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ABSTRACT 
 

In this work we deal with rationing problems. In particular with claims problems with 
indivisible goods, that is, problems in which a certain amount of indivisible units (of an 
homogeneous good), has to be distributed among a group of agents, when this amount is not 
enough to satisfy agents' demands. We define discrete rules to solve those problems that 
involve notions of fairness similar to those supporting the constrained-equal awards and the 
constrained-equal losses rules in the continuous case. Axiomatic characterizations of those 
solutions are provided. 
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1 Introduction

A claims problem represents a situation in which a quantity of a certain commodity has to

be distributed among some agents and the available resources fall short of total demand.

The canonical example of this kind of problems is that in which a firm goes to bankruptcy,

that is, the amount it owes to its creditors is greater than the firm’s worth. In this

problem, in general, a judge has to liquidate the firm and decide how to distribute the

amount gotten in the liquidation among the creditors. In this example, the good to be

distributed is perfectly divisible. Nonetheless, there are many claims situations involving

the distribution of a commodity coming in indivisible units.

Consider the following examples: In order to carry out the administrative tasks at

the university departments, a University contracts a certain number of secretaries. On

the one hand, this number depends on the financial capabilities of the University. On

the other hand, each department demands, depending on its volume, a certain number of

secretaries. It happens that the total number of secretaries the departments demand is

larger than the available amount. How many secretaries correspond to each department?

Another example is the case of renting cars firms: some months the demands of new

cars from these firms to the cars manufacturer is so high that the production in that

month is not enough to satisfy the whole demand. The manufacturer must decide how

to distribute the available cars among the renting firms. Consider also the distribution of

radio frequencies among the different broadcasting corporations, whenever there is no an

auction mechanism. If the amount of frequencies requested by the firms is too large, the

Government should decide how many frequencies are allotted to each corporation.

There is also a particular type of indivisible goods claims problems in which each

claimant demands, at most, one unit of the good. This is the case of the waiting lists at

hospitals: a certain number of patients demand an operation or transplant each, but it

is not possible to carry all the operations out, or the number of available organs is not

enough.

In claims problems, the agents are referred to as the creditors or claimants, the amount

to be distributed is called the estate and the creditors’ demands are called the claims. A

rule is a function that distributes the estate among the creditors according to their claims,

that is, a method to solve claims problems. The first and fundamental approach to this

formulation is O’Neill (1982).

Traditionally, the axiomatic literature related with claims problems has focused on

situations in which the estate is either an amount of money (and then infinitely divis-

ible) or an indivisible good that can be valuated in monetary terms. In the axiomatic

method characterizations of the proposed rules by using some intuitive properties are ob-
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tained. The reader is referred to the surveys by Moulin (2001) and Thomson (2003). Two

of the most well-known rules in the divisible case are the constrained-equal awards and

constrained-equal losses rules, that correspond, respectively, to the idea of equally divide

among the agents absolute awards and absolute losses. This two distinct concepts of equal-

ity have a long history and have been advocated by many authors, including Maimonides

(12 century) [Aumann and Maschler (1985)]. Characterizations of these rules appear in

Moulin (1985), Chun (1988), Young (1988), Dagan (1996), Herrero & Villar (2001) (2002),

and Yeh (2004).

Many indivisible claims problems are solved by using priority methods (see Moulin

(2000)). The use of priority orderings has also been proposed as a way of obtaining no

anonymous solutions in the continuous case. The claimants arrive one at a time and

they are fulfilled until the good is run out. Obviously the final allocation depends on

the arrival order. A way of recovering anonymity consists of taking the average over all

possible arrival orders of the claimants. This procedure gives rise to the so called random

arrival solution. In the divisible goods case, the amounts recommended by the random

arrival solution can, in fact, be allotted to the claimants. In the indivisible goods case,

nonetheless, this solution only can be interpreted as an ”ex ante” solution, in expected

terms, since the final realization is just one among the different possible orderings. Pure

priority methods, without randomization, are normally used in the allocation of tickets,

elective surgery when there is a waiting list, or the allocation of organs in transplant

problems (see Young (1994)).

Moulin (2000) analyzes the family of rules fulfilling three procedural axioms: consis-

tency (with respect to variations of the set of agents), composition up and composition

down (with respect to variations of the available resources). In the continuous case, many

rules satisfy these properties, including the constrained equal awards and constrained equal

losses. Nonetheless, in the case where the commodity comes in indivisible units, the three

axioms characterize the family of priority rules, where individual demands are met lexico-

graphically according to an exogeneous ordering of the agents. That is, the combination

of the three axioms leave no room for any degree of compromise.

Nonetheless, there are natural mechanisms that allocate an approximate egalitarian di-

vision of the commodity (or, alternatively, are approximately egalitarian in losses). Moulin

himself (2000) mentions some of such a mechanisms: we allocate one unit of the good to

each claimant up to the moment in which the smallest claimant is fully satisfied; then

we continue allocating one unit of the good to each of the remaining claimants up to the

moment in which the second smallest agent is satisfied, an so on. Thus, at some moment,

some units are left, but we cannot allocate one unit to each of the remaining agents. What

we do then is to use a priority ordering of the agents to allocate the remaining units.

4



As Moulin points out, previous mechanisms satisfies consistency and composition

down, but fails to satisfy composition up.

Previous family of rules (parameterized by the ordering of the set of agents) reflect a

notion of fairness similar to the ideas supporting, in the continuous case, the constrained-

equal awards. Similarly, another family reflecting the ideas of the constrained-equal losses

rules can be defined.

Even though the rules in those families fail to satisfy one of the procedural axioms -

composition up or down-, we may ask if they still fulfill some alternative properties satisfied

by the continuous egalitarian rules. Thus, we focus in this paper in the axiomatic analysis

of approximately egalitarian rules for the discrete claims model.

It happens that the idea of duality, and many of the properties used in the continuos

case can be translated into this setting, and many results are recovered, so that we are

able to obtain characterization results for our discrete egalitarian rules very much related

to characterization results for the egalitarian continuous rules.

The rest of the paper is structured as follows: In Section 2 we set up the claims problems

with indivisible goods and the notion of solution or rule for the continuous case and the

discrete one. In Section 3 we introduce priority orders and we use them to construct

egalitarian solutions in the discrete case. Section 4 is devoted to the properties our rules

fulfil. In Section 5 we present our characterization results. Section 6, with final comment

and remarks, concludes.

2 Preliminaries

Let N be the set of all potential agents. We denote by N the family of all finite subsets

of N. A claims problem is a tern (N,E, c), where N ∈ N , n = |N |, is a set of agents or
claimants, c ∈ Zn+ is the vector of claims or demands1 (ci denotes the ith agent’s claim),
and E ∈ Z++ represents the estate or amount to be distributed among the agents. The
fact that the estate is not enough to satisfy the demands means that

Sn
i=1 ci > E. BNZ

denotes the set of all claims problems with the fixed set of claimants N , and BZ represents
the set of all possible problems with variable population.

BNZ =

+
(N,E, c) ∈ Z++ × Zn+ :

n[
i=1

ci > E

,
1Z represents the set of integer numbers.
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BZ =
^
N∈N

BN

For a given problem (N,E, c) we denote by C and L the total claim and loss respec-

tively:

C =
Sn
i=1 ci, L = C −E

A rule is a way to distribute the estate among the agents according to their demands.

Definition 2.1 A continuous rule is a function ϕ that associates with every (N,E, c) ∈
BZ a unique allocation ϕ(N,E, c) ∈ Rn+ such that

(a) 0 ≤ ϕi(N,E, c) ≤ ci, ∀i ∈ N

(b)
S
i∈N ϕi(N,E, c) = E

The first condition says that nobody can get neither more than she asks for nor a

negative outcome; and the second one sets that the estate is entirely distributed.

Three of the most traditional rules in the divisible good case are the proportional,

constrained equal awards and constrained equal losses rules. The proportional solution

distributes the estate among the claimants proportionally to their demands.

Definition 2.2 For all (N,E, c) ∈ BZ we define the continuous proportional rule as

pi(N,E, c) = λci,

where λ is such that
S
i∈N

pi(N,E, c) = E.

The underlying idea of the constrained-equal awards rule is to treat the claimants

equally, independently of the differences in claims. All agents receive the same amount

provided that this is not higher than her claim.

Definition 2.3 For all (N,E, c) ∈ BZ we define the continuous constrained equal
awards rule as

ceai(N,E, c) = max{ci,λ}

where λ is such that
S
i∈N

ceai(N,E, c) = E.
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Analogously to the constrained-equal awards rule, the constrained-equal losses rule

treats claimants equally with respect to their losses, independently on the differences in

claims. Each agent should loss the same amount as the rest of the agents provided that

this amount were smaller than her claim.

Definition 2.4 For all (N,E, c) ∈ BZ we define the continuous constrained equal
losses rule as

celi(N,E, c) = min{0, ci − λ}

where λ is such that
S
i∈N

celi(N,E, c) = E.

Similarly to the definition of continuous rules, we can define solutions for claims prob-

lem with indivisible goods. The difference is that now we impose the allocations to be

integer numbers.2

Definition 2.5 A discrete rule is a function Φ that associates with every (N,E, c) ∈ BZ
a unique allocation Φ(N,E, c) ∈ Zn+ such that

(a) 0 ≤ Φi(N,E, c) ≤ ci, ∀i ∈ N

(b)
S
i∈N Φi(N,E, c) = E

3 σ-Discrete Egalitarian Rules

Let σ be a linear order (a complete, transitive and asymmetric binary relation) on the set

of potential agents N.We say that an agent i has priority or is preferred to another agent
j whenever iσj. We denote by −σ the opposite order (i(−σ)j ⇔ jσi). Let Ω denote the

set of all possible linear orderings on N.

We face the problem of allocating a certain amount of an indivisible good among a set

of agents, so that the final allocation is as egalitarian as possible. Consider the following

example: N = {x, y, z}, E = 9 and c = (2, 6, 6). We start by given one unit of the good

to each of the agents. Still no one is fully satisfied, and 6 units are left. We then give an

additional unit to each of the agents. Now, agent x is satisfied, and still 3 units are left.

We allot then one unit to each of the remaining claimants, y and z, and still 1 unit is left,

but it happens that neither x nor y are satisfied. The problem is now how to allocate the

remaining unit. Clearly, two options are open, either to give it to y or to z. The decision

2We use small letters for denoting the continuous rules and capital ones for the discrete case.
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of allocating this extra unit to one of the remaining agents can be made at random or

by using some idea of priority among them. Consider then a linear order σ ∈ Ω. We can
allocate the remaining unit according to σ, so that, if yσz, then it is agent y the one

enjoying the extra unit, that is, the allocation would be (2, 4, 3). Otherwise, it is agent z,

and then the allocation would be (2, 3, 4).

Previous procedure indicates that, for each linear order σ ∈ Ω, we have a particular
discrete rule. Since the rationale of all those rules is similar to that of the constrained

equal awards rule in the continuous case, we will call them all discrete constrained equal

awards rules. It is easy to see that the allocations recommended by those rules can be

obtained according to the following procedure: We may assume that the allocation process

takes place in two stages. Let (N,E, c) ∈ BZ , in the first one each agent i ∈ N receives

eceai(N,E, c)f units,3 that is, the whole part of her corresponding allocation, under the
continuous constrained equal awards rule, if the estate were completely divisible. If in this

stage some units are still left, (E� = E −Si∈Neceai(N,E, c)f > 0) we go to the second
step.4

Now, we can distinguish two kinds of claimants: those who have already received an

integer amount according to cea, i.e., ceai(N,E, c) ∈ Z+ (and then eceai(N,E, c)f =
ceai(N,E, c)); and those agents whose allocation is not an integer number. Let us denote

by Q(cea;N,E, c) this last group of agents: Q(cea;N,E, c) = {j ∈ N : ceaj(N,E, c) /∈
Z+}. Let q = |Q(cea;N,E, c)|.

Let σ ∈ Ω. In the second stage we distribute the E� remaining units among some
agents in Q(cea;N,E, c) according to the order σ; we give one and only one unit to each

of the E� claimants with the highest priority in Q(cea;N,E, c). Let Qσ(cea;N,E, c) be

the ordered set Q(cea;N,E, c) with the restriction of σ. We denote by Qσ
a(cea;N,E, c)

the set of the a first agents in Qσ(cea;N,E, c).

Thus, we may formally define, for each σ ∈ Ω, the σ-discrete constrained equal awards
rule as follows:

Definition 3.1 Let σ ∈ Ω. Then, for all (N,E, c) ∈ BZ we define the σ-discrete con-
strained equal awards rule as

CEAσ
i (e) =

eceai(N,E, c)f+ 1 if i ∈ Qσ
E�(cea;N,E, c)

eceai(N,E, c)f otherwise

where E� = E −Si∈Neceai(N,E, c)f > 0.
3For any x ∈ R+, �x0 denotes the largest integer number s.t. �x0 ≤ x.
4 If no unit remains it is due to the fact that the allocation under the continuous rule is an integer share

by now.
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Similarly, we may wish to solve allocations problems of this type so that agents’ losses

are as equal as possible. Consider the following example: N = {x, y, z}, c = (2, 4, 6) and
E = 5.We now propose the following mechanism. Since the total demand is 12, and there

are only 5 units to share, agents should lose 7 units in aggregate. We start by given all

agents their full demand, and then we subtract one unit to each agent. Still the allocation

is not feasible. Thus, we take out an additional unit to each agent, so that they have

(0, 2, 4). Still, an additional unit should be subtracted. Since agent x has an allotment of

zero units, we cannot take out any additional unit from x. Consequently, this unit should

be subtracted either from y or from z. As before, we may choose between y and z at

random or either by using some priority order. Keeping in mind that the priority order

should favor those agents with higher priority, if yσz, then we take out the unit from z,

otherwise, it is taken out from y.

Again, for each ordering of the set of potential agents we have a different discrete rule,

all of them sharing the rationale of the constrained equal losses rule. As before, for a

given order σ ∈ Ω, the allocation recommended by previous procedure can be obtained in
two steps. In the first one each agent i ∈ N receives eceli(N,E, c)f units. Now, if still
some units remain (E� = E −Si∈Neceli(N,E, c)f > 0) we go to the second step. Again,
we divide the set of claimants into two groups: those who have already obtained a whole

allocation and those who do not. Q(cel;N,E, c) = {j ∈ N : celj(N,E, c) /∈ Z+} denotes
this last subset of agents. In the second stage we distribute the E� remaining units among
some agents in Q(cel;N,E, c) according to the order σ; we give one and only one unit to

each of the E� claimants with the highest priority in Q(cel;N,E, c).

As before, we may formally define, for each σ ∈ Ω, the σ-discrete constrained equal
losses rule as follows:

Definition 3.2 Let σ ∈ Ω. Then, for all (N,E, c) ∈ BZ we define the σ-discrete con-
strained equal losses rule as

CELσ
i (e) =

eceli(N,E, c)f+ 1 if i ∈ Qσ
E�(cel;N,E, c)

eceli(N,E, c)f otherwise

where E� = E −Si∈Neceli(N,E, c)f > 0.

Previously we stated the formal relationship between the continuos constrained equal

awards and constrained equal losses rules with our discrete versions. Consider now a

particular problem (N,E, c), involving the set of agents N. Given an order σ ∈ Ω, let
us call σN the restriction of σ to N. If n = |N |, there are only n! different orders σN
on N. And thus, under the perspective of the discrete egalitarian rules described above,

there are only n! alternative recommendations to distribute E among the N claimants in
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the problem. Assume that, as in the random arrival rule, the order σN corresponds to

the arrival order of the agents, and that all orderings are equally likely. Now, for each

arrival order, we apply the discrete CEAσN (or equivalently, CELσN ). Then, it turns out

that the average of the allocations obtained when the arrival orders change are simply the

allocations recommended by the continuous cea and cel rules. This result is stated in the

following Proposition.

Proposition 3.1 Let (N,E, c) ∈ BZ. For any order σN on the set of agents N , let

CEAσN (N,E, c) and CELσN (N,E, c) stand for the allocations recommended by the (σN)-

discrete constrained-equal awards and (σN)-discrete constrained equal losses rules respec-

tively. It holds that:

(a) cea(N,E, c) = 1
n!

S
σN∈ΩCEA

σN (N,E, c)

(b) cel(N,E, c) = 1
n!

S
σN∈ΩCEL

σN (N,E, c)

Proof.

(a) Let (N,E, c) ∈ BZ and i ∈ N . If the agent i is such that he receives a whole

amount under the cea, the statement is trivial, since 1
n!

S
σN∈ΩCEA

σN
i (N,E, c) =

1
n!

S
σN∈Ω ceai(N,E, c) = ceai(N,E, c). Let us suppose then that this is not the case

and i ∈ Q(cea; e).
1

n!

[
σN∈Ω

CEAσN
i (N,E, c) = eceai(N,E, c)f+ 1

n!

[
σN

i∈QσN (cea;N,E,c)

1

Note that the amount A =
S
σN

i∈QσN (cea;N,E,c)

1 is the same for all the agents. Then,

adding the above expression across the demanders we can obtain the value of A in

this way

E =
[
k∈N
eceai(N,E, c)f+ 1

n!

[
k∈N

[
σN

k∈QσN (cea;N,E,c)

1 =

= E −E� + 1

n!

[
k∈Q(cea;N,E,c)

[
σN

k∈QσN (cea;N,E,c)

1 =

= E −E� + 1

n!
qA,

where E� = E −Si∈Neceai(N,E, c)f. Hence A = E�n!
q and then

1

n!

[
σN∈Ω

CEAσN
i (N,E, c) = eceai(N,E, c)f+ 1

n!
A = ceai(N,E, c)
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(b) The case of the constrained equal losses rule goes in a similar way.

Similar to the continuous case, two rules are dual rules if one of them allocates awards

in the same way the other one allocates losses.

Definition 3.3 Two discrete rules Φ and Φ∗ are dual rules if for all (N,E, c) ∈ BZ

Φ∗(N,E, c) = c−Φ(N,L, c)

In the continuos case, cea and cel are dual rules. Here we also obtain duality between

discrete CEA and CEL rules, but with respect to opposite orderings.

Proposition 3.2 Let σ ∈ Ω, and let −σ be the opposite ordering. Then, CEAσ and

CEL−σ are dual rules.

Proof. Let Q(cea;N,E, c) and Q(cel;N,L, c) be the sets of agents whose allocation via
cea and cel are integer numbers.5 It is easy to check that, since cea and cel are dual rules,

Q(cea;N,E, c) = Q(cel;N,E, c) =: Q, and then eceai(N,E, c)f = ci − eceli(N,L, c)f for
all i /∈ Q and eceai(N,E, c)f = ci − eceli(N,L, c)f − 1 for all i ∈ Q.

If we denote by E� = E −Si∈Neceai(N,E, c)f and L� = L−
S
i∈Neceli(N,L, c)f the

remaining units, we have the following relation

E� = E −Si∈Neceai(N,E, c)f = E −
S
i∈Qeceai(N,E, c)f −

S
i/∈Qeceai(N,E, c)f =

= E −Si∈Q (ci − eceli(N,L, c)f − 1)−
S
i/∈Q (ci − eceli(N,L, c)f) =

= q − (C −E −Si∈Neceli(N,L, c)f) =
= q − L�

On the other hand Q−σL� = Qσ Qσ
q−L� = Qσ Qσ

E�. Therefore, k ∈ Qσ
E� if and only if

k /∈ Q−σL� .

If k /∈ Q then CEAσ
k(N,E, c) = ceak(N,E, c) = ck − celk(N,L, c) = CEL−σk (N,L, c).

If k ∈ Q, CEAσ
k(N,E, c) = eceak(N,E, c)f + 1 iff k ∈ Qσ

E�, but we have shown above

that this happens if and only if k /∈ Q−σL� , iff CEL−σk (N,L, c) = ecelk(N,L, c)f. Therefore
CEAσ

k(N,E, c) = eceak(N,E, c)f+1 = ci−ecelk(N,L, c)f−1+1 = ci−CEL−σk (N,L, c) =

ecelk(N,L, c)f.
5See Section 3.2 for notation
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4 Properties

Here we look for properties our rules may fulfil. Some of the following properties have

been studied in the continuous case, and their rationale and appealingness are preserved

in the discrete case. In some other cases, we have to adapt the fairness principle at hand

so that it becomes meaningful in the discrete case.

The most common and appealing requirement in the continuous case is a property of

impartiality. In one if its forms, the so called equal treatment of equals, it says that in any

problem, if two claimants have identical claims, then they should receive the same amount.6

Unfortunately, no discrete rule could fulfill this property. It is enough to consider the case

of two agents with identical claims, and E = 1. Instead of this condition we consider a

weak version which sets that if in a problem two players have the same claims, then their

allocations differ, at most, in one unit.7

Definition 4.1 Φ satisfies weak equal treatment if for all (N,E, c) ∈ BZ and all i, j ∈
N ; if ci = cj, then |Φi(N,E, c)−Φj(N,E, c)| ≤ 1.

We introduce now a stronger version of the above definition that also makes use of

the priority order σ. We say that a rule satisfies σ-weak equal treatment if whenever two

claimants with the same claim are not allotted the same amount, the agent who receives

the extra unit is the one with the highest priority according to σ.

Definition 4.2 Φ satisfies σ-weak equal treatment if for all (N,E, c) ∈ BZ and all
i, j ∈ N ; it happens that ci = cj implies that |Φi(N,E, c) − Φj(N,E, c)| ≤ 1, and if

|Φi(N,E, c)− Φj(N,E, c)| = 1 then Φi(N,E, c) = Φj(N,E, c) + 1⇔ iσj

The next group of properties refers to changes in the estate, when the set of agents

and the claims remain fixed.

The first one is a very straightforward property, it says that if the estate increases no

agent will receive less than she got initially.

Definition 4.3 Φ satisfies estate monotonicity if for all (N,E, c), (N,E�, c) ∈ BZ, if
E� ≥ E then Φ(N,E�, c) ≥ Φ(N,E, c).

6A continuous rule ϕ satisfies equal treatment of equals if for all (N,E, c) ∈ BZ and all i, j ∈ N ; if
ci = cj , then ϕi(N,E, c) = ϕj(N,E, c).

7This notion was introduced by Balinski & Young (1977), and they referred to that as balancedness.
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The following two properties have to do with mistakes in the estimate of the estate,

either from below or from above. Basically, they guarantee a sort of invariance in the final

allocation, after correcting the mistakes. These two properties are of a procedural nature.

Imagine that when estimating the value of the estate, we were pessimistic, so that the

real value is larger than expected. Then two possibilities are open, either to forget about

the initial allocation and just solve the new problem, or keep the tentative allocation and

then allocate the rest of the estate among the claimants, after reducing their claims by

the amount already obtained. The property requires that the final allocation should not

depend on this timing.

Definition 4.4 Φ satisfies composition up (Young, 1988) if for all (N,E, c) ∈ BZ
and all E1, E2 ∈ Z++ such that E1 + E2 = E it holds that Φ(N,E1, c) + Φ(N,E2, c) =

Φ(N,E, c).

Now, suppose that, once the tentative estate has been distributed among the claimants,

it happens that it was too optimistic a estimate, so that the real value of the estate is

smaller than expected. Then we have two possibilities: the first one is to invalidate the

allocation and make a new one with the reduced estate; the second one is to consider a

new claims problem in which the claims correspond to the tentative allocation and the

new estate is the reduced one. The next property asks these two procedures to result in

the same outcome.

Definition 4.5 Φ satisfies composition down (Moulin, 1987) if for all (N,E, c) ∈ BZ
and all E� ∈ Z+ with E� > E then Φ(N,E, c) = Φ(N,E,Φ(N,E�, c)).

Trivially, both composition up and composition down imply estate monotonicity.

The next group of properties are protective properties in favor of small claimants.

They refer to how small a claim should be for its owner to receive the whole claim. One

way to decide that threshold in a claims problem is the following: substitute it for the

claim of any other agents whose claim is higher, and check whether there would then be

enough to compensate everyone. The first property exploits the idea that only claimants

responsible for the bankruptcy should be rationed.

Definition 4.6 Φ satisfies conditional full compensation (Herrero & Villar, 2002)
if for all (N,E, c) ∈ BZ, if

Sn
j=1min{ci, cj} ≤ E then Φi(N,E, c) = ci.

The following property proposes an alternative threshold: when an individual’s claim

is smaller than the equal division of the estate, the individual should be fully compensated.
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Definition 4.7 Φ satisfies exemption (Herrero & Villar, 2001) if for all (N,E, c) ∈
BZ, if ci ≤ eE/nf then Φi(N,E, c) = ci

Note that exemption implies conditional full compensation. Moreover, in the case of

two agents they coincide.

Similar to the previous properties, the next ones are protective properties for agents

with large enough claims. They refer to cases where agents with small enough claims

(below a certain threshold) should receive nothing, favouring large claimants. Different

thresholds give rise to different properties.

Definition 4.8 Φ satisfies conditional null compensation (Herrero & Villar, 2002)
if for all (N,E, c) ∈ BZ, if

Sn
j=1min{ci, cj} ≤ E then Φi(N,E, c) = 0.

Definition 4.9 Φ satisfies exclusion (Herrero & Villar, 2001) if for all (N,E, c) ∈
BZ, if ci ≤ eL/nf then Φi(N,E, c) = 0

Obviously, exclusion implies conditional null compensation and in the two-agents case

they are equivalent.

Now, we consider properties that refer to changes in the set of agents. The first

one, consistency, has been studied in a variety of models of distributive justice. Suppose

that, after solving the problem (N,E, c), a proper subset of agents S ⊂ N decides to

reallocate the total amount they have received, that is, they face a new claims problem:

(S,
S
i∈S ai, cS), where cS = (ci)i∈S and a is the allocation recommended by the rule to

the problem (N,E, c). A rule satisfies consistency if the reallocation is only a restriction

to the subset S of the initial allocation.

Definition 4.10 Φ satisfies consistency (Aumann & Maschler, 1985) if for all
(N,E, c) ∈ BZ, all S ⊂ N it holds that Φi(N,E, c) = Φi(S,

S
j∈S Φj(N,E, c), cS) ∀i ∈ S.

The next property is a sort of converse of consistency, but when we only look at

subgroups of agents of size 2. If an allocation for a problem is such that for all two-person

subgroup, the solution chooses the restriction of the allocation to the subgroup for the

associated reduced problem to this subgroup, then that allocation should be the solution

outcome for the original problem.

Let us define the set c.con(E, c;Φ) = {x ∈ Zn+ :
S
i∈N xi = E and for all S ⊂

N such that |S| = 2, xS = Φ(
S
i∈S xi, cs)}
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Definition 4.11 Φ satisfies converse consistency (Chun, 1999) if for all (N,E, c) ∈
BZ, c.con(E, c;Φ) 9= φ, and if x ∈ c.con(E, c;Φ) then x = Φ(N,E, c).

As in the continuous case, duality of properties can also be established for discrete

solutions.

Definition 4.12 We say that P∗ is dual property of P if for every rule Φ it is true that

Φ satisfies P if and only if its dual rule Φ∗ satisfies P∗

The following property is straightforward and the proof is very similar to the analogous

result in the continuous case (see Herrero & Villar, 2001).

Proposition 4.1 The following pairs of properties are dual properties:

(a) σ-weak equal treatment and (−σ)-weak equal treatment
(b) Composition up and composition down

(c) Conditional full compensation and conditional null compensation

(d) Exemption and exclusion.

Moreover, weak equal treatment, estate monotonicity, consistency and converse con-

sistency are auto-dual properties.

The next four results for the continuous case are also valid (without modifications) in

the discrete one.

Theorem 4.1 (Herrero & Villar, 2001) If a rule Φ is characterized by a set of in-

dependent properties Π = {P1, . . . ,Pk}, and if for any Pi there exists a dual property
P∗i , then the dual rule Φ∗ is characterized by the corresponding set of dual properties
Π∗ = {P∗1 , . . . ,P∗k}. Moreover, the properties in Π∗ are also independent.

Proposition 4.2 ([Elevator lemma] Thomson, 2000) If a rule Φ is bilaterally con-
sistent and coincides with a conversely consistent rule Φ� in the two agent case, then it
coincides with Φ� in general.

Proposition 4.3 (Chun, 1999) Estate monotonicity and consistency together imply con-
verse consistency.

Proposition 4.4 (Yeh, 2004) Exemption and consistency togerther imply conditional
full compensation.
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5 Characterizations

We are now ready to present some characterizations results. The fist one is a characteri-

zation of the σ-discrete constrained-equal awards rule.

Theorem 5.1 The σ-discrete constrained equal awards rule is the unique rule that satisfies
σ-weak equal treatment, conditional full compensation and composition down.

Proof. Let σ ∈ Ω. It is easy to check that the σ-discrete constrained equal awards rule

satisfies the three properties.

Let us prove the converse. Let us suppose that there exists a discrete rule Φ satisficing

σ-weak equal treatment, conditional full compensation and composition down. Let N ∈ N
and c ∈ Zn be a vector of demands. We will show that, for any value of the estate E such

that 0 < E < C, Φ(N,E, c) = CEAσ(N,E, c). Let us define δt(c) = t.thmaxj∈N{cj}, that
is δ1(c) is the highest claim, δ2(c) is the second highest claim, and so on. N t(c) = {j ∈
N : cj = δt(c)} and nt(c) = |N t(c)|.

Step 1. Let us suppose that E is such that C − n1(c)(δ1(c) − δ2(c)) ≤ E < C. We can

distinguish two cases:

(a) If i /∈ N1(c), then Φi(N,E, c) = ci = CEAσ
i (N,E, c) by conditional full com-

pensation.

(b) If i ∈ N1(c), by using σ-weak equal treatment, then Φi(N,E, c) = CEAσ
i (N,E, c).

Note that, if E = C − n1(c)(δ1(c)− δ2(c)) then

Φi(N,E, c) = CEA
σ
i (N,E, c) =

ci if i /∈ N1(c)

δ2(c) if i ∈ N1(c)

Step 2. We define E1 = C − n1(c)(δ1(c) − δ2(c)), c1 = Φ(N,E1, c) = CEAσ(N,E1, c) and

C1 =
S
j∈N c

1
j . Let us suppose that E is such that C

1−(n1(c)+n2(c))(δ2(c)−δ3(c)) ≤
E < C1. We can distinguish two cases:

(a) If i /∈ N1(c) ∪N2(c), then Φi(N,E, c1) = ci = CEAσ
i (N,E, c

1) by conditional

full compensation.

(b) If i ∈ N1(c) ∪ N2(c), by using σ-weak equal treatment, then Φi(N,E, c1) =

CEAσ
i (N,E, c

1).

Applying composition down

Φ(N,E, c) = Φ(N,E, c1) = CEAσ(N,E, c1) = CEAσ(N,E, c)
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Note that, if E = C1−(n1(c)+n2(c))(δ2(c)−δ3(c)) thenΦi(N,E, c1) = CEAσ
i (N,E, c

1) =c1i if i /∈ N1(c) ∪N2(c)

δ3(c) if i ∈ N1(c) ∪N2(c)

By repeating this procedure we cover all the possible values for E.

Herrero & Villar (2002) show that the continuous constrained equal awards rule is the

only rule satisfying conditional full compensation and composition down. Here, unlike

the continuous case, composition down and conditional full compensation together do not

imply σ-weak equal treatment. Since this last property is directly related with the order

σ, then a natural question arises: Would it be possible to characterize the family of all

the discrete constrained-equal awards rules by using only conditional full compensation

and composition down? The answer is not. Example (5.1) shows a rule that satisfies

conditional full compensation and composition down that is not a member of the discrete

constrained-equal awards family.

Example 5.1 Let (N,E, c) ∈ BZ a claims problem with only two claimants, |N | = 2,

called 1 and 2, and let σ ∈ Ω. Consider a rule that, if the claims were different or the
estate were an even integer number, coincides with the discrete constrained-equal awards

rule for the order σ. If the claims were equal, we differentiate two cases: if the estate

were 1, 5, 9, 13, . . . the rule will also coincide with the discrete constrained-equal awards

rule for the order σ; otherwise, if the estate were 3, 7, 11, . . . it will coincide with the

discrete constrained-equal awards but with the opposite order (−σ). Such a rule satisfies
composition down, exemption and consistency (vacuously) but there does not exist an order

σ such that it satisfies σ-weak equal treatment.

Φ(N,E, c) =


CEAσ(N,E, c) if c1 9= c2 or E ∈ {2k}k∈Z
CEAσ(N,E, c) if c1 = c2 and E ∈ {4k − 3}k∈Z
CEA−σ(N,E, c) if c1 = c2 and E ∈ {4k − 1}k∈Z

Now we have a characterization of the σ-discrete constrained-equal losses rule.

Theorem 5.2 The σ-discrete constrained equal losses rule is the unique rule that satisfies
σ-weak equal treatment, conditional null compensation and composition up.

Proof. It is sufficient to apply the results shown in Theorems (4.1) and (5.1), and Propo-
sitions (3.2) and (4.1).

17



Analogously to the constrained-equal awards case, Herrero & Villar (2002) characterize

the continuous constrained-equal losses rule by using conditional null compensation and

composition up but not σ-weak equal treatment. The dual rule of that defined in Example

(5.1) satisfies conditional null compensation and composition up but not σ-weak equal

treatment. This fact shows that it is not possible to characterize the discrete constrained

equal losses family by only using conditional null compensation and composition up.

We present now an alternative characterization of the σ-discrete constrained equal

awards rule.

Theorem 5.3 The σ-discrete constrained equal awards rule is the unique discrete rule

that satisfies σ-weak equal treatment, exemption, composition down, and consistency.

Proof. It follows inmediately from Theorem (5.1) and Proposition (4.4).

As in the previous results, Herrero & Villar (2001) prove that, in the continuous case,

the unique rule that satisfies composition down, exemption and consistency is the con-

strained equal awards rule. Our result is very similar to theirs adding σ-weak equal treat-

ment. Again, it is not possible to characterize the family of all the discrete constrained-

equal awards rules using the three axioms proposed by Herrero & Villar. Example (5.1)

also provides the answer.

Here we show the dual result of Theorem (5.1). It consists in a characterization of the

σ-discrete constrained equal losses rule.

Theorem 5.4 The σ-discrete constrained equal losses rule is the unique discrete rule that
satisfies σ-weak equal treatment, exclusion, composition up, and consistency.

Proof. It is sufficient to apply the results shown in Theorems (4.1) and (5.3), and Propo-
sitions (3.2) and (4.1).

The next characterization of the σ-discrete constrained equal awards rule is similar to

that presented in Yeh (2004).

Theorem 5.5 The σ-discrete constrained equal awards is the unique discrete rule that

satisfies σ-weak equal treatment, exemption, composition down and converse consistency.

Proof. Let σ ∈ Ω. It is easy to check that CEAσ fullfils the four properties, let us

see the converse. Suppose that there exists a rule Φ different from CEAσ and which

satisfies σ-weak equal treatment, exemption, composition down and converse consistency.

Since exemption coincides with conditional full compensation in the two claimants case,
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by Theorem (5.1), Φ = CEAσ in this case. Φ fulfills converse consistency, then, by using

the Elevator Lemma, Φ = CEA.

The dual result of the previous theorem provides us a new characterization of the

σ-discrete constrained-equal losses rule.

Theorem 5.6 The σ-discrete constrained equal losses is the unique discrete rule that

satisfies σ-weak equal treatment, exclusion, composition up and converse consistency.

Proof. It is sufficient to apply the results shown in Theorems (4.1) and (5.6), and Propo-
sitions (3.2) and (4.1)

Again, Example (5.1) shows that it is not possible to characterize the whole family

of the discrete constrained equal awards rules (discrete constrained equal losses rules) by

only using exemption, composition down and converse consistency (exclusion, composition

up and converse consistency).

The results in this section can be summarized in Table (1).

Property CEAσ CELσ

σ-weak equal treatment Y(*)(+)(-) Y(*)(+)(-)

Estate monotonicity Y Y

Composition down Y(*)(+)(-) N

Composition up N Y(*)(+)(-)

Conditional full compensation Y(+) N

Exemption Y(*)(-) N

Conditional null compensation N Y(+)

Exclusion N Y(*)(-)

Consistency Y(*) Y(*)

Converse consistency Y(-) Y(-)

Table 1: This table summarizes the result in former sections; "Y" means that
the rule satisfies that property while "N" that it does not. On the other hand
Y(*) (respectively Y(+) and Y(-))means that this property, together with the
others marked with (*) ((+),(-)) in the same column, characterize the rule.

5.1 Independence of Properties

The characterizations in Theorems (5.1), (5.2), (5.3), (5.4), (5.5) and (5.6)are tight. We

here prove the independence of the properties.
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Example 5.2 A rule, Φσ, that satisfies σ-weak equal treatment, conditional full com-

pensation, exemption, consistency, converse consitency and that no satisfies composition

down can be described as follows: First, let us suppose that the estate were completely

divisible; then start by dividing the estate among the agents with the lowest claims, up

to the moment in which those agents are satiated; then, if there is still some estate left,

divide it equally among agents with the second lowest claim, and so on. Formally, let

(E, c) ∈ BN , let µ1(c) = minj∈N{cj}, M1(c) = {j ∈ N : µ1(c) = cj}, m1(c) = |M1(c)|,
µ2(c) = minj∈N M1(c){cj}, M2(c) = {j ∈ N : µ2(c) = cj}, m2(c) = |M2(c)|, etc. Then
for each j ∈Mk(c)

ϕj(E, c) =


0 if 0 ≤ E ≤Ss<km

s(c)µs(c)
E −Ss<km

s(c)µs(c)

mk(c)
if
S
s<km

s(c)µs(c) ≤ E ≤Ss≤km
s(c)µs(c)

cj otherwise

We define now the discrete rule

Φσ
j (N,E, c) =

eϕj(N,E, c)f+ 1 if j ∈ Qσ
E�(ϕ;N,E, c)

eϕj(N,E, c)f otherwise

where E� = E −Si∈Neϕi(N,E, c)f > 0.

Example 5.3 A rule that satisfies σ-weak equal treatment, exemption, composition down,
but violates consistency and converse consistency.

Φσ(N,E, c) =

+
Φ
σ
(N,E, c) if |N | = 3 and for each pair {i, j} ∈ N , ci 9= cj

CEAσ(E, c) otherwise

where Φ
σ
is described as follows: suppose that c1 ≤ c2 ≤ . . . ≤ cn and consider ϕ given by

ϕ(N,E, c) =


�
E
3 ,

E
3 ,

E
3

�
if E3 ≤ c1�

c1,
E
3 +

1
3

�
E
3 − c1

�
, E3 +

2
3

�
E
3 − c1

��
if c1 < E

3 ≤ min
�
c1+3c2
4 , 2c1+3c35

�
(c1, c2, E − c1 − c2) otherwise

Then,

Φ
σ
j (N,E, c) =

eϕj(N,E, c)f+ 1 if j ∈ Qσ
E�(ϕ;N,E, c)

eϕj(N,E, c)f otherwise

where E� = E −Si∈Neϕi(N,E, c)f > 0.
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1. The rule Φ∗ is defined by the previous algorithm. Imagine that the set of players is
ordered in this way {n, n−1, . . . , 1}, if we take the problem E = 10 and c = (2, 6, 8),
Φ∗(E, c) = (2, 3, 5); while for S = {2, 3}, cS = (6, 8), Φ∗(3 + 5, cs) = (4, 4).

Example 5.4 Similar to the discrete constrained equal awards and losses rules, we can
define some kind of proportional rule as follows:

P σ
j (N,E, c) =

epj(N,E, c)f+ 1 if j ∈ Qσ
E�(p;N,E, c)

epj(N,E, c)f otherwise

where E� = E −Si∈Nepi(N,E, c)f > 0, and p denotes the continuous proportional rule.
This σ-discrete proportional rule satisfies σ-weak equal treatment, composition down, con-

sistency and converse consistency but it violates exemption and conditional full compen-

sation.

Example 5.5 CEA−σ satisfies exemption, composition down, conditional full compensa-
tion, and consistency but not σ-weak equal treatment.

6 Conclusions

In this work we have considered claims problems with indivisible goods, that is, problems

in which the estate, the claims and the allocations are indivisible units of an homogeneous

good. If the three procedural properties consistency, composition up and composition down

are requested, only pure priority rules are left, leaving no room for any sort of compromise.

Nonetheless, it is possible to construct approximately egalitarian rules to solve this types

of problems. That is, rules that allocate either awards or losses in a way so that they

are as equal as possible among the agents. When indivisible goods are involved, those

egalitarian procedures give rise to multiplicity of allocations, unless we state some priority

order among the agents. We do so, and use the priority order only to allocate the ”extra”

units, that is, those units that are left after applying our egalitarian principle as far as

possible. This order is exogenously given, and it can be chosen either at random or by using

any sort of priority principle. By using this method, we construct discrete rules that very

much share the spirit of the constrained equal awards and constrained equal losses rules

for the continuous case. A family of rules is obtained in either case, one rule for each linear

order on the set of agents. It happens that for every problem, the allocation recommended

by the corresponding continuous rule is the average of the allocations recommended for

all the discrete rules, for the different orders.

Many of the properties of the continuous case can be extended to the discrete one, as
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the idea of duality, that also works in this context. Any discrete constrained equal awards

rule is the dual rule of the constrained equal losses rule, under opposite orders.

Even though our discrete rules do not satisfy simultaneously the procedural properties

of composition up and composition down, they fulfill one of them each, as well as many

other properties used in the literature for the continuous case. Thus, we obtained char-

acterization results for our rules by using properties very much related to those used in

the continuous case. The main difference now is that pure anonymity principles cannot be

fulfilled for our rules, and thus, we consider some related properties, stating that when two

agents have identical claims, their awards are equal or else differ in one unit. Furthermore,

if two agents with identical claims do not receive the same awards, then the one with the

highest award goes first in the priority order. Our characterization results are similar to

those in Herrero & Villar (2001, 2002) and Yeh (2003) for the continuous case, by adding

the aforementioned relaxation of equal treatment of equals. Unlike the continuous case,

now this ”impartiality property” is necessary to get a characterization.

Theorem 5.3 is related to Theorem 1, page 175 in Young (1994). Consider the case

where each agent demands at most one unit of the indivisible commodity. Then, it happens

that consistency implies composition down, and exemption is vacuously fulfilled. Further-

more, for this particular case, the σ-discrete constrained equal awards rule coincides with

the priority rule defined by the ordering σ. Therefore, Theorem 5.3 simply says that a rule

satisfies consistency and σ-weak equal treatment iff it is the σ-priority rule.

Our discrete extensions are also related to the continuous rules in a different way.

We may consider a two step procedure to allocate awards. Given a problem, in the first

step, we allocate to every agent the whole part of her allocation under the cea (or the

cel) rule. Then we allocate the remaining units according to the priority order. Previous

two-step procedure can be also used in order to define some other types of discrete rules,

by considering, at the first step, any continuous rule. Hence, for each continuous rule

we get a family of discrete associated rules. Even though theoretically, the application

of this procedure gives rise to new discrete rules, not in all cases the rules obtained are

natural and well-behaved (see Example 5.4). This happens, in particular with respect

to the proportional solution. Thus, further research is needed in order to provide with

alternative discrete rules.
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