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ABSTRACT 
 

Long-range persistence in volatility is widely modelled and forecasted in terms of 
the so-called fractional integrated models. These models are mostly applied in the 
univariate framework, since the extension to the multivariate context of assets 
portfolios, while relevant, is not straightforward. We discuss and apply a 
procedure which is able to forecast the multivariate volatility of a portfolio 
including assets with long-memory. The main advantage of this model is that it is 
feasible enough to be applied on large-scale portfolios, solving the problem of 
dealing with extremely complex likelihood functions which typically arises in this 
context. An application of this procedure to a portfolio of five daily exchange rate 
series shows that the out-of-sample forecasts for the multivariate volatility are 
improved under several loss-functions when the long-range dependence property 
of the portfolio assets is explicitly accounted for. 
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1 Introduction

The dynamics of the time-varying volatility of financial assets play a main
role in diverse fields, such as derivative pricing and risk management. Con-
sequently, the literature focused on estimating and forecasting conditional
variance is vast. The most popular method for modelling volatility belongs
to the family of GARCH models (see Bollerslev et al. 1992 for a review of
this topic), although other alternatives (such as stochastic volatility mod-
els) also provide reliable estimates. The success of GARCH processes is
unquestionably tied to the fact that they are able to fit the stylized features
exhibited by volatility in a fairly parsimonious and convincing way, through
quite a feasible method. The seminal models developed by Engle (1982)
and Bollerslev (1986) were rapidly generalized in an increasing degree of
sophistication to reflect further empirical aspects of volatility.

One of the more complex features that univariate GARCH-type models
have attempted to fit is the so-called long-memory property. The volatility
of many financial assets exhibits a strong temporal dependence which is
revealed through a slow decay to zero in the autocorrelation function of
the standard proxies of volatility (usually squared and absolute valued
returns) at long lags. The basic GARCH model does not succeed in
fitting this pattern because it implicitly assumes a fast, geometric decay
in the theoretical autocorrelations. Engle and Bollerslev (1986) were
the first concerned with this fact and suggested an integrated GARCH
model (IGARCH) by imposing unit roots in the conditional variance.
The theoretical properties of IGARCH models, however, are not entirely
satisfactory in fitting actual financial data, so further models were later
developed to face temporal dependence. Ballie, Bollerslev and Mikkelsen
(1996) proposed the so-called fractionally integrated GARCH models
(FIGARCH) for volatility in the same spirit as fractional ARIMA models
which were evolved for modelling the mean of time series (see Baillie, 1996).
These models imply an hyperbolic rate of decay in the autocorrelation
function of squared residuals, and generalize the basic framework by still
using a parsimonious parameterization.

There has been a great interest in modelling the temporal dependence
in the volatility of financial series, mostly in the univariate framework1.
The analysis of the long-memory property in the multivariate framework,
however, has received much less attention, even though the estimation
of time-varying covariances between asset returns is crucial for risk
management, portfolio selection, optimal hedging and other important
applications. The main reason is that modelling conditional variance in

1An alternative approach for modelling long-memory through GARCH-type models is
based on the family of stochastic volatility (see Breidt, Crato and de Lima, 1998). An
extension of FIGARCH models has been considered in Ding, Granger and Engle (1993).
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the multivariate GARCH framework is much harder than in the univariate
case. The two main problems related to this issue are that the number
of parameters to be estimated is a polynomial function of the system’s
dimension, and a large number of restrictions must be added to ensure
a positive definite estimation for all possible realizations. They both
complicate the parameter estimation considerably, and hence the long-
memory property and even other relatively simpler features (like asymmetric
and non-linear responses) are usually left out from multivariate GARCH
models for the sake of tractability and despite their potential importance.

It is clear that embodying this empirical feature in the multivariate
GARCH models would lead to gains in statistical efficiency in parameter
estimation and, furthermore, it could improve the accuracy of covariance
matrix forecasts and lead to better decisions on optimal hedging and
portfolio allocation. Bollerslev and Mikkelsen (1996) early outlined the
importance of long-run dependence in making such decisions. The price to be
paid for this improvement, however, lies in a much higher technical difficulty,
so any feasible procedure would be worthy of consideration. Consequently
with this idea, the aim of this paper is to discuss a relatively simple model to
forecast the conditional covariance of asset portfolios, accounting for long-
run dependences in the conditional second moment. As this property has
been observed mainly in foreign exchange rates, we focus on a portfolio
formed by such assets for an empirical application of the model. The
method used here combines the multivariate model by Alexander (2001)
— based on the principal component analysis, and the univariate hyperbolic
GARCH (HYGARCH) model recently proposed by Davidson (2003), which
is intended to fit temporal dependences in quite a general setting. We
therefore consider an extension of the so-called Orthogonal multivariate
GARCH model to the context in which a portfolio is formed by assets
exhibiting long-run temporal dependences in volatility.

As in the univariate framework, some improvements over GARCH
processes should be expected when modelling explicitly the long-range
dependences. We assess the quality of the multivariate model by its ability
to make short-term forecast of (i) the daily conditional covariance matrix
of the portfolio, and (ii) the daily overall variance of an equally-weighted
portfolio over a period of 200 days. The alternative (baseline) model to this
procedure employs the simpler GARCH model instead of the HYGARCH
process, so no long-term dependences are acknowledged. In this way we can
measure the relative importance of temporal dependences for forecasting the
conditional covariance matrices. The Orthogonal GARCH models have been
used in Byström (2000), among others.

The remainder of the paper is organized as follows. Section 2 discusses
the multivariate model and the univariate specifications for the conditional
variance. Section 3 presents the data and the analysis procedure. Section
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4 reports the out-of-sample forecasting performance. Finally, concluding
remarks are summarized in Section 5.

2 The multivariate modelling of long-memory

Although long-memory has been observed in the volatility of a wide range
of assets, the literature on the topic is mainly focused on foreign exchange
rate time series (FX hereafter). There exists a great deal of empirical
literature focused on modelling and forecasting the volatility of exchange-
rate returns in terms of the FIGARCH models in the univariate framework.
An exhaustive review of the literature is beyond the aim of this paper.
Some recent empirical works on this issue can be found in Vilasuso (2002)
and Beine et al. (2002). On the other hand, the literature dealing with the
multivariate case is scarce.

The modelling of long-memory in the multivariate framework was firstly
studied by Teyssière (1997), who implemented several long memory volatility
processes in a bivariate context, focusing on daily FX time series. He
used an approach initially based on the multivariate constant conditional
correlation model (Bollerslev, 1990), which allows for long-memory ARCH
dynamics in the covariance equation. He also weakened the assumption
of constant correlations and estimated time-varying patterns. Teyssière
(1998) estimated several trivariate FIGARCH models on some intraday FX
rate returns. This author finds a common degree of long-memory in the
marginal variances, while the covariances do not share the same level of
persistence with the conditional variances. More recently, Pafka and Mátyás
(2001) analyzed a multivariate diagonal FIGARCH model on three FX time-
series through quite a complex computational procedure. The multivariate
modelling on other time series has focused on the crude oil returns (Brunetti
and Gilbert, 2001). A bivariate constant correlation FIGARCH model is
fitted on these data to test for fractional cointegration in the volatility
of the NYMEX and IPE crude oil markets2. To our knowledge, there is
no other literature concerned with modelling temporal dependences in the
multivariate context.

The previous research affords a valuable contribution to the better
understanding of long-run dependences in multivariate volatility. A major
shortcoming in applying these approaches in practice, however, lies in
the overwhelming computational burden involved, which simply makes the
straightforward extension of these methods to large portfolios unfeasible
(note that only two or three assets are considered in the empirical
applications of these methods). The procedure we shall discuss is specifically

2NYMEX is the New York Mercantile Exchange; the IPE is the International Petroleum
Exchange located in London.
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intended to model and forecast the time-varying covariance matrix of large
portfolios.

2.1 The orthogonal multivariate model

We firstly introduce notation and terminology. Consider a portfolio of K
financial assets and denote by rt = (r1t, r2t, ..., rKt)

�, t = 1, ...,T, a weakly-
stationary random vector with each component representing the return of
each portfolio asset at time t. Denote by Ft the set of relevant information
up to time t, and define the conditional covariance matrix of the process
by E (rtr�t|Ft−1) = Et−1 (rtr�t) = Ht. Denote as E (rtr�t) = Ω the (finite)
unconditional second order moment of the random vector. Note that only
second-order stationarity is required, which is the basic assumption in the
literature concerned with estimating covariance matrices of asset returns.
Other procedures proposed for estimating the covariance matrix require
much stronger assumptions (see, for instance, Ledoit and Wolf, 2003), as the
existence of higher-order moments and even iid-ness in the driving series.

As the covariance matrix Ω is positive definite, it follows by the spectral
decomposition that Ω = PΛP�, where P is an orthonormal K×K matrix of
eigenvectors, and Λ is a diagonal matrix with the corresponding eigenvalues
of Ω in its diagonal. Lastly, assume that the columns of P are ordered by
size of the eigenvalues of Λ, so the first column is the one related to the
highest eigenvalue, and so on.

The orthogonal model by Alexander is based on applying the principal
component analysis (PCA) to generate a set of uncorrelated factors from
the original series3. The PCA analysis is a well-known method widely used
in practice, and several investment consultants, such as Advanced Portfolio
Technologies, use procedures based on principal components. The basic
strategy in the Alexander model consists of linearly transforming the original
data into a set of uncorrelated latent factors so-called principal components
whose volatility can then be modelled in the univariate framework. With
these estimations, the conditional matrixHt is easily obtained by the inverse
map of the linear transformation.

The set of principal components, yt = (y1t,y2t, ...,yKt)
�, is simply

defined through the linear application yt = P�rt. It follows easily that
E (yt) = 0 and E (yty�t) = Λ by the orthogonal property of P. The columns
of the matrix P were previously ordered according to the corresponding
eigenvalues size, so that ordered principal components have a decreasing
ability to explain the total variability and the main sources of variability

3This procedure belongs to the field of the factor GARCH models introduced by Engle,
Ng and Rothschild (1990), and takes the principal components as factors. See also Ding
(1994), Alexander and Chibumba (1998).
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can be identified4. Under the crucial assumption that the conditional
covariance of yt, say Vt, is also a diagonal matrix, this could be approached
by Et−1 (yty�t) = P�HtP, so it immediately follows that the conditional
covariance matrix of the original data can be estimated by using the inverse
map of the linear application and hence Ĥt= P̂V̂

�
tP̂. It is worth recalling

that V̂t is determined by estimating the conditional variances of each
orthogonal factor yit in a univariate setting, and P̂ is characterized by the
spectral decomposition of the sample estimator of Ω.

This methodology has several great advantages. Firstly, it allows us to
circumvent the computational burden that arises in the optimization of a
multivariate log-likelihood function, since all estimations are actually made
in the univariate context. Moreover, the covariance matrix forecasts are
obtained in a simple fashion by making projections from the inverse map,
ET (HT+s) = P̂ET

�
V̂T+s

�
P̂�. Secondly, the number of parameters to be

estimated, which typically grows at an exponential rate, becomes here a
linear function in K. Finally, this procedure is especially indicated for large
portfolios because system reduction is a straightforward possibility under
PCA. In this case, a sufficient number of principal factors should be included
to explain a sufficiently high proportion of common variance. On the other
hand, the orthogonal method is not free of shortcomings. As is usual in
the PCA, it is generally not possible to provide an economical meaning
for the principal components; furthermore, assuming that Vt is a diagonal
matrix is actually a very strong assumption, which does not necessarily have
to be fulfilled in practice5. Loosely speaking, all the multivariate GARCH
models usually assume strong restrictions which are not satisfied by the
actual behaviour of the underlying series, but it is necessary to impose them
to guarantee feasibility in the analysis.

The Orthogonal procedure is completed when a suitable univariate
model is used for modelling the volatility of every factor. In the basic
framework, the GARCH(1,1) model is used and the whole methodology
is called Orthogonal GARCH (OGARCH). Recall that the GARCH(1,1)
equation, applied on the i-th conditional variance (i = 1, ...,K), is given by

hit = ωi + αiy
2
it−1 + βihit−1, ωi > 0, αi,βi ≥ 0, αi + βi < 1 (1)

4 If Λ = {λi}Ki=1 is the diagonal matrix of eigenvalues and P the related matrix of
eigenvectors, the i-th principal component in the set Yt = P rt explains a proportion of
total variance given by λi/trace(Λ).

5Note, however, that Alexander (2001) found that the degree of accuracy which is lost
by assuming conditional diagonality is usually not high in empirical applications. Engle
(2002) shows through Monte Carlo experimentation that OGARCH procedure produces
similar results to those from fitting full multivariate GARCH models. The assumption of
conditional diagonality is crucial and cannot be weakened, because it allows us to generate
large GARCH-type covariance matrices, which is the whole point of this procedure.
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where the parameter restrictions are needed to ensure both the positivity of
the conditional variance and covariance stationarity. It should be noted that
the basic framework of this approach could straightforwardly be extended by
using more complex models if the data features make it advisable. As we are
interested in modelling the dynamics of assets which are known to display
long temporal dependences, we need to focus on a more general specification
than the GARCH(1,1) model.

2.2 Fitting long-memory dynamics: The HYGARCH model

FIGARCH models are usually used for modelling volatility persistence in
the univariate context. Nevertheless, they are not methodologically suitable
in the framework of PCA, since they directly imply the inexistence of the
unconditional second-order moment6. Only models allowing for covariance-
stationarity in their parameter range can be embedded in the orthogonal
method and hence proper parameter restrictions are needed in using this
procedure7. Note that the GARCH(1,1) model would be only suitable
under the restriction αi + βi < 1. However, this imposes a geometric decay
and hence only allows for short-term temporal dependences, so the basic
OGARCH procedure is unable to forecast the patterns properly due to long-
memory in volatility.

HYGARCH models allows for stationarity and simultaneously long-
memory under some constraints, still using a parsimonious parameterization.
Furthermore, they generalize the basic GARCH process as well as the
FIGARCH model, so embedding this in the Orthogonal procedure is an
extension of the basic methodology which may properly accommodate long-
run dependences in the conditional second moment of a portfolio. We discuss
briefly the main features of the HYGARCH model below, although a deeper
discussion and an empirical analysis can be found in Davidson (2003). Some
technical aspects are further discussed in Appendix A.

Consider the general formulation of a GARCH(p,q) model for the
conditional variance process of a time-series εt,

ht = ω + α (L) ε2t + β (L)ht (2)

with L being the usual lag operator
�
Ljzt ≡ zt−j

�
and ω > 0. If the

polynomial β (L) has all its roots inside the unit circle, the former equation
6FIGARCH models are weakly stationary only in the trivial case of d = 0,

corresponding, hence, with the stationary GARCH model.
7Although there exist a vast literature focused on testing for unit roots in the driving

process of the conditional mean, this subject is complicated in the context of volatility,
since it is never observed directly. Therefore, suitable testing has to be carried out with
parametric models. Of course, this procedure has severe limitations, because the veracity
of conclusions are conditional to the correct specification of the model. Integration or even
explosive patterns when fitting GARCH-type model often suggest model misspecification.
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can be arranged for the sake of convenience as follows,

ht = ω[1− β (1)]−1 +
�
[1− β (L)]−1 α (L)

�
ε2t (3)

The process εt is weekly stationary when the characteristic polynomial
λ (L) = 1− α (L)− β (L) has all its roots inside the unit circle. If there are
unit roots, the equation would correspond to the IGARCH(p,q) model and
it could be rewritten as,

ht = ω[1− β (1)]−1 + [1− φ (L) [1− β (L)]−1 (1− L)]ε2t (4)

where φ (L) = λ (L) (1− L)−1 . The integration of the conditional variance
implies that the long run predictions tend towards infinity following a
straight line with a positive slope, which is not a very realistic assumption for
the volatility of financial assets. The FIGARCH(p,d,q) model generalizes the
idea of integer unit roots allowing for fractional unit roots. This is achieved
by replacing the difference operator (1− L) by the fractional polynomial
(1− L)d, 0 ≤ d ≤ 1, in the above equation,

ht = ω[1− β (1)]−1 +
�
1− φ (L) [1− β (L)]−1 (1− L)d

�
ε2t (5)

It should be remarked that FIGARCH(p,d,q) models are not covariance-
stationary, although their theoretical properties differ from those of
IGARCH models. Specifically, FIGARCH processes are characterized
through theoretical autocorrelations decaying toward zero at a polynomial
rate. This decay is so slow that the autocorrelations are not absolutely
summable and, therefore, the unconditional variance is not well-defined.
Davidson (2003) proposed the HYGARCH equation as a generalization of
the FIGARCH, allowing for a (possible) faster non-geometric rate of decay
for which weakly stationarity would still be possible. The model is given by

ht =
ω

1− β(1)
+
�
1− φ (L) [1− β (L)]−1

k
1 + θ[(1− L)d − 1]

l�
ε2t (6)

If 0 ≤ θ < 1 and the GARCH component of the model observes
the usual covariance stationary restriction, which imply φ (L) /β (L) > 0,
the process is covariance stationary and their cumulative impulse response
weights decrease quicker towards zero than the FIGARCH model.

3 Data and empirical procedure

The set of data analyzed in this paper consists of five currencies versus
of the U.S. dollar. It includes daily quotes of the Deutsch mark (DEM),
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the Japanese yen (JPY), the Britain pound (GBP), the Swiss franc (SWF)
and the Swedish krona (SDK). The original data is transformed into daily
returns by taking the usual logarithm differences, rit = ln (Pit/Pit−1). Some
usual descriptive statistical information is reported in Table 1.

It can be seen that the main features of the return series include a similar
degree of unconditional univariate variance, thick-tailed distributions and
some degree of autocorrelation. Although the empirical literature on FX
typically finds no linear temporal dependences, some serial autocorrelation
is nevertheless detected in the sample8. A deeper study of the returns time-
series shows not only the presence of serial autocorrelation but also first-
order cross-correlation. We shall therefore take this multivariate pattern
into account as a previous step of the main procedure. The whole sample
is split into two sub-samples. The out-of-sample period includes the last
210 observations (roughly a whole year of trading days) and the in-sample
period takes the first T=4672 observations. The in-sample period is then
used to calibrate parameters and make forecasts following a rolling scheme
over the out-of-sample period. The whole procedure employed to forecast
the portfolio conditional covariance matrix is sketched as follows:

i) First, the cross-correlation component observed in the multivariate
mean is filtered by using a vector autoregressive (VAR) regression.
This well-known method is intended to fit the univariate structure
of each series as well as any possible interdependence among them.
After comparing several alternatives through the standard information
criterion, a VAR(1) model proves to be sufficient to fit the predictable
component of the system9. The original series are hence decomposed
into two terms, mutually, orthogonal as follows,

rt = µ̂t + εt; µt = Φrt−1 (7)

where the first term µt denotes a cross-predictable term following
a drift-less autoregressive process, and εt denotes the unpredictable
component of the returns. Note that volatility refers to the
(conditional) variance of the unpredictable term, so we focus hereafter
on the residuals of this regression through this approach.

ii) Second, the PCA is applied on the residuals ε̂t from the former
regression. The linear transformation of the Orthogonal method is
then applied to generate the set of orthogonal factors, and both the

8The same fact is observed in Beine et al., (2002) in using a similar data base as the
one used here.

9The results regarding VAR modelling, estimation and checking are not presented for
the sake of space, but they are available from the authors upon request.
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Table 1

Descriptive statistics

Returns DM GBP JPY SWF SWK

Mean -0.0002 -0.0001 0.0002 -0.0004 0.0006
Std. Dev. 0.067 0.068 0.063 0.073 0.062
Skewness -0.128 -0.506 -0.013 -0.198 0.284
Kurtosis 4.839 7.251 6.232 4.671 8.258

ρ(1) 0.05 (14.1) 0.03 (7.5) 0.03 (5.2) 0.07 (26.0) -0.03 (4.3)
ρ(2) -0.01 (15.2) 0.00 (7.9) 0.02 (8.4) 0.00 (26.4) -0.00 (4.4)
ρ(3) -0.02 (18.2) 0.00 (8.1) -0.01 (9.1) -0.02 (28.5) 0.00 (4.4)
ρ(4) -0.00 (18.2) 0.00 (8.3) 0.00 (9.3) 0.01 (29.7) 0.00 (4.5)
ρ(5) -0.29 (22.2) 0.01 (9.9) -0.01 (9.8) 0.02 (33.3) 0.00 (5.0)

The table reports descriptive statistics for the daily FX returns of the Deutsch
mark (DEM), the Japanese yen (JPY), the Britain pound (GBP), the Swiss franc
(SWF) and the Swedish krona (SDK) in relation to the US dollar. The statistics
ρ(i) denote the i−th autocorrelation (Ljung-Box Q-statistics in parenthesis).
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GARCH(1,1)10 and the HYGARCH(1,d,1) models are then estimated
by (quasi) maximum likelihood (QML) under the assumption of
conditional normality11. Stationarity constraints are imposed in the
optimization procedure. The method combining the multivariate
methodology and the HYGARCH model shall be referred to as
OHYGARCH throughout the remainder of the paper.

iii) Once the estimation stage is completed, the conditional covariance
matrix is forecasted for the sth-step-ahead day (s = 1, 2, ..., 10) from
the last day of the in-sample period12. This procedure is then repeated
200 times by using a rolling-scheme. At each iteration, the in-sample
window is updated one day and the oldest observation is removed, so
the window length always remains constant over the process. Models
are completely reestimated and forecasts are made again from the
last observation in the in-sample period through an iterative process.
We denote by EsT+n (HT+n+s.) the forecast for the sth-step-ahead day
made at day T+n, (s = 1, ..., 10; n = 0, ..., 199).

As is standard procedure in the forecasting framework, we also consider
the ‘naive’ forecasts from an unconditional model. These forecasts
are constructed following a random walk scheme on the basis of the
unconditional variance from the in-sample period, i.e., Ω.

iv) Several symmetric and asymmetric loss-functions are then considered
in order to assess the forecasting performance of models. The forecast
error for each day, say Us

T+n, is given by the difference between the
matrix forecast, EsT+n (HT+n+s) , and the realized covariance matrix
in the corresponding day, which is usually approached by the cross
product of the realized errors, ε̂T+n+sε̂�T+n+s.

v) Finally, when the forecast construction stage is ended, the forecasting
performance of models is assessed in both the multivariate and
the univariate framework. We consider the daily forecasts for the
multivariate conditional covariance matrix, on the one hand, and the
overall variance of an equally-weighted portfolio, on the other hand, to
compare the out-of-sample forecast accuracy of the models involved.

10 It is worth noting that, recently, Engle (2002) has shown the relative good performance
of the OGARCH methododology to estimate correlations over a wide variety of processes,
including: Two MGARCH models, two integrated dynamic conditional correlations (DCC)
models, one mean reverting DCC process, the exponential smoother from Riskmetrics and
the familiar 100-day moving average model.
11 It should be noted that there is not a formal proof of consistency of the QML for

long-memory processes. The polinomial expansion related to the fractional integration
(1− L)d is expanded with a truncation lag equal to 1000, as it is the standard procedure.
12Empirical work has shown that the forecasting performance of GARCH models

decreases considerably for periods longer than ten-day horizons (see Christoffersen,
Diebold and Schuermann, 1998).
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Specifically, we consider several matrix norms (Fobrenius and p-norms)
to assess the ability of the different procedures in forecasting the whole
conditional covariance matrix. Under such metrics, all elements in the
forecasted matrix are equally important, so that models are penalized if,
say, they have a greater ability for forecasting the on-diagonal elements
but a poor performance for accurately predicting covariances. Besides , we
consider ordinary univariate measures (mean squared error, mean absolute
error and several asymmetric absolute mean errors) to gauge errors when
forecasting the overall variance of an equally-weighted portfolio. Appendix
B provides a comprehensive description of these measures.

Finally, the forecasting performance of the OGARCH and the OHY-
GARCH is compared in statistical terms by means of the test proposed by
Diebold and Mariano [DM] (1995). This test assumes no differences between
the loss-functions of two alternative models under the null hypothesis. The
null is rejected for large values of the statistic DMs = x̄/

s
2πfx (ω = 0) /N ,

where x̄ is the sample mean of the differences in the forecast errors,
fx (ω = 0) is the spectral density function of the forecast error differences
evaluated at the zero frequency (long run variance) and N = 200 is the num-
ber of forecasts over the out-of-sample period. This statistic is asymptoti-
cally distributed as a standard normal random variable under the null. We
have computed fx (ω = 0) using the heteroskedasticity and autocorrelation
consistent estimator of Newey and West (1987) with bandwidth parameter
s− 1 for forecasting horizons s > 1, s = 1, ..., 10.

4 Forecasting performance

The main results of the PCA analysis are shown in Table 2. It can be seen
that the sorted principal components are able to explain about 73%, 13%,
6%, 5% and 1% of common variance, respectively. It is worth remarking
the importance of the first factor, which reveals a large amount of common
variance underlying the time series. We shall consider, later, the system
reduction based on considering solely this factor, since a good approach
could be expected from such a high predictive power. A casual look at the
descriptive statistics of the factors shows that they become more leptokurtic
as their descriptive ability gets lower. It is clear that the assumption of
normality does not hold on these series and, furthermore, it is hard to assume
that the same data-generating process underlies every factor. Nevertheless,
as the usual procedure in the Orthogonal methodology applies the same
specification to each factor, we proceed in such a spirit.

Table 3 reports the QML estimates from the OGARCH and OHY-
GARCH models in the in-sample period. The results show a marked im-
provement in the in-sample fit of the OHYGARCH over the GARCH model,
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Table 2

Principal Component Analysis

Factors F1 F2 F3 F4 F5

eΩ 0.0046 0.0024 0.0031 0.0046 0.0033
0.0047 0.0018 0.0027 0.0018

0.0040 0.0032 0.0025
0.0054 0.0033

0.0038

Eigenvalue 0.0165 0.0030 0.0015 0.0012 0.0003

Proportion 73.02% 13.29% 6.76% 5.46% 1.47%
Cumulative 73.02% 86.31% 93.07% 98.53% 100%

Mean 0.0002 0.0001 0.0000 0.0000 0.0000
Std. Dev. 0.128 0.054 0.039 0.035 0.018
Skewness -0.168 0.375 -0.243 1.842 0.115
Kurtosis 4.874 6.917 6.240 37.184 6.112

The table presents the results of the Principal Component Analysis for the daily
exchange-rate returns. The values of the in-sample unconditional covariance matrix
(eΩ) are presented as well as several information regarding the results of the principal
component analysis. The rows proportion refers to the amount of common variance
explained by each factor; cumulative is the accumulative proportion of common
variance explained up to the i-th factor. Finally some usual statistical information
on the resulting factors is presented.
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Table 3

QML estimates

OGARCH(1,1)

F1 F2 F3 F4 F5

ωi 0.000
(3.48)

0.000
(3.65)

0.000
(3.14)

0.000
(3.12)

0.000
(3.09)

αi 0.060
(7.53)

0.065
(4.41)

0.092
(3.67)

0.154
(4.65)

0.123
(2.54)

βi 0.914
(71.7)

0.928
(51.7)

0.890
(14.7)

0.845
(65.5)

0.831
(17.8)

AICi -1.339 -3.167 -3.770 -4.113 -5.271

OHYGARCH(1,d,1)

ωi 0.000
(2.78)

0.000
(2.42)

0.000
(2.56)

0.000
(2.34)

0.000
(2.97)

θi 0.986
(115)

0.999
(122)

0.999
(116)

0.999
(125)

0.999
(1505)

βi 0.743
(7.43)

0.574
(6.29)

0.689
(8.32)

0.916
(8.25)

0.623
(5.75)

φi 0.261
(2.66)

0.301
(8.83)

0.450
(5.87)

0.402
(2.41)

0.416
(5.42)

di 0.544
(2.83)

0.367
(8.63)

0.264
(5.61)

0.793
(2.34)

0.366
(5.51)

AICi -1.345 -3.177 -3.785 -4.164 -5.284

The reported coefficients shown in each row of the table are QML estimates of the
GARCH(1,1) and HYGARCH(1,d,1) models for the principal component series,
Fi, on the VAR(1) residuals on original returns. Robust QML t-statistics are
given in parenthesis below the parameter estimates. AICi denotes the usual Akaike
information criterion statistic.
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as measured by the increase in the log-likelihood function and the standard
information criteria, so the former model provides a better representation of
the underlying dynamics. The sum of the GARCH parameters is very close
to one, showing thus a strong degree of persistence in the data involved. The
estimated amplitude parameter θ in the HYGARCH model is close to the
boundary of the admissible parameter space. This suggests evidence of non-
stationarity in the driving process of the asset returns, although it should
be noted that if the true value of the parameter is close to the knife-edge
limit (i.e., the process is near-nonstationary), inferring whether the process
is stationary or not on the basis of point estimates is a really problematic
task, as it is a well-documented fact in the unit root literature.

On the other hand, volatility non-stationarity when estimating paramet-
ric models is sometimes regarded as a matter of model misspecification. It
is likely that the parameter estimates of the HYGARCH model are sensitive
to the omission of relevant structures in the data involved, as in the general
case of models in the GARCH family. Brooks (2001) showed the presence
of highly non-linear effects on the volatility of FX series which were fitted
by a double-threshold GARCH model. This sort of structure, which might
be present in the multivariate dynamics of the series, is neglected in fitting
the above models. In this way, further extensions of the HYGARCH model
facing these kinds of effects together with long-run persistence would likely
yield better in-sample results, so further improvements on this model are
deserved.

Nevertheless, it is clear that the HYGARCH model is much more
than an acceptable first-cut approximation, since it improves the in-
sample performance of the model through the better fit of the conditional
multivariate dynamics. As the main aim of this paper is concerned with the
forecasting ability of the models involved, it is therefore worth assessing
whether accounting for long-memory through this model leads to more
accurate forecasts. Out-of-sample forecast accuracy provides a better and
potentially more useful comparison of alternative models (López, 2001).

The out-of-sample forecast behavior is summarized in Tables 4 and
5. The OHYGARCH procedure beats the OGARCH method significantly
according to all univariate and multivariate measures, as the forecast error is
reduced for all the forecasting horizons. The difference is particularly strong
and significant for some metrics (such as the univariate mean absolute error,
the asymmetric mean absolute error penalizing harder overpredictions and
the Fobrenius norm). In the remaining measures, the evidence supporting
an overperformance of the OHYGARCH is not so strong, although there is
a clear and significant trend to reduce the forecast errors as the forecasting
horizon grows. This is really important, because it is clear that the
effect of any long-run dependence on the forecast accuracy should be more
remarkable when forecasting for distant periods.
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Table 4

Out-of-sample performance

OGARCH(1,1)

s MAEs MSEs MAEUs MAEOs Pr(U)s NFs N1s
1 59.06 8.516 100.0 179.2 0.245 0.767 139.9
2 58.85 8.418 98.39 180.6 0.250 0.763 139.8
3 58.68 8.379 96.45 181.9 0.240 0.758 139.2
4 59.82 8.405 98.65 184.0 0.235 0.760 140.1
5 60.57 8.389 99.68 186.4 0.235 0.756 140.3
6 61.10 8.581 100.2 188.0 0.240 0.764 140.3
7 61.69 8.623 100.4 189.8 0.240 0.765 140.7
8 61.92 8.624 101.6 189.1 0.250 0.766 141.3
9 62.06 8.712 100.9 189.4 0.245 0.770 141.6
10 62.20 8.702 101.4 189.5 0.240 0.772 141.9

OHYGARCH(1,d,1)

s MAEs MSEs MAEUs MAEOs Pr(U)s NFs N1s
1 57.89 8.438 100.3 174.5 0.260 0.763 138.6
2 57.65 8.334 98.24 176.3 0.250 0.759 138.4
3 57.53 8.317 97.07 177.3 0.240 0.755 137.9
4 58.28 8.337 99.76 178.2 0.250 0.757 138.5
5 58.92 8.307 99.97 180.5 0.250 0.752 138.7
6 59.43 8.500 100.0 182.5 0.240 0.759 138.6
7 59.94 8.536 100.2 184.0 0.240 0.760 139.0
8 60.21 8.533 101.9 183.4 0.255 0.761 139.6
9 60.37 8.625 101.7 183.6 0.255 0.765 139.9
10 60.47 8.603 102.2 183.2 0.260 0.766 140.1

Out-of-sample forecasting performance of the OGARCH and the OHYGARCH
models. Forecasts are made for the sth-step-ahead day over the out-of-
sample period. The forecasting ability is compared in terms of predicting
the whole covariance matrix (NFs and N1s denote the Fobrenius norm and
the 1-norm, respectively) and the overall variance of the equally-weighted
portfolio [mean absolute error (MAEs), mean squared error (MSEs), and
some asymmetric measures penalizing harder overpredictions (MAEOs) and
underpredictions (MAEUs)]. The column Pr(U)s denotes the binomial probability
of underprediction for the variance of the equally-weighted portfolio. Loss-function
values are scaled by 100.
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Table 5

DM statistics of the performance of the OHYGARCH against
the OGARCH models

s MAEs MSEs MAEUs MAEOs NFs N1s

1 3.89 2.00 -0.42 5.56 1.67 5.40
2 3.90 2.13 0.26 5.04 2.25 5.88
3 4.22 1.58 -1.01 7.76 1.63 6.43
4 5.81 1.54 -0.52 7.49 1.51 7.57
5 6.11 1.73 -0.15 7.92 1.69 7.89
6 6.01 1.52 0.55 8.40 1.62 8.54
7 6.23 1.55 0.44 8.72 1.69 8.54
8 6.06 1.56 -0.57 8.16 1.63 7.78
9 5.72 1.40 -1.15 8.05 1.62 7.84
10 6.51 1.61 -1.29 8.89 1.75 8.35

The table presents t-statistics from the test of Diebold and Mariano (1995). The
test assumes no differences between the forecasting ability of the OHYGARCH
and the OGARCH models under each loss-function. The forecasting ability is
compared in terms of predicting the whole covariance matrix (NFs and N1s
denote the Fobrenius norm and the 1-norm, respectively) and the overall variance
of the equally-weighted portfolio [mean absolute error (MAEs), mean squared
error (MSEs), and some asymmetric measures penalizing harder overpredictions
(MAEOs) and underpredictions (MAEUs)].
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With regard to the asymmetric error measures, the OHYGARCH model
strongly outperforms the OGARCH approach when the overprediction
is penalized harder, while there are no significant differences when
underprediction is penalized. Therefore, the upward bias is higher in the
GARCH model as it finds more problems to adapt to the effects caused
by extreme observations. Finally, either the OGARCH or the OHYGARCH
beats easily the naive forecasts based on unconditional estimations (see Table
6) when forecasting in distant periods13. For the sake of space, we only
present the comparison for the OHYGARCH case, although all results are
available from the authors upon request. Overall, the results presented
in this section allow for a clearer discrimination among the competing
models, providing evidence supporting the forecasting superiority of the
OHYGARCH model.

4.1 System reduction

As there exists a great deal of common variance which is successfully
captured by very few factors, it is valuable to consider the system reduction.
The first factor is able to explain over 73% of common variance, which seems
high enough to provide a good approach (Alexander, 2001). We therefore
consider a single factor in the same forecasting scheme as above14. Since
only forecasts on a sole time-series are needed, the procedure is considerably
faster than before. The forecasted conditional covariance matrices are now
given by

H
(1)
t = h1tPBP

� (8)

where B is a (K×K) matrix of zeros with its 1,1-element being equal to one,
and h1t is the conditional variance forecast of the first factor.

The results on this stage are reported in Tables 7 and 8. They show
again the outperformance of the HYGARCH method over the GARCH
model, although forecast errors are higher than when the whole system is
considered. It should be noted that the predominance of the OHYGARCH
over the OGARCH model in this context means that there exists a strong
degree of common long-run dependence among the series and, furthermore,
that it is important enough to belong to the first factor.
13The naive model can outperform the conditional-based model in the one-ahead

predictions. This is not very surprising and it is due to the similarity between the
estimation of the realized covariance matrix and the forecasted one. The mechanism
is nearly the same as it is based on the OLS estimations of the VAR model, as it only
differs in two observations. Therefore, the one-step-ahead estimation is really close to the
proxy of realized volatility, but the analysis in the longer periods shows that it is really
an artifact as the validity of the naive benchmark is rapidly and strongly rejected.
14We have also considered system reduction based on the two most important factors

covering over 86% of total variance. The results are not qualitatively different from that
shown here, so they are not presented. They are available upon request.
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Table 6

Out-of-sample performance of the OHYGARCH against the
naive models

Naive

s MAEs MSEs MAEUs MAEOs NFs N1s
1 0.001 0.000 1.598 1.523 0.000 2.283
3 162.2 26.31 162.3 402.5 1.156 197.8
5 324.4 105.2 324.6 569.8 4.628 278.4
7 486.7 322.4 486.1 697.8 10.46 341.5
10 730.1 533.6 730.0 854.2 23.43 418.5

DM Test

s MAEs MSEs MAEUs MAEOs NFs N1s
1 -11.4 -3.26 -10.1 -25.3 -3.88 -32.1
3 21.7 7.16 7.46 34.8 2.04 12.8
5 55.8 39.9 23.4 66.6 20.1 27.4
7 79.2 104.1 38.3 98.2 45.7 36.3
10 114.2 158.2 49.0 139.2 93.8 47.7

Out-of-sample forecasting performance of the OHYGARCH model against a
naive procedure. Forecasts are made for the sth-step-ahead day over the out-
of-sample period. The forecasting ability is compared in terms of predicting
the whole covariance matrix (NFs and N1s denote the Fobrenius norm and
the 1-norm, respectively) and the overall variance of the equally-weighted
portfolio [mean absolute error (MAEs), mean squared error (MSEs), and
some asymmetric measures penalizing harder overpredictions (MAEOs) and
underpredictions (MAEUs)]. The lower part of the table presents the t-statistics
from the test of Diebold and Mariano (1995). The test assumes no differences
between the forecasting ability of the OHYGARCH model and the naive method
under each loss-function. Loss-function values are scaled by 100.
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Table 7

Out-of-sample performance with the first factor

OGARCH(1,1)

s MAEs MSEs MAEUs MAEOs Pr(U)s NFs N1s
1 59.72 8.551 100.1 181.6 0.245 1.352 150.0
2 59.51 8.456 98.01 183.1 0.240 1.357 149.8
3 59.37 8.419 95.92 184.4 0.225 1.358 149.7
4 60.55 8.445 98.53 186.8 0.220 1.365 150.1
5 61.29 8.431 99.74 188.8 0.235 1.368 150.4
6 61.82 8.630 100.3 190.3 0.240 1.382 150.7
7 62.42 8.674 100.3 192.0 0.235 1.389 150.9
8 62.64 8.674 101.4 191.5 0.240 1.397 151.5
9 62.80 8.765 100.7 191.8 0.240 1.412 152.0
10 62.97 8.752 101.3 192.0 0.235 1.419 152.5

OHYGARCH(1,d,1)

s MAEs MSEs MAEUs MAEOs Pr(U)s NFs N1s
1 58.50 8.465 100.0 176.9 0.255 1.301 148.4
2 58.30 8.364 98.14 179.0 0.240 1.302 148.3
3 58.19 8.348 97.12 179.8 0.240 1.300 147.9
4 58.93 8.368 98.64 180.6 0.245 1.304 148.5
5 59.60 8.339 99.68 183.0 0.240 1.303 148.3
6 60.12 8.538 100.2 184.7 0.240 1.315 148.6
7 60.63 8.576 100.3 186.2 0.240 1.318 148.8
8 60.85 8.572 101.9 185.5 0.255 1.324 149.4
9 61.03 8.666 101.6 185.7 0.255 1.336 149.8
10 61.05 8.641 101.8 185.2 0.255 1.341 150.3

Out-of-sample forecasting performance of the OGARCH and the OHYGARCH
models. Forecasts are made for the sth-step-ahead day over the out-of-
sample period. The forecasting ability is compared in terms of predicting
the whole covariance matrix (NFs and N1s denote the Fobrenius norm and
the 1-norm, respectively) and the overall variance of the equally-weighted
portfolio [mean absolute error (MAEs), mean squared error (MSEs), and
some asymmetric measures penalizing harder overpredictions (MAEOs) and
underpredictions (MAEUs)]. The column Pr(U)s denotes the binomial probability
of underprediction for the variance of the equally-weighted portfolio. Loss-function
values are scaled by 100.
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Table 8

DM statistics of the performance of the OHYGARCH against
the OGARCH models using the first factor

s MAEs MSEs MAEUs MAEOs NFs N1s

1 3.98 2.14 -0.13 5.31 6.86 7.73
2 3.92 1.76 0.13 4.90 5.86 6.91
3 4.25 1.75 1.48 8.13 8.87 9.93
4 6.05 1.70 0.19 8.17 8.61 9.84
5 6.20 1.89 -0.15 8.15 8.23 9.60
6 6.05 1.67 -0.28 8.51 7.88 9.43
7 6.28 1.70 0.08 8.82 7.81 9.50
8 6.17 1.72 0.69 8.20 7.74 9.66
9 5.87 1.56 1.30 7.94 7.45 10.1
10 6.73 1.85 0.97 8.28 7.46 9.94

The table reports t-statistics from the test of Diebold and Mariano (1995). The
test assumes no differences between the forecasting ability of the OHYGARCH
and the OGARCH models under each loss-function. The forecasting ability is
compared in terms of predicting the whole covariance matrix (NFs and N1s
denote the Fobrenius norm and the 1-norm, respectively) and the overall variance
of the equally-weighted portfolio [mean absolute error (MAEs), mean squared
error (MSEs), and some asymmetric measures penalizing harder overpredictions
(MAEOs) and underpredictions (MAEUs)].
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5 Concluding remarks

Long-run temporal dependences in the volatility of financial time-series has
been much emphasized in the recent econometric literature. Univariate
modelling shows large forecast improvements over standard GARCH models
when accounting for such dynamics. The study in the multivariate context in
which assets with long-memory volatility are integrated into portfolios is not
straightforward, but there is no doubt that it is of great interest for financial
applications. The major problem under the multivariate context is related
to the ‘dimensionality course’, which makes most of standard techniques
available for univariate time-series unfeasible. Previous empirical work on
this topic has been limited to small portfolios composed of a reduced number
of assets. Furthermore, little is known about the consequences of skipping
long-memory effects in forecasting conditional covariance matrices of asset
portfolios.

The main goal of this paper has been to show a tractable and
theoretically admissible model in order to forecast the conditional variance
of large portfolios of assets which exhibit this sort of pattern. Furthermore,
as far as we know, this is the first paper concerned with long-memory
effects when forecasting the conditional covariance of portfolios in the out-of-
sample period. The Orthogonal GARCH procedure proposed by Alexander
(2001) is generalized here to cope with the effects of long-run persistence
in volatility, by considering the model developed by Davidson (2003). We
have applied this procedure to a portfolio of five exchange rates in order to
assess the possible gains in the forecasting accuracy after modelling long-run
dependences. The procedure proves to be adequate for forecasting purposes
since the out-of-sample forecasting analysis shows a clear outperformance
over the simpler GARCH-based procedure. It is shown, therefore, that long-
run temporal dependences in the volatility prove to be sufficiently important
to enhance the short-term forecasts of the conditional covariances matrices
significantly when they are included in multivariate GARCH models, so a
greater effort in this direction should be considered in further research. The
findings of this paper are consistent with those presented in the univariate
literature.

This procedure is suitable for practical risk applications concerning large
portfolios of long-memory assets, as it provides better forecasts of the
conditional covariance matrix than other simpler alternatives. However,
it is likely that more complex models accounting simultaneously for long-
memory as well as other stylized features yield better results than those
showed in this paper. Also, it would be interesting to consider economic
loss-functions instead of purely-statistical measures (e.g., those based on
hedging ratios, Value-at-Risk measures), which could be more relevant to
financial risk managers. All of these aspects remain interesting topics for
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Appendix A: The HYGARCH model

We discuss some aspects related to cumulative impulse-response function
(CIRF) of the HYGARCH(1,d,1) process. An in-depth discussion of several
theoretical properties of this model can be found in Davidson (2003).

Consider the covariance-stationary HYGARCH(1,d,1) equation through
its infinite ARCH representation,

ht =
ω

1− β
+
�
1− (1− φL)(1− βL)−1

k
1 + θ((1− L)d − 1)

l�
ε2t (A.1)

The CIRF measures the cumulative impact of past shocks of the volatility
process over time, and hence it is defined as the coefficients {ϕk}∞k=0 of the
infinite ARCH representation, that is

ϕ(L) = 1− (1− φL)(1− βL)−1
q
1 + θ[(1− L)d − 1]

r
=

∞[
k=0

ϕkL
k (A.2)

where the fractional polynomial (1− L)d is usually expanded as

(1− L)d = F (−d, 1; 1;L) =
∞[
k=0

Γ(k − d)
Γ(k + 1)Γ(−d)L

k (A.3)

with Γ(·) denoting the Gamma function.
The cumulative impulse-response weights (CIRW) sequence {ϕk}∞k=0 of

the HYGARCH(1,d,1) model is then given by

ϕk =


0,
θd+ φ− β,

θ
�
βϕk−1 +

�
k−1−d
k − φ

�
δk−1

�− (1− θ)(βk − φβk−1),

k = 0
k = 1
k ≥ 2

where the coefficients δk can be obtained through an iterative scheme given
by

δ1 = d (A.4)

δk = δk−1
k − 1− d

k
, k > 1

For the HYGARCH(1,d,1) model to be well-defined, all the CIRW must
be positive. From the recursions {ϕk}∞k=1 it follows easily that for the
covariance-stationary case the inequality constraints

β − θd ≤ φ ≤ 2−d
3 (A.5)

(1− θ)(β2 − φβ) ≤ θ
�
βϕ1 +

�
1−d
2 − φ

�
d
�
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ensure that the coefficients in the lag polynomial ϕ(L) are all non-negative.
Note that when the amplitude parameter, θ, tends to one, the model
converges to the FIGARCH(1,d,1) and so the inequality constraints above
are the same as those in Bollerslev and Mikkelsen (1996). On the other
hand, when θ > 1 it is easy to see that the constraints

β − θd ≤ φ ≤ 2−d
3 , d

�
φ− 1−d

2

� ≤ β(φ− β + θd) (A.6)

are sufficient to guarantee that the coefficients in the lag polynomial ϕ(L)
are all non-negative.
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Appendix B: Loss-functions

Assessing the forecast error in the multivariate context is worthwhile because
the covariance matrix is the straightforward result of the methodology
involved. We use matrix norms to measure the forecast error in the matrix
space, i.e., the distance between forecasted and realized matrices. Under
such metrics, all elements in the forecasted matrix are equally important, so
that models are penalized if, say, they have a greater ability for forecasting
the on-diagonal elements but a poor performance for accurately predicting
covariances. Specifically, we use the Frobenius norm and the so-called matrix
p-norms. The Fobrenius norm of the forecast error matrix, denoted as��Us

T+n

��
F , is the Euclidean distance between the forecasted and the realized

matrices at any time, which is computed as

��Us
T+n

��
F =

yxxw K[
i=1

K[
j=1

���usij,T+n���2 (B.1)

with usij,T+n denoting the i, j−th element of Us
T+n.

The matrix p-norms are defined in terms of the corresponding vector
p-norms. There are many possible norms in this category but, as in the case
of vector p-norms, the most important are the 1-norm and ∞-norm. Both
norms actually yield the same value when applied to symmetrical matrices,
so we denote by

��Us
T+n

��
1 the 1-norm (∞-norm) of the forecast error matrix.

Intuitively, this metric measures the maximum absolute cumulative error
when forecasting the variance and the covariances of each asset in the
portfolio. It is computed as

��Us
T+n

��
1 = max

1≤j≤K

K[
i=1

��usij,T+n�� (B.2)

After defining valid measures in the matrix space, we consider a loss-
function for each metric defined as the average value of the forecasted error
norms over the out-of-sample period, so that

Ns
F =

1

200

199[
n=0

���Us
T+n

��
F

�2 (B.3)

Ns
1 =

1

200

199[
n=0

��Us
T+n

��
1 (B.4)
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Along with the multivariate framework, it is also of interest to
evaluate the forecast errors under the univariate framework. The overall
(conditional) variance of an equally-weighted portfolio is given by the scalar
K−21kEsT+n (HT+n+s.)1k, where 1k is a vector of ones inRK. This is nothing
but the weighted sum of the variances and covariances among the assets
of the portfolio. It follows easily that the overall variance forecast error
is proportional to the quadratic form qST+n = 1kU

s
T+n1k when holding a

steady portfolio over time. As those values are univariate measures, forecast
accuracy can be judged based on the standard statistical loss-functions, such
as the mean squared error (MSE),

MSEs =
1

200

199[
n=0

�
qST+n

�2
(B.5)

and the mean absolute error (MAE),

MAEs =
1

200

199[
n=0

��qST+n�� (B.6)

In addition, two asymmetric measures proposed in Brailsford and Faff
(1996) are also considered to assess forecast ability in the univariate
framework. They provide a mean absolute error after more heavily
penalizing either underpredictions (MAEU) or overpredictions (MAEO).
They are defined, respectively, as follows

MAEUs =
1

200

#
NU[
n=1

t��qST+n��+ NO[
n=1

��qST+n��
$

(B.7)

MAEOs =
1

200

#
NU[
n=1

��qST+n��+ NO[
n=1

t��qST+n��
$

(B.8)

where NU is the number of underpredictions and NO is its complementary.
The binomial probability of underprediction can be estimated by NU/200,
values of this estimator further than 0.5 provide evidence agains the
hypothesis of unbiased forecasts. As GARCH-type forecast are known to be
fairly sensitive to the effect of additive outliers (recall that they are based
on ARMA-type models), it could be of interest, for instance, to penalize
harder overpredictions as outliers force forecasts to be abnormally high.
Also, forecasts are needed to compute Value-at-Risk measures, which are
known to be non-symmetric to forecasts errors, so it is worthwhile to consider
asymmetric measures in the forecasting analysis.
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