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ABSTRACT 
 

This paper proposes a GARCH-type model allowing for time-varying volatility, 
skewness and kurtosis. The model is estimated assuming a Gram-Charlier series expansion of 
the normal density function for the error term, which is easier to estimate than the non-central 
t distribution proposed by Harvey and Siddique (1999). Moreover, this approach accounts for 
time-varying skewness and kurtosis while the approach by Harvey and Siddique (1999) only 
accounts for nonnormal skewness. We apply this method to daily returns of a variety of stock 
indices and exchange rates. Our results indicate a significant presence of conditional skewness 
and kurtosis. It is also found that specifications allowing for time-varying skewness and 
kurtosis outperform specifications with constant third and fourth moments.  

Keywords: Conditional volatility, skewness and kurtosis; Gram-Charlier series 
expansion; Stock indices. 
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1. Introduction 

There have been many papers studying the departures from normality of asset 
return distributions. It is well known that stock return distributions exhibit negative 
skewness and excess kurtosis (see, for example, Harvey and Siddique, 1999; Peiró, 1999; 
and Premaratne and Bera, 2001). Specifically, excess kurtosis (the fourth moment of the 
distribution) makes extreme observations more likely than in the normal case, which 
means that the market gives higher probability to extreme observations than in normal 
distribution. However, the presence of negative skewness (the third moment of the 
distribution) has the effect of accentuating the left-hand side of the distribution. That is, the 
market gives higher probability to decreases than increases in asset pricing.  

These issues have been widely analyzed in option pricing literature. For example, 
as explained by Das and Sundaram (1999), the well known volatility smile and smirk 
effects are closely related to the presence of excess kurtosis and negative skewness in the 
underlying asset returns distribution. 

The generalized autoregressive conditional heteroscedasticity (GARCH) models, 
introduced by Engle (1982) and Bollerslev (1986), allow for time-varying volatility but 
neither time-varying skewness nor time-varying kurtosis. Harvey and Siddique (1999) 
present a way to estimate jointly the time-varying conditional variance and skewness under 
a non-central t distribution for the error term in the mean equation. Their methodology is 
applied to several series of stock index returns, and it is found that autoregressive 
conditional skewness is significant and that the inclusion of skewness affects the 
persistence in variance. It is important to point out that the paper by Harvey and Siddique 
(1999) allows for time-varying skewness but still assumes constant kurtosis.  

Premaratne and Bera (2001) have suggested capturing asymmetry and excess 
kurtosis with the Pearson type IV distribution, which has three parameters that can be 
interpreted as volatility, skewness and kurtosis. This is an approximation to the non-central 
t distribution proposed by Pearson and Merrington (1958). However, these authors use 
time-varying conditional mean and variance, but maintain constant skewness and kurtosis 
over time. Similarly, Jondeau and Rockinger (2000) employ a conditional generalized 
Student-t distribution to capture conditional skewness and kurtosis by imposing a time-
varying structure for the two parameters which control the probability mass in the assumed 
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distribution1. However, these parameters do not follow a GARCH structure for either 
skewness or kurtosis. 

The purpose of this research is to extend the work by Harvey and Siddique (1999) 
assuming a distribution for the error term in the mean equation that accounts for nonnormal 
skewness and kurtosis. In particular, we jointly estimate time-varying volatility, skewness 
and kurtosis using a Gram-Charlier series expansion of the normal density function, along 
the lines suggested by Gallant and Tauchen (1989). 

It is also worth noting that, apart from the fact that our approach accounts for time-
varying kurtosis while the one by Harvey and Siddique (1999) does not, our likelihood 
function, based on a series expansion of the normal density function, is easier to estimate 
than the likelihood function based on the non-central t distribution employed by them.  

The joint estimation of time-varying volatility, skewness and kurtosis can be useful 
in testing option pricing models that explicitly introduce the third and fourth moments of 
the underlying asset return distribution along the lines suggested by Heston (1993), Bates 
(1996), and Heston and Nandi (2000). It may also be useful in analyzing the information 
content of option-implied coefficients of skewness and kurtosis, extending the papers by 
Day and Lewis (1992), Lamoureux and Lastrapes (1993) and Amin and Ng (1997), among 
others. 

The method proposed in this paper is applied to two different data sets, specifically 
several daily return series for both exchange rates and stock indices. Our results indicate 
significant presence of conditional skewness and kurtosis. It is also found that 
specifications allowing for both time-varying skewness and kurtosis outperform 
specifications under both constant third and fourth moments. 

The rest of the paper is organized as follows. In Section 2 we present our GARCH-
type model for estimating time-varying variance, skewness and kurtosis jointly. Section 3 
presents the data and the empirical results regarding the estimation of the model. Section 4 
compares the models allowing for time-varying skewness and kurtosis and the standard 
models with constant third and fourth moments. Section 5 concludes with a summary and 
discussion. 

 

                                                 

1 This generalized Student-t distribution is based on Hansen´s (1994) work. 
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2. A model for conditional volatility, skewness and kurtosis 

In this section we extend the model for conditional variance and skewness proposed 
by Harvey and Siddique (1999), to account for conditional kurtosis along the lines 
discussed in the introduction. 

Given a series of asset prices {S0, S1, …, ST}, we define continuously compounded 

returns for period t as ( )1100 lnt t tr S S −= ×    , t = 1, 2, …, T. Specifically, we present an 

asset return model containing either the GARCH(1,1) or NAGARCH (1,1) structure for 
conditional variance2 and also a GARCH (1,1) structure for both conditional skewness and 
kurtosis. Under the NAGARCH (GARCH) specification for conditional variance, the 
model is denoted as NAGARCHSK (GARCHSK). The NAGARCHSK model is the 
following:  

( ) ( )

( ) ( )
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1 2
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=
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      (1) 

where ( )1tE − ⋅  denotes the conditional expectation on an information set till period 1t −  

denoted as 1tI − . We state that ( )1 0t tE η− = , ( )2
1 1t tE η− = , ( )3

1t t tE sη− =  and ( )4
1t t tE kη− =  

where both ts  and tk  are driven by a GARCH (1,1) structure. Hence, ts  and tk  represent 

respectively the skewness and kurtosis corresponding to the conditional distribution of the 

standardized residual 21
ttt h−= εη . Notice that (1) nests the GARCHSK model for 3 0β = .   

                                                 

2 Due to the well known leverage effect, we have chosen the NAGARCH (1,1) specification for the variance 
equation proposed by Engle and Ng (1993). 
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Using a Gram-Charlier (GC) series expansion of the normal density function and 
truncating at the fourth moment3, we obtain the following density function for the 
standardized residuals tη  conditional on the information available in 1t −  : 

( ) ( ) ( ) ( )

( ) ( )

3 4 2
1

31 3 6 3
3! 4!

t t
t t t t t t t

t t

s kg Iη φ η η η η η

φ η ψ η

−

− = + − + − +  

=

    (2) 

where ( )φ ⋅  denotes the probability density function, henceforth pdf, corresponding to the 

standard normal distribution and ( )Ψ ⋅  is the polynomial part of fourth order 

corresponding to the expression between brackets in (2). Note that the pdf defined in (2) is 

not really a density function because for some parameter values in (1) the density ( )g ⋅  

might be negative due to the component ( )Ψ ⋅ . Similarly, the integral of ( )g ⋅  on R is not 

equal to one. We propose a true pdf, denoted as ( )f ⋅ , by transforming the density ( )g ⋅  

according to the method in Gallant and Tauchen (1989). Specifically, in order to obtain a 

well defined density everywhere we square the polynomial part ( )Ψ ⋅ , and to insure that 

the density integrates to one, we divide by the integral of ( )g ⋅  over R. The resulting pdf4 

written in abbreviated form is5: 

( ) ( ) ( )2
1 /t t t t tf Iη φ η ψ η− = Γ        (3) 

where  

( )22 3
1 .

3! 4!
tt

t

ks −
Γ = + +  

                                                 

3 See Jarrow and Rudd (1982) and also Corrado and Su (1996). 

4 See the appendix for proof that this nonnegative function is really a density function that integrates to one. 

5 An alternative approach under the Gram-Charlier framework is proposed by Jondeau and Rockinger (2001) 
who also show how constraints on the parameters defining skewness and kurtosis may be implemented to 
insure that the expansion defines a density. However, their approach does not seem to be feasible in both 
skewness and kurtosis within the conditional case. 
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Therefore, after omitting unessential constants, the logarithm of the likelihood 

function for one observation corresponding to the conditional distribution 1/ 2
t t thε η= , 

whose pdf is ( )1/ 2
1t t th f Iη−
− , is given by 

( )( ) ( )2 21 1ln ln ln .
2 2t t t t tl h η ψ η= − − + − Γ       (4) 

As pointed out before, this likelihood function is clearly easier to estimate than the 
one based on a non-central t proposed by Harvey and Siddique (1999). In fact, the 
likelihood function in (4) is the same as in the standard normal case plus two adjustment 
terms accounting for time-varying skewness and kurtosis. Moreover, it is worth noting that 
the density function based on a Gram-Charlier series expansion in equation (3) nests the 
normal density function (when st = 0 and kt = 3), while the noncentral t does not. 
Therefore, the restrictions imposed by the normal density function with respect to the more 
general density based on a Gram-Charlier series expansion can be easily tested.  

3. Empirical results 

3.1. Data and preliminary findings 

Our methodology is applied to two different data sets. The first one includes daily 
returns of five exchange rates series: British Pound/USD (GBP/USD), Japanese Yen/USD 
(JPY/USD), German Mark/USD (GEM/USD) and Swiss Franc/USD (CHF/USD). The 
second data set includes five stock indices: S&P500 and NASDAQ100 (U.S.), DAX30 
(Germany), IBEX35 (Spain) and the emerging market index MEXBOL (Mexico).  

Our data set includes daily closing prices from January 2, 1990 to May 3, 2002 for 
the five exchange rate series, and from January 2, 1990 to July 17, 2003 for all stock index 
series except for MEXBOL, which includes data from January 2, 1995 to July 17, 2003. 
These closing prices are employed to calculate the corresponding continuously 
compounded daily returns. Table 1 presents some descriptive statistics. Note that all series 
show leptokurtosis and there is also evidence of negative skewness except for GBP/USD 
and MEXBOL. It is also worth noting that the Mexican emerging market returns 
(MEXBOL) show the highest values of the unconditional standard deviation, skewness and 
kurtosis. 
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Table 1: Descriptive Statistics for Daily Returns 

PANEL A: EXCHANGE RATES 

STATISTIC GBP/USD JPY/USD DEM/USD CHF/USD 
Sample size 3126 3126 3126 3126 
Mean 0.0030 -0.0045 0.0072 0.0003 
Median 0.0000 0.0120 0.0207 0.0217 
Maximum 3.2860 3.3004 3.1203 3.0747 
Minimum -2.8506 -5.7093 -2.9497 -3.7243 
Stand. Dev. 0.5731 0.7192 0.6621 0.7197 
Skewness 0.2334 -0.5794 -0.0594 -0.2000 
Kurtosis 5.7502 7.3298 4.6546 4.5432 
Jarque-Bera 
(p-value) 

1013.565 
(0.0000) 

2616.775 
(0.0000) 

358.4119 
(0.0000) 

331.0593 
(0.000) 

 
PANEL B: STOCK INDICES 

STATISTIC S&P500 NASDAQ DAX30 IBEX35 MEXBOL 
Sample size 3415 3416 3407 3390 2137 
Mean 0.0294 0.0383 0.0178 0.0246 0.0511 
Median 0.0315 0.1217 0.0641 0.0508 0.0099 
Maximum 5.5732 13.2546 7.5527 6.8372 12.1536 
Minimum -7.1127 -10.1684 -8.8747 -8.8758 -14.3139 
Stand. Dev. 1.0611 1.6117 1.5056 1.3876 1.8086 
Skewness -0.0995 -0.0099 -0.1944 -0.1854 0.0712 
Kurtosis 6.5658 8.3740 6.3210 5.9169 8.6060 
Jarque-Bera 
(p-value) 

1814.880 
(0.0000) 

4110.566 
(0.0000) 

1587.134 
(0.0000) 

1221.204 
(0.0000) 

2800.124 
(0.0000) 

 
 

Before we estimate our NAGARCHSK model, we analyze the dynamic structure in 
the mean equation of (1). Specifically, the ARMA structure that maximizes the Schwarz 
Information Criterion (SIC) is selected. All the parameters implied in every model below 
are estimated by maximum likelihood assuming that the Gram-Charlier series expansion 
distribution given by (3) holds for the error term, and using Bollerslev and Wooldridge 
(1992) robust standard errors6.  If we define the SIC as  ln(LML) – (q/2)ln(T), where q is the 
number of estimated parameters, T is the number of observations, and LML is the value of 
the log likelihood function using the q estimated parameters, then the selected model is the 
one with the highest SIC. According to SIC, MA(1) and AR(1) models without constant 
term yield very similar results7. However, the AR(1) has the advantage of being consistent 
                                                 

6 All maximum likelihood estimations in this paper are carried out using the CML subroutine of GAUSS. 

7 The constant term was never significant in each candidate model for the conditional mean. 
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with the nonsynchronous contracts of individual stocks which constitute the indices. 
Definitively, the dynamic conditional mean structure for every estimation is represented by 
an AR(1) model with no constant term.  

Table 2 presents the Ljung-Box statistics of order 20, denoted as LB(20), for εt
2, εt

3 
and εt

4, where εt is the error term from the AR(1) model with no constant term. The 
statistic for all moments is quite large (p-value = 0.000 in all cases). In other words, the 
significant serial correlation for εt

2, εt
3 and εt

4 indicate time-varying volatility, skewness 
and kurtosis. This empirical evidence would justify the implementation of the 
NAGARCHSK (GARCHSK) model defined in (1) with time-varying volatility, skewness 
and kurtosis.  

Table 2: Ljung-Box Statistics with Order 20 of Residuals From Ar(1) Model 
 
The table presents the Ljung-Box statistic (asymptotic p-value in parenthesis) with order 20, i.e. LB(20), of 
εt

2, εt
3 and εt

4, where εt is the error term from an AR(1) model for daily returns. 
 

SERIES LB(20) - εt
2 LB(20) - εt

3 LB(20) - εt
4 

GBP/USD 825.43 
(0.000) 

134.37 
(0.000) 

332.34 
(0.000) 

JPY/USD 567.01 
(0.000) 

208.55 
(0.000) 

196.37 
(0.000) 

DEM/USD 407.25 
(0.000) 

70.501 
(0.000) 

187.38 
(0.000) 

CHF/USD 317.69 
(0.000) 

133.75 
(0.000) 

365.89 
(0.000) 

S&P500 131.81 
(0.000) 

120.91 
(0.000) 

139.79 
(0.000) 

NASDAQ 3152.1 
(0.000) 

252.04 
(0.000) 

315.26 
(0.000) 

DAX30 2919.1 
(0.000) 

72.889 
(0.000) 

489.37 
(0.000) 

IBEX35 1719.1 
(0.000) 

131.16 
(0.000) 

271.49 
(0.000) 

MEXBOL 488.67 
(0.000) 

238.18 
(0.000) 

283.82 
(0.000) 
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3.2. Model estimation with time-varying volatility, skewness and kurtosis 

Before presenting the estimation results obtained with both the exchange rates and 
the stock indices series, we summarize the four nested models estimated as follows: 

Mean: t1t1t rr εα += −  (5-a) 

Variance (GARCH): 
1t2

2
1t10t hh −− ++= βεββ  (5-b) 

Variance (NAGARCH): ( ) 21 2
0 1 1 3 1 2 1t t t th h hβ β ε β β− − −= + + +  (5-c) 

Skewness: 
12

3
110 −− ++= ttt  sγ ηγγs  (5-d) 

Kurtosis: 
12

4
110 −− ++= ttt kδηδδk . (5-e) 

So, first we estimate the two standard models for the conditional variance: the 
GARCH (1,1) model (equations (5-a) and (5-b)), and the NAGARCH (1,1) model 
(equations (5-a) and (5-c)), where a normal distribution is assumed for the unconditional 
standardized error tη . Second, we estimate the generalizations of both the standard 

GARCH and NAGARCH models, with time-varying skewness and kurtosis, named 
GARCHSK (equations  (5-a),  (5-b), (5-d) and (5-e)) and NAGARCHSK (equations (5-a), 
(5-c), (5-d) and (5-e)), assuming in both cases the distribution based on the Gram-Charlier 
series expansion given by equation (3).  

It should be noted that, given that the likelihood function is highly nonlinear, 
special care must be taken in selecting the starting values of the parameters. As usual in 
these cases, given that the four models are nested, the estimation is performed following 
several stages and using the parameters estimated from the simpler models as starting 
values for more complex ones. 

The results for the exchange rate series are presented in Tables 3 and 4 for the 
GARCH and GARCHSK models respectively. It is found that for all exchange rates series 
the coefficient for asymmetric variance, that is 3β , is not significant. It confirms that the 

leverage effect, commonly observed in other financial series, is not observed in the case of 
exchange rates. Therefore, for the exchange rate series only the results for symmetric 
variance models are presented.  
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Table 3: GARCH models – exchange rates 
The reported coefficients shown in each row of the table are ML estimates of the standard GARCH model:  
 

t1t1t εrαr += −  

1t2
2

1t10t hβεββh −− ++=  
 
for percentage daily returns of British Pound/American Dollar (GBP/USD), Japanese Yen/US Dollar (JPY/USD), 
German Mark/US Dollar (DEM/USD) and Swiss Franc/US Dollar (CHF/USD) exchange rates, from January 1990 to 
March 2002. ht = var(rt | rt-1, rt-2, …), εt | εt-1, εt-2, … follows a N(0,ht) distribution. All models have been estimated by ML 
using the Berndt-Hall-Hall-Hausman algorithm (quasi-maximum likelihood p-values in parenthesis). 
 

 Parameter GBP/USD JPY/USD DEM/USD CHF/USD 

Mean 
equation α1 

0.0432 
(0.0263) 

0.0175 
(0.3826) 

0.0364 
(0.0573) 

0.0304 
(0.1154) 

Variance 
equation 

β0 
 
β1 
 
β2 

0.0031 
(0.0459) 
0.0435 

(0.0000) 
0.9468 

(0.0000) 

0.0086 
(0.0645) 
0.0428 
0.0011) 
0.9402 
0.0000) 

0.0051 
(0.0663) 
0.0378 

(0.0000) 
0.9502 

(0.0000) 

0.0111 
(0.0715) 
0.0336 

(0.0003) 
0.94445 
(0.0000) 

Log-
Likelihood - 409.3328 -352.5956 -149.3089 -451.7276 

SIC - 393.2391 -368.6843 -165.4027 -467.8213 

 
 

As expected, the results for all exchange rate series indicate a significant presence 
of conditional variance. Volatility is found to be persistent since the coefficient of lagged 
volatility is positive and significant, indicating that high conditional variance is followed 
by high conditional variance.  

Moreover, it is found that for the GBP/USD, DEM/USD and CHF/USD exchange 
rate series, days with high skewness are followed by days with high skewness, since the 
coefficient for lagged skewness ( 2γ ) is positive and significant but its magnitude is lower 

than in the variance case. Also, shocks to skewness are significant though they are less 
relevant than its persistence. However, there seems to be no conditional skewness evidence 
for the JPY/USD series since neither 1γ  nor 2γ  is significant in this case. 

As in the skewness, the results for the kurtosis equation indicate that days with high 
kurtosis are followed by days with high kurtosis since the coefficient for lagged kurtosis 
( 2δ ) is positive and significant, and its magnitude is greater than that of skewness but still 

lower than that of variance. As before, shocks to kurtosis are significant, except for the 
JPY/USD series. 
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Table 4: GARCHSK Models – Exchange Rates 
 
The reported coefficients shown in each row of the table are ML estimates of the GARCHSK model:  
 

t1t1t εrαr += −  

1t2
2

1t10t hβεββh −− ++=  

1t2
4

1t10t

1t2
3

1t10t

kδηδδk

s γη γγs

−−

−−

++=

++=
 

 
for percentage daily returns of British Pound/US Dollar (GBP/USD), Japanese Yen/US Dollar (JPY/USD), German 
Mark/US Dollar (DEM/USD) and Swiss Franc/US Dollar (CHF/USD) exchange rates, from January 1990 to March 
2002. ht = var(rt | rt-1, rt-2, …), st = skewness(rt | rt-1, rt-2, …), kt = kurtosis(rt | rt-1, rt-2, …), ηt = εt ht

-1/2, and εt | εt-1, εt-2, … 
follows the distribution based on a Gram-Charlier series expansion. All models have been estimated by ML using the 
Berndt-Hall-Hall-Hausman algorithm (quasi-maximum likelihood p-values in parenthesis). 
 

 
Parameter GBP/USD JPY/USD DEM/USD CHF/USD 

Mean 
equation α1 

0.0219 
(0.2537) 

-0.0030 
(0.8670) 

0.0249 
(0.3804) 

0.0015 
(0.9322) 

Variance 
equation 

β0 
 
β1 
 
β2 

0.0015 
(0.0783) 
0.0366 

(0.0000) 
0.9550 

(0.0000) 

0.0061 
(0.0378) 
0.0309 

(0.0021) 
0.9537 

(0.0000) 

0.0022 
(0.0159) 
0.0236 

(0.0000) 
0.9690 

(0.0000) 

0.0075 
(0.0007) 
0.0217 

(0.0000) 
0.9611 

(0.0000) 

Skewness 
equation 

γ0 
 
γ1 
 
γ2 

0.0053 
(0.5379) 
0.0093 

(0.0004) 
0.6180 

(0.0000) 

-0.0494 
(0.0482) 
0.0018 

(0.4190) 
0.3414 

(0.2097) 

-0.0270 
(0.0398) 
0.0175 

(0.0054) 
0.4421 

(0.0000) 

-0.0242 
(0.0989) 
0.0054 

(0.0688) 
0.6468 

(0.0002) 

Kurtosis 
equation 

δ0 
 
δ1 
 
δ2 

1.3023 
(0.0000) 
0.0028 

(0.0000) 
0.6229 

(0.0000) 

1.2365 
(0.0038) 
0.0014 

(0.1102) 
0.6464 

(0.0000) 

1.9649 
(0.0000) 
0.01356 
(0.0000) 
0.4045 

(0.0002) 

0.5500 
(0.0000) 
0.0060 

(0.0000) 
0.8303 

(0.0000) 

Log-
Likelihood - 472.3652 -237.6668 -117.5896 -420.9973 

SIC - 432.1309 -277.9012 -157.8240 -461.2317 

 

Finally, it is worth noting that the value of the SIC, shown at the bottom of Tables 3 
and 4, rises monotonically in all cases when we move from the simpler models to the more 
complicated ones, with the GARCHSK model showing the highest value. Therefore, for 
the four exchange rates series analyzed, the GARCHSK specification seems to be the most 
appropriate one according to the SIC criterion. 
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The results for the five stock indices are presented in Tables 5, 6, 7 and 8 for 
GARCH, NAGARCH, GARCHSK and NAGARCHSK models respectively. As expected, 
the results shown in Table 5 (GARCH models) indicate significant presence of conditional 
variance, with the two American indices, that is S&P500 and NASDAQ100, showing the 
highest degree of persistence. However, Table 6 (NAGARCH models) shows that contrary 
to the exchange rate case, the coefficient 3β  is negative and significant which states the 

presence of the leverage effect commonly observed in the stock exchange markets. 

Table 5: GARCH Models -  Stock Indices 
The reported coefficients shown in each row of the table are ML estimates of the standard GARCH model:  
 

t1t1t εrαr += −  

1t2
2

1t10t hβεββh −− ++=  
 
for percentage daily returns of S&P500, NASDAQ100, DAX30, IBEX35 stock indices, from January 1990 to July 2003, 
and MEXBOL from January 1995 to July 2003. ht = var(rt | rt-1, rt-2, …), εt | εt-1, εt-2, … follows a N(0,ht) distribution. All 
models have been estimated by ML using the Berndt-Hall-Hall-Hausman algorithm (quasi-maximum likelihood p-values 
in parenthesis). 

 

 Parameter S&P500 NASDAQ DAX30 IBEX35 MEXBOL 

Mean 
equation α1 

0.03394 
(0.0544) 

0.1266 
(0.0000) 

0.0179 
(0.3133) 

0.0943 
(0.0000) 

0.1564 
(0.0000) 

Variance 
equation 

β0 
 

β1 
 
β2 

0.0055 
(0.0414) 
0.0587 

(0.0000) 
0.9379 

(0.0000) 

0.0149 
(0.0155) 
0.0948 

(0.0000) 
0.9009 

(0.0000) 

0.0317 
(0.0092) 
0.09394 
(0.0000) 
0.8918 

(0.0000) 

0.05741 
(0.0026) 
0.1035 

(0.0000) 
0.8666 

(0.0000) 

0.0827 
(0.0958) 
0.1194 

(0.0098) 
0.8591 

(0.0000) 

Log-
Likelihood - -1459.6826 -2424.1550 -2525.9824 -2441.0090 -2095.6885 

SIC - -1475.9532 -2440.4262 -2542.2484 -2457.2650 -2111.0210 

 
 

As regards the skewness equation (see Tables 7 and 8), as before, significant 
presence of conditional skewness is found, with at least one of the coefficients associated 
with shocks to skewness ( 1γ ) and to lagged skewness ( 2γ ) being significant, except for the 

S&P500 stock index under the NAGARCHSK specification.  
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Table 6: NAGARCH Models – Stock Indices 
The reported coefficients shown in each row of the table are ML estimates of the NAGARCH model:  
 

t1t1t εrαr += −  

1t2
21/2

1-t31t10t hβ)hβε(ββh −− +++=  
 
for percentage daily returns of S&P500, NASDAQ100, DAX30, IBEX35 stock indices, from January 1990 to July 2003, 
and MEXBOL from January 1995 to July 2003. ht = var(rt | rt-1, rt-2, …), εt | εt-1, εt-2, … follows a N(0,ht) distribution. All 
models have been estimated by ML using the Berndt-Hall-Hall-Hausman algorithm (quasi-maximum likelihood p-values 
in parenthesis). 
 

 Parameter S&P500 NASDAQ DAX30 IBEX35 MEXBOL 

Mean 
equation α1 

0.0461 
(0.0098) 

0.1387 
(0.0098) 

0.0200 
(0.2602) 

0.0956 
(0.0000) 

0.1665 
(0.0000) 

Variance 
equation 

β0 
 
β1 
 
β2 
 
β3 
 

0.0126 
(0.0028) 
0.0607 

(0.0000) 
0.8776 

(0.0000) 
-0.9588 
(0.0000) 

0.0270 
(0.0055) 
0.1086 

(0.0000) 
0.8605 

(0.0000) 
-0.4828 
(0.0000) 

0.0332 
(0.0010) 
0.0758 

(0.0000) 
0.8855 

(0.0000) 
-0.5678 
(0.0000) 

0.0560 
(0.0009) 
0.0865 

(0.0000) 
0.8609 

(0.0000) 
-0.5326 
(0.0000) 

0.0852 
(0.0142) 
0.0961 

(0.0004) 
0.8169 

(0.0000) 
-0.8349 
(0.0000) 

Log-
Likelihood - -1401.8598 -2385.3512 -2496.0414 -2413.6763 -2050.0510 

SIC - -1422.1982 -2405.6903 -2516.3739 -2433.9963 -2069.2165 

 

Similar results are obtained for the kurtosis equation under both GARCHSK and 
NAGARCSK specifications. The coefficient associated with shocks to kurtosis ( 1δ ) is 

significant in all cases, except for NASDAQ100 with the GARCHSK model and to some 
extent for IBEX35 with the NAGARCH model. Moreover, the coefficient associated with 
lagged kurtosis ( 2δ ) is significant in all cases except S&P500 under both specifications. 

Nevertheless, there is significant presence of conditional kurtosis for all stock indices, with 
both specifications, since at least one of the coefficients associated with shocks to kurtosis 
or to lagged kurtosis is found to be significant.  

As obtained with the exchange rate series,  the value of the SIC rises monotonically 
for all stock index series analyzed when we move from the simpler models to the more 
complicated ones, with the NAGARCHSK model showing the highest value. This seems to 
be the most appropriate specification. 
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Table 7: GARCHSK Models – Stock Indices 

The reported coefficients shown in each row of the table are ML estimates of the GARCHSK model:  
 

t1t1t εrαr += −  

1t2
2

1t10t hβεββh −− ++=  

1t2
4

1t10t

1t2
3

1t10t

kδηδδk

s γη γγs

−−

−−

++=

++=
 

 
for percentage daily returns of S&P500, NASDAQ100, DAX30, IBEX35 stock indices, from January 1990 to July 2003, 
and MEXBOL from January 1995 to July 2003. ht = var(rt | rt-1, rt-2, …), st = skewness(rt | rt-1, rt-2, …), kt = kurtosis(rt | rt-1, 
rt-2, …), ηt = εt ht

-1/2, and εt | εt-1, εt-2, … follows the distribution based on a Gram-Charlier series expansion. All models 
have been estimated by ML using the Berndt-Hall-Hall-Hausman algorithm (quasi-maximum likelihood p-values in 
parenthesis). 
 

 Parameter S&P500 NASDAQ DAX30 IBEX35 MEXBOL 

Mean 
equation α1 

0.0211 
(0.2285) 

0.1229 
(0.0000) 

0.0080 
(0.6557) 

0.0949 
(0.0000) 

0.1775 
(0.0000) 

Variance 
equation 

β0 
 
β1 
 
β2 

0.0023 
(0.1117) 
0.0387 

(0.0000) 
0.9586 

(0.0000) 

0.0098 
(0.0202) 
0.0822 

(0.0000) 
0.9149 

(0.0000) 

0.0261 
(0.0119) 
0.0851 

(0.0000) 
0.9021 

(0.0000) 

0.0417 
(0.0042) 
0.0843 

(0.0000) 
0.8928 

(0.0000) 

0.1228 
(0.0028) 
0.1663 

(0.0000) 
0.8023 

(0.0000) 

Skewness 
equation 

γ0 
 
γ1 
 
γ2 

-0.0458 
(0.0518) 
0.0085 

(0.0139) 
0.0227 

(0.9187) 

-0.0886 
(0.0106) 
0.0078 

(0.0032) 
0.2174 

(0.4136) 

-0.0245 
(0.2911) 
0.0048 

(0.2006) 
0.6781 

(0.0168) 

-0.0446 
(0.0161) 
0.0189 

(0.0000) 
0.1352 

(0.0852) 

0.0228 
(0.3101) 
0.0125 

(0.0136) 
0.2969 

(0.3112) 

Kurtosis 
equation 

δ0 
 
δ1 
 
δ2 

3.0471 
(0.0000) 
0.0055 

(0.0019) 
0.0882 

(0.5715) 

1.4576 
(0.0175) 
0.0007 

(0.6228) 
0.5518 

(0.0034) 

0.4866 
(0.0016) 
0.0010 

(0.0229) 
0.8493 

(0.0000) 

0.2526 
(0.0026) 
0.0004 

(0.0129) 
0.9208 

(0.0000) 

0.3302 
(0.0254) 
0.0010 

(0.3634) 
0.9018 

(0.0000) 

Log-
Likelihood - -1404.5752 -2375.0218 -2484.1335 -2414.6928 -2056.0966 

SIC - -1445.2519 -2415.7000 -2525.7985 -2455.3328 -2094.4277 
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Table 8: NAGARCHSK Models – Stock Indices 

The reported coefficients shown in each row of the table are ML estimates of the NAGARCHSK model:  
 

t1t1t εrαr += −  

1t2
21/2

1-t31t10t hβ)hβε(ββh −− +++=  

1t2
4

1t10t

1t2
3

1t10t

kδηδδk

s γη γγs

−−

−−

++=

++=
 

 
for percentage daily returns of S&P500, NASDAQ100, DAX30, IBEX35 stock indices, from January 1990 to July 2003, 
and MEXBOL from January 1995 to July 2003. ht = var(rt | rt-1, rt-2, …), st = skewness(rt | rt-1, rt-2, …), kt = kurtosis(rt | rt-1, 
rt-2, …), ηt = εt ht

-1/2, and εt | εt-1, εt-2, … follows the distribution based on a Gram-Charlier series expansion. All models 
have been estimated by ML using the Berndt-Hall-Hall-Hausman algorithm (quasi-maximum likelihood p-values in 
parenthesis). 
 

 Parameter S&P500 NASDAQ DAX30 IBEX35 MEXBOL 

Mean 
equation α1 

0.0358 
(0.0466) 

0.1255 
(0.0000) 

0.0152 
(0.4009) 

0.1024 
(0.0000) 

0.1742 
(0.0000) 

Variance 
equation 

β0 
 
β1 
 
β2 
 
β3 

0.0083 
(0.0006) 
0.0416 

(0.0000) 
0.9099 

(0.0373) 
-1.0116 
(0.0000) 

0.01841 
(0.0038) 
0.0986 

(0.0000) 
0.8801 

(0.0000) 
-0.4351 
(0.0000) 

0.0278 
(0.0005) 
0.0696 

(0.0000) 
0.8961 

(0.0000) 
-0.5597 
(0.0000) 

0.04460 
(0.0004) 
0.0729 

(0.0000) 
0.8800 

(0.0000) 
-0.5795 
(0.0003) 

0.1000 
(0.0001) 
0.1202 

(0.0000) 
0.7834 

(0.0000) 
-0.7703 
(0.0000) 

Skewness 
equation 

γ0 
 
γ1 
 
γ2 

-0.0451 
(0.0373) 
0.0091 

(0.1034) 
0.0552 

(0.7418) 

-0.0618 
(0.0005) 
0.0103 

(0.0025) 
0.4572 

(0.0000) 

-0.0261 
(0.2285) 
0.0050 

(0.1883) 
0.6573 

(0.0124) 

-0.0204 
(0.1174) 
0.0045 

(0.1423) 
0.5325 

(0.0022) 

0.0525 
(0.0782) 
0.0180 

(0.0045) 
0.1922 

(0.5459) 

Kurtosis 
equation 

δ0 
 
δ1 
 
δ2 

3.1652 
(0.0000) 
0.0150 

(0.0000) 
0.0293 

(0.6645) 

1.6929 
(0.0003) 
0.0053 

(0.0025) 
0.4684 

(0.0014) 

0.4536 
(0.0016) 
0.0009 

(0.0161) 
0.8581 

(0.0000) 

0.2012 
(0.0858) 
0.0004 

(0.0749) 
0.9365 

(0.0000) 

1.9901 
(0.0011) 
0.0055 

(0.0004) 
0.4017 

(0.0271) 
Log-
Likelihood - -1371.4169 -2351.1665 -2461.0251 -2382.5437 -2016.8569 

SIC - -1416.1613 -2395.9126 -2505.7566 -2427.2477 -2059.0212 
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4. Comparison of models 

One way to start comparing the models is to compute a likelihood ratio test. It is 
easy to see that the density function based on a Gram-Charlier series expansion in equation 
(2) nests the normal density function when st = 0 and kt = 3 (alternatively when γ 1 = γ 2 = 
γ 3 = 0,   δ 1 =3 and δ 2 = δ 3 = 0). Therefore, the restrictions imposed by the normal 
density function with respect to the more general density based on a Gram-Charlier series 
expansion can be tested by means of a likelihood ratio test. The results are contained in 
Table 9. The value of the LR statistic is quite large in all cases, indicating the rejection of 
the null hypothesis that the true density is the restricted one, i.e. the normal density 
function. 

Table 9: Likelihood Ratio Tests 
The table shows the values of the maximized log-likelihood function (logL) when the distribution for the error term is 
assumed to be normal (standard GARCH or NAGARCH specification) and when it is assumed to be a Gram-Charlier 
series expansion of the normal density (GARCHSK or NAGARCHSK specification), the likelihood ratio (LR) and 
asymptotic p-values, for the series employed in the paper.  
 

PANEL A: EXCHANGE RATES 

STATISTIC GBP/USD JPY/USD DEM/USD CHF/USD 

LogL(GARCH) 409.3 -352.6 -149.3 -451.7 

LogL(GARCHSK) 472.4 -237.7 -117.6 -421.0 

LR 
(p-value) 

126.1 
(0.00) 

229.9 
(0.00) 

63.4 
(0.00) 

61.5 
(0.00) 

 

PANEL B: STOCK INDICES 

STATISTIC S&P500 NASDAQ100 DAX30 IBEX35 MEXBOL 

LogL(NAGARCH) -1401.9 -2385.4 -2496.0 -2413.7 -2050.1 

LogL(NAGARCHSK) -1371.4 -2351.2 -2461.0 -2382.5 -2016.9 

LR 
(p-value) 

60.9 
(0.00) 

68.4 
(0.00) 

70.0 
(0.00) 

62.3 
(0.00) 

72.8 
(0.00) 
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A second way consists of comparing the properties of the conditional variances 
obtained in each model. Figure 1 shows the behavior of conditional variance for one of the 
exchange rate series -GBP/USD- with both GARCH and GARCHSK models, and for one 
of the stock index series -S&P500- with both NAGARCH and NAGARCHSK 
specifications. It is clear that conditional variances obtained with models accounting for 
time-varying skewness and kurtosis are smoother than those obtained with standard 
GARCH or NAGARCH models. This is confirmed by the results in Table 10, which shows 
some descriptive statistics for these conditional variances. In fact, conditional variances 
obtained with GARCHSK or NAGARCHSK models show less standard deviation, 
skewness and kurtosis than those obtained under the standard models. This fact was 
observed by Harvey and Siddique (1999) with their time-varying skewness but a constant 
kurtosis specification. 

Table 10: Descriptive Statistics for Conditional Variances 

The table shows the main descriptive statistics for the conditional variances obtained from GARCH and GARCHSK 
models for GBP/USD series, and from NAGARCH and NAGARCHSK models for S&P500 series. 

 GBP/USD S&P500 

STATISTIC ht - GARCH ht – GARCHSK ht - NAGARCH ht - NAGARCHSK 

Sample size 3124 3124 3413 3413 
Mean 0.3264 0.3026 1.1394 1.0928 
Median 0.2647 0.2432 0.7692 0.7513 
Maximum 1.4762 1.3944 8.3534 6.9340 
Minimum 0.0988 0.0776 0.1731 0.1771 
Stand. Dev. 0.2034 0.1980 1.0575 0.9533 
Skewness 2.2384 2.1624 2.5160 2.2077 
Kurtosis 9.4659 8.9007 11.1431 8.9475 
Jarque-Bera 
(p-value) 

8050.721 
(0.0000) 

6966.893 
(0.0000) 

13030.79 
(0.0000) 

7802.598 
(0.0000) 

 

The in-sample predictive ability of the different models is compared by means of 
two metrics. The variable predicted is the squared forecast error (εt

2) and the predictors are 
the conditional variances (ht) from, respectively, the standard GARCH or NAGARCH 
models and GARCHSK or NAGARCHSK models. The two metrics are: 

Median absolute error: |)(| 2
tt hmedMAE −= ε  

Median percentage absolute error: 






 −
= 2

2 ||

t

tt h
medMPAE

ε
ε
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Figure 1: Estimated Conditional Variances With Nagarch and Nagarchsk Models 
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The metrics are based on the median since it is more robust than the mean. The 
results are shown in Table 11. Models accounting for time-varying skewness and kurtosis 
in general outperform standard GARCH or NAGARCH models. They are the best 
performing models under the two metrics with all the exchange rate and stock index series 
except for NASDAQ100 and IBEX35 under the median absolute error but not under the 
median percentage absolute error.  

Furthermore, it is worth noting that the series that performs best, based on these 
metrics, is the MEXBOL stock index, which is the series with the highest values of 
unconditional standard deviation, skewness and kurtosis (see Table 1). This result could 
suggest the potential application of our methodology to financial series from emerging 
economies, characterized by higher risk and more pronounced departures from normality. 
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Table 11: In-Sample Predictive Power 

The variable predicted is the squared forecast error (εt
2) and the predictors are the conditional variances (ht) from, 

respectively, the standard GARCH or NAGARCH models and GARCHSK or NAGARCHSK models. Two metrics are 
chosen to compare the predictive power ability of these models: 

1. Median absolute error |)(| 2
tt hmedMAE −= ε  

2. Median percentage absolute error 






 −
= 2

2 ||

t

tt h
medMPAE

ε
ε

 

The metrics are based on the median given the high dispersion of the error series. 

SERIES MAE MPAE 

G 0.2030 1.9227 
GBP/USD 

GSK 0.1874 1.6567 
G 0.3369 2.2226 

JPY/USD 
GSK 0.3165 2.0134 
G 0.3058 1.7982 

DEM/USD 
GSK 0.2895 1.6028 
G 0.3749 1.8096 

CHF/USD 
GSK 0.3635 1.6788 
NG 0.5884 1.7690 

S&P500 
NGSK 0.5723 1.7670 
NG 0.9061 1.3801 

NASDAQ 
NGSK 0.9209 1.3075 
NG 1.0225 1.5102 

DAX30 
NGSK 1.0207 1.5071 
NG 1.0081 1.4610 

IBEX35 
NGSK 1.0109 1.4349 
NG 1.6743 1.6508 MEXBOL 
NGSK 1.6308 1.5531 

 

Finally, Table 12 shows some descriptive statistics for 30-day simple moving 
average measures of both skewness and kurtosis and also, the statistics corresponding to 
the conditional skewness and kurtosis under the GARCHSK/NAGARCHSK models, 
specifically the GBP/USD and S&P 500 series. The main feature of Table 12 is that 
conditional measures of skewness and kurtosis show less standard deviation than those 
obtained with the 30-day simple moving average. Also, at least for the S&P 500 series, 
conditional measures seem to provide more pronounced (negative) skewness and higher 
leptokurtosis (see the median statistics). Meanwhile, for the GBP/USD series though 
leptokurtosis is higher for the conditional case, a positive skewness is higher under the 
moving average case (see median statistics). 
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Table 12. Descriptive Statistics for Simple Moving Average and Conditional Coefficients of 
Skewness And Kurtosis 

The table shows the main descriptive statistics for 30-day simple moving average and conditional skewness and kurtosis, 
for GBP/USD (using the GARCHSK model) and for S&P500 (using the NAGARCHSK model) series. 

 GBP/USD Skewness GBP/USD Kurtosis 

STATISTIC Mov.-Aver. St Conditional St Mov.-Aver. Kt Conditional Kt 

Sample size 3096 3096 3096 3096 
Mean 0.0012 0.0167 3.4223 3.4969 
Median 0.0164 0.0134 3.1494 3.4665 
Maximum 2.6956 2.8019 12.1532 9.0119 
Minimum -1.8734 -0.9511 1.4685 3.4540 
Stand. Dev. 0.5836 0.1074 1.2151 0.1570 

 S&P 500 Skewness S&P500 Kurtosis 

STATISTIC Mov.-Aver St Conditional St Mov.-Aver. Kt Conditional Kt 

Sample size 3385 3385 3385 3385 
Mean -0.0171 -0.0503 3.2323 3.3387 
Median 0.0240 -0.0477 2.9155 3.2649 
Maximum 1.7763 0.4568 12.2603 34.6040 
Minimum -2.4311 -2.8565 1.7728 3.2608 
Stand. Dev. 0.5142 0.0806 1.2030 0.7273 

 

5. Conclusions 

It is well known that the generalized autoregressive conditional heteroscedasticity 
(GARCH) models, introduced by Engle (1982) and Bollerslev (1986) allow for time-
varying volatility but neither time-varying skewness nor time-varying kurtosis. However, 
given the increasing attention that time-varying skewness and kurtosis have attracted in 
option pricing literature, it may be useful to analyze a model that jointly accounts for 
conditional second, third and fourth moments. 

Harvey and Siddique (1999) present a way of jointly estimating time-varying 
conditional variance and skewness, assuming a non-central t distribution for the error term 
in the mean equation. We propose a GARCH-type model allowing for time-varying 
volatility, skewness and kurtosis. The model is estimated assuming a Gram-Charlier series 
expansion of the normal density function, along the lines suggested by Gallant and 
Tauchen (1989), for the error term in the mean equation. This distribution is easier to 
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estimate than the non-central t distribution proposed by Harvey and Siddique (1999). 
Moreover, our approach accounts for  time-varying skewness and kurtosis while the one by 
Harvey and Siddique (1999) only accounts for time-varying skewness.  

Our model is estimated using daily returns of four exchange rate series, five stock 
indices and the emerging market index MEXBOL (Mexico). Our results indicate 
significant presence of conditional skewness and kurtosis. Moreover, it is found that 
specifications allowing for time-varying skewness and kurtosis outperform specifications 
with constant third and fourth moments. 

Finally, it is important to point out two main implications of our GARCHSK and 
NAGARCHSK model. First, they can be useful in estimating future coefficients of 
volatility, skewness and kurtosis, which are unknown parameters in option pricing models 
that account for nonnormal skewness and kurtosis. For example, estimates of volatility, 
skewness and kurtosis from the NAGARCHSK model, based on historical series of 
returns, could be compared with option implied coefficients in terms of their out of sample 
option pricing performance. Second, our models could be useful in testing the information 
content of option implied coefficients of volatility, skewness and kurtosis. This could be 
done by including option implied coefficients as exogenous terms in the equations of 
volatility, skewness and kurtosis, extending the papers by Day and Lewis (1992), 
Lamoureux and Lastrapes (1993) and Amin and Ng (1997), among others. 
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APPENDIX 

Here we show that the nonnegative function ( )1t tf Iη −  in (3) is really a density 

function,  which is it integrates to one. We can rewrite ( )tψ η  in (2) as: 

( ) ( ) ( )3 4
31

3! 4!
t t

t t t
s kH Hψ η η η−

= + +  

where  ( ){ } Ν∈ii xH  represents the Hermite polynomials such that   ( ) ( )0 11,H x H x x= =   

and for 2i ≥  they hold  the following recurrence relation: 

( ) ( ) ( )( )1 21 / .i i iH x xH x i H x i− −= − −  

It is verified that ( ){ } Ν∈ii xH  is an orthonormal basis satisfying that: 

( ) ( )2 1,iH x x dx iφ
∞

−∞
= ∀∫                                                    (A-1) 

( ) ( ) ( ) 0,i jH x H x x dx i jφ
∞

−∞
= ∀ ≠∫                                   (A-2) 

where ( )φ ⋅  denotes the N(0,1) density function. If we integrate the conditional density 

function in (3) and given conditions (A-1) and (A-2): 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2

3 4

22
2 2
3 4

22

31/ 1
3! 4!

3
1/

3! 4!

3
1/ 1

3! 4!

1.

t t
t t t t t

tt
t t t t t t t t t

tt
t

s kH H d

ksd H d H d

ks

φ η η η η

φ η η η φ η η η φ η η

∞

−∞

∞ ∞ ∞

−∞ −∞ −∞

− Γ + +  

 −
= Γ + + 

  

 −
= Γ + + 

  

=

∫

∫ ∫ ∫
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