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ABSTRACT 
 
 

This paper proposes a historically-grounded mechanism-design model of corporate 

finance, with two-side risk aversion under limited contract enforceability, where (inside) 

equity held by entrepreneurs, debt and (outside) equity coexist. This capital structure shares 

optimally the non-diversifiable risk associated with costly and risky ventures. Furthermore, it 

uniquely sustains the optimal risk allocation if agents’ personal wealth is contractible at a 

higher enforcement cost than the projects’ returns.  Otherwise, the irrelevance theorem of 

Modigliani and Miller applies. Consistent with the theoretical predictions, we observe that (i) 

risk-averse merchants-entrepreneurs financed part of their ventures (hold inside equity) and 

raised additional funds from risk-averse investors through debt-like sea loan and equity-like 

commenda contracts when long-distance medieval trade was indeed highly costly and risky 

and that (ii) maritime insurance, with higher protection against the non-diversifiable “risk of 

loss at sea or from the action of men” but higher enforcement costs, did not develop until the 

mid-fourteenth century, when the ventures’ costs and risk had decreased significantly.   

Whereas the model emphasizes the entrepreneurs’ equity holdings and the limited-liability 

aspects of debt and equity, the choice between debt or equity derives from simple, although 

historically backed, information assumptions. The analysis is therefore complementary to 

other capital-structure theories based on agency costs, information asymmetries, signalling, 

transaction costs and incomplete contracting.  
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1 Introduction

“[T]he emphasis [of corporate finance] on large companies with dispersed investors has
underemphasized the role that different financing instruments can play to provide in-
vestors better risk diversification. If all companies’ stock is held by well-diversified
investors, there is little need for additional diversification. Unfortunately, this conve-
nient assumption does not seem to hold in practice.”

[Zingales, Journal of Finance, 55.4 (2000), p.1628]

“To judge the extent to which today’s methods of dealing with risk are either a benefit
or a threat, we must know the whole story, from its very beginnings.”

[Bernstein, “Against the Gods. The Remarkable Story of Risk,” 1996, p.7]

For the last fifty years or so Corporate Finance has focused on various departures from

the Modigliani and Miller’s theorem that make capital structure relevant to a firm’s value

under the assumption that economic agents are risk neutral (Harris and Raviv, 1991, Hart,

1995, and Freixas and Rochet, 1997, among others, survey this literature). Some models

take the form of the securities (contracts) issued by the firm, mainly debt and equity, as ex-

ogenously given; others endogenously derive the characteristics of debt and equity in terms

of cash flows and/or control rights; but all predict a maximum inside participation rate

to the firms’ investments. Since contracts are chosen or designed exclusively to minimize

the costs associated with agency relations, information asymmetries, signaling, incomplete

contracting or transacting, the best an entrepreneur can do is to finance the project he

manages on its entirety, unless restricted to rely on external funds because of budget con-

straints. However, the evidence indicates that entrepreneurs/firms both are risk averse and

resort to external funds before investing 100 percent of their own wealth (for evidence on

these respects, see Zingales, 2000 and Zingales, 1995, table IV, p. 1439).

A notable exception is Leland and Pyle (1977). They exploit managerial risk aversion

to obtain a signaling equilibrium in which entrepreneurs retain a higher fraction of (inside)

equity than they would hold in the absence of adverse selection, but still rely on external

funds because of diversification. Leland and Pyle thus rationalize the observed fact that
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entrepreneurs self-finance only a part of their ventures, but do not address the fundamental

question of why debt and equity are designed the way they are.

This paper offers a mechanism-design model where (inside) equity held by entrepreneurs,

debt and (outside) equity emerge optimally under two-side risk aversion and limited contract

enforceability. To evaluate the empirical relevance of the model, the paper confronts its

assumptions and predictions with evidence from a historical episode in which risk-sharing

was unquestionably important. In particular, it investigates the financial relations between

merchants and their potential financiers in Venice during the Commercial Revolution from

the eleventh to the fourteenth centuries.

Like in Leland and Pyle (1977) and more generally the optimal portfolio selection theory

under risk aversion, entrepreneurs rely on external funds because of risk-sharing. Unlike

traditional capital structure theories, the specific form of contracts (securities) under which

funds are supplied is endogenously derived, but only in terms of cash-flows. In fact, the

model is closest to the costly state verification/falsification literature (Townsend, 1979; and

Gale and Hellwig, 1985/Lacker and Weinberg, 1989) which, in a one-period comprehensive

contracting framework, derives the optimal income rights of debt or equity. However, it

differs in its main assumptions and results.

In the model, all agents are risk-averse; each might be endowed with the resources

required to finance the venture by his own— so that entrepreneurs must not rely on external

funds because of budget constraints; there are both a downside risk and a commercial risk,

the former accounting for the possibility of losing part or all of the (fixed) capital invested;

and there is no verification/falsification cost. On the contrary, the model considers two

exogenous information structures and introduces enforcement costs. Contracts are thus

designed to attain the optimal allocation of risk, given the information structure, while

minimizing enforcement costs.
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Whereas the model emphasizes the entrepreneurs’ equity holdings and the limited-

liability aspects of debt and equity, the choice between debt or equity is exogenously

driven by simple information assumptions: under hidden information debt emerges as a

second-best because contracts cannot be contingent on the non-verifiable commercial re-

turn; under full information first-best equity contracts are possible. In contrast to the

costly state-verification literature, in which the threat of verification is not credible be-

cause verification is ex-post inefficient, debt is optimal under hidden information even if

stochastic verification-bankruptcy schemes, like auditing, are allowed because the verifica-

tion technology is exogenously given. Moreover, debt and equity can co-exist under different

information structures and are robust to the allocation of bargaining power. However, the

model does not account for the equity’s linearity features, which would require introducing

some sort of enforcement (falsification) cost. Last but not least, the model rationalizes the

observed fact that entrepreneurs hold inside equity but rely on debt and outside equity

before investing all their wealth in the projects they manage.

The paper first considers the case in which the entrepreneur is constrained to rely on

external funds because of a shortage of his owns and delivers debt and equity as corner

solutions if and only if ventures are highly costly and risky. Because of the binding budget

constraint, the entrepreneur cannot repay any amount above the venture’s return, which

in case of loss is dreadfully insufficient to reward the financier’s capital investment. To

compensate for the possibility of losing his capital, the (risk-averse) financier calls for soaring

payments otherwise. As a consequence, his consumption varies widely, whereas that of the

entrepreneur is invariably small. The lesser the amount paid out in the case of failure,

the higher the repayment required otherwise and the more volatile the financier’s event-

consumption relative to the merchant’s. Because both agents are assumed to be equally

risk averse, the financier values consumption in the event of loss relatively more than the
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entrepreneur, and it is optimal that the investor recoup as much of his capital as possible

from the venture’s return. In other words, debt and equity, with repayment equal to all

what is saved from a firm’s assets in case of failure, emerge optimally, one or the other

depending on the information structure. Yet, these contractual forms provide too much

insurance to the entrepreneur against the downside risk. Both the entrepreneur and his

potential financier would prefer a contract with higher repayment in the case of loss, but

this is not feasible when the merchant lacks the resources required to fund the venture (debt

and equity are corner solutions).

The model is then extended to consider the case in which the entrepreneur is endowed

with sufficient capital to fund the venture on his own. From the observation that debt and

equity are corner solutions, it follows that a well-endowed entrepreneur will not optimally

raise funds for the whole trading venture through debt and equity, but will rather finance

part of the venture, thereby bearing the liability of loss for the corresponding amount and

effectively receiving less insurance against the downside risk. In other words, a capital

structure with (inside) equity held by the entrepreneur, debt and (outside) equity shares

risk efficiently.

Yet, debt and equity are not the only contracts through which the optimal risk allocation

can be attained. The Modigliani and Miller irrelevance theorem, though, does not apply

because of enforcement cost. In particular, a capital structure with (inside) equity holdings

and limited liability debt and/or (outside) equity is preferable to a combination of risk-free

debt plus premium insurance because the cost of enforcing contracts contingent on the

ventures’ returns is assumed to be lower than from the agents’ personal wealth.

The organization of the paper is as follows. Section 2 sets the model and characterizes

various historically observed contracts. Sections 3 to 5 solve the contracting problem for

various parameter values and evaluate empirically various theoretical predictions generated
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by the model. Section 6 comments on the contract’s nominal indeterminacy and proposes

enforcement cost to determine a unique capital structure. Finally, section 7 concludes.

2 The Model

Consider a one-period two-dates contracting economy with a merchant-entrepreneur and

a financier who face the possibility to undertake a single welfare-enhancing investment

project, say a trading venture. Both agents are risk averse with preferences represented by

continuous and twice-differentiable utility functions Ui(ci) exhibiting a decreasing absolute

risk aversion (DARA) coefficient with U ′
i(.) > 0, U ′′

i (.) < 0, where c denotes consumption

and the subscript i = 1, 2 stands for the merchant and the financier, respectively.1 Each

agent i is initially endowed with ki units of good and maximizes his expected utility from

second-date consumption. Goods can be costlessly self-stored or invested in the trading

venture. Any amount of the good can be stored but the investment is lumpy. The venture

requires k units of investment, plus the entrepreneurship of the merchant. It yields a

random return s ∈ S = {y, x, x̄} with probability ps, where y denotes the loss due to the

downside risk and {x, x̄} stand for the risky commercial return, with 0 ≤ y � k � x < x̄

and k < E[s]. In the historical context under study, the downside risk refers to the so-called

“risk of sea and people” and includes the risk of natural shipwreck, piracy and confiscation

of property by foreign rulers. The commercial risk accounts for wide variations in profits

depending on the tariffs and bribes paid in customs, transportation and storage fees, the

conditions of the goods upon arrival after hazardous trips, fluctuations in prices, and so on

and so forth.

To account for the optimality of undertaking the investment project we assume that

E[Ui(s)] > Ui(k) ∀i, (1)

1Note that Innada conditions are not assumed to hold, so that we do not force and interior solution.
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which in combination with DARA ensures that the higher productivity of the trading

venture (E[s] > k) compensates for its risk. Therefore, agents will only self-store and

consume their autarkic endowments, ki, if they are unable to mobilize funds in long-distance

trade. For ease of notation, let w(s) = k1 + k2 − k + s be the second-date total risky

endowment of the economy when the venture is undertaken. We first study the case in

which the merchant is constrained to rely on external funds because of budget constraints

and, for simplicity, he is assumed to have zero initial wealth, k1 = 0. Then, the model is

extended to capture the situation in which the merchant can finance the venture entirely

on his own, k1 > k. The financier is always endowed with enough resources to fund the

venture, k2 > k.

At the first date, when investment decisions are taken, there is no information whatso-

ever on the true realization of the venture return. At the second date the return is realized

and revealed to the merchant. Based on historical evidence, the model assumes that the

State both provides contract enforcement and can verify losses “at sea or from the action of

enemies,” and considers two extreme scenarios regarding the ability of the State to verify

the commercial return (González de Lara, 2004a ). Under the hidden information structure

the commercial returns is non-verifiable, at any cost, but the State can force the merchant

pay out the minimum possible commercial return, x. Under the full information structure

the commercial return is verifiable without any private cost for the financier.

Before proceeding, several comments are in order. First, to focus on the role that

financial contracts can play in providing better risk-sharing, the model characterizes the

non-diversifiable risk associated with pre-modern long-distance trade. As a result, the

model does not reveal diversification although, in reality, each trading venture entailed an

idiosyncratic risk that could be and actually was diversified to some extent. This leading

assumption is justified by the historical evidence, which clearly indicates that the presence

7



of significant indivisibilities and aggregate risk limited the degree of risk spreading that the

economy could achieve and prevented agents from effectively becoming risk neutral.

Since evidence on the agents’ limited ability to diversify has been presented in detail

somewhere else (González de Lara, 2004a ), a few examples will suffice here. The high

start-up cost associated with manning and outfitting a typical medieval ship— with a crew

of a hundred and about 200 tons capacity during the thirteenth century— prevented the

undertaking of a sufficiently large number of ventures during a period in which capital was

the more scarce. Furthermore, since the few ventures that were actually financed concen-

trated on the most profitable Levantine trade, they were exposed to the aggregate risk of

having their proceeds impounded by a politically hostile ruler, as it happened in 1171 when

the Byzantine Emperor ordered the arrest of all the Venetians in his territory (estimated

to sum up to 20,000 over a total population beneath 100,000) and the confiscation of all

their goods.

Second, to keep the structure as simple as possible, the model assumes that the State

functioned as an enforcement and information-transmission mechanism. As a result the

model ignores the role of adverse selection, moral hazard with hidden effort/action, incom-

plete contracting and private-order institutions in shaping contracts, although in reality

these forces might play an important role. The assumption that the legal system can en-

force contracts contingent on verifiable information is standard in the Finance and Contract

Theory literatures. In late-medieval Venice the State, in addition to developing legal in-

stitutions, generated the stream of rents required to induce the Venetians to keep their

affiliation with the city, thereby enabling merchants to commit not to flee with their in-

vestors’ capital despite the limited ability of a medieval court to exercise its coercive power

over a merchant who emigrated.2 Transaction Costs Economics, as well as the Costly State-

2For a historical institutional analysis of the emergence of the Venetian State as an institution for
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Verification literature, further assumes that the legal system can enforce contracts but at a

cost. The model described above does not consider any enforcement cost, although section

6 relaxes this unrealistic assumption.

The information structures reflect the changing State’s ability to verify information. In

far-off markets merchants were the only ones to know the bribes they had paid to pass

customs, the damages (if any) suffered by their wares while on transit or the true price

received and paid for their goods. However, in well-established markets public officials

carefully monitored commercial ventures in each and all of their phases. Thus, institutional

arrangements that enabled the Venetians to consolidate their colonial and commercial em-

pire in the East enhanced the State’s ability to verify information, leading from hidden

information to full information in the model (see González de Lara, 2004a).

2.1 Contracts

We consider allocations that can be obtained by means of a contract enabling the funding of

the venture and specifying transfers from the merchant to the financier both at the first and

at the second date. Whereas first-date transfers τ ∈ < are prior to the realization of the state

and, accordingly, are independent of it, second-date transfers τ(s) are contingent on the

state. A contract will result in consumption schedules for the merchant and the financier, c1

and c2 respectively, where c1 := c1(s) = k1−k+s−[τ+τ(s)] and c2 := c2(s) = k2+[τ+τ(s)].3

Like today’s entrepreneurs, medieval merchants typically self-financed only part of their

contract enforcement, see Gonzaález de Lara, 2004b.
3These consumption schedules capture the fact that the venture’s returns first accrued to the merchant,

who need to cover the fix cost k to generate the return s. Moreover, the evidence suggests that in pre-
modern Venice the merchant acquired the ownership of the venture returns and that he was the residual
claimant. Yet, ownership in the model is irrelevant because (i) this study is robust to the allocation of
property rights (it considers all levels of bargaining power subject to individual rationality) and (ii) there
is no incomplete contracting and, consequently, the allocation of control rights is unimportant. Formally,
nothing would change if the financier, agent 2, had the right to the venture’s returns and consumption
were expressed as c1(s) = k1 + τ̆ + τ̆(s) and c2(s) = k2 − k + s− τ̆ − τ̆(s), with these new transfers to be
understood as a contingent salary payment to the merchant for his entrepreneurship. The optimal transfers
will still give rise to the same optimal allocation of consumption, with τ̆ = −k − τ and τ̆(s) = s− τ(s).
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ventures— φ k, with φ ∈ (0, 1)— and raised the remaining capital— τ = −(1 − φ)k—

through debt-like sea loan and/or equity-like commenda contracts. Both the sea loan and

the commenda established repayment equal to all what was saved from misfortune on the

event of loss “at sea or from the action of hostile people.” Thus, merchants-entrepreneurs

were partially insured against the downside risk, for they were exempted from repayment

beyond the amount retrieved from a loss — τ(y) = y < k— but they did not enjoy full

insurance, which would have required a coverage payment— τ(y) < 0 instead of τ(y) =

y ≥ 0— to offset the merchant’s lack of gain in the event of loss. The sea loan and the

commenda differed only in the transfers they established in the case the ship arrived safe and

sound in port. Whereas the sea loan paid out a fixed constant, the commenda divided the

commercial profit according to a ratio agreed upon, and thus shared not only the downside

risk but also the commercial risk between the merchant and his financier. In short, the

sea loan and the commenda established the same income-rights as today’s debt and equity

contracts. They were, however, silent about the allocation of control rights.

Definition 1 A sea loan contract (debt) establishes

− k ≤ τ < 0 and τ(y) = y < τ(x) = τ(x̄)

Definition 2 A commenda contract (equity) establishes

− k ≤ τ < 0 and τ(y) = y < τ(x) < τ(x̄)

But, if the debt-like sea loan sustained a worse risk allocation than the equity-like com-

menda (risk averse merchants bore all the commercial risk), why was it used? Standard

contract theory informs us that in a one-period model contracts can only be made con-

tingent on states whose occurrence can be verified to the satisfaction of all contracting

parties (incentive compatibility). In other words, financial contracts in the model under

hidden information cannot depend on merchant’s private information, thereby ruling out

commenda contracts. González de Lara (2004a) identifies empirically various situations in
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which the State could not verify the true venture return and others in which the State

could, and find that the sea loan and the commenda were used as predicted: the sea loan

when and where hidden information prevented the merchant from credibly committing not

to misappropriate some of the return; the better-risk sharing commenda when and where

various institutional developments alleviated this hidden information problem.

Yet, many questions should be addressed. Why were the financiers entailed to all the

capital saved from misfortune in case of loss— τ(y) = y— or, put it differently, why

were both the entrepreneur and the financier “protected” with limited liability? Why did

the merchants finance part of their ventures and raise additional funds through debt-like

sea loan and equity-like commenda contracts before investing 100 percent of their own

resources— φ ∈ (0, 1)? Did the observed capital structure provide the optimal allocation of

risk? And why did the Venetians provided insurance through the credit market? Indeed,

later in the fifteenth and sixteenth centuries, credit and insurance were furnished through

two distinct contracts. Overseas trade was then typically funded through risk-free bills of

exchange and insured through premium contracts, with the particularity that the premium

was commonly paid after the insured cargo was safely arrived to destination.4 The formal

model provides the foundations for addressing these questions.

Definition 3 A bill of exchange (risk-free debt) establishes

− k ≤ τ < 0 and τ(y) = τ(x) = τ(x̄)

Definition 4 A pure insurance contract establishes either τ > 0 with at least one τ(s) < 0
(as today’s premium insurance contracts) or τ = 0 with at least one τ(s) < 0 and other
τ(s) > 0 (as commonly happened in pre-modern Europe). In brief, a pure insurance contract
is such that, at date 1, the entrepreneur receives in some states a positive payment from his
financier-insurer, i.e. ∃ s : τ(s) < 0.

4The bill of exchange was an order to pay in one place in one kind of money because of a payment
received in a different place in a different kind of money. There was always a time lag between receipt and
payment, so that one of the parties was extending credit to the other in the meantime.
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2.2 Optimal Contracts

A contract is optimal if and only if it sustains an optimal allocation of consumption, which

is defined as the solution to the following (concave) problem for some given value of U2.
5

Further, we restrict our attention to contractual forms that sustain the optimal allocations

for all individually rational levels of U2, i.e. regardless of the competitive structure of the

capital market. Thus, the model can explain the variety of financial relations observed

in Venice, where it was as common that non-noble merchants of low means raised capital

from the leading aristocracy as that rich and politically-powerful merchants got funds from

medium-class artisans. In other words, the model— in contrast with Lacker and Weinberg

(1989), Bolton and Schartfstein (1990) and Hart and Moore (1998), where optimal contracts

are not robust to the allocation of bargaining power— can be applied to both venture and

well-functioning capital markets.

Program 1:
max

{ci(s)}i=1,2

E{U1[c1(s)]}

s.t. E{U2[c2(s)]} ≥ U2 (2)

ci(s) ≥ 0 ∀i,∀s (3)

∑
i

ci(s) ≤ w(s) ∀s. (4)

Restrictions (3)-(4) are feasibility constrains. Consumption cannot be negative and

cannot exceed total resources. Constrain (4) holds with equality, since resources are not

spared optimally. Therefore, c1(s) = w(s)− c2(s) and the problem can be solve on c2(s) for

s ∈ S. It also follows that (2) holds with equality, so that the concave utility possibilities

frontier can be traced out as the parameter U2 is varied. Individual rationality imposes

5The Revelation Principle ensures that any contingent allocation that satisfies the self-selection property,
i.e. which is incentive compatible, can be achieved under a mechanism (a contract). This allows us to convert
a problem of characterizing efficient contracts into a simpler one of characterizing efficient allocations, as
in a pure exchange economy. Then, we only have to find a contract that sustains the optimal allocation
and respects all the restrictions.
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both a lower and upper bound on U2. Hereafter, this parameter is restricted to lie in this

interval.

The lower bound is given by the financier’s ex-ante participation constraint

U2 ≥ U2[k2], (5)

which ensures that he is as well off under the contract as he is under autarky. The upper

bound of the parameter U2 varies depending on the merchant’s initial endowments. If he

is endowed with zero wealth, k1 = 0, U2 ≤ E{U2[k2 − k + s]} because the merchant will

always agree to undertake the venture. His ex-ante participation constraint, E{U1[c1(s)]} ≥

E{U1[k1]}, can thus be ignored, for his best alternative is consuming nothing in all the

states, which gives him no more utility than he can get through contracting, as constraint

(3) reads. If, on the contrary, the merchant is initially endowed with the necessary resources

to finance the venture himself, k1 > k, he can undertake the venture alone and consume

c1(s) = k1 − k + s. In this case, his individually rational constraint

E{U1[c1(s)]} ≥ E{U1[k1 − k + s]} (6)

is more restrictive than his ex-ante participation constraint, because of (1) for i = 1 and

utility functions exhibit decreasing absolute risk aversion (DARA). This implies a smaller

upper bound on the parameter U2 for k1 > k than for k1 = 0.

Also, the restricted set over which contracts are optimally chosen changes depending

on the assumed information structure. First, incentive-compatibility restriction (8) must

be fulfilled when the merchant posses hidden information, but it is relaxed when the com-

mercial return is verifiable. Second, hidden information restricts the upper bound of the

parameter U2 to the expected value of the verifiable second-date endowment.

U2 ≤ py U2[k2 − k + y] + [px + px̄] U2[k2 − k + x] < E{U2[k2 − k + s]}. (7)
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3 Optimal risk-sharing with k1 = 0 under hidden in-

formation: a debt-like sea loan contract

Let us first examine the case in which the merchant-entrepreneur is constrained to rely on

external funds because of a shortage of his own (k1 = 0) and has hidden information about

the realization of the venture’s return. Incentive compatibility imposes fixed consumption

for the financier on the event that the ship with its cargo arrived at port safe and sound

(see Townsend, 1982):

c2(x) = c2(x) = c2(x̄). (8)

Thus, hidden information naturally explains fix repayment in debt-like sea loan con-

tracts: τ(x) = τ(x) = τ(x̄). Yet, an explanation for the optimality of the sea loan needs

also to account for the fact that it established repayment equal to all the capital retrieved

from a navigation accident, just like today’s standard debt contract entails the financier to

recoup as much of his credit as possible from the firm’s assets if the firm fails, τ(y) = y.

Imposing restriction (8) under hidden information, the programming problem becomes

Program 2:
max

{c2(y),c2(x)}
E{U1[w(s)− c2(s)]}

s.t. E{U2[c2(s)]} = U2 (9)

c2(y) ≤ w(y), c2(x) ≤ w(x), c2(s) ≥ 0, (10)

where U2, satisfying (5) and (7), defines each individually-rational optimal allocation

and restriction (10) combines the feasibility constraints (3) and (4) with the information

constraint (8).

3.1 Graphical analysis

Let us depict the optimal event-contingent allocations of consumption in an Edgeworth

Box, whose dimensions are given by the total resources of the economy in each state,

14



w(s) = k2 − k + s. Under hidden information incentive compatibility imposes c2(x) =

c2(x̄) = c2(x). Therefore, there are two instead of three independent variables and the

analysis can be drawn in a two dimensional picture, with a trick: the consumption of

the financier is two event-contingent, but the consumption of the merchant is three state-

contingent. Thus, figures 1 to 4 present an Edgeworth Box in which the consumption of

the merchant has two different origins. The presence of hidden information, and restriction

c2(x) ≤ w(x) in particular, also accounts for the shaded noncontractible area. This means

that c1(x̄) ≥ x̄ − x > 0 because the merchant can expropriate ex-post the non-verifiable

component of the profit, so that contracts with τ(x) > x are non enforceable and the

maximum utility that the financier can achieve is given by the value of U2 in (7).

From figure 1 it is clear without further analysis that risk-free debt contracts providing

constant consumption to the financier does not satisfy the financier’s ex-ante participation

constraint— PC2 in figure 1— as long as the venture involves risk: y < k. In other

words, risk-free loans sustaining individually-rational allocations, c2(x) = c2(y) ≥ k2, are

not feasible (they lie outside the Edgeworth Box; see, for example, point A) because the

merchant is short of resources to pay out a non-contingent transfer on the event of a loss

(i.e. τ(y) = τ(x) ≥ k is not feasible). Therefore, the mobilization of capital in long-distance

trade required the sharing of the downside risk between the merchant an his financier. How

much insurance would the financier optimally provide to the merchant?

3.2 Risk preferences

Let imagine for a moment a large number of independent and identically distributed ven-

tures and merchants. If long-distance trade had been so characterized, the financier could

have diversified the idiosyncratic risks faced by each poor merchant (k1 = 0). Therefore,
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FIGURE 1

(Hidden Information, k1 = 0, Two-side Risk Aversion)
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it would have been optimal for the financier to provide full downside insurance— with

τ(y) < 0 ≤ y— to each merchant, whose consumption would have thus been smoothed.6

In other words, on the margin the financier would have behaved as if he were risk neutral

(each merchant being risk averse) and the sea loan— with τ(y) = y— would have provided

too little insurance to the merchant. Figure 2 shows that, under these risk preferences,

the sea loan would have never been optimal, since any efficient and individually rational

allocation would have been then characterized by c2(y) < w(y), which implies τ(y) < y.

Alternatively, if the merchant had been risk-neutral and the financier risk-averse, the sea

loan— which provides as little insurance to the merchant as feasibility constraints impose—

would have been optimal (see figure 3) and it would have also been so if both agents had

been risk-neutral, since then any division of risk would have been optimal.

Let us now consider the most realistic case in which both the merchant and his financier

are risk averse. Figure 4 illustrates different possible contract curves: CC ′ and CC. For

parameter values leading to CC ′, debt-like sea loans are not optimal. To sustain any

allocation in the core,7 the financier would need to provide more downside insurance than

the merchant enjoys through a sea loan contract: c2(y) < w(y) = k2−k+y. On the contrary,

the sea loan is optimal for parameter values leading to a contract curve like CC in figure 1

and 4. The contract curve CC is such that at the corner point (c2(y), c2(x)), with c2(y) =

k2− k + y and c2(x) ≥ k2− k + tpc, the slope of the merchant’s indifference curve is smaller

6Yet, merchants would have borne the commercial risk, because of hidden information. Therefore, the
merchant’s consumption would have not been constant across states: c1(x) = w(x)−c2(x) < w(x)−c2(x) =
c1(x) = c1(y) = w(y) − c2(y) < w(x̄) − c2(x) = c1(x̄). The first and the last equalities derive from
the incentive-compatibility constraint (8) and the inequalities from w(y) < w(x) < w(x) < w(x̄), with
w(x) and c1(x) defined such that px̄

px+px̄
U ′

1[w(x̄)− c2(x)] +
px

px+px̄
U ′

1[w(x)− c2(x)] = U ′
1[w(x)− c2(x)] and

c1(x) = w(x) − c2(x). Then, the first order conditions for a risk neutral financier can be expressed as
U ′

1[w(x)− c2(x)] = U ′
1[w(y)− c2(y)]. This implies an optimal allocation such that c1(x) = c1(y).

7The core in this simple two-agent economy is standardly defined as the Pareto efficient individually-
rational event-contingent consumption allocations. It is represented as the Pareto set that lies between the
indifference curves that pass through the initial endowments, meaning the shaded interval of the Contract
Curve CC or CC ′ in figures 1 to 4.
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FIGURE 2

(Hidden Information, k1 = 0, Merchant Risk Averse, Financier Risk Neutral)
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FIGURE 3

(Hidden Information, k1 = 0, Merchant Risk Neutral, Financier Risk Averse)
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FIGURE 4

(Hidden Information, k1 = 0, Two-side Risk Aversion )
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than the slope of the financier’s indifference curve, meaning that, to renounce to a marginal

unit of state-y-consumption, the financier wants more units of event-x-consumption than

the merchant values that extra marginal unit of state-y-consumption. A corner sea loan

contract, establishing τ = −k, τ(y) = y, and τ(x) = τ(x̄) = t̃, will then sustain the unique

optimal allocation of risk, with t̃ ∈ [tpc, x] taking different values for each individually-

rational level of bargaining power U2. In sum, because of the merchant’s lack of resources,

k1 = 0, the financier needs to fund the venture on its entirety (φ = 0 so that τ = − k)

and bears at least the downside risk of losing the capital he contributes minus the amount

saved from failure “at sea or from the action of the enemy” (feasibility constraints impose

τ(y) ≤ y). Under parameter values leading to CC, this transfer is optimally set at its

bound, τ(y) = y, whereas for parameter values leading to CC ′, it optimally takes smaller

values, τ(y) < y. The point is that contracting through debt-like sea loan contracts—

with τ(y) = y— is not unambiguously efficient under two-side risk aversion. Under what

conditions/parmeter values, if any, is the sea loan optimal?

3.3 Comparative Statics

A simple exercise in comparative statics leads to proposition 1, whose rationale is explained

below and proved in appendix A.

Proposition 1 The more risky and costly the venture is (the higher py and the lower y,
the higher k relative to k2, and the lower E[x] = px x + px̄ x̄ given x ≥ tpc), the more
likely it is that the risk averse merchant raises funds from the risk averse financier through
a debt-like sea loan contract, optimally.

On the likely event of a navigation incident (py high), the financier could not recoup any

amount beyond what was saved from misfortune, which was dreadfully insufficient (y very

low) to reward the capital investment: τ(y) ≤ y � k. This implied a very significant loss

to the financier, for he invested a major part of his scarce initial endowment in the venture
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(k high relative to k2). To compensate for the possibility of loss, the financier required

soaring payments when the merchandise arrived at port safe and sound. This payment t̃

was very high relative to the expected value of the commercial return (E[x] = px x + px̄ x̄

low, implying a low p = px̄

px+px̄
, x, and/or x̄). Indeed, sea loan contracts usually charged

yearly interest rates above 33 percent for relatively safe ventures. For particularly risky

voyages, interest rates rose up to well above 40 percent, not yearly but for the few months

a voyage lasted (González de Lara, 2004a).8

As a result, voluntary financial contracting (for any level of bargaining power subject to

the financier’s ex-ante participation constraint) calls for commercial transfers τ(x) = t ≥

t̃ ≥ tpc such that the merchant consumes very little in all the states: 0 ≤ y−τ(y) = c1(y) <

E[c1(x)] = E[x] − t ≤ E[x] − t̃ ≤ E[x] − tpc, with t decreasing as τ(y) ≤ y approximates

y (the financier’s indifference curves, and PC2 in particular, have negative slope). On the

contrary, the financier’s event-consumption varies widely: c2(y) = k2−k+τ(y) ≤ k2−k+y

is very low while c2(x) = k2 − k + t ≥ k2 − k + t̃ ≥ k2 − k + tpc is very high. Thus,

along the relevant indifference curve in the Edgeworth Box (to the North-East of PC2), the

merchant’s consumption is smoother than the financier’s consumption

max{E[c1(x)] − c1(y)} = E[x]− t̃ � t̃− y = min{c2(x) − c2(y)}, (11)

where the volatility of agents’ consumption is the least by setting τ(y) = y and τ(x) = t̃,

with t̃ ∈ [tpc, x] depending on each party’s bargaining power. Consequently, the risk averse

financier values consumption in the case of failure relatively more than the merchant and

it is optimal that the merchant provides as much downside-risk insurance to the financier

as possible, τ̃(y) = y. So, the sea loan is optimal in proposition 1.

8Likewise, commenda contracts—which provided exactly the same downside insurance than the sea loan,
τ(y) = y— customarily remunerate capital with three fourths of the commercial profit.
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Inequality (11) is thus a necessary and sufficient condition under two-side risk aversion

for the optimality of the sea loan (debt contract). The sea loan will more likely be optimal

the lower E[x], the higher t̃ ≥ tpc, and the lower y, i.e. the more risky and costly the venture

is. First, the higher py and the lower y, the higher the transfer t̃ ∈ [tpc, x] required to

compensate for the possibility of losing the capital advanced, by construction. Second, the

more costly the venture (the lower k2−k), the more absolute risk averse the financier is and

the higher the transfer t̃ ≥ tpc he would require to compensate for the risk of loss— because

of DARA, the financier’s indifference curves become more sloppy. Third, a decrease in y and

E[x] reduces the dimensions of the Edgeworth Box and shifts the merchant’s indifference

curves towards its flatter region (the origin of the merchant’s consumption shifts to the

south or to the west for smaller values of the parameters y and E[x], respectively). It is

worth noting, however, that E[x] cannot take extremely low values because the minimum

verifiable return x needs to be high enough to compensate the financier for the possibility

of losing his capital. In other words, the financier would refuse funding a venture on which

he took the risk of loss, τ(y) = y < k, unless x ≥ τ(x) = t̃ ≥ tpc.

3.4 Empirical evaluation of the theoretical predictions

This theoretical explanation for the use of the debt-like sea loan (and the equity-like com-

menda, see next section) lends itself to empirical evaluation. First, as predicted, sea loan

(and commenda) contracts, with repayment equal to all the capital saved from loss at sea

or from the action of hostile people and very high repayment otherwise, prevailed during

the twelfth and thirteenth centuries, when trading ventures were indeed highly risky and

costly.

Second, the sea loan (and the commenda) lost their popularity when “commerce lost

much of its adventurous and almost heroic features” (py lower and y higher) and “tended to
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become a routine” (E[x] = px x + px̄ x̄ higher),9 and wealth accumulation from commerce

reduced the former scarcity of capital (k2 higher, at least with respect to k).10 Consistent

with the model’s predictions, the Venetians responded to this environmental change— the

new parameter values violated (11), leading to a contract curve such as CC ′ in figure 4— by

developing new contractual forms such that the merchants enjoyed more insurance against

the downside risk than they used to receive through sea loan and commenda contracts:

ĉ2(y) < w2(y). From late in the fourteenth century, sea ventures were typically funded

through risk-free bills of exchange, with τ̂(y) = τ̂(x) = τ̂(x̄), and insured through premium

policies, with τ̂(y) < −k + y < 0.

Finally, the severe drop on insurance rates lends empirical support to the theoretical

explanation for the selection of alternative contracts. The model predicts the use of the sea

loan (and the commenda) because the high risk and cost initially involved in sea ventures

made insurance too expensive, thereby leading the merchant to buy as little insurance as

he could, τ(y) = y ≥ 0. Likewise, the model predicts the use of premium insurance, with

τ(y) < 0, in response to a fall in the insurance cost. In real truth, underwriters during the

fifteenth century charged much lower premiums than their counterparts from the twelfth

and thirteenth centuries used to obtained through sea loan and commenda contracts. The

insurance rates varied widely according to the type of vessel, the port of call, the state

of war or peace, the season of the year, and other circumstances, but insurance policies

remained consistently cheaper than the insurance rates paid above the safe interest on sea

loans. As already mentioned, rates of return on sea loans, repayable upon safe arrival of

9The quotations are from the great historian of the Commercial Revolution Lopez (1976, p. 97), who also
noted that “high risks and high profits were predominant in the early stages of the Commercial Revolution;
they were instrumental in forming the first accumulations of capital.”

10That capital became relatively less scarce is indicated by the sharp drop in interest rates. During the
twelfth century Venice’s “common use of our land” established a 20 percent yearly interest on risk-free
loans, subjected to double penalty if payment was delayed and secured by a general lien on the debtor’s
property (González de Lara, 2004a). By the mid fourteenth century average interest rates on commercial
loans within Venice had declined to 5 percent (Luzzatto, 1943, pp. 76-79) and the 1482’s new issue of
government bonds promised to pay 5 percent yearly interest on perpetuity (Mueller, 1997, p. 420).
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the ship, varied from 25 to 50 percent for the duration of the voyage, while yearly interest

rates on risk-free loans— although high— only amounted to 20 percent, thereby implying

an insurance cost from around 15 to 40 percent on sea loans. The premium paid during

the fifteenth century for the safest voyages amounted to a mere 1-1,5 percent and raised

up to 20 percent for exceptionally risky ventures (see, for example, De Roover, 1945, and

Tenenti, 1991).

4 Optimal risk-sharing with k1 = 0 under full informa-

tion: an equity-like commenda contract

The previous section shows that, when ventures are highly risky and costly, the sea loan

emerges optimally under hidden information. However, the (risk-averse) merchant unde-

sirably undertakes all the commercial risk, τ(x) = τ(x̄) because of his inability to commit

to reveal a commercial return other than the minimum verifiable (x by assumption). The

provision of verifiable information relaxes incentive-compatibility constraints and enables

better risk-sharing commenda contracts, with τ(y) < τ(x) < τ(x̄). Yet, to explain the

optimality of the commenda, one need to account for the fact that it shares the downside

risk in the very same manner as the sea loan, with τ(y) = y.

With a sea loan, the financier bears as little downside risk as possible, τ(y) = y, while

taking none of the commercial risk, τ(x) = τ(x̄). If this is the efficient agreement under

hidden information, it naturally follows that the financier will not optimally bear more

downside risk once he is optimally assuming part of the commercial risk, τ(x) < τ(x̄) under

full information. Thus the optimality of the commenda derives from that of the sea loan

and can hence be linked to the venture’s risk and cost characteristics. Proposition 2, which

is proven in Appendix B, follows.
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Proposition 2 If the sea loan sustains all the optimal individually-rational allocations un-

der hidden information, the commenda supports the corresponding allocations under full

information.

4.1 Empirical evaluation of the theoretical predictions

In the model, debt-like sea loan and equity-like commenda contracts can coexist under

various information structures, which is in sharp contrast with the costly state verifica-

tion/falsification literature. In reality, the sea loan and the commenda were simultaneously

used to finance different kinds of sea ventures. For example, from the thirteen documented

ventures taken in 1190, when Venice had not yet consolidated her commercial empire in

the East, eight were funded through sea loans but the five round voyages from Venice to

her well-established colonies in Constantinople and the Adriatic Sea were funded through

commenda contracts. Moreover, various financiers who invested through the sea loan later

used the commenda and some of those who relied on the commenda had previously used

the sea loan (see González de Lara, 2004b , for more details).

In fact, the commenda substituted the sea loan as the predominant way of funding

sea ventures by the turn of the twelfth century. This observation can be accounted for as

reflecting changes in the State’s ability to verify information. González de Lara (2004a)

documents various institutional developments— such as the edification of a commercial

empire in the Levant, the public organization of round convoys from Venice to her colonies,

and the implementation of very detailed regulations and State’s direct controls over trade—

that enhanced the State’s ability to adjudicate disputes and punish cheaters. The resulting

enhanced State’s ability to verify information, however, did not crystallized all at once, but

it rather developed incrementally as overseas trade became well-established throughout the

various Venetian colonies in the Levant, and as trading voyages were organized in State’s

round convoys from Venice to the Venetian enclaves in the East. As a result, the commenda
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contract progressively acquired prominence as the twelfth century turned to its close and

prevailed by the third decade of the thirteenth century, when Venice had consolidated her

commercial and colonial Empire in the East.

The observed transition from the sea loan to the commenda in response to changes in the

State’s ability to verify information lends empirical support to the theoretical assumption

that the State provided contract enforcement under two distinct information structures.

5 Risk-sharing through Credit Contracts, k1 > k

The previous two sections show that when the merchant must rely on external funds for all

the venture’s capital requirements because of a shortage of his owns (k1 = 0), the sea loan

or the commenda— one or the other depending on the information structure— are corner

solutions. Not only is the financier consuming all the second-date endowment in the case

of loss, c̃2(y) = w(y), but both parties would have been better off if more resources had

been allocated to his consumption in this state. This implies that a contract with higher

repayment in case of navigation loss— which provides less downside insurance to the mer-

chant than the sea loan and the commenda— would have been Pareto improving. However,

such contract is not feasible because the merchant is already paying with everything he has,

meaning the very low or zero proceeds of the venture, τ(y) = y. Limited liability is thus

understood in terms of optimal risk-sharing when feasibility constraints are binding.

When the merchant is initially endowed with more resources, k1 > k > 0, the total

downside endowment w(y) = k1 + k2 − k + y gets larger and the constraint c2(y) ≤ w(y)

cease to be binding in the optimum. An interior optimal allocation (c∗2(y), c∗2(x)) can then

be achieved, with c∗2(y) > c̃2(x) = w(y) = k2 − k + y and c∗2(x) < c̃2(x). Therefore,

individually-rational optimal allocations with k1 > k > 0 will no longer entail raising funds
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for the whole trading venture (τ ∗ 6= −k) through sea loan or commenda contracts. Yet,

these allocations (c∗2(y), c∗2(x)) can still be achieved through a sea loan or a commenda

providing only part of the capital requirements. The merchant finances part of the venture

himself and bears its corresponding downside risk, thus effectively receiving less downside

insurance. In particular, proposition 3 holds.

Proposition 3 The optimal event-contingent allocation of consumption when k1 > k can

be attained by self-financing part of the venture φ∗ ∈ (0, 1) and raising external funds

through a debt-like sea loan or an equity-like commenda, one or the other depending on the

information structure, for the rest of the capital requirements, τ ∗ = − (1− φ∗) k > − k.

5.1 Graphical analysis

When the merchant is initially endowed with k1 > k > 0, there are more resources in the

economy than when he does not have any initial wealth, k1 = 0, so that the corresponding

Edgeworth Box is larger. Figure 5 represents both the Edgeworth Boxes for parameters

λk1=0 (with k1 = 0) and λk1>k (with k1 > k > 0), although for ease of exposition the

noncontractible area is not depicted under the hidden information scenario.11

Because of DARA, the indifference curves of the merchant become flatter as he receives

more initial wealth, while those of the financier are unaltered by any increase of the mer-

chant’s wealth. Therefore, the contract curve for interior points for parameters λk1>k lies

below the contract curve for λk1=0. The previous subsections shows that the contract curve

for k1 = 0 can be represented by CCλk1=0
in figure 5 when a venture is risky and costly and

both agents are risk-averse. Therefore, the contract curve for k1 > k will be characterized

by CCλk1>k
in figure 5.

11Alternatively, figure 5 can be thought of as representing a face of the Edgeworth Boxes for a given value
of c2(x̄) under full information. In this case there are three events for both agents and the contract curve
must be represented in a 3-dimensional Edgeworth Box. However, as we are looking at a binding restriction
for only one event, we can abstract from the optimal relationship between c2(x̄) and c2(x) given by the
Kuhn-Tucker conditions of program 3 (in the appendix) and draw the optimal allocation in an intuitive
2-dimensional Edgeworth Box with coordinates ci(y), ci(x).
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FIGURE 5

(k1 > k, Two-side Risk Aversion)
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The individually-rational allocations, in addition to belonging to the contract curve,

must satisfy the individually-rational participation constraints, which, as noted before, are

more restrictive than the ex-ante participation constraint for the merchant. The merchants’

individually rational constraint (6) takes into account the technological and financial ability

of the merchant to undertake the project alone. Therefore, any individually rational alloca-

tion must provide him with at least the same utility he would get by financing the venture

himself and taking all its profits and risks. Yet, the merchant will voluntarily exchange

with the financier because financial contracting leads to mutually beneficial risk-sharing.

The core of this simple economy will be thus characterized by the interval [BP1, BP2]

on the contract curve, where the point BPi is the individually-rational optimal allocation

when agent i has all the bargaining power (see figure 5). In other words, the lower bound

of the interval to which U2 belongs remains U2(k2) but its upper bound is now given

by the merchants’ individually-rational constraint (6). When the financier has all the

bargaining power, the optimal event-consumption allocation BP2 lies on the indifference

curve of the merchant providing him with his minimum individually rational expected utility

E{U1[k1−k + s]} (see point A and BP2 in figure 5). By construction of the contract curve,

this merchant’s indifference curve intersects at BP2 with the financier’s indifference curve

assigning him the individually-rational maximum value of U2.

From inspection of figure 5, it follows that the optimal allocation BP1 reached when

the merchant exercises all the bargaining poweris such that that c∗2(y) > k2 − k + y (see

appendix C). Also, the optimal allocation BP2 reached when the financier exercises all the

bargaining power is such that c∗2(y) < k2. Thus, any allocation in the core satisfies lemma

1, which is proved in appendix C.

Lemma 1 k2 − k + y < c∗2(y) = k2 − (1− φ∗) k + τ ∗(y) < k2
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In sum, the optimal allocation of risk can be attained by letting the merchant provide

a part φ∗ ∈ (0, 1) of the capital requirements and raise additional funds (τ = −(1− φ∗)k)

through a sea loan (under hidden information) or a commenda (under full information)

with τ ∗(y) = y.

This result is novel in the optimal security design literature based on agency costs

(both in the costly state-verification and the incomplete contracting ones) which predicts

an extreme inside participation rate: either the (risk-neutral) merchant-manager does not

resort to outside funding until he has invested 100 percent of his personal wealth (φ = 1)

or he (being risk-averse) does not finance the project at all (φ = 0). However, we observe

in reality that the merchants invested part of their wealth in their businesses and raised

additional funds in the form of sea loan and commenda contracts. In this simple model,

debt-like sea loan and equity-like commenda contracts optimally exhibit limited liability

because of risk-sharing even when financial constraints are not binding (k1 > k).

6 Enforcement Costs

The optimal allocation of risk c∗2(y) ∈ (k2 − k + y, k2), though, can be attained through a

multiplicity of contracts, for example through a combination of riskless debt— with τ = −k

and τ(y) = τ(x) = τ(x̄) ≥ k— and premium insurance— with τ > 0, − τ(y) < k − y and

τ(x) = τ(x̄) = 0.12 When the merchant is initially endowed with zero capital (k1 = 0), a

risk-free debt contract is not enforceable (feasible) unless associated with insurance, which

might explain the observed provision of credit and insurance within the same contract during

the twelfth and thirteenth centuries. However, even when merchants were endowed with

the resources required to finance the venture on their own, they relied on external funds and

12The possibility to make transfers both at date 0 and 1 creates a nominal indeterminacy, as in Bolton-
Bolton and Schartfstein [1990] and Hart and Moore [1998]. What matters is no so much the particular
security structure but the linear space it involves. Any linear combination of various points in the Edge-
worth box that span the optimal event consumption allocation can be thought of as optimal contracts.
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used sea loan and commenda contracts, with τ(y) = y, as both credit and insurance devices.

It was only from late in the fourteenth century that insurance began slowly to develop as

an independent form of business, when— as section 3 suggets— overseas trade became

relatively less risky and costly and, accordingly, the optimal allocation of the downside

risk could no longer be achieved through the sea loan or the commenda. Thus, one needs

to understand why the sea loan and the commenda prevailed during the twelfth and the

thirteenth centuries, respectively, despite the possibility of using other contracts to achieve

the very same optimal allocation of risk.

One possible explanation focuses on the transaction costs of thinking, negotiating and

writing new contracts, and thus on the additional administrative and/or regulating costs of

enforcing these new contract. Moreover, since debt-like sea loan and equity-like commenda

contracts are necessary to attain the optimal allocation of risk when the merchant lacks

sufficient resources to finance the venture himself, the theory of standardization (see Allen

and Gale, 1994) predicts the use of these very same contracts even when the merchant is

endowed with the required resources.

In the light of the incomplete contracting literature (see Hart, 1995) one would expect,

as observed, that optimal contracts ensure that, whatever happens, each side has some pro-

tection against opportunistic behavior by the other party. Because both the merchant and

his potential financier-insurer can default on their promised future payments, the optimal

contract will minimize those payments, while guaranteeing the optimal allocation of risk.

This is achieved by making both parties commit part of their wealth to the funding of the

venture, φ∗ ∈ (0, 1), and financing the rest through sea loan and commenda contracts. In

this respect, it is meaningful that insurance premiums were agreed to be paid after the con-

clusion of the voyage. Not only could the merchant pay the premiums from the venture’s

proceeds, but he also received some “power” against the possibility that the underwriters
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defaulted on the coverage payments. However, as the insured not seldom delayed paying the

premiums due on their policies long after their ships were safely returned, so the insurers

were dilatory about payment in case of loss (Tenenti, 1991, p.675).

Furthermore, one can reasonable argue that enforcing payments from the parties’ initial

wealth, k1 and k2, if any, was much more arduous than from the venture’s returns, for

example, because the underwriter might have actually failed in the intervening time from

the signing of the insurance contract to the payment of the coverage or because the absence

of an effective registration system enabled defaulters to hide their real property, particularly

if abroad. In Venice as elsewhere, marine insurance remained in the hands of private

underwriters, operating alone or with partners but with very limited capital, until the end

of the eighteenth century. They were commonly involved in all kind of trades and it was all

but rare that they were unable or unwilling to meet the coverage payments, as indicated

by the rulings of the Venetian magistracy on insurance, who found that “there was no

money that more gladly is touched and more difficultly is paid than that of the maritime

insurance” (Tenenti, 1991, p. 677; see also De Roover, 1945, p. 197).

Since merchants could not use collateral to fulfill their obligations without incurring in

a high enforcement cost, risk-free debt and more generally any contract with τ(y) > y ≥ 0

was hardly used. Similarly, because it was costly to identify and confiscate agents’ future

wealth at date 1, pure insurance contracts with τ(y) < 0 did not develop until the changing

character of long-distance trade made them the only means through which the optimal

allocation of risk could be achieved. In sum,the model predicts uniqueness in the optimal use

of the sea loan and the commenda (one or the other depending on the information structure)

under the realistic assumption that the (minimum) venture’s returns are contractible at a

lower cost than the agents’s initial wealth.

33



7 Conclusions

This paper combines a mechanism-design model and historical evidence to examine the

financial structure in pre-modern long-distance trade. Merchants-entrepreneurs raised funds

both internally, through (inside) equity holdings, and externally, through debt-like sea loan

and equity-like commenda contracts. This capital structure can be rationalized as being

determined to achieve the optimal allocation of risk while minimizing enforcement costs.

The extent to which these factors are relevant today is indicated by the generality of the

model’s assumptions and results.

First, two-side risk aversion. Historically, significant indivisibilities and aggregate risk

limited the agents’ ability to diversify, preventing them from effectively becoming risk neu-

tral. Today, most companies have a large share-holder who is not well-diversified (Zingales,

2000, p. 1628). Risk-aversion, because of limited risk-pooling, is typically assumed when

dealing with the myriad of young and small firms who do not have access to public mar-

kets, such as individual proprietorships, partnerships and closely-held corporations. Even

when the financial capital is held by well-diversified investors, large widely-held corpora-

tions might still act in a risk-averse manner because the human capital invested in the firm

is not well-diversified (Zingales, 2000); the firm’s managers faces some kind of bankruptcy

costs (Greenwald and Stiglitz, 1990); managerial compensation is aligned with sharehold-

ers wealth maximization (Smith and Stulz, 1985); or there exist proprietary information

(De Marzo and Duffie, 1991). Furthermore, although various works on Transaction Costs

Economics have recently criticized risk-sharing arguments on account of their lack of em-

pirical significance (mainly for labor contracts), Ackerberg and Botticini (2002) shows that,

controlling for endogenous matching, risk aversion appears to influence contract choice.

Assuming more tractably risk neutrality would be innocuous had the optimal capital
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structure been robust to risk preferences. However, the entrepreneurs’ partial funding of the

project (a non-extreme inside participation rate) can hardly be explained unless considering

managerial risk aversion. Further, the paper’s simple model also shows that neither debt

nor equity— with repayment equal to all the capital saved from the project in the case

of failure— would be optimal if (on the margin risk-neutral) financiers could diversify the

idiosyncratic risks faced by each (risk-averse) merchant; rather, optimal risk-sharing would

require that the financier provide full insurance to the merchant against the downside risk,

say through a fix salary. Current capital structure’s theories can therefore be enriched by

taking into account optimal risk-sharing, as already suggested by both Townsend (1978)

and Gale and Hellwig (1981), who, in their theory of debt based on costly state verification,

recognized that standard debt contracts are not efficient if the parties are risk averse.

Second, limited contract enforceability. Historically, enforcing payments from the agents’

private wealth was more costly than from the venture’s returns since, on the one hand, nei-

ther effective registration systems nor joint-stock insurance companies had yet developed

and, on the other hand, the State fairly controlled sea ventures. Today, enforcement costs

arguably cause banks’ reluctance to go through bankruptcy procedures for recovering loans

from the debtors’ personal wealth (collateral). Similarly, an insurance company runs ad-

ministrative cost greater than those of a capital market where bonds and equity are traded.

It can therefore be reasonably argued that credit and insurance are optimally provided

through the capital structure, rather than separately through risk-free debt from a bank

and premium policies from an insurance company, because of enforcement costs. Thus, the

model complements the optimal portfolio selection theory, which explains the holding of

equity by both entrepreneurs and outsiders in terms of managerial risk aversion but ignores

other contracts through which an outsider can potentially provide the same risk allocation.

Furthermore, limited contract enforceability can inform more complex capital structure’s
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theories, like the incomplete contracting models of Bolton and Schartfstein (1990) and Hart

and Moore (1998), where debt emerges as one of many optimal contracts. In our simple

model, uniqueness is achieved by imposing reasonable assumptions on enforcement costs.

In other words, the irrelevance theorem of Modigliani and Miller does not apply because of

enforcement constraints.

Third, although the model is tailored for the historical example, it can also be interpreted

as representing today’s financial relations between an entrepreneur and a potential investor-

insurer. The entrepreneur can undertake a risky investment project with a fix cost, k, and

a random return, s = {y, x, x}. The project is risky in the sense that, with some positive

probability, it loses money, y < k, although it has a positive expected net present value,

k < E[s]. The event of loss, s = y, can be reasonably assumed to be observable and

verifiable, while the profitability of a well-functioning firm, s = {x, x}, might or might

not be verifiable— thereby enabling or ruling out equity contracts— depending on the

availability of effective disclosure mechanisms, auditing, informative economic press, and

so on and so forth. Also, failure can be identified with a natural catastrophe or a political

breakdown and the sea loan, with a catastrophe bond.

Finally, the model delivers debt and (outside) equity as corner solutions to the optimal

contracting problem when, in addition to assuming two-side risk aversion and considering

the case in which the merchant must rely on external funds because of budget constraints,

investment projects are costly and risky. Debt and equity are corner contracts in the sense

that, if feasible, both parties would prefer that the risk-averse investor recouped part of his

capital investment if the project failed, for limited liability associated with debt and equity

results in very high financing costs. To avoid these cost, rich merchants optimally finance

part of their ventures while relying on debt and equity, one or the other depending on the

information structure. However, if the venture is relatively less risky and costly, insurance
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against the downside risk becomes relatively cheaper and entrepreneurs optimally respond

by buying more insurance through premium policies, even if at a higher enforcement costs.

Consistent with this explanation for the selection of alternative contracts, we observe

that debt-like sea loan and equity-like commenda contracts actually gave way to premium

insurance when commerce lost many of its adventurous features and wealth accumulation

from commerce reduced the former scarcity of capital. During the fourteenth and fifteenth

centuries, sea ventures were commonly funded through risk-free bills of exchange, insured

through premium contracts, and organized by means of commission agents that resided

permanently abroad. Empirical confirmation of these theoretical predictions lends support

to the view that risk-sharing and enforcement costs are indeed relevant in determining

firms’ financial structure.

Yet, the model ignores other important forces shaping contracts. In particular, the

choice between debt and (outside) equity, which have motivated most research on corporate

finance, is determined by the simplest information structures: under hidden information

regarding the project’s profitability, equity is not incentive-compatible and fix-repayment

debt contracts arise as a second-best; under full information, however, better risk-sharing

commenda contracts become possible. The model can thus be extended to incorporate var-

ious types of agency costs, multiple margins for moral hazard, adverse selection, signaling,

transactions costs, and/or incomplete contracting.

A Proof of proposition 1

Let parameter values λ̂ = (θ̂, k̂1, k̂, ŷ, p̂y, x̂, ˆ̄x, p̂x̄

p̂x+p̂x̄
) with θ̂ = 0 and k̂1 = 0 be such that

the sea loan contract does not sustain program 2’s optimal allocation of consumption,

(ĉ2(y), ĉ2(x)). Then, ĉ2(y) < ŵ(y), as draw in figure 2 for CC ′, and necessary and sufficient
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Kuhn-Tucker conditions lead to

∂£(η,µy ,µx,c2(y),c2(x);λ)
∂η = −U2 + E [U2[c2(s)]] = 0

∂£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(y) = −pyU

′
1[w(y)− c2(y)] + η pyU

′
2[c2(y)]− µy = 0

∂£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(x) = −

[
pxU ′

1[w(x)− c2(x)] + px̄U ′
1[w(x̄)− c2(x)]

]
+η(1− py)U ′

2[c2(x)]− µx = 0

(12)

evaluated at η̂, µ̂(y) = µ̂(x) = 0, ĉ2(y), ĉ2(x), and λ̂, where η, µy, and µx are the

Lagrangian multipliers associated with restrictions (9) and (10), respectively, and £(.) is

the Lagrange function associated with Program 2.13

Let λ varies in an open neighborhood of λ̂ such that the pattern of binding and slack

constraints of program 2 does not change. Totally differentiating (12) and applying the

Implicit Function Theorem, one can calculate the comparative statics effects of each pa-

rameter value λi on c2(y) at a solution point (ĉ2(y), ĉ2(x)) and parameter values λ̂ with

η̂ > 0, µ̂(y) = µ̂(x) = 0, and dµy = dµx = 0:

dc2(y)

dλi

= −

∣∣∣∣Ĥλi

∣∣∣∣∣∣∣∣Ĥ∣∣∣∣ ,

where

∣∣∣∣Ĥλi

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

∂2£(η,µy ,µx,c2(y),c2(x);λ)
(∂η)2

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂η∂λi

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂η∂c2(x)

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(y)∂η

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(y)∂λi

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(y)∂c2(x)

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(x)∂η

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(x)∂λi

∂2£(η,µy ,µx,c2(y),c2(x);λ)
(∂c2(x))2

∣∣∣∣∣∣∣∣∣∣∣
and the (binding-constraints) border hessian Ĥ evaluated at λ̂ and (ĉ2(y), ĉ2(x)) is

negative definite:
∣∣∣∣Ĥ∣∣∣∣ > 0.

It is proved below that at a solution point (ĉ2(y), ĉ2(x)),

dc2(y)
d(k2−k)

> 0 but dc2(y) < dw(y) = d(k2 − k)

dc2(y)
dy

> 0 but dc2(y) < dw(y) = dy

dc2(y)
dpy

> 0 and dw(y) = 0

dc2(y)
dx

< 0, dc2(y)
dx̄

< 0, dc2(y)
d

px̄
px+px̄

< 0 and dw(y) = 0.

(13)

Therefore, beginning with parameter values λ̂ for which the sea loan contract is not op-

timal (ĉ2(y) < ŵ(y)), a change in parameters such that the venture becomes more costly—

13This assumes that for parameter values λ̂ the solution of program 2 is such that ĉ2(x) < ŵ(x). The
case for which ĉ2(x) = ŵ(x) can be easily derived by adding restriction ∂£(η,µy,µx,c2(y),c2(x);λ)

∂µx
= 0 to (12).
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d(k2− k) < 0— and/or risky— dy < 0, dpy > 0 and/or dE[x] < 0— leads the new solution

to get closer and closer to the border c2(y) = w(y). At a point, the solution will reach the

border and the sea loan will be optimal.

However, this tricky point with c2(y) = w(y) and µy = 0 is on the boundary between

two regions with different patterns of binding and slack constraints. As a result, deviations

to the left side will have to be treated using the set of equations (12) with µy = µx = 0 and

dµy = dµx = 0 while totally differentiating, whereas those to the right side using a different

set: equation ∂£(η,µy ,µx,c2(y),c2(x);λ)
∂µy

= w(y) − c2(y) = 0 must be added to (12), which now

hold for µy ≥ 0 = µx and dµy 6= 0 = dµx. If parameter values keep on changing so that

the venture becomes even more risky and costly, the sea loan will keep on being optimal,

because at a solution point (c̃2(y), c̃2(x)) with c̃2(y) = w̃(y), and parameter values λ̃ with

η̃ > 0, µ̃(y) ≥ 0, µ̃(x) = 0, and dµx = 0,

dc2(y)

dλi

= −

∣∣∣∣H̃λi

∣∣∣∣∣∣∣∣H̃∣∣∣∣ ,

where

∣∣∣∣H̃λi

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2£(η,µy ,µx,c2(y),c2(x);λ)
(∂η)2

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂η∂µy

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂η∂λi

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂η∂c2(x)

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂µy∂η

∂2£(η,µy ,µx,c2(y),c2(x);λ)
(∂µy)2

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂µy∂λi

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂µy∂c2(x)

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(y)∂η

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(y)∂µy

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(y)∂λi

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(y)∂c2(x)

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(x)∂η

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(x)∂µy

∂2£(η,µy ,µx,c2(y),c2(x);λ)
∂c2(x)∂λi

∂2£(η,µy ,µx,c2(y),c2(x);λ)
(∂c2(x))2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

the relevant border hessian H̃ evaluated at λ̃ and (c̃2(y), c̃2(x)) is negative definite—∣∣∣∣H̃∣∣∣∣ > 0— and

dc2(y)
d(k2−k)

> 0 but dc2(y) = dw(y) = d(k2 − k)

dc2(y)
dy

> 0 but dc2(y) = dw(y) = dy

dc2(y)
dpy

= dc2(y)
dx

= dc2(y)
dx̄

= dc2(y)
d

px̄
px+px̄

= 0 and dw(y) = 0.

(14)

It is worth noting that for parameters values such that µy > 0, the comparative statics

effects given by (14) holds for both parameters’s increases and decreases. Therefore, the

sea loan contract is optimal for a robust set of parameters: let parameter values λ̃ be such

that the sea loan is optimal, with c̃2(y) = w̃(y), then for parameter values in an open

neighborhood of λ̃, c̃2(y) + dc2(y) = w̃(y) + dw(y).
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Show that
∣∣∣∣Ĥ∣∣∣∣ > 0 evaluated at λ̂ and (ĉ2(y), ĉ2(x)).

∣∣∣∣Ĥ∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
0 py U ′

2[c2(y)] (1− py) U ′
2[c2(x)]

py U ′
2[c2(y)] h22 0

(1− py) U ′
2[c2(x)] 0 h33

∣∣∣∣∣∣∣∣∣∣∣
=

= − [py U ′
2[c2(y)]]2 h33 − [(1− py) U ′

2[c2(x)]]2 h22 > 0

because both h22 and h33 are negative.

h22 = py U ′′
1 [w(y)− c2(y)] + η py U ′′

2 [c2(y)] =

= − py R1[w(y)− c2(y)] U ′
1[w(y)− c2(y)] − η py R2[c2(y)] U ′

2[c2(y)] =

= − py R1[w(y)− c2(y)] U ′
1[w(y)− c2(y)] − py R2[c2(y)] U ′

1[w(y)− c2(y)] =

= − py [R1[w(y)− c2(y)] + R2[c2(y)]] U ′
1[w(y)− c2(y)] < 0 (15)

and

h33 = px U ′′
1 [w(x)− c2(x)] + px̄ U ′′

1 [w(x̄)− c2(x)] + η (1− py)U
′′
2 [c2(x)] =

= −R1[w(x)− c2(x)] U ′
1[w(x)− c2(x)] − η (1− py) R2[c2(x)] U ′

2[c2(x)] =

= −R1[w(x)− c2(x)] U ′
1[w(x)− c2(x)] − R2[c2(x)] U ′

1[w(x)− c2(x)] =

= − [R1[w(x)− c2(x)] + R2[c2(x)]] U ′
1[w(x)− c2(x)] < 0, (16)

where the first equalities are simply the definitions of h22 and h33; the second equalities

derive from applying the definition of absolute risk-aversion coefficient, R(z) = − U ′′(z)
U ′(z)

,

and defining

R1[w(x)− c2(x)] = − U ′′
1 [w(x)− c2(x)]

U ′
1[w(x)− c2(x)]

= −
px U ′′

1 [w(x)− c2(x)] + px̄ U ′′
1 [w(x̄)− c2(x)]

px U ′
1[w(x)− c2(x)] + px̄ U ′

1[w(x̄)− c2(x)]
(17)

to make the notation more compact; the third equalities follow from, respectively, the

second and third row in (12) with µy = µx = 0; the fourths, from simply operating; and

the inequality, from U ′(.) > 0 and U ′′(.) < 0, so that Ri(.) > 0, for i = 1, 2. QED

Note that
∣∣∣∣Ĥ∣∣∣∣ can be expressed as

∣∣∣∣Ĥ∣∣∣∣ = [py U ′
2[c2(y)]]2 U ′

1[w(x)− c2(x)] R1[w(x)− c2(x)] +

[py U ′
2[c2(y)]]2 U ′

1[w(x)− c2(x)] R2[c2(x)] +

[(1− py) U ′
2[c2(x)]]2 py U ′

1[w(y)− c2(y)] R1[w(y)− c2(y)] +

[(1− py) U ′
2[c2(x)]]2 py U ′

1[w(y)− c2(y)] R2[c2(y)].

(18)
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Show that dc2(y)
d(k2−k)

= −

∣∣∣ ˆ
H(k2−k)

∣∣∣∣∣∣ ˆ
H

∣∣∣ ∈ (0, 1) evaluated at λ̂ and (ĉ2(y), ĉ2(x)).

∣∣∣∣Ĥ(k2−k)

∣∣∣∣ = [(1− py) U ′
2[c2(x)]]

2
py U ′

1[w(y)− c2(y)] R1[w(x)− c2(x)] −

[(1− py) U ′
2[c2(x)]]

2
py U ′

1[w(y)− c2(y)] R1[w(y)− c2(y)] < 0 (19)

because U ′(.) > 0, w(y) − c2(y) < w(x) − c2(x) < w(x) − c2(x),14 and utility functions

exhibit DARA, so that R1[w(y)− c2(y)] > R1[w(x)− c2(x)].

Comparing (19) with (18) , it follows that 0 <
∣∣∣∣Ĥ∣∣∣∣ +

∣∣∣∣Ĥ(k2−k)

∣∣∣∣. QED

Show that dc2(y)
dy

= −

∣∣∣ ˆ
H(y)

∣∣∣∣∣∣ ˆ
H

∣∣∣ ∈ (0, 1) evaluated at λ̂ and (ĉ2(y), ĉ2(x)).

∣∣∣∣Ĥ(y)
∣∣∣∣ = [(1− py) U ′

2[c2(x)]]
2

py U ′′
1 [w(y)− c2(y)] =

= − [(1− py) U ′
2[c2(x)]]

2
py U ′

1[w(y)− c2(y)] R1[w(y)− c2(y)] < 0 (20)

Comparing (20) with (18), it follows that 0 <
∣∣∣∣Ĥ∣∣∣∣ +

∣∣∣∣Ĥ(k2−k)

∣∣∣∣. QED

Show that dc2(y)
dpy

= −

∣∣∣ ˆ
Hpy

∣∣∣∣∣∣ ˆ
H

∣∣∣ > 0 evaluated at λ̂ and (ĉ2(y), ĉ2(x)).

∣∣∣∣Ĥpy

∣∣∣∣ = [U2[c2(y)]− U2[c2(x)]] py U ′
2[c2(y)] U ′

1[w(x)− c2(x)] [R1[w(x)− c2(x)] + R2[c2(x)]]

− (1− py) U ′
2[c2(x)] py U ′

2[c2(y)]
U ′

1[w(x)−c2(x)]

1−py
< 0

because Ri(.) > 0, Ui′(.) > 0, and c2(y) ≤ c2(x), so that [U2[c2(y)]− U2[c2(x)]] < 0. QED

Show that dc2(y)
dx

= −

∣∣∣ ˆ
H(x)

∣∣∣∣∣∣ ˆ
H

∣∣∣ < 0 and dc2(y)
dx̄

= −

∣∣∣ ˆ
H(x̄)

∣∣∣∣∣∣ ˆ
H

∣∣∣ < 0 evaluated at λ̂ and

(ĉ2(y), ĉ2(x)).∣∣∣∣Ĥ(x)
∣∣∣∣ = − (1− py) U ′

2[c2(x)] py U ′
2[c2(y)] px U ′′

1 [w(x)− c2(x)] > 0.

∣∣∣H(x̄)
∣∣∣ = − (1− py) U ′

2[c2(x)] py U ′
2[c2(y)] px̄ U ′′

1 [w(x̄)− c2(x)] > 0.

These follow from U ′(.) > 0 and U ′′(.) < 0. QED

14The optimal sharing rule gives some insurance to both parties, for both are risk-averse. Appendix B
proves this result under full information. The proof under hidden information runs similarly.
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Show that dc2(y)
d

px̄
px+px̄

= −

∣∣∣∣ ˆ
H px̄

px+px̄

∣∣∣∣∣∣∣ ˆ
H

∣∣∣ < 0 evaluated at λ̂ and (ĉ2(y), ĉ2(x)).

∣∣∣∣Ĥ px̄
px+px̄

∣∣∣∣ = (1− py) U ′
2[c2(x)] py U ′

2[c2(y)] [U ′
1[w(x)− c2(x)]− U ′

1[w(x̄)− c2(x)]] > 0

because U ′(.) > 0, U ′′(.) < 0 and w(x) < w(x̄), so that U ′
1[w(x)−c2(x)]−U ′

1[w(x̄)−c2(x)] >

0. QED

Show that
∣∣∣∣H̃∣∣∣∣ > 0 evaluated at λ̃ and (c̃2(y), c̃2(x)).

∣∣∣∣H̃∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 py U ′
2[c2(y)] (1− py) U ′

2[c2(x)]

0 0 − 1 0

py U ′
2[c2(y)] − 1 h22 0

(1− py) U ′
2[c2(x)] 0 0 h33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= [(1− py) U ′

2[c2(x)]]
2

> 0,

where h22 and h33 are defined by (15) and (16), respectively. QED

Show that dc2(y)
d(k2−k)

= −

∣∣∣ ˜
H(k2−k)

∣∣∣∣∣∣ ˜
H

∣∣∣ = 1 evaluated at λ̃ and (c̃2(y), c̃2(x)).∣∣∣∣H̃(k2−k)

∣∣∣∣ = − [(1− py) U ′
2[c2(x)]]2 < 0. QED

Show that dc2(y)
dy

= −

∣∣∣ ˜
H(y)

∣∣∣∣∣∣ ˜
H

∣∣∣ = 1 evaluated at λ̃ and (c̃2(y), c̃2(x)).∣∣∣∣H̃(y)
∣∣∣∣ = − [(1− py) U ′

2[c2(x)]]2 < 0. QED

Show that dc2(y)
dpy

= dc2(y)
dx

= dc2(y)
dx̄

= dc2(y)
d

px̄
px+px̄

= 0 evaluated at λ̃ and (c̃2(y), c̃2(x)).∣∣∣∣H̃py

∣∣∣∣ =
∣∣∣∣H̃(x)

∣∣∣∣ =
∣∣∣∣H̃(x̄)

∣∣∣∣ =
∣∣∣∣H̃ px̄

px+px̄

∣∣∣∣ = 0. QED

B Proof of proposition 2

The commenda contract solves the relevant optimization problem under full information

with k1 = 0

Program 3:

max
[c2(s)]s∈S

E [U1[w(s)− c2(s)]]

s.t. E [U2[c2(s)]] = U2 (21)

w(s)− c2(s) ≥ 0 ∀s (22)

c2(s) ≥ 0 ∀s. (23)

Step 1. Show that all individually-rational efficient allocations are characterized by

c2(y) < c2(x) < c2(x̄)
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Let η and µs be the Kuhn-Tucker multipliers of restrictions (21) and (22) for each s,

respectively. Define the Lagrangian function for program 3 as

£(c2(s), η, µs) = E [U1[w(s)− c2(s)]] + η(−U2 + E [U2[c2(s)]]) +
∑
s

µs[w(s)− c2(s)].

Program 3 is concave so that Kuhn-Tucker conditions are necessary and sufficient for opti-

mality:

∂£(.)
∂c2(s)

= −psU
′
1[w(s)− c2(s)] + η psU

′
2[c2(s)]− µs ≤ 0 c2(s) ≥ 0 c2(s)

∂£(.)
∂c2(s)

= 0 ∀s

∂£(.)
∂η

= −U2 + E [U2[c2(s)]] ≥ 0 η ≥ 0 η ∂£(.)
∂η

= 0

∂£(.)
∂µs

= w(s)− c2(s) ≥ 0 µs ≥ 0 µs
∂£(.)
∂µs

= 0 ∀s.
(24)

Let c2(s) > 0∀s, then complementary slackness in (24) ensures that ∂£(.)
∂c2(s)

= 0. Then,

c2(y) < c2(x) because

if µy = µ1(x) = 0 Ψ(c2(y), c2(x); λ1) =
U ′

2[c2(y)]

U ′
2[c2(x)]

− U ′
1[w(y)−c2(y)]

U ′
1[w(x)−c2(x)]

= 0

if µy > 0 and µ1(x) = 0 Ψ(c2(y), c2(x); λ1) =
U ′

2[c2(y)]

U ′
2[c2(x)]

− U ′
1[w(y)−c2(y)]

U ′
1[w(x)−c2(x)]

> 0

if µy = 0 and µ1(x) > 0 c2(x) = w(x) > w(y) ≥ c2(y).

Ψ(c2(y), c2(x); λ1) =
U ′

2[c2(y)]

U ′
2[c2(x)]

− U ′
1[w(y)−c2(y)]

U ′
1[w(x)−c2(x)]

≥ 0 derives from operating the Kuhn-Tucker

conditions for µy ≥ 0 and µ1(x) = 0. From applying U ′
i(.) > 0 and U ′′

i (.) < 0 to this

expression, it follows that optimal event-contingent consumption must satisfy c2(y) < c2(x).

The equality c2(x) = w(x) in the third expression derives from complementary slackness in

(24) with µ1(x) > 0; w(x) > w(y) by assumption; and w(y) ≥ c2(y) is restriction (22) for

s = y. Likewise, it can be proved that c2(x) < c2(x̄).

The case c2(y) = c2(x) = c2(x̄) = 0 lies in the contract curve, but does not satisfy the

participation constraint of agent 2. The case c2(s) = 0 and c2(s
′) > 0 for s, s′ ∈ S and

s > s′ leads to contradiction.

Step 2. Show that all individually-rational efficient allocations are characterized by

c2(y) = w(y) = k2 − k + y.

Assume they are not and, then, let (k2 − k + t̂y, k2 − k + t̂x, k2 − k + t̂x̄) be the solution

of program 2, with t̂y 6= y. From imposing non-negative consumption, it follows that t̂y < y
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and it is possible to write

t̂x = a + d

t̂x̄ = ā + d

with ā 6= 0 6= a, E(a) = 0 and d = px̄

px+px̄
t̂x̄ +

px

px+px̄
t̂x. For notational purposes, let us define

E [u1[τ(y), τ(x), τ(x̄)]] = E [U1[s− τ(s)]] and E [u2[τ(y), τ(x), τ(x̄)]] = E [U2[k2 − k + τ(s)]].

Let the event-contingent allocation (k2 − k + y, k2 − k + t̃, k2 − k + t̃) be the solution to

program 2. Then, for d 6= t̃, it holds that if

E
[
u2[t̂

y, d, d]
]
≥ E

[
u2[y, t̃, t̃]

]
= U2,

E
[
u1[t̂

y, d, d]
]

< E
[
u1[y, t̃, t̃]

]
.

Let also define (k2− k + y, k2− k + t̃x, k2− k + t̃x̄) as the solution to a restricted version of

program 3 in the sense that c2(y) = k2−k+y is imposed. If (k2−k+t̂y, k2−k+t̂x, k2−k+t̂x̄)

is efficient, then, by definition,

E
[
u2[t̂

y, a + d, ā + d]
]

= U2 = E
[
u2[y, t̃, t̃]

]
(25)

E
[
u1[t̂

y, a + d, ā + d]
]

> E
[
u1[y, t̃x, t̃x̄]

]
. (26)

It can be proved that (26) leads to a contradiction and, therefore, the optimal allocation

of consumption establishes c2(y) = k2 − k + y. Indeed,

E
[
u1[t̂

y, a + d, ā + d]
]

< E
[
u1[t̂

y, d, d]
]

< E
[
u1[y, t̃, t̃]

]
< E

[
u1[y, t̃x, t̃x̄]

]
, (27)

where the first inequality derives from the utility function being concave and E(a) = 0.

The second one follows from (k2 − k + y, k2 − k + t̃, k2 − k + t̃) solving program 1 and from

E
[
u2[t̂

y, d, d]
]

> E
[
u2[t̂

y, a + d, ā + d]
]

= U2 = E
[
u2[y, t̃, t̃]

]
,

where the inequality derives from the utility function being concave and E(a) = 0 and

the equalities are imposed by (25). The last inequality of (27) holds because the allocation

(k2− k + y, k2− k + t̃, k2− k + t̃) could have been chosen—program 2 is a restricted version

of program 3— but it was not. Therefore, it must give less expected utility to agent 1 than

the optimally chosen allocation (k2 − k + y, k2 − k + t̃x, k2 − k + t̃x̄).

Step 3. The individually-rational efficient allocations of consumption

(k2 − k + y, k2 − k + t̃x, k2 − k + t̃x̄)

can be sustained by a commenda contract establishing τ = −k, τ(y) = y, τ(x) = t̃x, and

τ(x̄) = t̃x̄. Just note that contracts are defined such that c2(s) = k2 + τ + τ(s). QED

44



C Proof of proposition 3 and lemma 1

The relevant problem when the merchant is initially endowed to fund the venture on his

own (k1 > k) becomes a restricted version of program 2 (under hidden information)or pro-

gram 3 (under full information) in which restriction (6) is added. The proof is developed

for the hidden information structure, but can be extended to full information easily.

Step 1: Show that c∗2(y) > k2 − k + y.

When the entrepreneur lacks the wealth to finance his project in its entirety (k1 = 0),

subsection 3, and proposition 1 in particular, states the conditions under which the optimal

allocation is a binding solution with a positive Kuhn-Tucker multiplier µy associated with

the restriction w(y)− c2(y) ≥ 0. This means that for the (binding) solution (c̃2(y), c̃2(x)),

Υ(c̃2(y), ϕ(c̃2(y), λ1); λ1) > 0, (28)

where c̃2(y) = k2 − k + y and c̃2(x) = k2 − k + t̃, and λ1 represents parameter values

representing a risky and costly venture, and θ = 0, k1 = 0. From (28) and utility functions

exhibiting DARA, it follows that the allocation (c̃2(y), c̃2(x)) is not optimal for parameters

λ2 such that k1 > k either.

Lemma 2 Υ(c̃2(y), c̃2(x); λ2) > 0.

Proof of Lemma 2: Υ(c̃2(y), c̃2(x); λ1) > 0, and

∂Υ(c2(y),c2(x);λ)
∂k1

= − U ′′
1 [w(y)−c2(y)] [p U ′

1[w(x̄)−c2(x)]+(1−p)U ′
1[w(x)−c2(x)]]

[p U ′
1[w(x̄)−c2(x)]+(1−p)U ′

1[w(x)−c2(x)]]2
+

+
U ′

1[w(y)−c2(y)] [p U ′′
1 [w(x̄)−c2(x)]+(1−p)U ′′

1 [w(x)−c2(x)]]

[p U ′
1[w(x̄)−c2(x)]+(1−p)U ′

1[w(x)−c2(x)]]2
=

=
R1[w(y)−c2(y)] U ′

1[w(y)−c2(y)]

[p U ′
1[w(x̄)−c2(x)]+(1−p)U ′

1[w(x)−c2(x)]]
− R1[w(x)−c2(x)] U ′

1[w(y)−c2(y)]

[p U ′
1[w(x̄)−c2(x)]+(1−p)U ′

1[w(x)−c2(x)]]
=

=
U ′

1[w(y)−c2(y)]

p U ′
1[w(x̄)−c2(x)]+(1−p)U ′

1[w(x)−c2(x)]
[R1[w(y)− c2(y)]−R1[w(x)− c2(x)]] > 0,

where the first equality derives from simple derivation; the second one from applying the

definition of absolute risk-aversion coefficient, R(z) = − U ′′(z)
U ′(z)

, and (17); the third equal-

ity derives from operating and the inequality from U ′(.) > 0, U ′′(.) < 0 and the utility

function exhibiting DARA, with w(y) − c2(y) < w(x) − c2(x) < w(x) − c2(x), so that
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R1[w(y)− c2(y)] > R1[w(x)− c2(x)]. QED

Therefore, the optimal allocation is not (c̃2(y), c̃2(x)) but (c∗2(y), c∗2(x)) = (c̃2(y) +

ε, c̃2(x)− δ(ε)), where different values of ε define distinct points in the core.

Lemma 3 There exists an ε > 0 and a δ(ε) > 0 such that all the restrictions are satisfied

and Υ(c̃2(y) + ε, c̃2(x)− δ(ε); λ2) = 0.

Proof of Lemma 3: The result follows from applying the sign of the following deriva-

tives to lemma 2. ∂Υ(c2(y),c2(x);λ)
∂c2(y)

< 0 and ∂Υ(c2(y),c2(x);λ)
∂c2(x)

> 0. The proof is straightforward.

Just find the derivatives and note that U ′(.) > 0 and U ′′(.) < 0. QED

Lemma 4 The contract curve for interior points, defined by ϕ(c2(y), λ) for parameters λ2,

such that k1 > k > 0, lies below the contract curve for λ1, with k1 = 0: ϕ(c2(y), λ2) <

ϕ(c2(y), λ1) ∀c2(y).

Proof of Lemma 4: The Implicit Function Theorem also gives the first-order compar-

ative statics of any parameter on ϕ(c2(y)), for any c2(y) at a solution. In particular,

dϕ(c2(y), λ)

d k1

= −
∂Υ(c2(y),c2(x);λ)

∂k1

∂Υ(c2(y),c2(x);λ)
∂c2(x)

< 0 ∀c2(y) in the restricted set, (29)

since U ′(.) > 0, U ′′(.) < 0 and the utility functions exhibit decreasing absolute risk-aversion

(DARA). QED

Therefore, the optimal allocation establishes c∗2(y) = k2 − k + y + ε with ε > 0.

Step 2: Show that c∗2(y) < k2.

This follows from imposing the optimal sharing rule c∗2(y) < c∗2(x) to the ex-ante partic-

ipation constraint of agent 1 holding with equality and noting that all individually rational

allocations of agent 2’s consumption are upper-bounded by the ex- ante participation con-

straint of agent 1.

Let c1(y) = w(y) − c2(y) ≤ k1 − k + y, and, consequently, c2(y) ≥ (k1 + k2 − k +

y) − k1 + k − y = k2. Then, for E [U1[w(s) − c2(s)]] = E [U1[k1 − k + s]] to be satisfied,

c1(x̄) = w(x̄) − c2(x) > k1 − k + x̄. These, in turn, imply that c2(x) ≤ k2, which is in

contradiction with the optimal sharing rule, c∗2(y) < c∗2(x).
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