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ABSTRACT 
 

 
  

We investigate the impact of preference shocks on the aggregate dynamics 
of the U.S. economy in the context of a neoclassical growth model derived from 
aggregation. The aggregation result we use is as follows: if markets are complete 
and if agents have identical preferences of the addilog type, then the 
heterogeneous-agent economy where agents are subject to idiosyncratic 
productivity shocks behaves as if there was a representative consumer who faces 
shocks to preferences and technology. We estimate the parameters in the 
aggregation-based model from the aggregate time-series data and compute the 
numerical solution. We find that the preference shocks play an important role in 
the aggregate labor-market fluctuations. 
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1 Introduction

Real Business Cycle (RBC) models, in which fluctuations are caused exclu-
sively by technology shocks, proved to be remarkably successful in accounting
for the properties of business cycles, observed in actual economies. There are
some exceptions, however.1 One important shortcoming of the typical RBC
model is that it predicts a strong positive correlation between working hours
and productivity (wages). The correlation between these two variables in the
data is however weakly negative. The latter empirical regularity is originally
documented by Dunlop (1938) and Tarshis (1939) and is often referred to in
the literature as the ”Dunlop-Tarshis” observation.2

Bencivenga (1992) demonstrates that extending RBC models to include
preference shocks can help to account for the Dunlop-Tarshis observation.3

To be specific, she incorporates preference shocks in a variant of the standard
neoclassical growth model by Kydland and Prescott (1982) with a logarithmic
utility function, a Cobb-Douglas production function and full depreciation of
capital. She calibrates the preference shocks to match aggregate time-series
data on the U.S. economy and finds that the model generates a weak negative
correlation between working hours and productivity. Nonetheless, the model
considered in Bencivenga (1992) has difficulties in replicating some other
features of the data. In particular, it over-states dramatically the volatility
of consumption (by a factor of six) as well as the volatilities of such a model’s
variables as output, labor and labor productivity (by a factor of two-four); it
counterfactually predicts that consumption is more volatile than output and
that labor productivity is negatively correlated with output; etc.
Maliar and Maliar (2003a) consider a neoclassical economy with hetero-

geneous agents and show that, at the aggregate level, preference shocks can
arise as a consequence of idiosyncratic labor productivity shocks. To be pre-
cise, the following aggregation result is shown: if markets are complete and
if agents have identical preferences of either the Cobb-Douglas or addilog
types, then a heterogeneous-agent economy, where idiosyncratic labor pro-
ductivity shocks are the only source of uncertainty, behaves as if there was a

1See King and Rebelo (1999) for a discussion.
2A large body of the literature focuses on this ”labor market puzzle”, e.g., Christiano

and Eichenbaum (1992), Bencivenga (1992), Gomme and Greenwood (1995), Maliar and
Maliar (2001, 2003a).

3Bencivenga (1992) argues that preference shocks may be interpreted as resulting from
shocks to household production or from changes in relative prices.
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representative consumer who faces three kinds of shocks, to preferences, to
technology and to labor input.4 Particular assumptions about idiosyncratic
shocks do not affect the structure of the constructed one-consumer model
but just the stochastic properties of the aggregate shocks. Maliar and Maliar
(2003a) calibrate the model to reproduce the distribution of wealth and the
process for the individual labor earnings from the U.S. household data. This
paper finds that preference shocks from aggregation have virtually no effect
on aggregate dynamics.5

There are several differences between the models studied in Bencivenga
(1992) and Maliar and Maliar (2003a), which can potentially explain why
preferences shocks are quantitatively important in the former model but play
little role in the latter model. Specifically, Bencivenga (1992) considers two
types of preference shocks (one to the consumption term and another to the
leisure term of the additively separable utility function); she assumes full
depreciation of capital; and she calibrates the properties of the preference
shocks from aggregate time-series data. In contrast, the model by Maliar
and Maliar (2003a) contains just one type of preference shock (one to the
leisure term of the additively separable (addilog) utility function); it has
partial depreciation of capital; and it is calibrated to reproduce evidence
from household data.
The purpose of the present paper is twofold. First, given the difference

seen between the results of Bencivenga (1992) and those of Maliar and Maliar
(2003a), we attempt to determine under precisely what conditions prefer-
ence shocks are important in aggregate dynamics. Second, given that the
model considered in Bencivenga (1992) has several undesirable features, we
investigate whether the aggregation-based variant of the neoclassical growth
model derived in Maliar and Maliar (2003a) can generate empirically plausi-
ble predictions if it is calibrated to reproduce aggregate time-series data, as
in Bencivenga (1992).
To estimate the parameters of the aggregation-based model, we use the

aggregate time-series data on the U.S. economy. We assume that the prefer-
ence and technology shocks follow a first-order autoregressive process and we

4Shocks from aggregation do not arise in economies derived from aggregation under the
assumption of time-invariant individual characteristics, e.g., Chatterjee (1994), Atkeson
and Ogaki (1996), Caselli and Ventura (2000), Maliar and Maliar (2001).

5Maliar and Maliar (2003a) show that another type of shock from aggregation, namely,
the one to labor input, can have a non-trivial effect on the aggregate dynamics. This type
of shock is not considered in the present paper.
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estimate all the model’s parameters, including a matrix of the transitional
probabilities and the variances of the error terms, by Hansen’s (1982) Gener-
alized Method of Moments (GMM) procedure.6 We then calibrate the model
and simulate the solution.
We find that under the above calibration procedure, preference shocks

have a non-trivial effect on the model’s predictions. As Bencivenga (1992)
does, we too obtain a weak correlation between productivity and working
hours. This prediction is robust to changes in the values of the key model’s
parameters, including the discount factor, the intertemporal elasticities of
consumption and leisure and the autocorrelation coefficients. As far as the
other predictions are concerned, they are practically identical to those gener-
ated by the benchmark Kydland and Prescott’s (1982) model and are in line
with the U.S. data. That is, our model does not suffer from the problems
encountered in Bencivenga (1992).
Our analysis has the following two implications: First, whether preference

shocks affect aggregate dynamics or not depends crucially on how the model
is calibrated. We argue that the aggregate preference shocks play a very
little role in the analysis of Maliar and Maliar (2003a), because, under the
assumptions used in this paper, idiosyncratic shocks are almost uncorrelated
across agents, so that they, literally, offset each other when they are aggre-
gated in the preference shocks. In actual economies, however, idiosyncratic
shocks can be significantly correlated, which is likely to be reflected in the ag-
gregate time series data.7 The result is that the preference shocks measured
in the present paper from the aggregate time series data are much greater
than those computed in Maliar and Maliar (2003a). Secondly, given that our
aggregation-based model with technology and preference shocks can account
remarkably well for the U.S. data, we can attribute all the shortcomings of
Bencivenga’s (1992) model to the two assumptions that distinguish her setup
from ours, namely, full depreciation of capital and shocks to the consumption
term of the utility function (which are absent in our model). Indeed, full de-

6The model in Bencivenga (1992) admits a closed-form solution, which simplifies the
estimation procedure since the maximum likelihood function can be constructed explicitly.
We cannot adopt this approach, as our more general setup does not admit a closed-form
solution. Instead, we use the GMM procedure, which makes it possible to estimate the
parameters without knowing a solution.

7The simplest example that shows the existence of such a correlation is an empirical
regularity that workers tend to loose their jobs during recessions and find jobs during
expansions.
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preciation makes capital stock excessively volatile, which magnifies the size
of fluctuations in general, while the shocks to the consumption term of the
utility function exaggerate consumption fluctuations even further, leading to
the counterfactual prediction that consumption is more volatile than output.
This paper is organized as follows: Section 2 describes the model de-

rived from aggregation and outlines the estimation and solution procedures.
Section 3 presents the numerical results, and finally, Section 4 concludes.

2 The model and the methodology of the nu-
merical study

The economy is populated by an infinitely-lived representative consumer who
has a momentary utility function of the addilog type and who solves the
following intertemporal utility maximization problem:

max
{ct,kt+1,ht}t∈T

E0

∞

t=0

δt
c1−γt − 1
1− γ

+AXtg
t(1−γ) (1− ht)1−σ − 1

1− σ
, (1)

subject to

ct + kt+1 = (1− d) kt + θtf kt, g
tht , (2)

where the initial condition (k0, θ0, X0) is given. Here, E0 is the operator of
the conditional expectation; ct, kt and ht denote consumption, capital and
hours worked, respectively; δ ∈ (0, 1) is the discount factor, γ,σ, A > 0 are
the parameters of the utility function; d ∈ (0, 1] is the depreciation rate
of capital; f (kt, gtht) = kαt (g

tht)
1−α with α ∈ (0, 1) is the Cobb-Douglas

production function, and g is the rate of the labor-augmenting technology
progress. The variables θt and Xt will be referred to as technology and
preferences shocks, respectively.
Maliar and Maliar (2003a) show that the representative-consumer model

(1), (2) can be viewed as the outcome of aggregation. It is specifically shown
that if markets are complete and if all agents have identical preferences of
the addilog type, then a neoclassical economy, where agents face idiosyncratic
shocks to earnings, behaves as if there was a representative consumer who
solves the utility maximization problem (1), (2).
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We calibrate the model in a way that is standard in the RBC literature,
which is by assuming that shocks follow an autoregressive process:

ln (θt)
ln (Xt)

=
ρθθ ρθX
ρXθ ρXX

ln (θt−1)
ln (Xt−1)

+
εθt
εXt

, (3)

where {ρθθ, ρθX , ρXθρXX} are the autocorrelation coefficients, εθt ∼ N (0, ν2θ)
and εXt ∼ N (0, ν2X). We then estimate the model’s parameters, including
those in (3), and simulate the solutions.
To estimate the parameters, we use quarterly data on the U.S. economy

ranging from 1959 : 3 to 1998 : 3. For a description of the data set see Maliar
and Maliar (2003a). Unfortunately, quarterly data on aggregate efficiency
hours worked, ht, are not available, just those on aggregate physical hours
worked, nt. As shown in Maliar and Maliar (2003a), these two model’s
variables are related as

nt = 1− (1− ht) · πt, (4)

where πt is the labor-input shock, whose stochastic properties depend on spe-
cific assumptions about the distributions of wealth and idiosyncratic shocks.
We abstract from the effect associated with the labor-input shock and inves-
tigate the robustness of our results with respect to changes in the measure
of labor input. We specifically consider two alternative proxies for ht. One
is the level of employment and the other is aggregate physical hours worked.
Our results proved to be robust to changes in the measure of labor input
used.
To estimate the model’s parameters, we use Hansen’s (1982) version of

Generalized Method of Moments (GMM). Our estimation procedure is close
to the one used in Christiano and Eichenbaum (1992). The utility param-
eters, γ and σ, and the subjective discount factor, δ, are not estimated. In
the baseline case, we assume γ = σ = 1 and δ = (1.03)−0.25. Afterwards,
we analyze the robustness of our results by considering several alternative
specifications for these parameters.8 We subdivide the parameters into two
groups, Ψ1 and Ψ2, defined as

Ψ1 = {α, A, g, d} , Ψ2 = ρθθ, ρθX , ρXθ, ρXX , ν
θ
t , ν

X
t .

8Strictly speaking, when σ = 1, we have Xt = X for all t, i.e., the preference shock
disappears from the representative-agent model (1), (2) (see Maliar and Maliar, 2003a).
However, an ε-deviation of σ from one is sufficient to revive the preference shocks. Also,
as we shall see, all of the tendencies we observe for the case σ = 1 are robust to changes
in σ. We stick to the case of σ = 1 merely for the sake of convenience.
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We then proceed in two steps: First, we estimate the parameters from the
group Ψ1 by employing the first-moment conditions of the model (1), (2) and
compute the residuals θt and Xt. Secondly, we estimate the parameters from
the group Ψ2 by using the residuals. Given that the stochastic properties
of the processes for θt and Xt are not known, we compute the instrumen-
tal variable estimator at both steps. As instruments, we use the variables
consumption, capital, output and hours worked, taken up to eight lags. The
first-moment conditions, employed for estimating the parameters from Ψ1,
are given in the Appendix. The parameters from Ψ2 are estimated according
to (3) .
The estimates of the parameters from Ψ1 obtained in the baseline model

are as follows:

α = 0.3341,
(0.0016)

A = 3.317
(0.008)

, g = 1.0047
(0.0001)

, d = 0.0209
(0.0001)

,

where the numbers in brackets are the standard deviations. These estimates
are practically identical to those reported by Christiano and Eichenbaum
(1992). Our estimates proved to be robust to modifications in the set of
instruments and in the number of lags. To economize on space, we do not
report the parameters from Ψ1, just those from Ψ2, for the remaining values
of (γ,σ, δ).
We parameterize the model by using the values of the parameters, which

have been previously estimated by GMM, and solve for equilibrium. To
compute numerical solutions, we employ the parameterized expectations al-
gorithm by den Haan and Marcet (1990). We restrict the time series so-
lution by imposing ”moving bounds”, as described in Maliar and Maliar
(2003b), which resolves the problem of finding a good initial condition and
makes it possible to systematically achieve convergence starting from the
non-stochastic steady state. We approximate the conditional expectations
by a second-order degree exponentiated polynomial. The length of simula-
tions was 10000, and the iterations were performed until 5-digit precision in
the polynomial coefficients was enforced.
In Table 1 and Table 2, we report the first and second moments of time

series generated by the model. In the last column of Table 1, we also provide
the selected first and second moments of time series in the U.S. economy.9

The reported statistics are the sample averages of the variables provided in
9Some of the moments obtained for the U.S. economy are on the upper side of those

found in related studies, e.g., King, Plosser and Rebelo (1988), Smith (1993). This is
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Table 1. Shocks parameters and selected statistics for the U.S. and artificial economies: the 
baseline parameterization, γ = 1, σ = 1, δ = 1.03 -0.25.    
 

 Models  U.S. 
      

 Model 1 Model 2 Model 3 Model 4 economy  
      

Shocks parameters  
      

ρθθ 0.99456 
(0.00939) 

- 0.99602 
(0.01588) 

0.95000 - 

      

ρθX - - 0.00594 
(0.01551) 

- - 

      

ρXθ - - 0.10496 
(0.01654) 

- - 

      

ρXX - 0.99886 
(0.00997) 

0.92671 
(0.01538) 

0.95000 - 

      

ν2
θ 0.00652 

(0.00055) 
- 0.00598 

(0.00058) 
0.00669 

(0.00055) 
- 

      

ν2
X - 0.00622 

(0.00051) 
0.00585 

(0.00046) 
0.00697 

(0.00045) 
- 

      

First moments 
      

ct /yt 0.750 
(0.018) 

0.748 
(0.012) 

0.750 
(0.019) 

0.751 
(0.023) 

0.745 

      

k t /yt 10.365 
(0.539) 

10.311 
(0.408) 

10.359 
(0.589) 

10.351 
(0.564) 

10.237 

      

nt 0.211 
(0.004) 

0.222 
(0.006) 

0.212 
(0.008) 

0.211 
(0.007) 

0.213 

      

Second moments  
      

σc 0.558 
(0.067) 

0.290 
(0.033) 

0.691 
(0.081) 

0.480 
(0.063) 

0.836 

      

σy/n 0.679 
(0.078) 

0.274 
(0.030) 

0.764 
(0.083) 

0.721 
(0.081) 

1.011 

      

σn 0.492 
(0.057) 

0.806 
(0.090) 

1.069 
(0.122) 

1.408 
(0.153) 

1.279 

      

σi 3.025 
(0.355) 

1.304 
(0.156) 

2.789 
(0.324) 

5.220 
(0.567) 

4.793 

      

σy l.153 
(0.127) 

0.539 
(0.061) 

1.120 
(0.130) 

1.597 
(0.174) 

1.755 

      

corr(c,y) 0.974 
(0.006) 

0.982 
(0.004) 

0.896 
(0.031) 

0.889 
(0.018) 

0.923 

      

corr(y/n,y) 0.989 
(0.003) 

-0.963 
(0.010) 

0.402 
(0.129) 

0.471 
(0.109) 

0.715 

      

corr(n,y) 0.979 
(0.005) 

0.996 
(0.001) 

0.753 
(0.068) 

0.890 
(0.032) 

0.830 

      

corr(i,y) 0.989 
(0.003) 

0.990 
(0.002) 

0.938 
(0.019) 

0.986 
(0.004) 

0.979 

      

corr(y/n,n) 0.939 
(0.046) 

-0.983 
(0.004) 

-0.287 
(0.138) 

0.026 
(0.145) 

0.220 

      

 
 
 
 
 
 
 



Table 2. Shocks parameters and selected statistics for the artificial economies: sensitivity 
analysis with respect to (γ,σ,δ). 
 

 Models  
       

 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 
       

 γ = 0.75 γ = 1.5 γ = 1 γ = 1 γ = 1 γ = 1 
       

 σ = 1 σ = 1 σ = 0.5 σ = 2 σ = 1 σ = 1 
       

 δ = 1.03 -0.25 δ = 1.03 -0.25 δ = 1.03 -0.25 δ = 1.03 -0.25 δ = 1.05 -0.25 δ = 1.015 -0.25 
       

Shocks parameters 
       

ρθθ 0.99447 
(0.01242) 

1.00052 
(0.02037) 

0.99213 
(0.01561) 

1.00247 
(0.01645) 

0.99923 
(0.01587) 

0.99210 
(0.01614) 

       

ρθX 0.00979 
(0.01903) 

0.00453 
(0.01126) 

0.00196 
(0.01635) 

0.01127 
(0.01380) 

0.00879 
(0.01572) 

0.00310 
(0.01512) 

       

ρXθ 0.07405 
(0.01273) 

0.15957 
(0.02232) 

0.08744 
(0.01476) 

0.13987 
(0.02074) 

0.10291 
(0.01651) 

0.10639 
(0.01685) 

       

ρXX 0.92131 
(0.01904) 

0.93270 
(0.01148) 

0.93813 
(0.01483) 

0.90954 
(0.01627) 

0.92658 
(0.01555) 

0.92978 
(0.01498) 

       

ν2
θ 0.00602 

(0.00057) 
0.00597 

(0.00059) 
0.00595 

(0.00058) 
0.00604 

(0.00057) 
0.00599  

(0.00059) 
0.00599 

(0.00057) 
       

ν2
X 0.00599 

(0.00045) 
0.00600 

(0.00048) 
0.00535 

(0.00042) 
0.00700 

(0.00055) 
0.00583 

(0.00046) 
0.00582 

(0.00046) 
       

First moments 
       

ct /yt 0.760 
(0.023) 

0.743 
(0.033) 

0.751 
(0.024) 

0.750 
(0.020) 

0.749 
(0.019) 

0.752 
(0.024) 

       

k t /yt 9.958 
(0.526) 

11.030 
(0.872) 

10.358 
(0.595) 

10.382 
(0.570) 

10.346 
(0.521) 

10.382 
(0.643) 

       

nt 0.212 
(0.008) 

0.208 
(0.011) 

0.213 
(0.009) 

0.211 
(0.007) 

0.213 
(0.008) 

0.212 
(0.008) 

       

Second moments 
       

σc 0.631 
(0.078) 

0.548 
0.079 

0.592 
(0.084) 

0.675 
(0.078) 

0.648 
(0.075) 

0.638 
(0.080) 

       

σy/n 0.663 
(0.069) 

0.862 
(0.092) 

0.698 
(0.072) 

0.770 
(0.073) 

0.759 
(0.080) 

0.751 
(0.080) 

       

σn 1.272 
(0.142) 

1.301 
(0.430) 

1.311 
(0.192) 

1.066 
(0.132) 

1.068 
(0.121) 

1.200 
(0.128) 

       

σi 4.136 
(0.487) 

4.494 
(5.271) 

4.165 
(1.525) 

3.103 
(0.435) 

2.881 
(0.352) 

3.534 
(0.401) 

       

σy 1.406 
((0.161) 

1.122 
(0.400) 

1.359 
(0.172) 

1.144 
(0153) 

1.128 
(0.134) 

1.256 
(0.148) 

       

corr(c,y) 0.921 
(0.019) 

0.717 
(0.081) 

0.890 
(0.042) 

0.841 
(0.047) 

0.901 
(0.030) 

0.850 
(0.043) 

       

corr(y/n,y) 0.421 
(0.136) 

0.170 
(0.141) 

0.320 
(0.156) 

0.431 
(0.122) 

0.408 
(0.129) 

0.369 
(0.124) 

       

corr(n,y) 0.880 
(0.035) 

0.739 
(0.082) 

0.858 
(0.048) 

0.754 
(0.066) 

0.757 
(0.069) 

0.810 
(0.053) 

       

corr(i,y) 0.975 
(0.006) 

0.885 
(0.189) 

0.964 
(0.039) 

0.929 
(0.022) 

0.951 
(0.015) 

0.938 
(0.019) 

       

corr(y/n,n) -0.051 
(0.158) 

-0.524 
(0.117) 

-0.197 
(0.148) 

-0.255 
(0.143) 

-0.274 
(0.141) 

-0.236 
(0.142) 

       

 



the first column of the table. The statistics σx and corr (x, z) are the volatil-
ity of a variable x and the correlation between variables x and z, respectively.
The model’s moments are sample averages of the statistics computed for each
of 400 simulations. Each simulated series has a length of 157 periods, as do
time series for the U.S. economy. The numbers in brackets are sample stan-
dard deviations of the statistics. Before calculating the second moments, we
logged the corresponding variables for the U.S. and artificial economies and
detrended them by using the Hodrick-Prescott filter with a penalty parameter
equal to 1600.10

3 Results

In this section, we present the simulation results. We begin by considering
the case in which the economy only experiences shocks to technology.

• Model 1: ρθθ is estimated under the restriction ρXθ, ρθX , ρXX ≡ 0.

This version of the model has been extensively studied in the literature,
e.g., Hansen (1985), and Christiano and Eichenbaum (1992). These two
papers use different values for the coefficient of autocorrelation ρθθ: The first
one assumes AR (1) with ρθθ = 0.95, while the second one uses the random-
walk specification, ρθθ = 1. As can be seen in Table 1, our own estimate is
close to the latter one.11

A comparison between the results of Hansen (1985) and those of Chris-
tiano and Eichenbaum (1992) shows that the key properties of the model are
not substantially affected by a variation in the coefficient of autocorrelation.

essentially the result of differing definitions of the model’s variables. In particular, we
define the variable ”output” as a sum of consumption and investment in the data, while
the above two papers define output as GDP.
10To check the robustness of our results to a filtering procedure, we recompute all of the

statistics, both in the model and in the data, under Baxter and King’s (1999) band-pass
filter with frequency components of between 6 and 32 quarters, and with 12 lags, which
is the parameterization that corresponds to the quarterly data. We find that the results
under the two filters used are practically identical.
11We find that the estimate of the autocorrelation coefficient ρθθ depends significantly

on which particular time series is used as a proxy for working hours. If we use aggregate
working hours, as Hansen (1985) does, the estimates for ρθθ will be about 0.95. However,
if we use the definition proposed by Christiano and Eichebaum (1992), which is adopted
in this paper, the estimate for ρθθ will be close to one.
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Specifically, in either case, the model can generate most of the statistics in
line with the data, except for those with respect to labor markets. The most
serious failure of the model is its inability to account for the Dunlop-Tarshis
observation, which was that productivity (wage) and hours worked in real
economies are weakly correlated. In fact, the quantitative expression of the
Dunlop-Tarshis observation varies substantially, depending on the time se-
ries used. For example, Christiano and Eichenbaum (1992) calculate the
correlation between productivity and hours worked for the U.S. economy by
computing the aggregate hours worked from two different household data sets
and obtain values of −0.2 and 0.16. According to Gomme and Greenwood
(1995), if the real wages are used as a proxy for productivity, this statistic is
−0.44.
As it turns out, the model does not even come close to any of the above

numbers, but consistently predicts that the correlation between productivity
and working hours is close to one. In addition, it considerably over-states
the correlation between productivity and hours worked, and understates the
volatility of productivity and the volatility of working hours when compared
to the data.
We next turn to the case in which all uncertainty in the economy comes

from shocks to preferences.

• Model 2: ρXX is estimated under the restriction ρXθ, ρθX , ρθθ ≡ 0.

This version of the model proves to be highly unsuccessful in reproducing
the data. It generates several serious failures, such as very low volatility in
consumption, output and investments, and an almost perfect negative corre-
lation between productivity (output) and working hours. It is interesting to
note that, in this case, the problem is exactly the opposite to the one that
we had before: the productivity (output) and working hours in the model
are too countercyclical in comparison to the U.S. data.
We now consider the model with shocks to both technology and prefer-

ences.

• Model 3: ρθθ, ρXθ, ρθX , ρθθ are estimated without restrictions.

Once both types of shocks are assumed, the model’s predictions improve
considerably compared to those of Models 1 and 2. To be more specific,
Model 3 generates a weakly negative correlation between productivity and
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hours worked and, therefore, accounts for the Dunlop-Tarshis observation.
Furthermore, the correlation between productivity and output in the model
is close to that in the data. Finally, the inclusion of the two different types
of shocks increases the volatility of all the model’s variables (except that of
investment), which improves the model’s fit to the data. In particular, the
volatility of working hours in Model 3 is more than twice as large as in Model
1 and comes close to its empirical counterpart.
Bencivenga (1992) was first one to study a variant of Kydland and Prescott’s

(1982) model with both preference and technology shocks. She assumes a
logarithmic utility function that is additive in consumption and leisure, and
postulates two different kinds of preference shocks, one to the consumption
term and the other to the leisure term of the utility function.o(She argues that
such preference shocks can result from fluctuations in household production
or changes in relative prices.) Furthermore, she assumes a Cobb-Douglas pro-
duction function and a full depreciation of capital, in which case the model
admits a closed-form solution.12 Bencivenga (1992) finds that if the model
is calibrated to match the aggregate time-series data, it predicts a weakly
negative correlation between working hours and productivity. However, the
model considered in Bencivenga (1992) has several important shortcomings:
it dramatically over-predicts the volatilities of such model’s variables, like
consumption (by a factor of six), output (by a factor of three), labor (by
a factor of four) and labor productivity (by a factor of two), and it pre-
dicts a wrong (negative) sign of the correlations between consumption and
productivity and between output and productivity.
Maliar and Maliar (2003a) study the quantitative implications of the

aggregation-based model (1), (2) by parameterizing the technology and pref-
erence shocks to reproduce evidence from U.S. household data, specifically,
the distribution of wealth (equivalently, the distribution of welfare weights)
and the process for the idiosyncratic labor productivity shocks. This paper
assumes that the process for idiosyncratic shocks is given by the sum of the
aggregate and individual components. It turns out that, under this assump-
tion, the volatility of the aggregate component, measured from the data, is
relatively less than that of the individual component, so that the idiosyn-
cratic shocks are practically uncorrelated across agents. The aggregation
of such idiosyncratic shocks leads to considerably small preference shocks,

12Bencivenga’s (1992) model can be obtained from (1), (2) by setting d = 1, γ = 1,
σ = 1, g = 1 and by adding a multiplicative shock to the consumption term in (1).
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so that the role played by preference shocks in aggregate dynamics is quite
modest.
A comparison between the predictions of our Model 3 and those of Ben-

civenga’s (1992) model shows that the excessive volatility in the latter model
is derived, first, from the assumption of full depreciation of capital, which
makes capital and therefore, other variables too volatile, and secondly, from
the assumption of consumption preference shocks, which, in particular, ex-
plains why consumption is more volatile than output is. Regarding a com-
parison of the implications between our Model 3 and those of Maliar and
Maliar’s (2003a) setup, we conclude that the insignificant impact of the pref-
erence shocks on the aggregate economy’s behavior in the latter paper is the
result of the calibration procedure used, which does not seem to fully cap-
ture the co-movement of idiosyncratic shocks of different agents. However,
the correlation between the idiosyncratic shocks across agents is likely to be
reflected in the aggregate time-series data, which we have used for calibration
in the present paper. This is what explains the differing results.
To complete our analysis, we shall investigate how robust our results are

to modifications in the model’s key parameters. We start from the sensitivity
analysis with respect to the autocorrelation coefficients by considering the
following experiment.

• Model 4: ρθθ ≡ 0.95, ρXX ≡ 0.95 and ρXθ, ρθX ≡ 0.
As it follows from the table, this modification not only preserves the

positive features of the previous setup but also allows us to bring the model’s
predictions about the volatilities of investment, output and working hours
closer to the data. We have done some other experiments (not reported),
and found that the model’s implications are very robust to changes in the
autocorrelation coefficients.
We next explore how the model’s predictions are affected by changes in

the values of the preference parameters (γ,σ, δ). Below, we report the results
of experiments in which we vary the value of one of the parameters (γ,σ, δ),
while holding the remaining two parameters equal to the baseline values. In
all of these experiments, the autocorrelation coefficients are estimated from
the data with no additional restrictions. Models 5-10 are as follows:

• Models 5, 6: σ = 1.0, δ = 1.03−0.25 and γ ∈ {0.75, 1.5} .
• Models 7, 8: γ = 1.0, δ = 1.03−0.25 and σ ∈ {0.5, 2.0} .
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• Models 9, 10: γ = 1.0, σ = 1.0 and δ ∈ {1.05−0.25, 1.015−0.25} .

The results of this simulation exercise are reported in Table 2. First of
all, we should explain that the fact that the estimated coefficients of the
autocorrelation ρθθ in Models 6 and 8 are greater than one does not imply
non-stationarity. For the process for shocks θt and Xt to be stationary, it is
sufficient that both eigenvalues of the matrix constructed from the autocor-
relation coefficients lie within the unit root circle, see, e.g., Hamilton (1994).
This restriction is satisfied in each of the cases considered.
As we can see from Table 2, the variations considered in the preference

parameters (γ,σ, δ) do not significantly affect the properties of the model.
An exception is Model 6, in which the correlation between productivity and
working hours becomes too negative. Even this value however is not entirely
inconsistent with the data, because it is reasonably close to the correlation
between real wages and working hours in the U.S. economy. In summary,
we conclude that the model’s predictions are robust to changes in the key
parameter values.

4 Conclusion

This paper investigates the quantitative implications of a one-consumer neo-
classical growth model with two types of shocks, one to technology and an-
other to preferences. The model studied is derived from aggregation: it
describes the aggregate behavior of a heterogeneous-agent economy, in which
agents face perfectly insurable idiosyncratic shocks to earnings. The possi-
bility of aggregation enables us to infer the properties of aggregate dynamics
of the underlying heterogeneous-agent economy by imposing restrictions ex-
clusively at the aggregate level, as is typically done in the RBC literature;
the distributive dynamics need not be characterized explicitly.
The main finding of this paper is that if the aggregation-based model

with both technology and preference shocks is calibrated to match the U.S.
time-series data, it explains the key features of business cycle fluctuations
in the U.S. economy surprisingly well. Moreover, to account for the data,
we do not need shocks to both the consumption and leisure terms of the
utility function, as assumed in Bencivenga (1992). It is sufficient just to
have a shock to the leisure term of the utility function that is obtained on
the grounds of the aggregation theory in Maliar and Maliar (2003a).
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5 Appendix

In this appendix, we describe the conditions used for the estimation of the
model’s parameters with the GMM procedure. The economy’s budget con-
straint (2) implies that the gross investment it is related to the capital stock
kt by

E {1− d+ (it+1/kt)− (kt+1/kt)} = 0.
The assumption of the balanced growth yields

E {ln (yt)− ln (yt−1)− ln (g)} = 0,

E {ln (ct)− ln (ct−1)− ln (g)} = 0,
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E {ln (kt)− ln (kt−1)− ln (g)} = 0.

The intertemporal first-order condition of the problem (1) , (2) is

E {1− δ (ct/ct+1) [1− d+ α (yt/kt)]} = 0.

The intratemporal first-order condition of (1) , (2), expressed in the loga-
rithms, is

ln (Xt) = −γ [ln (ct)− gt] + σ ln (1− ht) + ln [(1− α) yt/ht]− ln (g) t− ln (A) .

Finally, with the assumption of the Cobb-Douglas production function, we
have

ln (θt) = ln (yt)− α ln (kt)− (1− α) ln (ht)− (1− α) ln (g) t− ln (θ) ,

where θ denotes the absolute level of technology.
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