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ABSTRACT 
 

 
We analyze the impact of a drop in fertility on the optimal allocation of 

resources in an overlapping generations economy where old workers care about leisure. 
We also characterize optimal dynamics and study the decentralization of the optimum 
by means of inter-generational transfers and/or public debt. We conclude that the 
policy recommendations of postponing retirement is fragile and depend on preferences 
and technologies. Also, even when the optimal adjustment of public debt goes into the 
expected direction in the long run, -i.e. public debt should decrease,- this may not be the 
case during the transition. 
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Introduction

Over the next half-century, the demographic structure of most of the OECD countries
is expected to change significantly due to the declining fertility observed since the
end of the 60’s. Although opinions differ about the extent of the problem, it is a
general consensus that some adjustment is necessary. Most of the literature concerned
with the aging of the population adopts a numerical approach. These papers provide
evidence on the consequences of the demographic change and estimate the impact of
various social security reforms (lowering pensions benefits, increasing contribution,
reducing national debt in advance, postponing retirement). However, these empirical
contributions are not very conclusive relative to the optimal strategy to follow, as
none of them proposes a clear and precise choice criteria to rank the various policy
options. Some study the effects on the macroeconomic outcomes (output, savings,
taxation level, etc.), others on the actuarial fairness (ratio of present value of lifetime
benefits over present value of lifetime contributions) or on utilities and welfare.

Our objective is to lead the debate from the design of parametric reforms to the op-
timal allocation of resources (consumption, leisure and capital). The basic idea is
that by looking at an optimum problem without looking first at formal policies, one
can get some mileage on policy design. Endowed with the well-defined criterion of
Ramsey (1928), we theoretically assess the impact of a fertility drop on the optimal
allocation and determine the required policy reaction.

In contrast with the theoretical contributions in this field, our model includes endoge-
nous retirement decisions and is therefore suitable to assess the respective merits of
all policy options mentioned above. Various contributions analyze the capacity of in-
tergenerational transfers to induce optimal allocations,1 but all these papers assume
an exogenous retirement age. Endogenous retirement decisions are analyzed by Hu
(1979) and Michel and Pestieau (1999). Hu (1979) assumes that workers optimally
select the share of their time in the second period of life devoted to retirement. If the
transfers are tied to the individual retirement decision, the pension system introduces

1Marchand et al. (1996) study the divergence between the market and the optimal solutions in an
overlapping generations model with changing productivity and fertility (in an endogenous growth
setting). Boadway et al. (1991), Blanchet and Kessler (1991), Peters (1991) and Meijdam and Verbon
(1997) also study the capacity of a pay-as-you-go social security system to reallocate resources across
generations when fertility and productivity vary over time.
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some distortions on the labor supply choice. Michel and Pestieau (1999) compare the
decentralized equilibrium with the Golden Rule and show that in order to achieve
the steady-state first best optimum, one needs to control both an unrestricted pay-as-
you-go transfer and the retirement age.

The short-term perspective is a critical issue in this debate since the new steady state
may be far away from the initial one and may take long to reach. In addition to
determining the effect of a reduced fertility on the first-best long-run allocation of
resources, our paper also analyzes the optimal dynamics. We provide insights con-
cerning the effects of the decline in fertility on the welfare of the first generations and
show that they crucially depend on households’ preferences.

The paper is organized as follows. The first section details the model economy and
characterizes the problem of a benevolent planner. In section 2, we analyze the long-
run effect of a drop in fertility. On one hand, we find that except when parameters
of production and utility function take extreme values, the steady state capital stock
per old worker will be higher after the reduction in fertility. On the other hand, the
optimal adjustment of the retirement age crucially depends on the characteristics of
the production technology and of the preferences of the agents. Section 3 deals with
the policies that should be undertaken to cope with the drop in fertility. This is done
by the way of decentralization theorems. Section 4 focuses on the dynamics along
the transition path to the new steady-state and highlights the short-run effect of the
demographic shock on both the optimal allocation of resources and on the optimal
debt and transfers policies. We show that even when optimal public debt goes into the
expected direction in the long-run, this is not necessarily true during the transition.
Section 5 concludes.

1 The planner’s problem

We consider an overlapping generations economy à la Diamond (1965) with one
physical good that can be either consumed or stored in the form of capital. Time
is discrete and goes from zero to infinity. The households live two periods, they con-
sume and work during these two periods. They supply inelastically one unit of labor
when young. When old they get utility from leisure and they work a share λ of their
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time endowment, as in Hu (1979). This share λ belongs to (0, 1) . The choice of λ

therefore determines the retirement age. The assumed difference in the elasticity of
labor supply over the life-cycle is motivated by several key facts on labor supply and
retirement behavior, summarized in Rust and Phelan (1997).

Households have a utility function defined over consumption when young, consump-
tion when old, and leisure when old. It is separable and takes the following form:

U(.) = u(ct) + βu(dt+1) − v(λt+1)

where β ∈ (0, 1) is the psychological discount factor. The instantaneous utility u(.)
is a strictly increasing, concave function from R+ to R. The derivatives are denoted
uc > 0 and ucc < 0. It is smooth on the interior of R+ and

lim
c→0

uc(c) = +∞. (1)

The disutility of work v(.) is a strictly increasing, convex function from [0, 1] to R. It
is smooth on (0, 1) and

lim
λ→0

vλ(λ) = 0 and lim
λ→1

vλ(λ) = +∞.

The population grows exogenously with

nt =
Nt

Nt−1
> 0.

The variable nt denotes the growth factor of the population. In our settings, the de-
mographic change is a once-for-all reduction in nt. This corresponds to a drop in the
fertility rate at time t: at time t, young workers represent a smaller fraction of total
population.

Firms have a production function displaying constant returns to scale: f (Kt, Lt). It is
an increasing and concave function from R2

+ to R+, homogeneous of degree 1. It is
smooth on the interior of R+. The derivatives are denoted fk, fl > 0, fll, fkk < 0 and
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fkl > 0. When the labor input Lt equals Nt + λtNt−1, production is given by2

f (Kt, Nt + λtNt−1).

Denoting the capital stock per old worker kt = Kt/Nt−1, output per old worker is
given by yt = f (kt, nt + λt). The resource constraint of the economy is

f (kt, nt + λt) = ntkt+1 + ntct + dt. (2)

The capital intensity is denoted:

k̃t =
Kt

Nt + λtNt−1
=

kt

nt + λt
.

The question of the choice of the planner’s discount factor is an old debate. Michel
(1990b) argues that, within an utilitarian set-up, one should choose the discount rate
which allows the economy to converge to the Golden Rule. This discount rate is
equal to the growth rate of population, and the corresponding social objective func-
tion is the un-discounted sum of Ramsey. According to Ramsey (1928), “it is assumed
that we do not discount later enjoyments in comparison with earlier ones, a practice
which is ethically indefensible and arises merely from the weakness of imagination”;
thus the social planner maximizes the undiscounted sum of the life-cycle utility of a
representative individual of all current and future generations. As this social welfare
objective may not be defined, we consider, as Ramsey did,

∞

∑
t=−1

(U(ct, dt+1, λt+1) − Û)

with k0, and c−1 given. c−1 is the hypothetical youth consumption of the first old

2Allowing for different levels of productivity of young and old workers would only require a slight
modification of the production function. This would be given by: f (Kt, Nt + λtNt−1θ), with θ < 1
(θ > 1) implying a negative (positive) return to seniority. It is further assumed for tractability that
young workers and old workers are perfect substitutes. Removing this assumption requires the use
of a production function with three inputs, as in Crettez and Le Maitre (2002); they assume that total
labor input is a non-linear combination of old and young workers Lt = G(Nt, λtNt−1) and focus their
attention on the elasticity of substitution between the two types of workers. To perform this study
they need to simplify other parts of the model, by assuming logarithmic utility and Cobb-Douglas
production.
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generation. Û = sup{U(c, d, λ) under the resource constraint} is the maximum sta-
tionary utility. Ramsey assumes that this maximum utility is finite, as “economic
causes alone could never give us more than a certain finite rate of enjoyment”. In our
model, this is the case if the capital that maximizes the long-term net production is
finite. This is true if the following assumption is satisfied.

Assumption 1

∀n lim
k→0

fk(k, n) > n > lim
k→+∞

fk(k, n + 1).

Alternative social welfare functions include a Benthamite function with discounting
and a Rawlsian maximin function. In the first case, we have to assume an exogenous
discount factor smaller than 1/n to ensure the convergence of the infinite sum. The
problem with this approach is that the ex-ante choice of the constant discount factor
is equivalent to an ex-post choice of the long-run stationary state (the so-called mod-
ified Golden Rule). As far as the second case is concerned, see the application of the
maximin rule in a growth framework by Solow (1974).

As the life-cycle utility function is separable, we can rearrange the objective function
in the following way (grouping the contemporaneous terms together and ignoring
the constant term u(c−1)):

W =
∞

∑
t=0

[
u(ct) + βu(dt) − v(λt) − Û

]
. (3)

The planner thus maximizes W given an initial capital stock k0 and given the resource
constraint (2).

Definition 1 (Optimal allocation)

Given an exogenous path (nt)t�0 and an initial capital k0 > 0, an optimal allocation is a

sequence of strictly positive quantities (ct, dt, λt, kt+1)t�0 with λt ∈ (0, 1) such that the

objective function (3) is maximized subject to the resource constraint (2).

The Lagrangean Lt for period t is the sum of the current utilities and of the increase
in the shadow value of the capital stock, qt+1kt+1 − qtkt, i.e.

Lt = u(ct) + βu(dt) − v(λt) +
qt+1

nt
( f (kt, nt + λt) − ntct − dt) − qtkt.
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For an interior optimal solution, the derivatives of Lt with respect to ct, dt, λt and kt

must be equal to zero. Hence:

uc(ct) = qt+1 (4)

uc(dt) =
qt+1

βnt
(5)

vλ(λt) =
qt+1

nt
fl (kt, nt + λt) (6)

qt+1

nt
=

qt

fk (kt, nt + λt)
. (7)

An optimal path (ct, dt, qt, λt, kt+1)t�0 satisfies (4)-(7) and the transversality condi-
tion.3

2 Long-term effect of the baby bust

Consider that the growth factor of the population is constant, i.e. nt = n ∀t. Then, a
steady state is a stationary path (ct, dt, qt, λt, kt+1) = (c, d, q, λ, k) with positive quan-
tities verifying the optimality conditions:

uc(c) = q (8)

uc(d) =
q

βn
(9)

vλ(λ) =
q
n

fl(k, n + λ) (10)

fk (k, n + λ) = n (11)

f (k, n + λ) = nk + nc + d (12)

Proposition 1 (Existence and Uniqueness of the optimal solution)

Under Assumption 1, the steady state of the dynamics described by (4)-(7) is characterized by

the Golden Rule (11) and it is stable in the saddle-point sense.

See appendix A for a proof. Note that the assumption made in proposition 1 is weaker
than the usual Inada conditions.4

3The transversality condition of this problem states that the limit of the capital stock is the Golden
Rule capital stock in the case where it exists (see Michel (1990)).

4This will allow us to provide examples with CES production functions.
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2.1 Optimal capital

Proposition 2 (Population growth and optimal capital)

The optimal capital intensity increases when fertility drops:
dk̃
dn

< 0.

With a CES production function,

f (k, l) = A
[
αk−ρ + (1 − α)l−ρ

]−1/ρ , A ∈ R+, α ∈ (0, 1), ρ ∈ (−1, ∞)\{0},

the capital per old workers also increases if factors are low substitutes:
dk
dn

< 0 if ρ � 0.

See appendix B for a proof. The decrease in fertility, and therefore in labor supply
is accompanied by a rise in capital intensity: labor is being replaced by capital, the
extent of which is positively related to the degree of substitutability between both
production factors.

With a CES production function, the parameter ρ determines the degree of substi-
tutability between the production factors. The smaller ρ, the larger the degree of sub-
stitutability and the more a decrease in fertility and thereby in labor supply will be ac-
companied by a rise in capital per old worker: labor is replaced by capital: dk/dn < 0
(Note that proposition 2 applies to a Cobb-Douglas production function (ρ → 0)).

When capital and labor are poor substitutes (when ρ is large) however, a decrease in
n might be accompanied by a decrease in k:

Corollary 1 There exists ρ̄, σ̄ such that for all ρ > ρ̄ and all σ < σ̄ we have dk/dn > 0

See appendix C for a proof. When ρ is very large, a decrease in n is likely to be
accompanied by a decrease in k (dk/dn > 0). The opposite result may only arise if
labor input has risen, which implies that λ has increased so much that it outweighs
the drop in n. This only occurs if agents are ready to substitute consumption for
leisure, which is the case when σ is large. At given ν, when σ is small, households
do not accept consumption as a substitute for leisure and so k will move in the same
direction as n.
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2.2 Optimal consumption profile

The drop in fertility further affects the optimal allocation of consumption over the
life-cycle. This is closely linked with the adjustment of q, as stated in the following
proposition:

Proposition 3

If k + c − fl > 0, then
dq
dn

> 0.

In this case, the fertility drop increases young-age consumption:

dc
dn

= −c σ(c)
dq
dn

1
q

< 0

while the effects on old age consumption is given by:

dd
dn

= dσ(d)
(

1
n
− dq

dn
1
q

)
,

where σ(.) is the elasticity of substitution between consumption at two points of time.

See Appendix D for a proof. The expression k + c − fl > 0 represents the derivative of
the resources constraint with respect to n. Given the optimal capital stock, this con-
straint represents the feasible combinations of d, c and λ. When the above condition
is satisfied, the drop in n relaxes the resources constraint: the reduction of resources
necessary to maintain consumption of the young and capital per old worker5 over-
comes the consecutive decrease in total output caused by the drop in labor supply.

The expression k + c − fl > 0 can also be interpreted in the light of the quest for
the optimal growth rate of population by Samuelson (1975), Deardorff (1976), and
Samuelson (1976). The objective of Samuelson (1975) is to maximize steady state so-
cial welfare by choosing both the allocation of resources and the growth rate of pop-
ulation n. It appeared in the subsequent debate Deardorff (1976)-Samuelson (1976)
that the objective is rarely concave with respect to n and that its slope is likely to be
negative. This is in conformity with the old result of neoclassical growth theory that

5The respectively so-called ”intergenerational effect” and ”capital thickening effect”, see Cutler
et al. (1990) and Meijdam and Verbon (1997).
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economies benefit from low or negative population growth. In our set-up with labor
supply of old workers, the problem of the optimal growth rate of population amounts
to maximize the following Lagrangean:

max
c,d,k,λ,n

u(c) + βu(d) − v(λ) + θ ( f (k, n + λ) − n(c + k) − d) .

The term θ( fl − k− c) is the derivative with respect to n. The condition k + c− fl > 0 is
thus equivalent to assume that the objective is decreasing in n. In the sequel we follow
Deardorff (1976) and Samuelson (1976) and consider that k + c − fl > 0, although we
occasionally provide the results under the opposite assumption.

When k + c − fl > 0, the drop in fertility constitutes a positive shock, which releases
resources in the economy. These freed resources can potentially be allocated to con-
sumption of the young and of the old, and to leisure. The following corollary indi-
cates a priority ranking in the optimal allocation of the freed resources: young-age
consumption is given priority, then comes the consumption when old, and finally,
the retirement age is eventually decreased.

Corollary 2

dλ

dn
> 0 ⇒ dd

dn
< 0 ⇒ dc

dn
< 0

See Appendix E for a proof. Resources will first of all be used to increase the con-
sumption of the young as it is relatively less expensive than the consumption of the
old when fertility has dropped. The planner may further decide to either increase or
decrease the consumption of the old and the retirement age depending on the shape
of the utility function. In the next subsections, we shall focus on the role of σ. Indeed,
at given ν, σ determines the extent to which the three commodities are substitutable
in the utility function.

2.3 Optimal retirement age

We use the total derivative of equation (11) in order to compute dλ/dn:
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Proposition 4 (Population growth and optimal retirement age)

The effect of a drop in fertility on the optimal retirement age at the steady state is given by

dλ

dn
=

(
−1 +

1
fkl

)
+

n + λ

n
dk
dn

n
k

, (13)

The total effect of a fertility drop can be decomposed in two different effects. The
first term in (13) constitutes the direct effect of a change in n, while the second term
represents the effect induced by a change in n through a subsequent change in k.

The intuition behind the direct effect can be understood by looking at the Golden
Rule (equation (11)). When calculating its total derivative (holding k constant) we
obtain fkl(dn + dλ) = dn: a drop in n (a) reduces the optimal marginal productivity
of capital per old worker, and (b) effectively decreases the marginal productivity of
capital per old worker by diminishing labor input. The importance of this second
effect is determined by fkl. When dividing the total derivative by dn and by fkl, we
have dλ/dn = 1/ fkl − 1. This expression, which corresponds to the first term in (13),
indicates by how much the retirement age should change following a drop in n (and
holding k constant), in order to stick to the Golden Rule. If fkl = 1 and if a change in
n is not accompanied by a change in k (dk/dn = 0), the retirement age should remain
unchanged.

However, a change in n will also induce a change in steady state capital per old
worker. The second term in (13) depends on the elasticity of capital per old to pop-
ulation growth. The effect on λ of a change in n through this elasticity always goes
in the same direction as dk/dn. Indeed, given that the marginal productivity of labor
rises with capital, an increase (decrease) in capital input gives an incentive (for the
planner) to increase (decrease) the labor input through a rise (drop) in the retirement
age. The relative importance of these two effects will finally determine the sign of
dλ/dn. The value of σ plays an important role in the balance of these two effects.

Corollary 3 There exists σ̂ such that for all σ > σ̂ we have dλ/dn < 0

See appendix F for a proof. As mentioned before, a large σ given ν implies that agents
easily substitute consumption for leisure. They are thus ready to give up leisure in
order to promote young-age consumption when fertility declines.
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Finally, note that the optimal adjustment of the retirement age to a fertility drop is
ambiguous only in the case the resources constraint is relaxed:

Corollary 4 When a drop in fertility tightens the resources constraint, i.e. k + c − fl < 0,

the optimal retirement age should increase (dλ/dn < 0).

See appendix F for a proof.

3 Optimal policy

Various empirical evaluations have been carried out to highlight the impact of de-
mographic change and the effect of potential reforms. Some authors have estimated
the effect of adjusting intergenerational transfers through an increase in contribution
rates, a reduction of pension benefits or a switch to a fully-funded scheme. Examples
are in Miles (1999), Chauveau and Loufir (1996), Kotlikoff (1996), and Conesa and
Krueger (1999). Other studies have considered an additional reform: a change in the
retirement age. Examples are Cazes et al. (1994), Auerbach et al. (1989), De Nardi
et al. (1999), and Kotlikoff et al. (2001). The reduction in national debt is considered
as a potential reform by some economists, as Huang et al. (1997) or Greenspan.6

Having characterized the evolution of the optimal allocation of resources following
a reduction of fertility, we are now able to compute the optimal policy reaction us-
ing decentralization theorems. Assuming both that an optimum policy exists and
that it converges to a steady state, Atkinson and Sandmo (1980) show that a first-
best allocation can be achieved if the government can use lump-sum taxes that re-
distribute wealth among generations. As an alternative to those transfers, Diamond
(1965) shows that public debt can be used as an instrument to decentralize the Golden
rule as a competitive equilibrium. We now extend these set-ups to our model.

6As Greenspan advocated in March 2000 in testimony to the Congressional Special Committee on
Aging, using budget surpluses to repay national debt would be the best for the U.S. economy and a
good way to prepare for the baby boomers’ retirement.
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3.1 Decentralization with lump-sum transfers

In this section, we assume that the government provides the young and the old with
a lump-sum transfer. We characterize the competitive equilibrium with lump-sum
transfers. The maximization program of the individual is:

max
ct ,dt+1,λt+1

u(ct) + βu(dt+1) − v(λt+1)

subject to ct + st = wt + τ1
t (14)

dt+1 = Rt+1st + τ2
t+1 + wt+1λt+1 (15)

where τ1
t , τ2

t+1 ∈ R, are lump-sum transfers, st represents savings and Rt+1 is the
interest factor. wt and wt+1 denote wages. The maximization problem has a solution
if the life-cycle income is positive. The first order conditions are

uc(ct) = βRt+1uc(dt+1) (16)

βuc(dt+1)wt+1 = vλ(λt+1).

The first condition allows to define a saving function

st = s(wt + τ1
t , τ2

t+1 + wt+1λt+1, Rt+1)

with its derivatives satisfying s1 ∈ (0, 1), s2 ∈ (−1, 0) and s3 ∈ R.

The competitive behavior of firms leads to the equalization of marginal productivities
to marginal costs:

Rt = fk(kt, nt + λt) (17)

wt = fl(kt, nt + λt). (18)
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The budget constraint of the government is

τ2
t = −τ1

t nt, (19)

and the equilibrium condition in the capital market implies

kt+1 = s(wt + τ1
t , τ2

t+1 + wt+1λt+1, Rt+1). (20)

Definition 2 (Competitive equilibrium with lump-sum transfers)

Assume an exogenous path (nt)t�0, an initial capital k0 > 0 and a transfer system (τ1
t , τ2

t )t�0

satisfying (19). A competitive, perfect-foresight, inter-temporal equilibrium is a vector (ct, dt,
λt, kt, st, Rt, wt)t�0 starting at k0 and satisfying the conditions (14)–(18) and (20).

Proposition 5 (Decentralization with lump-sum transfers)

For any optimal allocation with positive quantities (c�
t , d�

t , λ�
t , k�

t )t�0 starting at k0, there ex-

ists a transfer system (τ1
t , τ2

t )t�0 satisfying (19) such that this trajectory is an inter-temporal

equilibrium with perfect foresight. The sequences (τ1
t , τ2

t )t�0 satisfy:

τ2
t = −ntτ

1
t = nt

(
fl(k�

t , nt + λ�
t ) − k�

t+1 − c�
t
)

See appendix G for a proof. Lump-sum transfers can be used to set the level of savings
so as to obtain the optimal stock of capital. Since both the individual allocation rule of
consumption over the life cycle and the labor supply rule are the same as the optimal
ones, there is no need for another instrument. This proposition generalizes the result
of Michel and Pestieau (1999) to non-steady-state allocations and to the case where
the retirement age is not mandatory. Observe that, when the fertility drop relaxes the
resources constraint of the economy, the transfer from old workers to young workers
is positive. Note that, at steady state, we have:

τ1 = −( fl(k�, n + λ�) − k� − c�) = −τ2

n
(21)

15



3.2 Optimal Public Debt policy

When public debt is used and transfers are imposed on the young generation only
(this is the Diamond (1965) set-up), the individuals’ budget constraints become:

ct + st = wt + τt (22)

dt+1 = Rt+1st + wt+1λt+1 (23)

while the budget constraint of the government becomes:

Rtbt + ntτt = ntbt+1 (24)

where bt ≡ Bt/Nt−1 is the debt per old worker. The debt is held by the households. It
thus diverts part of private savings from productive capital:

bt+1 + kt+1 = s(wt + τt, wt+1λt+1, Rt+1) (25)

Definition 3 (Competitive equilibrium with public debt)

Assume an exogenous path (nt)t�0, an initial capital k0 > 0 and a debt policy (bt, τt)t�0

satisfying (24). A competitive, perfect-foresight, inter-temporal equilibrium is a vector (ct, dt,
λt, kt, st, Rt, wt)t�0 starting at k0 and satisfying the conditions (16)–(18) and (22)-(23)-(25).

Proposition 6 (Decentralization with public debt)

For any optimal allocation with positive quantities (c�
t , d�

t , λ�
t , k�

t )t�0 starting at k0 there

exists a debt policy (bt+1, τt)t�0 such that this trajectory is an inter-temporal equilibrium

with perfect foresight. The sequence (bt+1, τt)t�0 satisfies:

bt+1 = fl(k�
t , nt + λ�

t ) − k�
t+1 − c�

t + τt

τt =
ntbt+1 − fk(k�

t , nt + λ�
t )bt

nt

b0 being given.
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See appendix H for a proof. Debt7 can be used to obtain the optimal stock of capital
and lump-sum transfers to the young balance the budget or vice-versa. Note that, at
steady state, the optimal transfer is zero since the Golden Rule fk = n holds:

b = fl(k�, n + λ�) − k� − c� (26)

τ = 0.

3.3 Optimal policy response

In the long-run, the effect of a demographic change on the optimal transfer to the
young or on the level of debt is given by the following proposition.

Proposition 7 (Optimal policy response)

−dτ1

dn
=

db
dn

> 0 ⇔ −k
dk
dn

n
k
− c

dc
dn

n
c
− k

n + λ
> 0

See appendix I for a proof. If optimal capital per old worker increases sufficiently,
and if it is optimal to sufficiently increase the consumption of the young, then one
should reduce public debt or alternatively one should favor transfers to the young.

Given that τ2 = −nτ1 = nb, the effect of a fertility drop on the transfers to the old is
given by ndb/dn + b with b = fl − c − k. This allows us to state the following:

Proposition 8 (Comparison of Policy instruments)

If k + c − fl > 0, then
dτ2

dn
> 0 ⇒ db

dn
> 0 and

db
dn

> 0 �
dτ2

dn
> 0,

If k + c − fl < 0, then
db
dn

> 0 ⇒ dτ2

dn
> 0 and

dτ2

dn
> 0 �

db
dn

> 0.

The assumption k + c − fl > 0 (k + c − fl < 0) implies that the resource constraint
becomes less (more) stringent after the drop in fertility. When k + c − fl > 0 (k + c −
fl < 0), reducing public debt is more (less) robust a policy response than adjusting
intergenerational transfers.

7A negative debt is not excluded and corresponds to a situation where the government detains a
part of the productive capital. This will be the case if the drop in n releases resources at the optimal
steady-state.
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Figure 1: The phase diagram.

4 Optimal dynamics with an anticipated baby bust

The previous sections focused on the long-run optimal adjustment to the baby bust.
However, the new steady-state may be far away from the initial one and long to reach.
Until so far we did not provide insights concerning the effects of this shock during
the transition and hence on the welfare of the first generations, which actually matter
in the current policy debate. In the present section we study the optimal dynamics.
For the sake of reality, the baby bust is supposed to be anticipated by one period. In-
deed, in this theoretical framework individuals are only represented when they have
reached the working age. It is therefore realistic to assume that the shock affecting
the economy in period 2 is observed and anticipated today (period 1).

The dynamics of the system around the steady state can be described using the phase
diagram in figure 1. A detailed derivation of the phaselines and the direction of mo-
tion can be found in appendix J. The intersection of the two phaselines represents the
steady-state. This figure illustrates that there is only one trajectory converging to the
steady-state (represented by the bold line in figure 1).
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Figure 2: Dynamics: cases 1 and 2.

This graphic can be used to study the dynamic adjustment following a drop in fertil-
ity. In the light of the previous results, we focus on the case where the drop in n relaxes
the resources constraint (implying dq/dn > 0) and increases the optimal capital stock
per old (dk/dn < 0). In this situation, the phaseline qt+1 = qt shifts unambiguously
to the right. The phaseline kt+1 = kt may shift either upward or downward, when
the elasticity of substitution σ is respectively large and small.

Figure 2 displays the dynamic adjustment associated with the two cases. The solid
and dotted lines represent the phaselines before and after the shock respectively. Bold
dots represent the optimal path. Time 0 is the initial steady state. At time 1 the shock
is anticipated and it takes place at time 2. The thin arrow indicates the new saddle-
path. A planner anticipating (in period 1) a fertility drop for the next period (period
2) will change the allocation in period 1 so as to be on the new saddle-path in the next
period. As the line kt+1 = kt shifts upwards in case 1 and downwards in case 2, the
saddle-path is located above the initial line kt+1 = kt in case 1 and below in case 2.

In case 1, q is higher than its initial value in period 1 and 2. Hence, in period 1 (n still
unchanged and k still at the initial steady state), c and d must be decreased. This con-
sumption squeeze fosters capital accumulation and allows for a rapid convergence
to the higher long-term capital stock. Consequently, not only current old individu-
als but also currently young individuals will bear the cost of the rapid transition to
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the new steady state to the benefit of all future generations. The story is different
in case 2. The planner uses the capital freed by the “capital-thickening effect” to in-
crease young-age and old-age consumptions in period 1 (reflected by the drop in q).
This temporarily reduces the capital accumulation and puts the economy on the new
saddle path. Along this path, the adjustment is slower than in the first case, but no
generation is loosing.

Example

Let us numerically illustrate the optimal transition in the centralized economy, and
analyze how this translates into optimal dynamics of debt and intergenerational trans-
fers. We assume a utility function with constant elasticity of substitution:

u(c) =
(

1 − σ−1
)−1

c1− 1
σ , σ ∈ (0, ∞)\{1}

and the following disutility:

v(λ) = − ln(1 − λ) + λ

2

which satisfies vλ(0) = 0 and vλ(1) = ∞. We assume a Cobb-Douglas production
function: f (k, n + λ) = Akα(n + λ)1−α. We choose a psychological discount factor of
4% per year (β = 0.2727), a share of capital income in output of 0.3 (α = .3), and
A = 2.5. The parameter n captures both the demographic growth rate and the rate of
improvement in the efficiency of the labor force (exogenous technological progress).
The demographic shock is modelled as a permanent drop in n from 3% per year to
2.5%, which implies that n goes from 2.43 to 2.10.

Table 1 illustrates the dynamic effects in terms of resources allocation in our example.
Case 1 is illustrated by the example with σ = 2 and concerns columns 1-3. The cost
supported by the first old and the first young generations appears clearly under the
form of a drop in their consumption levels and an increase in the retirement age. Case
2 is illustrated by the example with σ = 0.1 and concerns columns 4-6. In this case,
the consumption and leisure of all generations are increased. So no generation looses
in the transition process.
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Table 1: Dynamic effects of the baby bust on the optimal allocation

σ = 2 σ = 0.1

t ct dt 1 − λt ct dt 1 − λt

1 −1.0 −1.0 −0.2 +1.4 +1.4 +8.1

2 +10.0 −17.8 −6.3 +2.4 +0.9 +4.4

3 +12.4 −16.1 −6.7 +3.0 +1.5 +7.0

4 +12.9 −15.7 −6.8 +3.4 +1.9 +8.5

∞ +13.0 −15.6 −6.8 +3.9 +2.4 +10.7

Percentage deviation from a constant n solution

The analysis of the optimal dynamics highlights that the welfare effects of a fertility
drop on the initial generations again crucially depend on the parameters, and in par-
ticular on the concavity of the utility function. Table 2 displays the corresponding
optimal policy reactions as far as the decentralization instruments are concerned.

Table 2: Dynamic effects of the baby bust on optimal transfers and debt

σ = 2 σ = 0.1

t τ1
t τ2

t bt τ1
t τ2

t bt

1 +0.5 −0.5 +0.0 −4.9 +4.9 +0.0

2 +20.5 −4.1 −14.3 +0.1 +13.5 +9.5

3 +22.8 −6.2 −21.5 +1.3 +12.4 +4.6

4 +23.3 −6.6 −23.0 +2.1 +11.8 +1.5

∞ +23.4 −6.7 −23.4 +3.1 +10.9 −3.1

Percentage deviation from a constant n solution

We observe that the sign of the long-run optimal adjustment in terms of public debt
and transfers to the young is insensitive to the concavity of the utility function: the in-
crease in transfers to the young workers and the reduction of national debt constitute
an optimal long run response in both cases (σ = 2 and σ = 0.1).
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The short run, however, shows a different picture. When σ is large, the adjustment
is rapid and is realized essentially through a sharp decrease in national debt, or an
increase in transfers to the young. Both policies aim at rapidly generating the newly
required increased capital intensity: a decrease in public debt frees resources oth-
erwise diverted from productive capital; part of the increase in the transfers to the
young will end up as increased savings. The observed accompanying decrease in
transfers to the old is another way to induce more savings by the young.

When σ is small, the contrary is observed in the short run. Debt rises strongly in
period 2 in order to allow for higher consumption levels, and a lower retirement age.
The optimal lower retirement age, -and the subsequent decrease in labor earnings of
the old workers- together with the optimal increased consumption level of the old
explain the considerable increase in transfers to the old.

According to these dynamic simulations we can thus conclude that, although the di-
rection of the optimal response in terms of national debt and transfers to the young is
insensitive to the concavity of the utility function in the long run, this is not necessar-
ily so in the short run. More particularly, even when the optimal response to a drop
in fertility in terms of public debt policy goes into the expected direction in the long
run, -i.e. public debt should decrease,- this may not be the case during the transition.

5 Conclusion

In this paper we focus on the consequences of a decline in fertility for the optimal
allocation of resources. Most of the literature concerned with the aging of the popu-
lation adopts a numerical approach and studies the effect of various policy reforms.
Our objective is to switch the debate from the design of parametric reforms to the op-
timal allocation of resources (consumption, leisure and capital). Endowed with the
well-defined criterion of Ramsey (1928), we theoretically assess the impact of a fer-
tility drop on the optimal allocation. In contrast with the theoretical contributions in
this field, our model includes endogenous retirement decisions.

Our analysis of the long-run optimal allocation allows to conclude the following.
First, the optimal capital intensity increases after a drop in population. Second, the
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optimal retirement age may either increase or decrease when the drop in fertility con-
stitutes a positive shock for the economy. While it is then feasible and optimal to
increase the per capita consumption of at least the young, the optimal response of
the retirement age, however, crucially depends on the parameters, and in particular
on the concavity of the utility function. The policy recommendation of postponing
retirement is thus not robust to a wide class of preferences and technologies.

In order to translate these effects in terms of optimal retirement policies, we char-
acterize the decentralization of the optimum either through lump-sum transfers or
with public debt. In the long run, when the new optimal capital intensity and the
consumption level of the young increases sufficiently, national debt should decrease
or alternatively transfers to the young should increase.

The study of the optimal dynamics highlights that the welfare effects of the fertility
drop on the initial generations also depend on the concavity of the utility function. As
far as the decentralization instruments are concerned, dynamical simulations show
that, even when the optimal public debt policy reaction goes into the expected direc-
tion in the long-run, it may go into the opposite way during the transition.
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A Proof of proposition 1

A.1 Existence

The steady state is characterized by the system of equations (8)-(12).

On the one hand, the Golden Rule (11) determines a unique relationship in the space
{k, λ} between steady state capital and λ for given n: when taking the total derivative
of (11) we get dk/dλ = − fkl/ fkk > 0. On the other hand, equations (8)-(12) establish
another relationship between k and λ that should be verified at the steady state. We
shall prove that both equations in k and λ intersect at least once, in which case we can
conclude that there exists at least one steady state.

The Golden Rule (11) implies that ∀λ ∈ (0, 1), there exists one level of k which satisfies
this rule. Now define

k ∈ R+ : fk(k, n + λ) = n for λ = 0

k̄ ∈ R+ : fk(k̄, n + λ) = n for λ = 1. (27)

with k < k̄. This is, k and k̄ are the levels of capital satisfying (11) for λ = 0 and λ = 1
respectively.

In the next step we identify two pairs (k, λ) belonging to the curve defined by equa-
tions (8)-(12); one of which lies above and the other below the upwards sloping (k, k̄)-
curve determined by (11). This will allow us to conclude that both curves cross at
least once.
We define k̂ as the steady state capital which satisfies (8)-(12) for λ = 1. Since
vλ(1) = ∞, according to (10) q also tends to infinity ( fl is strictly positive and fi-
nite by assumption). Given (8) and (9) this implies that consumption in both periods
tends to zero (because of the limit condition (1)). Hence the resource constraint (12)
becomes f (k̂, n + 1) = nk̂; or

f (k̂, n + 1)
k̂

= n > fk(k̂, n + 1).

The inequality derives from the Euler theorem implying that f (k)/k > fk. Given (27)
and because of decreasing marginal productivity of capital, we can deduce that k̂ > k̄,
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and thus that (k̂, n + 1) lies above the (k, k̄)-curve determined by the Golden Rule.

It is further straightforward to see that when k = k, (8)-(12) imply that λ ∈ (0, 1): on
one hand we have that fl(k, .) is strictly positive and finite. On the other hand f (k, .)
is strictly positive and finite and greater than nk. Indeed, f (k, n)/k > fk(k, n) = n

implies f (k, n + λ) > nk, allowing for strictly positive and finite consumption c and
d. Consequently, q is also strictly positive and finite, given (8)-(9). Further, according
to (10), vλ ∈ (0, ∞), which implies that λ ∈ (0, 1) for k = k. We can conclude that
∀λ ∈ (0, 1), (k, λ) lies below the (k, k̄)-curve determined by (11) since the latter is
upwards sloping and starts in (k,0). We can thus conclude that given continuity of
(11)-(12), there is at least one intersection in the (k, λ)-plane.

A.2 Uniqueness

We can characterize the first-best solution as follows: an optimal allocation and its
supporting implicit price (qt)t�0 are characterized by the two dynamic equations

kt+1 =
1
nt

[
f (kt, nt + λt) − C

(
qt

fk (kt, nt + λt)

)]
(28)

qt+1 =
ntqt

fk (kt, nt + λt)
(29)

where total consumption C(.) is given by

C
(

qt

fk (kt, nt + λt)

)
= ntct + dt = ntuc

−1
(

ntqt

fk (kt, nt + λt)

)
+ uc

−1
(

qt

β fk (kt, nt + λt)

)
,

and the static equation

vλ(λt) − qt
fl (kt, nt + λt)
fk (kt, nt + λt)

≡ h(kt, qt, λt) = 0, (30)

The dynamics of the economy can be reduced to a system of two equations:

kt+1 = Φ(kt, qt) (31)

qt+1 = Ψ(kt, qt); (32)
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In appendix J we show that the slope dk/dq of the curves (31) and (32) evaluated at
the steady state are negative and positive respectively. In section A we showed that
there exists at least one steady state. Hence both curves cross at least once. Suppose
there is a second steady state implying that (31) and (32) cross again with a positive
and negative slope respectively. By continuity of (31) and (32) this would imply the
existence of at least a third steady state, again determined by the intersection of the
two curves, but where at least one of the curves has its slope reversed. This is in
contradiction with the characterization of the steady state itself. Hence, the steady
state is unique.

A.3 Stability

To study the characteristics of the dynamics, we take a first order Taylor expansion of
the system around its unique steady state (k, q) in order to study the local dynamics.
This leads to 

 kt+1 − k

qt+1 − q


 =


 a1 a2

b1 b2





 kt − k

qt − q




with the partial derivatives taken at the steady state (k, q):

a1 =
∂Φ
∂kt

=
fk

n
+

fl

n
dλ

dk
+

Cz

n
q fkk

( fk)2 +
Cz

n
q fkl

( fk)2
dλ

dk

a2 =
∂Φ
∂qt

=
1
n

(
fl

dλ

dq
− Cz

fk
+ Cz

q fkl

( fk)2
dλ

dq

)

b1 =
∂Ψ
∂kt

= −n
q

( fk)2

(
fkk + fkl

dλ

dk

)

b2 =
∂Ψ
∂qt

=
n
fk

(
1 − q fkl

fk

dλ

dq

)

where Cz is the derivative of C with respect to its argument. The derivatives dλ/dk

and dλ/dq are given by

dλ

dk
=

q f f l − vλ fkl

vλλ fk + vλ fkl − q fll
> 0

dλ

dq
=

fl

vλλ fk + vλ fkl − q fll
> 0.
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The characteristic polynomial of the linear approximation is given by

p(µ) = µ2 − (a1 + b2)µ + a1b2 − a2b1. (33)

When substituting for dλ/dk and dλ/dq, and rearranging terms we have that

a1 + b2 = 2 +
Czq fk fkkvλλ − fl( fk)2 fkkvλ

n( fk)2(vλλ fk + vλ fkl − q fll)
(34)

a1b2 − a2b1 = 1. (35)

From (33)-(35) we can see that p(0) > 0 and p(1) < 0, which corresponds to a steady
state stable in the saddle-point sense.

B Proof of proposition 2

To study the effect of a drop in n on the optimal capital intensity we use k̃ and ỹ, the
capital and output per labor unit respectively. So we have

k̃ =
k

n + λ
and ỹ =

y
n + λ

= f (k̃),

and the corresponding Golden Rule fk̃(k̃) = n. When deriving the Golden Rule with
respect to n it is straightforward to show that

dk̃
dn

=
1
fk̃k̃

< 0.

In order to study the effect of a drop in fertility on the optimal capital per old worker
at the steady state, we compute the total derivatives of the optimality conditions (8)-
(11) and the resource constraint (12) with respect to c, d, k, λ, q and n. The total
derivatives of (8) and (9) allow us to express dc/c and dd/d as follows

dc
c

= −σ(c)
dq
q

and
dd
d

= −σ(d)
(

dq
q

− dn
n

)
where σ(c) = − uc(c)

ucc(c)c
. (36)

The term σ(c) is the elasticity of substitution between consumption at two points of
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time. We also define
ν ≡ vλλλ

vλ
> 0 (37)

as the elasticity of the disutility of work, and

η ≡ fll l
fl

< 0, ε ≡ fkl l
fk

> 0 (38)

as the elasticities of the marginal productivity of labor and capital with respect to
labor.

When substituting (36) in the total derivatives of (10), (11), and (12), we obtain a
system of three equations and three unknowns, dk/dn, dq/dn, and dλ/dn. Using (37)
and (38), we obtain

dk
dn

n
k

= −1
ε

+
c + k − c σ(c) +

(η

ε
+

ν

λ

)
(n c σ(c) + d σ(d))

c +
d
n

+ ν

(
1
λ

+
1
n

)
(n c σ(c) + d σ(d))

. (39)

This expression can be rewritten as

−c σ(c) +
η

ε
(n c σ(c) + d σ(d))

N
+

c + k − n
n + λ

(
c +

d
n

)

N
+

n
n + λ

− 1
ε

, (40)

where N = c + d/n + ν(n + λ)(n c σ(c) + d σ(d))/(nλ) > 0. The first term in (40)
is unambiguously negative. The second, third, and fourth term can be grouped as
follows:

c + k − n
n + λ

(
c +

d
n

)
+

(
n

n + λ
− 1

ε

)
N

N
. (41)

When developing the numerator and after simplifying, (41) becomes

ν

(
1 − n + λ

nε

)
n c σ(c) + d σ(d)

λ

N
+

c + k − 1
ε

(
c +

d
n

)

N
. (42)

In the case of a CES production function we can rewrite 1 − (n + λ)/(nε) as (n fl −
f /(1 + ρ))/(n fl); it is straightforward to see that the first term in (42) is negative for
ρ < 0. The numerator of the second term is equivalent to c + k − f /(1 + ρ), which is
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also clearly negative for ρ < 0.

C Proof of corollary 1

When σ tends to zero, (39) becomes

−1
ε

+
c + k

c +
d
n

=
c + k − 1

ε

(
c +

d
n

)

c +
d
n

.

In the case of a CES-production function, c + k − 1/ε(c + d/n) can be rewritten as
c + k − f /(1 + ρ). This term will be positive for large ρ.

D Proof of proposition 3

By totally differentiating the resources constraint and using (36), we get:

(
c σ(c) + d σ(d)

1
n

)
dq/q
dn/n

= k + c − fl +
d σ(d)

n
− dλ

dn
fl . (43)

When substituting (39) into (13), the effect of a change in n on λ can be rewritten as

dλ

dn
=

c + k − fl − c σ(c) + (n c σ(c) + d σ(d))
η

ε

fl +
ν(n c σ(c) + d σ(d))

λ

. (44)

This allows us to express dλ/dn fl as follows:

c + k − fl − X
1 + Y

with
X = c σ(c) − (n c σ(c) + d σ(d))

η

ε
> 0
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and
Y =

ν(n c σ(c) + d σ(d))
λ fl

> 0

Equation (43) therefore becomes:

(
c σ(c) + d σ(d)

1
n

)
dq/q
dn/n

= (k + c − fl)
(

1 − 1
1 + Y

)
+

d σ(d)
n

+
X

1 + Y

It is straightforward to see that a sufficient condition for dq
dn

to be positive is that
(k + c − fl) > 0.

E Proof of corollary 2

E.1 dλ
dn > 0 ⇒ dd

dn < 0

On one hand, when totally differentiating (9) with respect to n, we obtain:

dd
dn

n
d

= σ(d)
(

1 − dq
dn

n
q

)
. (45)

On the other hand, totally differentiating (10) and (11) with respect to n allows us to
express dq/dn as follows:

dq
dn

n
q

= 1 − n
fl

fkl

fkk
+

n2

q
vλλ

fl

dλ

dn

When substituting the above expression in (45) we get

dd
dn

n
d

= σ(d)
(

n
fl

fkl

fkk
− n2

q
vλλ

fl

dλ

dn

)
. (46)

From (46) it is straightforward to see that a decrease in the retirement age (dλ/dn > 0)
implies an increase in consumption of the old.

E.2 dd
dn < 0 ⇒ dc

dn < 0

This result derives directly from proposition 3.
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F Proof of corollary 3 and 4

¿From (44) it is straightforward to see that dλ/dn < 0 (a) for large σ, and (b) when
fl − c − k > 0.

G Proof of proposition 5

We follow the proof in de la Croix and Michel (2002). The government budget con-
straint and equation (15) allow us to express the transfers in the following way, for all
t � 0:

τ2
t = d�

t − fk(k�
t , nt + λ�

t )k�
t − fl(k�

t , nt + λ�
t )λ�

t

which are the levels that allow the old workers to consume d�
t at equilibrium. Using

the resource constraint and the Euler theorem, this implies

τ2
t = nt( fl(k�

t , nt + λ�
t ) − k�

t+1 − c�
t )

The corresponding transfer to the young is given by

τ1
t = k�

t+1 + c�
t − fl(k�

t , nt + λ�
t )

Consider any date t � 0. At the given capital stock k�
t , and assuming perfect forecasts,

the optimal choices ct, dt+1, and st of the agents for period t are characterized by

uc(ct) = fk(k�
t+1, nt+1 + λt+1)βuc(dt+1)

vλ(λt+1) = βuc(dt+1) fl(k�
t+1, nt+1 + λt+1)

ct = fl(k�
t , nt + λt) + τ1

t − st

dt+1 = fk(k�
t+1, nt+1 + λt+1)st + τ2

t+1 + fl(k�
t+1, nt+1 + λt+1)λt+1

From equations (9) and (10) we know that the optimal retirement age is characterized
by:

βuc(dt+1) =
vλ(λ�

t+1)
fl(k�

t+1, nt+1 + λ�
t+1)

which implies that λt+1 = λ�
t+1.
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After substituting for the transfers, the last two equations become

ct = k�
t+1 + c�

t − st

dt+1 = fk(k�
t+1, nt+1 + λ�

t+1)st + (nt+1 + λ�
t+1) fl(k�

t+1, nt+1 + λ�
t+1) − nt+1(k�

t+2 + c�
t+1)

= fk(k�
t+1, nt+1 + λ�

t+1)(st − k�
t+1) + f (k�

t+1, nt+1 + λ�
t+1) − nt+1(k�

t+2 + c�
t+1)

= fk(k�
t+1, nt+1 + λ�

t+1)(st − k�
t+1) + d�

t+1

st = k�
t+1, λt+1 = λ�

t+1, ct = c�
t and dt+1 = d�

t+1 is the unique solution of the above
system.

H Proof of proposition 6

Using (22), the government budget constraint (24), and the capital market equilibrium
condition (25), the level of public debt that allows the young agents to consume c�

t at
equilibrium can be defined as follows:

c�
t = fl(k�

t , nt + λ�
t ) + τt − k�

t+1 − bt+1

or equivalently as
bt+1 = fl(k�

t , nt + λ�
t ) + τt − k�

t+1 − c�
t

From the government budget constraint, the corresponding transfer level is:

τt =
ntbt+1 − fk(k�

t , nt + λ�
t )bt

nt

Consider any date t � 0. At the given capital stock k�
t , and assuming perfect forecasts,

the optimal choices ct, dt+1 and st of the agents for period t are characterized by

uc(ct) = fk(k�
t+1, nt+1 + λt+1)βuc(dt+1)

vλ(λt+1) = βuc(dt+1) fl(k�
t+1, nt+1 + λt+1)

ct = fl(k�
t , nt + λt) + τt − st (47)

dt+1 = fk(k�
t+1, nt+1 + λt+1)st + fl(k�

t+1, nt+1 + λt+1)λt+1 (48)
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From equations (9) and (10) we know that the optimal retirement age is characterized
by:

βuc(dt+1) =
vλ(λ�

t+1)
fl(k�

t+1, nt+1 + λ�
t+1)

which implies that λt+1 = λ�
t+1. After substituting for the transfers and using (25),

equation (47) becomes:

ct = c�
t

Substituting for the transfers in equation (48), we get:

dt+1 = fk(k�
t+1, nt+1 + λ�

t+1)k�
t+1 + fl(k�

t+1, nt+1 + λ�
t+1)λ�

t+1 + fk(k�
t+1, nt+1 + λ�

t+1)bt+1

= f (k�
t+1, nt+1 + λ�

t+1) − fl(k�
t+1, nt+1 + λ�

t+1)nt+1 + nt+1(bt+2 − τt+1)

= d�
t+1 + nt+1(c�

t+1 + k�
t+2 − fl(k�

t+1, nt+1 + λ�
t+1))

+nt+1(−c�
t+1 − k�

t+2 + fl(k�
t+1, nt+1 + λ�

t+1))

= d�
t+1

Therefore, bt+1 + st = k�
t+1, ct = c�

t , dt+1 = d�
t+1, and λt+1 = λ�

t+1 is the unique
solution of the above system.

I Proof of proposition 7

The steady-state level of transfer to the young is given by τ1 = −( fl(k, n + λ)− k − c).
By totally differentiating this expression we obtain:

dτ1

dn
= −

(
flk(k, n + λ)

dk
dn

+ fll(k, n + λ)
(

1 +
dλ

dn

)
− dc

dn
− dk

dn

)

Using (13) we get:

dτ1

dn
= −

((
fkl(k, n + λ) − 1 + fll(k, n + λ)

n + λ

k

)
dk
dn

fll(k, n + λ)
fkl(k, n + λ)

− dc
dn

)

= −
(
−dk

dn
− dc

dn
− k

n + λ

)
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= − k
n

(
−n

k
dk
dn

+ σ(c)
dq
dn

n
q

c
k
− n

n + λ

)

At the steady-state, the public debt is given by b = fl(k, n + λ) − c − k = −τ1. The
total differentiation of this equation is therefore given by:

db
dn

= −dτ1

dn
=

k
n

(
−n

k
dk
dn

+ σ(c)
dq
dn

n
q

c
k
− n

n + λ

)

J The phase diagram

To build this diagram we use the two equations of the dynamic system (28)-(29):

kt+1 = Φ (kt, qt, λt)

qt+1 = Ψ(kt, qt, λt)

where λt is defined by a function Ω applying the implicit function theorem to (30):

λt = Ω(kt, qt) ⇔ h(kt, qt, λt) = 0

The set of points (kt, qt) for which there is no change in kt is characterized by kt =
Φ (kt, qt, Ω(kt, qt)). By totally differentiating this equation, one can show that this
phase line is downwards-sloping around the steady state. This result is proven in
section J.1. To describe the direction of a change in kt, we notice that Φ(.) increases
monotonically with qt. Hence, kt+1 > kt above the curve and kt+1 < kt below.
The set of points (kt, qt) for which there is no change in qt is characterized by qt =
Ψ (kt, qt, Ω(kt, qt)). At the steady state the slope of this phaseline is positive. This is
shown in section J.2. To describe the direction of a change in qt, we notice that Ψ(.)
increases unambiguously with kt. Hence, qt+1 < qt at the left of the phaseline and
qt+1 > qt at the right of it.
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J.1 The slope of the phaseline Φ (kt, qt) = kt

The slope of this curve is obtained by totally differentiating this expression at the
steady state:

dq
dk

= −∂Φ/∂k
∂Φ/∂q

= −Φk + ΦλΩk − 1
Φq + ΦλΩq

, (49)

with

Φk = 1 +
q

n3 fkkCz > 0

Φq = −Cz

n2 > 0

Φλ =
fl

n
+

q
n3 fklCz

Ωq = − hq

hλ
=

fl

vλλ fk + vλ fkl − q fll
=

fl fk

vλλ f 2
k + q fl fkl − q fk fll

> 0

Ωk = − hk

hλ
=

−vλ fkk + q fkl

vλλ fk + vλ fkl − q fll
=

−q fl fkk + q fk fkl

vλλ f 2

k + q fkl fl − q fk fll
> 0

where we substituted vλ = q fl
fk

. Let us show that the numerator of (49) is positive:

∂Φ
∂k

= Φk + ΦλΩk − 1 =
fl

n
Ωk +

q
n3 fkkCz +

q
n3 fklCzΩk

=
fl

n
Ωk +

qCz

n3 ( fkk + fklΩk)

The first term is positive. When substituting for Ωk in the second term it is straight-
forward to show that fkk + fklΩk is negative, which implies that the second term is
also positive (with Cz < 0). Consequently the numerator is positive.

The denominator of (49)

∂Φ
∂q

= Φq + ΦλΩq =
flΩq

n
+

Cz

n2

(
−1 +

q
n

fklΩq

)

can also proven to be positive. The first term is positive. After substituting for Ωq it is
again straightforward to show that the second term is also positive. The denominator
is therefore positive. We can thus conclude that (49) is negative which implies that
the phaseline Φ (kt, qt) = kt is downwards sloping.
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J.2 The slope of the phaseline Ψ (kt, qt) = qt

The slope of this phaseline is obtained by totally differentiating the equation at the
steady state:

dq
dk

= −∂Ψ/∂k
∂Ψ/∂q

= − Ψk + ΨλΩk

Ψq + ΨλΩq − 1

with

Ψk = −q fkk

n
> 0

Ψq = 1

Ψλ = −q fkl

n
< 0

The sign of the numerator ∂Ψ/∂k can easily be proven to be positive given that ( fkk + fklΩk) <

0 which implies Ψk + ΨλΩk > 0. Since Ωq > 0 and Ψλ < 0, it is straightfor-
ward to show that the denominator ∂Ψ/∂q is negative. Consequently, the phaseline
Ψ (kt, qt) = qt is upward sloping.
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