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ABSTRACT 
 

 In this paper I analyze the relative performance of Gaussian and Student-t 
GARCH and FIGARCH type models for volatility and Value-at-Risk forecasting 
of daily stock-returns using data from the Spanish equity index IBEX-35. The in-
sample analysis shows that the Student-t FIAPARCH process provides a better fit 
than the nested models. Regarding the out-of-sample volatility forecasting, both 
the Gaussian- and the t-FIAPARCH processes show the best performance, 
although it is not possible to discriminate between them. As for the models' 
capacity for VaR forecasting, different results are obtained according to the 
evaluation criteria considered, although if the aim is regulatory VaR it is shown 
that the Student-t FIAPARCH model would be clearly the most recommendable. 
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1 Introduction

Parametric models for volatility have undergone great development since
the seminal ARCH and GARCH models of Engle (1982) and Bollerslev
(1986) (see Bollerslev, Engle and Nelson, 1994, for a review of the ARCH
literature). In most of the empirical work related to the modelling of
financial time series volatility by means of GARCH models, it has been
observed that the sum of the parameter estimates remained very near to
the stationarity bound of one, which is interpreted as there being long-
run temporal dependence in volatility. To account for this fact, Engle and
Bollerslev (1986), imposing directly unitary roots, proposed the integrated
GARCH (IGARCH) model. This process provides a cumulative impulse
response function that is constant over time, which is not very reliable.
On the other hand, the covariance-stationary GARCH process generates
autocorrelations that decrease excessively quickly in relation to the observed
ones of the volatility proxies (absolute value and squared returns), (see
Ding and Granger, 1996, or Granger and Ding, 1996). Fractionally
integrated GARCH (FIGARCH) models were proposed by Baillie, Bollerslev
and Mikkelsen (1996) to capture the hyperbolic decay observed in the
autocorrelation function of the volatility proxies (see also Baillie, 1996, or
Bollerslev and Mikkelsen, 1996). These processes are an adaptation for
the conditional variance of the ARFIMA class of models (see Granger,
1980, Granger and Joyeux, 1980, or Hosking, 1981). The analysis of their
performance for the modelling of the volatility of financial time series rapidly
attracted the attention of researchers, since this variable is a key input in
the calculation of very used financial measures such as, the hedging ratio
or the so-called Value-at-Risk (see Jorion, 1997, for a complete overview of
this topic).

In this work I aim to analyze the predictive capacity, not only for
in- but also for out-of-sample volatility and Value-at-Risk (VaR hereafter)
forecasting, of a broad range of Gaussian and Student-t short- and
long-memory conditional heteroskedasticity models, including: GARCH,
AGARCH, APARCH, EWMA, FIGARCH and FIAPARCH, for the Madrid
Stock Market Index IBEX-35. Among these, we pay special attention to
the Student-t FIAPARCH method since this seems the candidate to show a
better forecasting performance, given that it is capable of reproducing all the
stylized features of the volatility proxies, namely, leptokurtosis, clustering,
"leverage" effect and hyperbolic decay of the autocorrelations. Apart from
presenting greater flexibility, since it consists of regressing a power, δ, of the
standard deviation, leaving it free to be determined by the data (see Ding,
Granger and Engle, 1993).

There are many papers in which the in- and out-of-sample forecasting
ability of short-memory GARCH models has been analyzed (see e.g. Pagan
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and Schwert, 1990, Brailsford and Faff, 1996, or McKenzie and Mitchell,
2002). On the other hand, the in-sample performance of univariate long-
memory models for the conditional volatility has also been widely explored.
However, their out-of-sample analysis, in spite of the fact that it has more
important implications for risk management, seems to have received much
less attention. Thus, Tse (1998) analyzed the in-sample goodness-of-fit of
the Gaussian-FIAPARCH model and, Beine et al. (2002) performed an in-
sample analysis for the Student-FIGARCH model as well. More recently,
Vilasuso (2002) has analyzed the out-of-sample forecasting performance of
the FIGARCH model with Gaussian innovations. All of these analyses were
performed for exchange rate returns.

On the other hand, several papers concerning the in-sample volatility
modelling of the IBEX-35 index returns have been developed. Thus, León
and Mora (1999) analyzed the performance of a wide variety of volatility
models concluding that the parametric ones exhibited a better performance.
Olmeda (1998) and, Marmol and Rebolledo (2000) gave evidence on the
existence of long-memory in the volatility of different return indexes from
the Madrid Stock Market, the former using non-parametric tests and, the
latter focusing on tests by Perron and, Ng, Lobato and Robinson, as well as
on the estimation of a stochastic volatility model (see also Pérez and Ruiz,
2000).

The objective of this paper is to calibrate the effect on the forecasting
capacity of making the models capable of explaining the different empirical
features presented by the volatility of the stock-returns. Furthermore, it
provides an analysis on VaR model evaluations. It is worth emphasizing
that this topic has recently raised an important debate in the literature due
to their implications for risk management and international banking system
regulation (see López, 1999). In relation to this, the paper shows that the
obtained outcomes change significantly according to the evaluation criteria
used.

The remainder of the paper is organized as follows. Section 2 presents
the data. Section 3 compiles the theoretical models. Section 4 deals with
the models’ estimation and the in-sample analysis. Section 5 reports the
out-of-sample volatility forecast evaluation results. Section 6 describes the
setting for VaR forecasting and discusses the prediction results, and finally,
Section 7 summarizes the conclusions.

2 The data

The data consists of daily closing prices of the stock index IBEX-35 from
July 1, 1987 to December 30, 2002, for a total of 3,993 observations depicted
in Figure 1. The series of continuously compounded daily returns were
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calculated as the difference between the logarithm of the closing prices of
two consecutive days, rt = log(Pt/Pt-1).

Figure 2 summarizes the descriptive statistics of the rt series. The
measures of skeweness and kurtosis indicate that the distribution of returns
is leptokurtic and slightly negatively skewed in relation to the normal
distribution. The Jarque-Bera statistic rejects the null hypothesis of
normality at any level of statistical significance, so another distribution
rather than the Normal one should be assumed for the returns. Along these
lines, many empirical works have shown that the Student-t distribution
is able to capture all excess kurtosis presented by the stock returns
distribution, since their tail lengths are not fixed but it adjusts to the one
of the data (see Bollerslev, 1987).

From Figure 3 we can see that the variance of the returns presents
clusters which change over time, i.e., great changes in returns tend to be
followed by great changes, of any sign, and small changes tend to be followed
by small changes. It is shown that, although according to the Efficient
Market Theory returns are almost unpredictable, they are not independent.
This feature can be, fairly easily, noticed analytically as well, by performing
the ARCH LM test, (see Engle, 1982), which shows that the null of no
high-order ARCH for the residuals in Eq.(15) is rejected at any significance
level, so not only is the series ε2t autocorrelated but it also presents long-run
temporal dependence. This fact can also be verified graphically by observing
the hyperbolic decay of the sample autocorrelations of r2t depicted in Figure
4.

Another important ”stylized fact” of financial time series that any
valuable model should convincingly explain is the so-called ”leverage” effect,
first discussed by Black (1976), who observed that volatility tends to increase
less in response to ”good news” (excess returns higher than expected, εt > 0)
than in response to ”bad news” (excess returns lower than expected, εt < 0).
The term (|εt| − γεt)

δ reflects this effect when γ 9= 0, so when 0 < γ < 1
a positive innovation increases volatility less than a negative one, and vice
versa for −1 < γ < 0. When γ = 0 a positive innovation has the same effect
on volatility as a negative one of the same magnitude.

3 The theoretical models

Given a specification for the conditional mean,

rt = g(θ;Ωt−1) + εt (1)

where g(.) is a linear function on the parameter vector θ and the past
information set, Ωt−1, and εt is the random innovation, the ARCH(p) model
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was proposed by Engle (1982) to explain the clustering observed in ε2t . The
process is given by the following equations,

σ2t = ω + α(L)ε2t , εt = σtzt, εt/Ωt−1 ∼ D(0,σ2t ) (2)

where ω > 0, α(L) =
Sp
k=0 L

kε2t−k with αk ≥ 0 for all k, L denotes the lag
operator and, zt ∼iid D(0,1).

The Generalized ARCH (GARCH) model was latter proposed by
Bollerslev (1986) to avoid the high-order ARCH specification demanded
to capture the conditional variance dynamics. The GARCH(p,q) model is
expressed as,

σ2t = ω + α(L)ε2t + β(L)σ2t (3)

where ω > 0, αk ≥ 0 for all k, and β(L) ≡Sq
s=1 βsL

s with βs ≥ 0 for all s.
For stability all the roots of α(L) and [1− α(L)− β(L)] have to be outside
the unit circle. The process can also be expressed in ARMA(m,p) form for
ε2t as follows,

[1− α(L)− β(L)]ε2t = ω + [1− β(L)]vt (4)

where m = max {p,q} and vt ≡ ε2t − σ2t are the innovations, with
E(vt) = 0, Et−1(vt) = 0 and, Et−1(v2t ) = σ2. When the polynomial
[1 − α(L) − β(L)] contains a unitary root we have the Integrated GARCH
model, IGARCH(p,q), of Engle and Bollerslev (1986) which, in its ARMA
form, is given by,

φ(L)(1− L)ε2t = ω + [1− β(L)]vt (5)

where φ(L) ≡ [1− α(L)− β(L)](1− L)−1 is of order m− 1.
Baillie, Bollerslev and Mikkelsen (1996) proposed the FIGARCH(p,d,q)

method to capture the so-called long-memory property observed in the
volatility of asset return series. The model is obtained by replacing the
differencing operator in Eq.(5) with the fractional polynomial (1−L)d. The
process in its ARFIMA form for ε2t is defined as,

φ(L)(1− L)dε2t = ω + [1− β(L)]vt (6)

where 0 ≤ d ≤ 1. An alternative representation for the FIGARCH(p,d,q)
model is the following,

σ2t = ω[1− β(1)]−1 + [1− [(1− β(L)]−1φ(L)(1− L)d]ε2t (7)

where the CIRW, which are given by the coefficients in the lag polynomial,
λ(L),

λ(L) = 1− [(1− β(L)]−1φ(L)(1− L)d (8)
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must be all positive to ensure the non-negativity of σ2t . The fractional
differencing operator has a binomial expansion which is most conveniently
expressed in terms of the hypergeometric function as follows,

(1− L)d = F (−d, 1; 1;L) =
∞[
k=0

Γ(k − d)
Γ(k + 1)Γ(−d)L

k (9)

The process is not covariance-stationary but is strictly stationary and
ergodic, a property that it shares with the IGARCH model, (see Bougerold
and Picard, 1992). It is capable of capturing the very slow decay observed
in the autocorrelations of the returns volatility proxies, since its cumulative
impulse response weights (CIRW hereafter), {λk}∞k=1, decay hyperbolically
towards zero. So, innovations affect the optimal forecast of the FIGARCH
conditional variance over long lags, unlike short-memory GARCH processes
for which the influence of shocks to the process disappears exponentially or,
IGARCH processes in which shocks show infinite persistence1.

On the other hand, Ding, Granger and Engle (1993) generalized the
GARCH process Eq.(3) by considering the modelling of a power of the
conditional standard deviation, which is made to depend on: A function
of past residuals to account for the "leverage" effect, and powers of past
conditional standard deviations. The process was called Asymmetric Power
ARCH, APARCH(p,q), and is defined as,

σδt = ω +

p[
k=1

αk(|εt−k|− γkεt−k)
δ +

q[
s=1

βsσ
δ
t−s (10)

where ω > 0, δ > 0, |γk| < 1, αk ≥ 0 for all k, and βs ≥ 0 for all s.
The Fractionally Integrated Asymmetric Power GARCH method,

FIAPARCH(p,d,q), (Tse, 1998), combines the FIGARCH(p,d,q) model
Eq.(7) and the APARCH(p,d,q) model Eq.(10), and can be defined as
follows,

σδt =
ω

1− β(1)
+ {1− [1− β(L)]−1φ(L)(1− L)d}(|εt|− γkεt)

δ (11)

The process, just as the FIGARCH(p,d,q) and the IGARCH(p,q)
processes, is not covariance-stationary, since the hypergeometric function

1Recently, Davidson (2003) has proposed a more general class of long-memory GARCH
processes, called hyperbolic GARCH (HYGARCH). These processes are able to reproduce,
a covariance-stationary sequence of conditional variances with long-run dependences for
a determined range of the parameters, since they present a cumulative impulse response
function that decreases hyperbolically, quicker than in the FIGARCH case but slower than
in the covariance-stationary GARCH case (see Ñíguez and Rubia, 2003, for an extension
of these types of processes to a multivariate context).
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F (−d,1,1;L) evaluated at L = 1 equals zero, so λ(1) = 1. See the Appendix
for a review of the nested models in the FIAPARCH process.

In this study, I consider the one-order version of the following processes,
which has proven to be useful in the modelling of financial time series
volatility, so the methods to be examined, taking as a reference the
FIGARCH(1,d,1) and the GARCH(1,1) models, are: FIAPARCH(1,d,1),
FIGARCH(1,d,1), APARCH(1,1), AGARCH(1,1), GARCH(1,1) and the
exponential weighted moving average, EWMA(1,1), process, proposed by
J.P. Morgan for VaR forecasting (see Riskmetrics, 1996, for further details).
The analysis focuses, in particular, on the FIAPARCH(1,d,1) specification,
Eq.(11), for which the CIRW, {λk}∞k=0, can be expressed as,

λk =


0,
d− β + φ,

βλk−1 +
�
k−1−d
k − φ

�
δk−1,

k = 0
k = 1
k ≥ 2

(12)

with

δk = d
Γ(k−d)

Γ(1−d)Γ(k+1) for k ≥ 1 (13)

For the model to be well-defined and the conditional standard deviation
power to be positive almost surely for all t, all the CIRW must be positive.
Bollerslev and Mikkelsen (1996) show that from the recursions {λk}∞k=1 it
follows easily that the inequality constraints

β − d ≤ φ ≤ 2−d
3 , d(φ− 1−d

2 ) ≤ β (φ− β + d) (14)

are sufficient to ensure that all λk are non-negative2. Unfortunately, the
statistical properties of this model have not been established yet, so that
this topic continues to be an interesting area for further research.

4 Estimation and inference

In our case, as in many applications with high-frequency financial returns,
the assumption of conditionally normal distributed innovations is not
supported by the data. However, following Bollerslev and Wooldridge (1992)
one can estimate GARCH-type models by the Quasi-Maximum Likelihood
procedure (QMLE) and obtain robust estimates for density misspecification
providing that the model is correctly specified.

2See Chung (1999) for a slightly different FIGARCH specification, extendable to the
asymmetic-power case, for which the sufficient non-negativity conditions are given by
0 < β < d < φ < 1.
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At this stage, it is worth pointing out that when the QMLE is applied
to strongly dependent time series we cannot ensure theoretically that
the estimators are consistent and asymptotically normal. Nevertheless,
Baillie, Bollerslev and Mikkelsen (1996) showed, by means of simulation
techniques, that the procedure performs very well for the typical sample sizes
encountered with high-frequency financial data (see also Caporin, 2002).
Furthermore, they showed that the "robust" covariance matrix estimator
does a good job of adjusting for conditional non-normality in the errors,
since the estimation results of the FIGARCH model with conditionally
normal and t-distributed errors were very close. They also provided results
about the simulated tail rejection frequencies for the estimates significativity,
showing that they remained very close to the nominal levels although with
a smooth trend to overreject in the right-tail, so in practise standard
inference procedures regarding the parameter estimates can be carefully
used considering these results. Unfortunately, neither for the FIAPARCH
process neither theoretical nor empirical asymptotic properties for the
QML estimates have been formally established, remaining this topic as an
interesting area for further research (see Hidalgo, 1997, for an analysis of
the theoretical properties of non-parametric estimation procedures under
long-run temporal dependence).

Being aware of the previously mentioned limitations in relation to
the estimation procedures, the different aforementioned conditionally
heteroskedastic models are estimated and analyzed according to their
forecasting performance. Thus, we proceed as follows: The complete
sample, rt, is split into two parts, the in-sample period takes the first
T= 3, 093 observations and the out-of-sample period includes the last
N= 900 observations. The in-sample period is then used to calibrate
parameters and make one-step-ahead forecast. The process is repeated
900 times keeping a constant-sized window. The estimation procedure is
performed in two stages:

First, the small predictable component detected in the rt series3 is filtered
by using a moving average process, MA(1), which has been chosen following
the usual methodology of Box and Jenkins and the information criterion of
Akaike,

rt = µ+ θεt−1 + εt, E(εt) = 0, V (εt) = σ2 (15)

This process is estimated by the Ordinary Least Squares method and the
MA(1) residuals are obtained. The procedure is repeated N times, taking a
rolling window of size T, to obtain the residuals out-of-sample.

Second, the conditional variance of the MA(1) residuals, εt, is estimated
assuming on the one hand, Gaussian innovations (QMLE) and, on the other,

3The existence of small linear dependences in index returns has been attributed to
non-synchronous trading of the stocks that make up the index.
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t-innovations (MLE). Thus, QML estimates are obtained by maximizing the
Gaussian log-likelihood function which is given by,

T[
t=1

log f(rt/Ωt−1;θ) = −0.5
T[
t=1

log 2πσ2t − 0.5
T[
t=1

ε2t
σ2t

(16)

Alternatively, the Student-t distribution is assumed in order to provide the
models with the needed flexibility to capture the observed kurtosis. Note
that, since the Student-t approaches the Normal as ν → ∞ it is more
convenient to use the reciprocal of the degrees of freedom parameter, i.e.
η = 1/ν, as a measure of the tail thickness, which will always remain in the
finite range 0 ≤ η < 1

2 (see Fiorentini, Sentana and Calzolari, 2003). So in
this case, the function to be maximized is,

T[
t=1

log f(rt/Ωt−1; θ) = T log

�
Γ[(η + 1)/2η]

π1/2Γ(1/2η)
(
1− 2η

η
)−1/2

�
(17)

−(1/2)
T[
t=1

log(σ2t )

−η + 1
2η

T[
t=1

log

�
1 +

ηε2t
(1− 2η)σ2t

�
To apply these procedures to FIGARCH-type models the truncation of the
infinite lag polynomial is necessary, so it is fixed at the usual lag of 1000.
Furthermore, following standard practise as well, the unconditional standard
deviation was chosen for the residual presample values, {εt}0t=−999 .4.

Tables 1 and 2 report the (Q)ML estimates and the statistics for the
in-sample analysis. As we can see, all parameter estimates are statistically
significant: The estimated degrees of freedom, eν is around 7, confirming
the existence of leptokurtosis in the returns conditional distribution, δ̂ is
statistically different from one or two in APARCH and FIAPARCH models
and, γ̂ and ed, are both statistically different from zero or one in all long-
memory and/or asymmetric models, which confirms that there exists long-
run dependence, and asymmetric responses of volatility to negative and
positive innovations.

The likelihood ratio (LR) test is used to compare the in-sample
performance of nested models. The test statistic has an asymptotic
distribution with degrees of freedom equal to the number of restrictions,
thus if l0 is the logL value under the null hypothesis that the true model
is, say Student-t FIGARCH(1,d,1), and l is the log-likelihood under the
alternative that the true model is Student-t FIAPARCH(1,d,1), we have

4All maximum likelihood estimations were carried out using the CML library of
GAUSS.
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Table 1

(Q)ML estimates of GARCH(1,1)-type models

Gaussian GARCH AGARCH APARCH EWMA

ω 0.000 (2.55) 0.000 (2.54) 0.000 (1.73) -
α 0.132 (5.95) 0.127 (5.37) 0.128 (5.56) 0.066 (3.69)
β 0.824 (29.7) 0.824 (28.0) 0.827 (23.0) 0.934 (51.8)
γ - 0.148 (2.03) 0.154 (1.94) -
δ - - 1.914 (5.65) -
LogL 2485.7 2493.0 2493.1 2327.8
AIC -1.6052 -1.6094 -1.6089 -1.5046

Student-t GARCH AGARCH APARCH EWMA

ω 0.000 (2.14) 0.000 (2.94) 0.001 (2.46) -
α 0.142 (7.00) 0.140 (6.94) 0.143 (8.08) 0.091 (6.94)
β 0.849 (41.5) 0.849 (40.9) 0.865 (46.5) 0.909 (68.6)
γ - 0.078 (2.15) 0.098 (2.25) -
δ - - 1.402 (9.28) -
ν 6.791 (6.93) 6.834 (6.91) 6.732 (6.99) 7.404 (8.43)
LogL 2653.8 2655.8 2661.1 2626.6
AIC -1.7134 -1.7141 -1.7168 -1.6971

The reported coefficients shown in each row of the table are (Q)ML estimates
of Gaussian and Student-t GARCH(1,1)-type models with MA(1) innovations for
the IBEX-35 daily stock-return index. Robust (Q)ML t-statistics are reported in
parenthesis next to the parameter estimates. AIC denotes the Akaike Information
Criterion and LogL the value of the log-likelihood function at the parameter
estimates.
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Table 2

(Q)ML estimates of FIGARCH(1,d,1)-type models

Gaussian FIGARCH FIAPARCH

ω 0.001 (1.43) 0.015 (1.86)
β 0.636 (2.05) 0.698 (10.7)
φ 0.171 (1.63) 0.232 (2.83)
γ - 0.292 (2.38)
δ - 1.242 (7.46)
d 0.584 (1.45) 0.576 (5.45)
LogL 2485.7 2512.1
AIC -1.6047 -1.6206

Student-t FIGARCH FIAPARCH

ω 0.000 (2.59) 0.006 (1.61)
β 0.634 (8.50) 0.681 (9.01)
φ 0.142 (2.73) 0.153 (3.48)
γ - 0.140 (2.87)
δ - 1.465 (7.30)
d 0.628 (8.05) 0.654 (7.90)
ν 7.018 (9.09) 7.505 (6.58)
LogL 2661.9 2669.8
AIC -1.7180 -1.7218

The reported coefficients shown in each row of the table are (Q)ML estimates of
Gaussian and Student-t FIGARCH(1,d,1)-type models with MA(1) innovations for
the IBEX-35 daily stock-return index. Robust (Q)ML t-statistics are reported in
parenthesis next to the parameter estimates. AIC denotes the Akaike Information
Criterion and LogL the value of the log-likelihood function at the parameter
estimates.
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that H0 : (δ,γ) = (2,0), so the test statistic LR = 2(l− l0) should have a χ2
distribution with 2 degrees of freedom under the null. For our case, LR * 76,
so we reject H0 for any reasonable significance level. Likewise, it can easily
be seen that the LR test statistic for the Student-t FIAPARCH(1,d,1) model
against the rest of the specifications is beyond the acceptance region for any
reasonable confidence level.

According to the AIC we can see that the assumption of Student-t
errors is the one which provides the models with more flexibility, since
the worst Student-t model in adjusting the data, i.e. the Student-EWMA
(AIC = −1.6971), still provides a better fit than the most flexible Gaussian
model, i.e. the Gaussian-FIAPARCH (AIC = −1.6206). This means that
the greater possibility for the model to achieve extreme values plays a
more important role than its ability to account for long-memory and/or
asymmetric effects.

In relation to the modelling of the power of the conditional standard
deviation, we find that this possibility provides the model with a greater
capacity to fit the data only when assuming Student-t errors, since the
Student-t APARCH model adjusts better than the Student-t AGARCH
process, curiously, the opposite occurs under Gaussianity. Notice also that
under this latter distribution, the GARCH, AGARCH and APARCH models
perform better than the simpler long-memory process, FIGARCH. On the
other hand the Student-FIGARCH provides a much better fit than the short-
memory Student-t GARCH models. So the Student-t distribution enhance
the in-sample forecasting capacity of the models, especially for the fractional
integration case.

In summary, the in-sample volatility forecasting performance of the
methods increases with their ability to account for the "stylized" volatility
features, with the t-distribution assumption playing the most important role,
being the Student-FIAPARCH model the most flexible one which provides
the best fit, and the IGARCH-type process, i.e. the EWMA model, being
the one which provides the worst goodness-of-fit.

5 Out-of-sample volatility forecasting

In this section, the models are evaluated according to their out-of-sample
volatility forecasting capacity. Forecasts are made, estimating the models
each time, and keeping a constant-sized rolling scheme. The procedure
employed to forecast the conditional variance is outlined as follows:

i) The parameter estimates are used to forecast the conditional variance
one-day-ahead from the last day of the in-sample period. The whole
procedure (estimation and forecast) is then repeated N times by using
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a rolling window. At each iteration, the in-sample window is updated
one day and the oldest observation is removed, so the window’s length,
T, always remains constant over the process. Models are completely
re-estimated and the forecast is made again from the last observation
in the in-sample period through an iterative process. The one-day-
ahead forecast error from model m, denoted em,T+i+1, (i = 0,...,N) is
given by the difference between the proxy of ’true’ variance, denoted
volT+i+1, which is chosen as the squared MA(1) residuals

5, and the
conditional variance forecast, ET+i(ε

2
T+i+1) = eσ2m,T+i+1, so,

volT+i+1 =
�
rT+i+1 −ET+i(rT+i+1)

�2 , ET+i(rT+i+1) = µ+ θεT+i+1

ii) Several criteria are then used to assess the forecasting performance of
the models, including: First, the Minzer-Zarnowitz Regression (1969),
which consists of estimating the following equation,

volT+i+1 = c+ βeσ2m,T+i+1 + uT+i+1 (18)

According to this method, the forecast is optimal, with respect to the
available information set, if the null H0 : (c,β) = (0, 1) is accepted.

Second, the following symmetric and asymmetric loss functions: The
mean squared prediction error (MPSE), the mean absolute prediction
error (MAPE),

MSPEm =
1

N

N[
i=1

(em,T+i+1)
2 (19)

MAPEm =
1

N

N[
i=1

��em,T+i+1�� (20)

the mean mixed error of underprediction (MMEU), and the mean
mixed error of overprediction (MMEO) which penalize under- and
over-predictions, respectively, more heavily,

MMEUm =
1

N

#
NU[
i=1

t��em,T+i+1��+ NO[
t=1

��em,T+i+1��
$

(21)

5Andersen and Bollerslev (1998) have shown that for high-frequency assets data a
better proxy for their ’true’ volatility can be obtained as the sum of the squared intradaily
returns, which is called ’realized’ volatility. In our case, as in many empirical works,
a problem arises concerning data availability, nonetheless this aspect remains as an
interesting possibility to be considered in further research.
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MMEOm =
1

N

#
NU[
i=1

��em,T+i+1��+ NO[
i=1

t��em,T+i+1��
$

(22)

where NU is the number of times that the predicted conditional
variance is smaller than the realized one and NO its complementary
(see Brailsford et al., 1996).

iii) Finally, we verify whether the difference between the loss functions
from the different models is statistically significant by performing the
test of Diebold and Mariano (1995)6. It consists of testing whether
the sample mean of the difference series between the forecasting errors

through the out-of-sample period, d =
NS
i=1

di
N , with di = em,T+i+1 −

em ,T+i+1, is different from zero,

H0 : µd = 0,
√
N(d− µd)→ N

�
0,σ2d

�
(23)

Thus, the test statistic,

t∗ =
√
N
deσd (24)

converges in distribution to a N(0,1) under the null. If the forecast is
optimal, the K-step ahead errors, K being the prediction horizon, are
at most independent of all previous errors, so a consistent estimator
has to be used to control for this K − 1 order dependence. The
Newey and West (1987) estimator, eσ2NW , which is consistent under
heteroskedasticity and autocorrelation with a bandwidth parameter
q = K − 1, is generally used for that purpose,

eσ2NW = eσ + 1

N

q[
s=1

N[
i=s+1

�
1− s

q + 1

�
(did

�
i−s + di−sd

�
i) (25)

Note that, in our case, as the forecast horizon is of one step ahead,
there is no dependence in our difference series, so eσ2NW is given by the
unconditional variance.

Table 3 reports the results for the forecasts evaluation according to the
Minzer-Zarnowitz Regression. It can be seen that the null of optimal forecast
is accepted in most of the cases for a significance level of at least 5 per cent,

6Alternatively, boostrap procedures could be used for this purpose. In our case, since
the forecast horizon is one day, boostrap procedures for independent data would be useful.
However when the forecasting horizon is greater than one period, the prediction errors
show autocorrelation, so block boostrap procedures would be needed (see Politis, Romano
and Wolf, 1999, or White, 2000).
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Table 3

Test for the parameters of the Mincer-Zarnowitz Regression

Gaussian Student-t
p-value R2m p-value R2m

GARCH 0.072 0.1145 0.018 0.1156
APARCH 0.053 0.1322 0.142 0.1291
AGARCH 0.055 0.1383 0.244 0.1331
EWMA 0.073 0.1142 0.015 0.1195
FIGARCH 0.665 0.1101 0.032 0.1167
FIAPARCH 0.294 0.1447 0.763 0.1400

P-values for the test of Mincer-Zarnowitz Eq.(18), H0 : (c,β) = (0, 1). R2m
denotes the determination coefficient of the regression for model m.
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and that the percentage of explained volatility, is similar and greater than
10 per cent in all cases. Asymmetric models, and above all the FIAPARCH
models, provide sequences of forecasts that adjust better to the volatility
proxy. The assumption of t-distributed errors helps, only in some cases, to
yield better forecasts. This criterion provides a general view of the models
forecasting performance but a more exhaustive analysis is called for, to be
able to discriminate among models.

Loss functions values and the results of the test of Diebold and Mariano
are displayed in Tables 4 and 5, respectively. Results in Table 4 show
that the FIAPARCH model presents the smallest MSPE and MAPE, and
these differences are statistically significant in relation to the benchmarking
models as we can see from Table 5. In general we can not conclude that
the assumption of Student-t innovation helps to achieve more accurate
forecats. On the other hand, the asymmetric models provide, in all cases, a
significantly better performance than the GARCH, FIGARCH and EWMA
processes. In addition, these latter models seem to perform very similarly
according to the results emerging from Table 5.

As for the asymmetric loss functions, we observe from Table 5 that
their differences are statistically significant, except for some isolated cases
among the FIGARCH, GARCH and EWMA models. Thus, from Table 4 it
can inferred that Student-t models tend to overpredict volatility since they
show a higher error of overprediction (MMEO) and, a smaller error and
probability of underprediction (MMEU and PUnd, respectively), with the
exception of the t-FIAPARCH model which provides the smallest MMEO
and MMEU.

A further analysis in Table 5 revealed that no significant differences
existed between the values of the symmetric loss functions of the FIAPARCH
models, so both models provide the more accurate volatility forecasts,
the t-FIAPARCH process being the most recommendable since it shows
a significantly smaller error of overprediction.

6 VaR analysis

6.1 Introduction

VaR measures can have many applications in financial markets, but they
are mostly used for risk management and regulatory purposes. In relation
to the latter topic, the Capital Accord of 1996 of the Basle Committee on
Banking Supervision at the Bank for International Settlements, impelled
to financial institutions with significant trading activities to report the
VaR of their investment portfolios periodically. According to these risk
predictions, the capital that banks must hold to cover their exposure to
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Table 4

Out-of-sample volatility forecasting performance

Gaussian MSPE MAPE MMEO MMEU PUnd

GARCH 0.1767 0.2524 0.0918 0.0713 0.357
AGARCH 0.1733 0.2487 0.0908 0.0710 0.361
APARCH 0.1721 0.2485 0.0914 0.0705 0.353
EWMA 0.1768 0.2604 0.0985 0.0690 0.326
FIGARCH 0.1768 0.2587 0.0987 0.0687 0.321
FIAPARCH 0.1701 0.2534 0.0978 0.0675 0.318

Student-t MSPE MAPE MMEO MMEU PUnd

GARCH 0.1771 0.2613 0.0976 0.0696 0.338
AGARCH 0.1736 0.2575 0.0966 0.0691 0.342
APARCH 0.1722 0.2570 0.0973 0.0686 0.331
EWMA 0.1764 0.2608 0.0978 0.0693 0.333
FIGARCH 0.1766 0.2628 0.0995 0.0689 0.326
FIAPARCH 0.1708 0.2547 0.0966 0.0685 0.335

Out-of-sample forecasting performance of GARCH(1,1)-type and FIGARCH(1,d,1)-
type processes for one-day-ahead conditional variance. The forecasting ability is
measured by different loss functions, including: The mean squared prediction error
(MSPE) Eq.(19), the mean absolute prediction error (MAPE) Eq.(20), the mean
mixed error of underprediction (MMEU) Eq.(21), the mean mixed error of overpre-
diction (MMEO) Eq.(22) and the probability of underprediction (PUnd). MSPE
and MAPE values are all scaled by 100 and 10, respectively.

19



Tabla 5

Statistics of the test of Diebold and Mariano for volatility
forecasting performance

Gaussian MSPE MAPE MMEO MMEU

FIGARCH vs GARCH 0.02 6.63 17.83 -7.92
FIGARCH vs AGARCH 1.37 5.85 13.82 -4.74
FIGARCH vs APARCH 1.95 6.32 13.26 -3.95
FIGARCH vs EWMA 0.97 -0.95 0.40 -0.84
FIGARCH vs FIAPARCH 2.67 2.93 1.28 2.29
GARCH vs AGARCH 1.50 2.76 2.65 0.80
GARCH vs APARCH 2.08 2.97 1.19 2.30
GARCH vs EWMA -0.02 -3.81 -8.98 4.05
GARCH vs FIAPARCH 2.57 -0.65 -8.76 6.64

Student-t MSPE MAPE MMEO MMEU

FIGARCH vs GARCH -0.49 2.12 7.03 -3.63
FIGARCH vs AGARCH 1.58 3.80 6.39 -0.68
FIGARCH vs APARCH 2.09 2.62 1.72 1.50
FIGARCH vs EWMA 0.17 1.59 3.91 -1.17
FIGARCH vs FIAPARCH 2.55 4.83 5.34 0.71
GARCH vs AGARCH 1.73 3.12 2.68 1.49
GARCH vs APARCH 1.71 2.21 -2.54 3.98
GARCH vs EWMA 0.52 0.42 -0.41 1.00
GARCH vs FIAPARCH 2.40 3.72 1.69 2.35

G-FIAPARCH vs t-FIAPARCH -0.92 -0.66 3.52 -3.31

The table presents t-statistics for the test of Diebold and Mariano (1995) for one-
day-ahead conditional variance forecasting. The comparison is performed taking as
reference the GARCH(1,1) and the FIGARCH(1,d,1) models. The loss functions
considered are: The mean squared prediction error (MSPE) Eq.(19), the mean
absolute prediction error (MAPE) Eq.(20), the mean mixed error of underprediction
(MMEU) Eq.(21) and, the mean mixed error of overprediction (MMEO) Eq.(22).
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market risk is stablished. Nowadays, regulators evaluate bank VaR models
by observing when the corresponding portfolio returns exceed the reported
VaR, determining whether these VaR estimates are "acceptably accurate",
by considering the last 250 VaR reported and their corresponding portfolio
returns. It is known that evaluation methods currently used by regulators
are questionable and can be improved. Those methods (binomial and
interval forecast) are based on tests whose statistical power is low for
discriminating among reasonable alternative models. López (1999) has
proposed a VaR model evaluation test based on the magnitude of the
exceptions, which has proven to be more powerful than the former one in
classifying VaR models. This test along with different loss functions for the
VaR estimates is used here to evaluate the VaR forecasting performance
obtained from the different models considered.

6.2 VaR definition

VaR is defined as the maximum expected loss in the value of a portfolio, for a
given probability α and a determined time period. The great popularity that
this instrument has achieved among financial practitioners is essentially due
to its conceptual simplicity, since VaR reduces the market risk associated
with any portfolio to just one number. We denote the cumulative assumed
conditional distribution function of rt+1, as F (rt+1/Ωt), then the V aRα

m,t+1

of a long position is defined as

α = Pr
�
rt+1 ≤ V aRα

m,t+1

�
= Fm(V aRα

m,t+1) (26)

or equivalently V aRα
m,t+1 is the solution to] V aRα

m,t+1

−∞
fm(rt+1/Ωt)drt = α (27)

where f(rt+1/Ωt) is the assumed conditional density function for rt+1. This
definition states that the probability of a loss rt+1 greater or equal to the
one-day-ahead VaR estimated at time t from model m is α. In other words,
V aRα

m,t+1 is the 100 ·α percentile of f(rt+1/Ωt), when the forecasting period
is of one day, i.e., f−1rt+1(α) = V aRα

m,t+1. For example, for α = .01 the
probability that in just one day the worst return is lower than V aRα

m,t+1 is
one per cent.

6.3 VaR forecasting

Taking one day as the forecast horizon and, the regulatory confidence level
as, e.g., 1 per cent, the VaR.01 forecast at time t from model m when a t-
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distribution is assumed, is the quantile of order 1 of the Student-t conditional
distribution tν̂/Ωt(eµt+1, eσt+1), which is given by,

gV aR.01m,T+i+1 = eµT+i+1 − eσm,T+i+1 · tν̂m,.01 (28)

where eµt+1 and eσm,t+1 are the forecast of the conditional mean and the
conditional standard deviation, respectively, and, tν̂m,.01 is the one percentile
of the Student-t conditional distribution with ν̂m degrees of freedom, which
depends on the estimation of ν from model m.

On the other hand, when a Gaussian distribution is assumed, the VaR.01

is given by,

gV aR.01m,T+i+1 = eµT+i+1 − eσm,T+i+1 · z.01 (29)

where the one percentile of the standard Gaussian conditional distribution,
denoted as z.01, is constant for all models and equals 2.325.

6.4 VaR models evaluation

To analyze the ability of the different models for VaR estimation, we use two
different criteria. The first is based on the same loss functions previously
used for the volatility forecasting analysis and, the second, which reflects
more regulatory concerns, is based on loss functions that address the number
or the magnitude of the exceptions.

6.4.1 Evaluation of VaR estimates using loss functions

In this section we consider the same methodology used for the volatility
forecasting analysis, although in this case the loss functions measure the
error made in the VaR estimation over the out-of-sample period. The one-
day-ahead VaR prediction error from model m, denoted by eV aRm,T+i+1,
is calculated as,

eV aRm,T+i+1 = V aRm,T+i+1 − gV aRm,T+i+1 (30)

where the "realized" VaR(7), V aRm,T+i+1, is given by,

V aRT+i+1 = rT+i+1 + pT+i+1 ∗ σ̃T+i+1 (31)

and rT+i+1 is the observed return at time T+i + 1, σ̃T+i+1 is the chosen
proxy for the standard deviation, σ̃T+i+1 =

s
volT+i+1, and pT+i+1 the

7Another possibility for the "realized" VaR could be to take the empirical quantile (see
Jorion, 1997, for details).
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percentile of the assumed distribution. Notice that while for the Gaussian
case, pT+i+1 is constant over time and across models, when the t-distribution
is assumed, pT+i+1 depends on the estimated degrees of freedom which, in
turn, depends on the estimated model and the data distribution at time
T+i + 1. Thist must be taken into account when computing the VaR
prediction error under the Student-t assumption. So, the test of Diebold
and Mariano for the significance of the difference between the loss functions
for VaR prediction from the different models can not be performed in this
latter case, since the target VaR is not the same for every model. Therefore,
the information obtained from the loss functions in this case gives us a first
insight about how the models can perform in predicting the VaR, and it has
to be complemented by using another evaluation criteria.

Table 6 presents the values of the different loss functions for one-
day-ahead VaR.01 forecasting from every model, and Table 7 reports the
Diebold and Mariano test results for the significance of their difference8.
These tables show that, contrary to what it would be expected, according
to the volatility forecasting evaluation results, Gaussian models provide
more accurate VaR forecasts than their Student-t counterparts. Among
them, the asymmetric GARCH models (AGARCH and APARCH) show
the best performance, and the EWMA and the plain FIGARCH models
give the highest values of the loss functions. The same ordering is found
for the Student-t models, showing, among them, the FIAPARCH model a
significantly better performance.

Regarding the asymmetric loss functions we can see that the models
with better VaR forecasting performance provide the smallest values of
both asymmetric loss functions, showing a very similar probability of
underprediction in relation to the Student-t models, which is smaller for
the case of FIGARCH-type models.

As we have mentioned above, these results contradict what would have
been expected after the volatility analysis, so that an alternative and/or
complementary analysis is now performed to obtain more robust conclusions.

6.4.2 Evaluation of VaR estimates using regulatory loss functions

This evaluation method consists of assigning a numerical score to the
VaR estimates. This score is calculated following the current regulatory
framework, i.e., regulators observe the VaR estimates and portfolio returns,

denoted
q
rT+i+1,gV aRm,T+i+1rN

i=1
, for bank (model) m and then construct

8 In this section, I only present the results for α = .01 for the sake of saving space and
due to the results for the quantiles 0.025, 0.05 and 0.1 do not provide further information.
In any case they are available from the author upon request.
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Table 6

VaR Forecasting Performance

Gaussian MSPE MAPE MMEO MMEU PUnd

GARCH 0.0830 0.2232 0.3723 0.2876 0.334
AGARCH 0.0822 0.2227 0.3723 0.2866 0.332
APARCH 0.0819 0.2229 0.3736 0.2865 0.330
EWMA 0.0853 0.2292 0.3819 0.2904 0.323
FIGARCH 0.0844 0.2288 0.3836 0.2889 0.316
FIAPARCH 0.0833 0.2291 0.3856 0.2890 0.313

Student-t MSPE MAPE MMEO MMEU PUnd

GARCH 0.1171 0.2694 0.4186 0.3313 0.332
AGARCH 0.1150 0.2677 0.3290 0.4180 0.322
APARCH 0.1141 0.2673 0.4182 0.3286 0.327
EWMA 0.1146 0.2662 0.4158 0.3284 0.331
FIGARCH 0.1169 0.2700 0.4207 0.3299 0.322
FIAPARCH 0.1113 0.2645 0.4162 0.3258 0.325

Out-of-sample forecasting performance for one-day-ahead VaR.01. The forecasting
ability is measured by different loss functions, including: The mean squared predic-
tion error (MSPE) Eq.(19), the mean absolute prediction error (MAPE) Eq.(20),
the mean mixed error of underprediction (MMEU) Eq.(21), the mean mixed error
of overprediction (MMEO) Eq.(22) and the probability of underprediction (PUnd).
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Tabla 7

Statistics of the test of Diebold and Mariano for VaR forecasting
performance

Gaussian MSPE MAPE MMEO MMEU

FIGARCH vs GARCH 3.60 7.64 11.17 1.30
FIGARCH vs AGARCH 3.00 5.31 7.69 1.59
FIGARCH vs APARCH 3.58 5.37 7.21 1.75
FIGARCH vs EWMA -1.36 -0.40 1.04 -0.99
FIGARCH vs FIAPARCH 1.68 -0.27 -1.49 -0.05
GARCH vs AGARCH 1.24 0.63 -0.00 0.98
GARCH vs APARCH 1.75 0.36 -1.27 1.07
GARCH vs EWMA -3.01 -4.59 -5.26 -1.64
GARCH vs FIAPARCH -0.30 -4.62 -7.92 -0.87

The table reports t-statistics for the test of Diebold and Mariano (1995) for one-day-
ahead VaR.01. The comparison is performed taking as reference the GARCH(1,1)
and the FIGARCH(1,d,1) models. The loss functions considered are: The mean
squared prediction error (MSPE) Eq.(19), the mean absolute prediction error
(MAPE) Eq.(20), the mean mixed error of underprediction (MMEU) Eq.(21) and,
the mean mixed error of overprediction (MMEO) Eq.(22).
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a numerical score under a loss function that reflects their concern9. The
general form of these loss functions is

Cm,T+i+1 =

+
f(rT+i+1,gV aRm,T+i+1)
g(rT+i+1,gV aRm,T+i+1) if rT+i+1 < gV aRm,T+i+1

if rT+i+1 ≥ gV aRm,T+i+1
where f(rT+i+1,gV aRm,T+i+1) ≥ g(rT+i+1,gV aRm,T+i+1). Numerical scores
are generated for individual VaR estimates from every model, so the score
for model m, Cm, for the complete regulatory sample is given by,

Cm =
N[
i=1

Cm,T+i+1 (32)

Under very general conditions (see Diebold, Gunther and Tay, 1998),
more accurate VaR estimates generate lower numerical scores.

Loss function that addresses the number of exceptions This
function only considers the number of exceptions,

Cm,T+i+1 =

�
1
0

if rT+i+1 < gV aRm,T+i+1
if rT+i+1 ≥ gV aRm,T+i+1 (33)

According to this criterion, an acceptable VaR model for regulatory
purposes must produce only 9 exceptions for the full sample of 900 VaR
estimates. The number of exceptions resulting from every model is reported
in Table 8. It is seen that in this case only the Student-t models are
accepted as valid (with the exception of the Gaussian-FIAPARCH model),
and long-memory models provide more accurate regulatory VaR than the
short-memory and EWMA models, but the method does not allow us to
discriminate among Student-t models either, so a more powerful method is
needed for this purpose.

Loss function that addresses the magnitude of the exceptions
These types of loss functions that embody the magnitude of the exception
can provide additional information on how the underlying VaR model
forecasts the lowest part of the tail of the f(rT+i+1/ΩT+i) distribution.
Although several are possible, we consider the following,

9Here we consider an out-of-sample period of 900 observations while regulators only
consider the last 250 reported VaR estimates.
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Cm,T+i+1=
�
[abs(rT+i+1)− abs(gV aRm,T+i+1)]2
0

if rT+i+1 < gV aRm,T+i+1
if rT+i+1 ≥ gV aRm,T+i+1

López (1999) has shown the possibility of creating a benchmark based on the
distribution of Cm,T+i+1, for gauging its magnitude. This way regulators
could evaluate the VaR models performance according to the distribution
of Cm,T+i+1. However, in order to make this benchmark operational for
regulators, who need a reference model for evaluating the VaR estimations
of banks, it is necessary to assume a process for eσT+i+1, so the results will
depend strongly on the chosen distribution, f(rT+i+1/ΩT+i). In this paper
we directly use the magnitude loss function for making comparison across
VaR models. So, we focus here on the best process which could be used by
regulators to simulate the distribution of Cm,T+i+1.

Table 8 reports the number and magnitude of the exceptions from the
different models for one-day VaR of different percentile sizes (10, 5, 2.5, 1).
We can see that the Student-t models show the best performance according
to these criteria, the long-memory models being the one that provide the
best adjustment to all quantiles, and the Student-t FIAPARCH model being
the most recommendable one for regulatory purposes. On the other hand,
in contrast to what we have seen in the previous sections the AGARCH
and APARCH models only provide sligtly more accurate forecasts than the
worst performer models (GARCH and EWMA). As regards their forecasting
ability according to the size of the quantiles, we observe that under the
Student-t assumption all models provide the right number of exceptions for
all considered quantiles. On the other hand, the Gaussian models tend more
to fail, and more so, the greater the size of the percentile is.

7 Conclusion

In this paper, different conditional heteroskedasticity models based not only
on the Normal but also on the Student-t distribution have been estimated
for IBEX-35 daily returns, and evaluated according to their performance for
out-of-sample volatility and VaR forecasting using different criteria. The
inference drawn gives evidence of that the goodness-of-fit of the FIAPARCH
model with t-innovations is better these of the other models considered in
the analysis. This is due to the fact that the Student-FIAPARCH model
gathers all the empirical features observed in the stock-return volatility
proxies whereas the others do not account for some of them. The assumption
of Student-t errors plays an important role since all t-models perform better
than their Gaussian counterparts.
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Table 8

Number and magnitude of the exception for VaR forecasting

Gaussian Student-t
Number Magnitude Number Magnitude

GARCH

VaR.1

VaR.05

VaR.025

VaR.01

117
63
39
17

1.1537
0.4824
0.2185
0.0897

93
39
14
5

0.7665
0.2430
0.0824
0.0169

AGARCH

VaR.1

VaR.05

VaR.025

VaR.01

115
64
38
14

1.1394
0.4504
0.1773
0.0603

93
41
14
3

0.7490
0.2106
0.0626
0.0155

APARCH

VaR.1

VaR.05

VaR.025

VaR.01

113
63
34
13

1.1161
0.4394
0.1718
0.0574

90
38
12
3

0.7420
0.2063
0.0603
0.0123

EWMA

VaR.1

VaR.05

VaR.025

VaR.01

106
55
30
15

1.0659
0.4626
0.2259
0.1017

92
43
15
5

0.8148
0.2800
0.1063
0.0250

FIGARCH

VaR.1

VaR.05

VaR.025

VaR.01

106
51
29
10

1.0438
0.4217
0.1792
0.0700

86
41
12
3

0.7292
0.2066
0.0611
0.0119

FIAPARCH

VaR.1

VaR.05

VaR.025

VaR.01

107
55
27
9

0.9814
0.3642
0.1305
0.0390

90
41
11
2

0.7477
0.1901
0.0466
0.0103

The exceptions are computed for one-day-ahead VaR.1, VaR.05, VaR.025 and
VaR.01. One exception from model m occurs when the out-of-sample return, rt+1,
goes beyond its corresponding VaR estimate, gV aRm,T+i+1, in that case the
magnitude of the exception is computed as [abs(rT+i+1)− abs(gV aRm,T+i+1)]2.

28



As for the out-of-sample volatility analysis, it is shown that FIAPARCH
models provide more accurate forecasts than the rest of the methods,
although the accuracy loss in forecasting they yield, under the assumption
of Gaussian or t-distributed innovations, is not statistically significant.
However, the t-FIAPARCH model would be the most recommendable
when demanding a significantly smaller probability of overprediction. The
evidence drawn does not allow to conclude that the assumption of Student-t
innovation is no a determining factor in achieving more accurate forecats,
but it biases most models to overpredict volatility. On the other hand, the
worst performer models were found to be the GARCH, FIGARCH and the
EWMA under both assumed distributions.

As regards the assessment of models according to their ability for VaR
forecasting, we have obtained different results depending on the evaluation
criteria considered. Thus, according to the criterion based on the loss
functions, the Gaussian AGARCH and APARCH models showed the best
performance and the Student-t EWMA and FIGARCH the worst one. On
the other hand, according to the criterion based on regulatory loss functions,
the Student-t models showed a much better performance than their Gaussian
counterparts, the t-FIAPARCH method and the Gaussian-GARCH model
being the most and the least recommendable, respectively, for regulatory
purposes. Given these results, it seems that a more detailed analysis on
how the assumed distribution performs in forecasting the tail of the return
distribution would be desirable, but it is beyond the scope of this work.

As a final remark, it would be worth noting that the generalized
use of overpredicting models for regulatory VaR, such as the EWMA
model implemented in the Riskmetrics software, may lead to sub-optimal
allocations of capital resources, lower rates of economic growth, thus
affecting global social welfare.
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APPENDIX

The FIAPARCH(p,d,q) model (Tse, 1998) includes the following specifica-
tions as special cases:

1) The FIPARCH(p,d,q) model when γk = 0 for all k = 1,...,p,

σδt =
ω

1− β(1)
+ [1− [(1− β(L)]−1φ(L)(1− L)d] |εt|δ (A.1)

2) The FIAGARCH(p,d,q) model when δ = 2,

σ2t =
ω

1− β(1)
+ [1− [(1− β(L)]−1φ(L)(1− L)d](|εt|− γkεt)

2 (A.2)

3) The FIGARCH(p,d,q) model of Baillie, Bollerslev and Mikkelsen
(1996) Eq.(7), when δ = 2 and γk = 0 for all k.

4) The IGARCH(p,q) model of Engle and Bollerslev (1986) Eq.(5), when
d = 1, δ = 2 and γk = 0 for all k, the EWMA(1,1) model used in the
RiskMetrics data set when d = 1, δ = 2, γk = 0 and ω = 0 for all k,

σ2t = (1− β)εt−1 + βσ2t−1 (A.3)

5) The APARCH(p,q) model of Ding, Granger and Engle (1993) Eq.(10),
when d = 0, and the other seven specifications included in it, namely,
the ARCH(p) model of Engle (1982) Eq.(2), when d = 0, δ = 2,
γk = 0 for all k, and βs = 0 for all s = 1,...,q; the GARCH(p,q) model
of Bollerslev (1986) Eq.(3), when d = 0, δ = 2 and γk = 0 for all k,
the PARCH(p,q) model when d = 0 and γk = 0 for all k,

σδt = ω +

p[
k=1

αk |εt−k|δ +
q[
s=1

βsσ
δ
t−s (A.4)

the AGARCH(p,q) model of Glosten et al. (1989), when d = 0 and
δ = 2,

σ2t = ω +

p[
k=1

αk(|εt−k|− γkεt−k)
2 +

q[
s=1

βsσ
2
t−s (A.5)

the AVGARCH(p,q) model of Taylor and Schwert (1989), when d = 0,
δ = 1 and γk = 0 for all k,

σt = ω +

p[
k=1

αk |εt−k|+
q[
s=1

βsσt−s (A.6)
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the TARCH(p) model of Zakoian (1991), when d = 0, δ = 1 and βs = 0
for all s = 1, ..., q,

σt = ω +

p[
k=1

α+k ε
+
t−k −

p[
k=1

α−k ε
−
t−k (A.7)

where α+k = αk(1− γk), γ
−
k = αk(1 + γk), ε

−
t−k = εt−k − ε+t−k and

ε+t−k =
�

εt−k if εt−k > 0
0 otherwise

�
(A.8)

the NARCH(p) model of Higgins and Bera (1992), when d = 0, γk = 0
for all k, and βs = 0 for all s = 1, ..., q,

σδt = ω +

p[
k=1

αk |εt−k|δ (A.9)

and, the log-GARCH(p,q) model of Geweke (1986) and Pantula (1986),
when d = 0 and δ → 0,

log σt = ω∗ logω −
p[
k=1

αk log
s
2/π (A.10)

+

p[
k=1

αk log(|εt−k|− γkεt−k) +
q[
s=1

βs log σt−s,

where ω∗ = 1−
pS
k=1

αk −
qS
s=1

βs.

35




