proof of Proposition
1). By substitution we get that b3(4) = N − 4 and b3(N) = 0. Moreover, it is easy to
show that b3(n) is a strictly concave function with a maximum in interval (4, N) equal
to N2/2(N−2). So that for 4 < n < N2/2(N−2) b2(n) increases and for N2/2(N−2) <
n < N decreases. This implies that b3(N2/2(N − 2)) = N(N − 4)/4 > b2(4) = N − 4.
N2/2(N −2) can be or cannot be an integer. If N2/2(N −2) is an integer N2/2(N −

2) = n∗ and b3(n∗) = b3(n) has a unique solution x3 = x4 = n∗ where x3 and x4 stand
by the solution to the equation. In order to have a maximum n∗ different from 4 we
assume that N > 5. Notice that for N = 5, b2(n) and b3(n) are defined in interval [4, 5]
and, consequently, n∗ = 4.17 If N2/2(N − 2) is not an integer then there will exist an
integer n∗ such that b1(n∗) yields the maximum value of b3(n) for n = {4, 5, ..., N − 1}.
In that case equation b3(n∗) = b3(n) has two solutions 0 < x3 < x4 and one of them
will be equal to n∗ by definition. In both cases according to (12) from the main text
the emissions of signatories are zero only when n = n∗ since for n 9= n∗, b3(n∗) > b3(n).
Notice that b3(n) characterizes the pairs (b, n) that satisfy g(b, n) = 0 and that for
b > b3(n) Proposition 1 establishes that the equilibrium is the interior solution, i.e.
g(b, n) > 0. If N − 4 < b < b3(n∗), b = b3(n) has two solutions and Ii(xi) = n̄i, i = 3, 4
define two integers such that n̄3 < n̄4. Then given the properties of b3(n) we have that
b ≤ b3(n) for those values of n in interval [n̄3, n̄4] so that according to Proposition 1
the equilibrium for signatories is a corner solution. For b2(N − 1) ≤ b ≤ N − 4, we
have that b = b3(n) has a unique positive solution x4 that along with x3 obtained from
b = b2(n) define applying Ii(xi) an interval [n̄3, n̄4] for which the equilibrium is also a
corner solution. If n /∈ [n̄3, n̄4], b > b3(n) when N − 4 < b < b3(n

∗) or b > b2(n)
and b > b3(n) when b2(N − 1) ≤ b ≤ N − 4 and again according to Proposition 1 the
equilibrium for signatories is an interior solution.
It is obvious that the distance x4 − x3 increases when b decreases always that b >

N − 4 which implies that n̄4 − n̄3 also increases although not monotonically. However,
if b < N − 4 the relationship is the contrary. Finally, as the minimum value of b2(n) for
n = {4, 5, ..., N − 1} is given by b2(N − 1) we have that if b < b2(N − 1), b < b2(n) for
all n, 4 ≤ n ≤ N − 1 and the equilibrium is an interior solution for n = {1, 2, ..., N − 1}.

E Proof of Proposition 2

Points (i)-(iii) and (v) follow from Lemmas 1 and 2 and Corollary 1 always that b1(n̂) <
b3(n

∗). Point (iv) occurs only if b1(1) > b2(N − 1) and b1(N − 2) > b2(N − 1) too, since
b1(N − 1) < b2(N − 1). First we show that b1(n̂) < b3(n∗) for N > 5. From the proofs of
Proposition 1 and Lemma 2 we know that b1(4) < b2(4) = b3(4) = N − 4 < b3(n∗).
On the other hand, b1(n) can be increasing or decreasing at n = 4 depending on the

number of countries, N. Let´s suppose that

db1(4)

dn
= −3 + 16 + 4N

(32N +N2)1/2
≥ 0.

This implies that
16 + 4N ≥ 3(32N +N2)1/2,

17In the rest of the paper we focus on N > 5 that is the interesting case. Anyway, for N = 5 the
results are the same adjusting the sign of some inequalities.
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that squaring and simplifying yields

256− 160N + 7N2 ≥ 0.

It is easy to show that the left-hand side of the inequality is negative for N ∈ (5, 21].
So that we can conclude that db1(4)/dn < 0 which means that n̂ ≤ 4. The previous
result also allows us to establish that for N > 21, the first derivative of b1(n) at n = 4
is positive which means that n̂ ≥ 4.
Next we suppose thatN ∈ (5, 21]. In that case, n̂ is an integer in domain {1, 2, 3, 4}. If

n̂ = 4, we already know that b1(4) < N − 4 < b3(n∗) and it is established that b1(n̂) <
b3(n

∗). If n̂ were an integer different from 4, it is easy to show that b1(n) < N − 4 for
n = {1, 2, 3} so that we can also conclude that b1(n̂) < b3(n∗) for this values of n.
Next, we suppose that N > 21. In that case, n̂ ≥ 4. For n̂ = 4 the same argument

than the one we have just used is applied. For n̂ > 4, we know from Proposition 1 that
b1(n̂) < b2(n̂) and from the proof of Lemma 2 that b2(n̂) < N − 4 < b3(n∗) so that we
find that b1(n̂) < b3(n∗) as we wanted to establish.
Finally, we show that b1(1) > b2(N − 1) and b1(N − 2) > b2(N − 1). Let´s suppose

first that b1(1) ≤ b2(N − 1). This implies that

0 < (N − 1)2 + 4(N − 1) 1/2 ≤ 2N − 4− (N − 1)2 − 4(N − 1) 1/2
.

Squaring yields

2(2N − 4) (N − 1)2 − 4(N − 1) 1/2 ≤ (2N − 4)2 − 8(N − 1),

squaring again, simplifying and reordering terms we obtain the following inequality

32N3 − 240N2 + 448N − 256 ≤ 0.

This inequality yields a contradiction forN > 5 so that we can conclude that b2(N−1) <
b1(1).
Next, we suppose that b1(N − 2) ≤ b2(N − 1). This implies that

0 < (N4 − 10N3 + 41N2 − 72N + 48)1/2 ≤ −4N +N2 + 5− (N2 − 6N + 5)1/2.

Squaring yields

2(−4N +N2 + 5)(N2 − 6N + 5)1/2 ≤ 2N3 − 14N2 + 26N − 18,

squaring again, simplifying and reordering terms we obtain the following inequality

16N4 − 144N3 + 400N2 − 464N + 176 ≤ 0

This inequality yields a contradiction froN > 5 so that we can conclude that b2(N−1) <
b1(N − 2).
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F Proof of Proposition 3

It is straightforward to show that the grand coalition is self-enforcing since π∗, the net
benefits for the grand coalition, is positive and πf(N − 1) is negative according to (17)
from the main text. This means that the internal stability condition is satisfied. It
is also easy to show that the followers are always interested in joining the agreement.
Using the net benefits expressions that appear in (17) from the main text, the external
stability condition is given by the difference

7(n+ 1) = a2[2(n+ 1)− b]
2(n+ 1)2

.

On the other hand, it is easy to show that b1(N − 1) < 1. Let’s suppose that b1(N −
1) ≥ 1. This implies that18

b1(N − 1) = 1

2
(−(N2 − 3N + 3) + (N4 − 6N3 + 15N2 − 14N + 5)1/2) ≥ 1,

which yields

(N4 − 6N3 + 15N2 − 14N + 5)1/2 ≥ N2 − 3N + 5 > 0.
Squaring and ordering terms we obtain the following contradiction:

0 ≥ 4N2 − 16N + 20.
Thus, for b ≤ b1(N − 1) < 1 the numerator of 7(n+ 1) is positive for all n ≥ 1 and

a non-signatory is always interested in entering the agreement.

G Proof of Proposition 4

For b2(N − 2) ≤ b ≤ N − 4, we have that n̄3 = I3(x3) < n̄4 = I4(x4) = N − 1 so that
we have a signatory corner solution for n = {n̄3, ..., N − 1}. This is a consequence of the
fact that b3(N − 1) > b2(4) = N − 4.19 Now given a value of b we select n such that
n̄3 < n ≤ N − 1 and we check if the internal stability condition can be satisfied. In this
case we have that both n and n− 1 are signatory corner solutions so that according to
(16) from the main text the internal stability condition is given by

7(n) = − a2(N − n)2
2(b+N − n)2 −

a2[b− (N − n+ 1)(N − n− 1)]
2(b+N − n+ 1)2

= −a
2[b3 + L(n)b2 +M(n)b+ P (n)]

2(b+N − n)2(b+N − n+ 1)2 ,
where

L(n) = 2(N − n) + 1 > 0, M(n) = 3(N − n)2 + 2(N − n) > 0
P (n) = 2(N − n)3 + 2(N − n)2 > 0

So, 7(n) is negative, in fact, for all b > 0. Consequently if there exists a self-enforcing
IEA the number of countries in the agreement will be equal or less than n̄3. Finally, we
know that b2(n) is a strictly convex, decreasing function defined in interval [4,N ], then
as n̄3 is defined as the smallest integer no less than x3 being x3 the unique positive root
of equation b = b2(n), we can conclude that n̄3 decreases when b increases.
18See Appendix A for the expression of b1(n).
19This is very easy to show so that we omit it.
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H Proof of Proposition 5

According to Proposition 4 if b = N − 4 the maximum number of countries in a self-
enforcing IEA is four then the question to answer now is whether an agreement of four
countries can be self-enforcing for b > N − 4. For b > N − 4 and n = 4, according to
Proposition 1, the equilibrium is the interior solution for signatories and non-signatories.
Then using (14) and (15) from the main text we get

7(4) = − a2N2k(b)

2[(b+N − 3)2 + 9b]2[(b+N − 4)2 + 16b] ,

where

k(b) = 3b4 + (6N + 48)b3 + (2N2 − 40N + 101)b2
−(2N3 − 7N2 − 10N + 39)b− (N4 − 14N3 + 73N2 − 168N + 144).

It can be easily shown that k��(b) is a strictly convex function with a minimum at
b = (8+N)/2. For this minimum we have that the second derivative is positive for all N.
This implies that k�(b) is increasing for all b > 0 and consequently is also increasing for
b > N − 4. Then as k�(N − 4) = 252N3− 1212N2− 3408N +16716 is positive for N > 5
we can conclude that the first derivative is positive for b > N−4, which implies that k(b)
is increasing for b > N − 4. Finally, as f(N − 4) = 8N4− 99N3+362N2− 207N − 676 is
positive for N > 5 we have that k(b) is positive for b > N − 4 so that 7(4) is negative
and the internal stability condition is not satisfied.
Next, we check whether an agreement with three countries can be stable. For n = 3

we have that

7(3) = − a2N2l(b)

2[(b+N − 2)2 + 4b]2[(b+N − 3)2 + 9b] ,

where

l(b) = 8b3 − (N2 + 10N − 23)b2 − (2N3 − 8N2 + 10N − 4)b
−(N4 − 10N3 + 37N2 − 60N + 36).

It is easy to show that this is a strictly convex function that first decreases until
reaching a minimum value that is negative and afterwards increases. This means that
the equation l(b) = 0 has a unique, positive solution that we denote by b̄ such that if
b < b̄, l(b) is negative and if b > b̄, l(b) is positive. Then as l(N − 4) = −N4 + 32N3 −
88N2 + 144N − 196 is negative we can conclude that N − 4 < b̄ so that for b in interval
[N − 4, b̄], l(b) ≤ 0 and consequently 7(3) is positive or zero and the internal stability
condition holds. Moreover as 7(4) will be negative and this implies that πf(3) > πs(4),
the external stability condition is also satisfy and the agreement is self-enforcing.
Finally for b > b̄, l(b) is positive and the internal stability condition for n = 3 is not

satisfy. In this case only an agreement of two countries is self-enforcing. For n = 2 we
have that

7(2) = a2N2m(b)

2[(b+N − 1)2 + b]2[(b+N − 2)2 + 4b] ,
where

m(b) = b4 + 2Nb3 + (2N2 − 1)b2 + (2N3 − 7N2 + 10N − 5)b
+(N − 1)2(N − 2)2.
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7(2) is positive for b > 0 and N > 5 which implies that πs(2) > πf(1) and that,
consequently, the internal stability condition for an agreement of two countries holds.
The external stability condition is also satisfied since for b > b̄, 7(3) is negative.
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