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INCREASING RETURNS AND HETEROGENEITY
IN A SPATIAL ECONOMY

Pascal Mossay

ABSTRACT

We study a general equilibrium model of global trade and local migration in a
continuous geographical space. Trade i1s based on the Dixit-Stiglitz model of
monopolistic competition. Migration is modelled as a local interaction decision process.
Incentives for migration are of two types: homogeneous incentives of the group,
associated with the identity of taste for higher utility levels, and heterogeneous
incentives, due to idiosyncrasies in location taste. The impact of migration on the
regional structure is twofold. First, when driven by utility differentials, it contributes to
agglomeration because of the presence of increasing returns. Second, when reflecting
heterogeneous individual choices, it fosters regional convergence. Furthermore, the size
of agglomerations, when they occur, increases with the taste for variety and the
proportion of the manufacturing population, and decreases with transport costs.
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1 Introduction

The purpose of this paper is to develop a general equilibrium model com-
bining both trade and migration in a continuous geographical space, and to
show how increasing returns, transport costs and heterogeneity in location
taste may affect the convergence process across locations.

Recent works by Krugman (1991, 1993, 1996) have been particularly use-
ful for understanding how increasing returns and labor mobility affect re-
gional convergence. The basic framework is the following. There are two sec-
tors: manufacturing and agriculture. Manufacturing employs mobile workers
and agriculture immobile peasants. Consumers buy the manufacturing vari-
eties on monopolistically competitive regional markets and the agricultural
good on a competitive national market. Scale returns at the firm level con-
tributes to regional divergence. This is because the more workers in a region,
the more varieties in that region, and the higher their utility as they value
variety. In turn this triggers additional inflows of workers in the region. On
the other hand, the immobility of peasants contributes to regional conver-
gence because firms locate close enough to the local markets they supply, so
as to avoid prohibitive transport costs when supplying the immobile peasants
in the unagglomerated areas.

In the case of a two-region model, conditions leading to convergence or
divergence are related to the relative importance of increasing returns, trans-
port costs and the labor proportion in the total population as shown by
Krugman (1991). In a multi-location version of the same model, numeri-
cal simulations suggest that multiple agglomerations systematically emerge
and are roughly evenly spaced across the landscape, see Krugman (1993).
In a continuous location version of his model, Krugman (1996) showed that
the economy always displays regional divergence. He also characterized the
shape of the emerging agglomeration by performing numerical computations
of the preferred wavelength. Similar results are obtained in the case of a
large circular economy, see Fujita et al. (1999).

In this paper, trade modelling is built on the continuous models of Krug-
man (1996) and Fujita et al. (1999). Along a circular geographical space,
there is a monopolistically competitive manufacturing sector employing mo-
bile workers and a perfectly competitive agricultural sector employing im-
mobile peasants. Flows of goods take place on the international scene. The
Chamberlinian imperfect competitive economies are allowed to trade and
product differentiation makes trade desirable. Specifically, product differen-



tiation leads to gains from trade even when economies have identical con-
sumption tastes, production technology, and factor endowments.

Our paper departs from Krugman’s work in the migration modelling. In
Krugman’s work, higher utility level locations attract higher proportions of
the total labor force. Location real wages provide an incentive for moving,
and the worker’s cost inhibates his response to real wage differentials. Many
other factors contribute to the decision of a worker to migrate. Among
them, personal circumstances (e.g. life-cycle considerations such as marriage
or divorce) play an important role in the decision to migrate, see, e.g. Shaw
(1975) or Greenwood (1985). Even though these personal circumstances may
be quite diverse and therefore difficult to model in an explicit way, we may
still want to identify the aggregate role these idiosyncrasies in location taste
may have on regional convergence.

Migration will be supposed to occur locally. Workers are assumed to move
to contiguous locations only. This reflects a local access to information. In
this paper, there are two types of incentives to migrate: homogeneous incen-
tives, associated with the identity of taste for higher utility levels, and het-
erogeneous incentives, due to idiosyncrasies in location taste. Under purely
homogeneous incentives, workers move in the direction of the indirect utility
gradient. These incentives are analogous to the ones used by Sonnenschein
(1981, 1982) to model the convergence of a spatial competitive economy,
where firms move across space in the direction of the profit gradient. On
the other hand, idiosyncrasies in location taste will be assumed identically
and independently distributed (iid) across workers and will correspond to a
random walk in which worker’s location is incremented stochastically. At the
aggregate level this corresponds to a diffusion process, see Isard (1999). This
approach is also largely used in population ecology to model behavioral or
environmental stochasticity, see Murray (1993).

The impact of migration on the regional structure is twofold. First, when
driven by utility differentials, it contributes to agglomeration because of the
presence of increasing returns resulting from the taste for variety like in Krug-
man (1996) and Fujita et al. (1999). Second, when reflecting heterogeneous
idividual choices, it disperses labor across locations and therefore fosters
regional convergence. Provided that heterogeneity in location taste is large
enough, regional convergence may well happen. Our result thus differs qual-
itatively from Krugman (1996) and Fujita et al. (1999) in which instability
always occurs. Furthermore, the size of agglomerations, when they occur,
increases with the taste for variety and the proportion of the manufacturing
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population, and decreases with transport costs.

To study the convergence process in a continuous space, we need an ade-
quate tool to analyze the spatial stability of the uniform long-run equilibrium.
We will apply the normal mode method which is a standard linear spatial sta-
bility method in the hydrodynamic stability literature, see, e.g. Drazin and
Reid (1991). The general idea is to find the conditions under which a small
spatial perturbation is stable or not. To do so, the spatial perturbation is
decomposed as a sum of elementary periodic perturbations. We then study
whether each of the elementary periodic perturbation grows or is damped
over time. If at least one of these elementary perturbations grows over time,
then the long-run equilibrium is unstable. This technique has been applied
by Krugman and Venables (1996) to study a spatial model of international
specialization, and in Krugman (1996) and Fujita et al. (1999) to perform
numerical computations of the preferred wavelength of emerging agglomer-
ations, that is the wave-length of the dominant unstable perturbation. The
corresponding discrete technique has also been used by Papageorgiou and
Smith (1983). Their purpose was to find the conditions under which a spa-
tial externality may lead the spatial uniform equilibrium to be unstable. We
shall use the normal mode method to determine the conditions under which
agglomerations may happen from local instability of a uniform long run equi-
librium.

Section 2 lays out the spatial economy framework. The short-run equi-
librium is described in section 3. We model migration as a local interaction
process in section 4. The long-run equilibrium is then defined in section 5.
In section 6, in Proposition 1, we determine the conditions under which ag-
glomerations can arise by performing a linear spatial stability analysis of the
long-run equilibrium. Furthermore, we characterize the size of the emerg-
ing agglomerations in Proposition 2. Finally, section 7 summarizes the main
results.

2 The Economy

The economy extends along a circle C of radius R and is inhabited by a
continuum of consumers (workers/peasants). There are two sectors in the
economy: the manufacturing sector, which exhibits increasing returns to
scale, and agriculture, which has constant returns.

Each consumer at location x and time ¢ enjoys a Cobb-Douglas utility



from the two types of goods
Chy(, )Cy " (1) (1)

where p is the share of manufactured goods in expenditure, C'4 the consump-
tion of the agricultural good, and C); the consumption of the manufactured
aggregate which is defined by

z+mTR n(z,t) oy o—1
Car(a, ) = / ( / iz 2, 8) 5 di)dz @)
T 0
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where n(z,t) is the density of manufactured varieties available at location z,
¢i(z,x,t) is the consumption of variety ¢ produced at z, and o > 1 is the
elasticity of substitution among manufactured varieties.

Farming is an activity that takes place under constant returns to scale

Az, t) = Qalz,1) (3)

where A(z,t) is the density of peasants needed in x at ¢ to produce Qa(x,t)
units of the agricultural good.

Manufacturing variety ¢ involves a fixed cost and a constant marginal
cost. Economies of scale are thus realized at the firm level

Li(z,t) = a + BQui(x,t) (4)

where L;(x,t) is the amount of labor used in = at t to produce Qs ;(z,t)
units of variety 1.

Transport costs only affect manufactured goods and take the Samuelson
iceberg form. More precisely, when the amount Z of some variety is shipped
from locations z to z, then the amount X of that variety which is effectively
available at location x is given by

X = Zexp[—T |z — Z|| (5)

where 7 is the transport cost per unit of distance, and |x — z| the distance
between locations z and z.

We assume that there is a continuum of manufacturing firms. Each of
them produces a single variety, and faces a demand curve with a constant
elasticity o; this will be confirmed below in equation (11). The optimal



pricing behavior of any firm at location x and time ¢ is therefore to set the
price p;(z,t) of variety i at a fixed markup over marginal cost

mmw:;§ﬁW@w (6)

where W (x,t) is the worker wage rate prevailing at location .
Firms are free to enter into the manufacturing sector so that their profits
are driven to zero. Consequently, their output is given by

o
Qumi(z,t) = =(0—1) (7)
B
Since all varieties are produced at the same scale, the density n(z,t) of man-
ufactured goods produced at each location is proportional to the density
L(z,t) of workers at that location,

n(z,t)
u%azl Li(z, )di = aon(, 1) (8)

This relationship is crucial. When some workers move to a new location,
they no longer produce the same mix of products but other differentiated
products. As a result, varieties produced in one location are different from
those produced in any other location. Since consumers are characterized by
a preference for variety, they will buy from all locations so that trade of
varieties between any location pair will arise. Hence trade is global.

3 Short-Run Equilibrium

Total income Y at location x and time ¢ is given by
Y(z,t) = Ap” + Lz, t)W (x,1) (9)

where A is the constant density of peasants, L(z,t) the density of workers,
and p” the price of the agricultural good.

Workers are not interested in nominal wages but rather in utility lev-
els. In order to consume at x, one unit of variety ¢ produced at location
z, exp|T |x — z|] units must be shipped so that the delivery price is p;(z,t)
exp|T |x — z|]. The price index of the manufactured aggregate for consumers
at location z, ©(x,t), is obtained by computing the minimum cost of pur-
chasing one unit of the manufactured aggregate Cys(z, 1)
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By using the pricing rule (6) and relation (8), ©(z,t) may be rewritten as

O(z,t) = f_” - ()77

1
(o—1)

1 bW ety explrto — 11z - 2] 0

—IIR
The consumption of variety i € [0,n(z,t)] produced at z may be expressed
for workers and peasants located at = as follows

(z,x,t) = puW(x,t)pi(z,t) 7 exp[—7(c — 1) |z — z[]O(z, )"

C?(Z, L, t) = :U’pApz(za t)_a exp[—T(o - 1) |Z - IH@(I, t>0_1

The total demand for variety ¢ produced at z is obtained by integrating the
demand for that variety of all the consumers along the circle C,

z+IIR
Q=) = / L 1) (2, 2, 1) + At (2, 2, 1)]da
z—IIR

z+1IR
-/ L W )+ Ap ()

-exp|—7(0 — 1) |z — z|]0(z, )" 'dz

By using the total income expression (9), we get

z+IIR
Qﬁvi(z, t) = / wY (x,t)pi(z,t) 7 exp[—7(0c — 1) |z — x| O(x, t)"fldac
z—IIR
(11)
The market-clearing condition for variety 7 produced at z is obtained by
equating the demand Qf}; (11) and the supply Qai(2,t) (7) of that variety,

pilzt) = mﬁ / ZHR Y (z,8)8(x, £)"" expl—r(o — 1) |z — alJda]"/"



Because of the pricing rule (6), we get

W(Z,t) _ 0_1[ ,U/ﬂ ]1/0

Bo ‘aloc—1)
z+IIR
'[/ Y@ 08t expl=r(o = 1) |z — alds]'” (12)

The manufacturing wage W(z,t) is the wage prevailing at location z and
time ¢ such that firms at z break even given the income levels Y'(z,t), the
price indices ©(z, t) in all locations, and the transportation cost technology.

The indirect utility (z,t) of a worker located at = is then obtained
through (1) by

Qz,t) = UO(z,t), W(x,t))
= Ch(O(z, 1), W(z,)Cy " (O(x, 1), W (z,1))

= (,UW(I', t)/@(fE, t))“[(l — ,U)W(l', t)/pA]l_“
= (1= p) PO (2, )W (2, t) (13)

Definition 1 A short-run equilibrium at location x and time t, is defined,
taking L(x,t) as given, by equations (9), (10), (12), (13).

4 Migration Behavior

We now introduce dynamics by specifying a local process of reallocation of the
labor force across locations. We first describe the worker migration decision;
we then aggregate individual decisions to obtain the equation governing the
evolution of labor over space and time.

We want to capture the idea that each worker faces an arbitrage when
deciding to migrate. The trade-off results from the common incentive he
finds in higher utility levels that he can earn in neighboring locations and
idiosyncratic incentives due to his own individual preference for local places.

Each worker has a preference relation which is split into two components.
The first component is defined over the observable consumption C4, C); at
a given location. Workers are assumed to be homogeneous with respect to
consumption, meaning that all workers at location x make the same con-
sumption decisions. The second component is defined over individual tastes



for local places: a worker in location x may want to migrate according to the
indirect utility gradient, or to move left, right, or stay put, irrespective of
the utility gradient. As individual motives to migrate may be very diverse,
it seems natural to recognize that they are not known to the modeller. By
contrast, we assume that the modeler knows the distribution of migration
due to the heterogeneity of workers in their preference for local places; see
Anderson et al. (1992). This means that the modeler is unable to exactly
predict the worker’s migration decision, and can at best predict the prob-
ability that a worker will make a given migration choice. In the approach
used here, uncertainty is due to the lack of information available to the mod-
eler. However, this approach can be seen as equivalent to a random utility
approach where the random variable would reflect stochastic migration taste
differences among workers, see Anderson et al. (1992). For this reason, the
approach followed here differs substantially from the one use in determinis-
tic models dealing with tastes for location, such as, for instance, Greenberg
(1983), or Mansoorian and Myers (1997).

At the aggregate level the effect of the heterogeneity in location taste on
the spatial distribution of labor is to contribute to the dispersion of labor
across locations. Diffusion processes such as suggested in Isard (1999) can
thus be interpreted as resulting from the aggregation of idiosyncrasies in
location taste. This approach is also largely used in population ecology to
model behavioral or environmental stochasticity, see Murray (1993). We will
assume that idiosyncratic migration taste differences do not depend on the
direction of migration. Otherwise there would be either absolute east- or
west- lover migrant, in which case trivial agglomeration to the east or to
the west would arise. Furthermore, the probabilities of moving are supposed
to be the same for all workers. This will allow us to describe the average
behavior of labor, by getting an evolution law for the average density of
workers.

We model the workers’ migration process as follows. Labor population is
distributed along the circle C. At each point in time ¢, a worker at location x
faces the indirect utility gradient 0€2/0x. He responds to it with probability
1 — v, by moving in that direction. If not, he decides, as a result of his
individual taste, to move left, right, or stay at x with equal probabilities,
that is /3; see Figure 1.

If the adjustment speed to utility differentials is captured by &, when
deciding to move in the utility gradient direction, workers move over the
distance V'dt during time span dt with
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Figure 1: Choice Probabilities of Moving

00
- ox
On the other hand, migration due to the heterogeneity in taste for local
places is modeled as the following brownian motion. When migration is not
motivated by utility differentials, a worker located at x moves to x + dA,
x — d\ or stays at x with equal probabilities during time span dt.

This implies that migration is viewed as a local process, in the sense
that no straight migration takes place between two locations separated by a
given, finite distance. This is consistent with a local informational setting.
Nevertheless over time, the continuous flows of migrants do not preclude
finite, or even large scale migration between any two locations. The local
migration behavior is consistent with empirical findings according to which
the intensity of migration flows declines with the increasing distance between
origin and destination, see, for instance, Shaw (1975).

Consider a worker in location x at time ¢. The probability for that worker
to be at location xz (meaning a location between z and x + dz) is denoted
q(z,t)dx. We now describe the location a worker may be coming from. From

v (14)
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an inductive inspection of Figure 1, it is clear that a worker in location x
at time ¢ may be coming from four different locations: (i) z — V'dt , (ii)
x —dX, (ili) = + dA, or (iv) x. To establish the probability law, that is how
the density q(x,t) evolves over time and space, we assume for expositional
simplicity that the velocity V' of the worker is constant (see Appendix 1 for
the case where V' may vary over space and time). At time ¢ — d¢, the worker
was in « — V'dt with probability ¢(x — V'dt,t — dt)dz and chose to move to x
with probability (1 —-y) as a result of the common incentive for higher utility
levels, see Figure 1. Also, he was in x — d\, x + d\, or z with probabilities
q(z — d\, t — dt)dz, g(x +d\, t — dt)dz, q(x,t — dt)dz and chose to move to x
with probability /3 as a result of the heterogeneity in taste for local places,
see Figure 1. It then follows that the probability ¢(x,t), at time ¢, for the
worker to be at location between x and = + dx is given by

1 1 1
q(z,t)dx = y[gq(x —d\t—dt)+ gq(x +d\ t —dt) + gq(m,t — dt)]dx
+(1 —v)g(x — V'dt, t — dt)dx (15)

So as to establish the probability law, we take the Taylor expansion of
the RHS. This yields

dq og 1 . .,0%

alw—d\t—dt) = qla,t) —dAzt —di= 4+ S(AN) 5
+= dt?g—ing —d\dt aazat+"'
q(x +d\t—dt) = q(z, t)+d)\%—dt%+;d)\zgxg
2 dtQZ_;__dAdtﬁa;aﬁ
qlx = V'dt,t — dt) = q(m t)—V’dt%_dt% 1(V’dt) gig
q(z,t—dt) = q(z,t) - dt%Jr dtzgt3+... (16)

Substituting (16) in (15) and assuming that d\®/dt is finite', we obtain the

1 % remains finite as dt — 0,d\ — 0.
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probability evolution law governing ¢(z,t)

dq 0 d ,.0q

—(z,t —(V(x,t t) = —(d=—(x,t 17
00 0,) + - (V (z ol 1) = 5-(d 5z, 1) a7
where V and d are defined repectively by (1 — )V’ and v/3(d\)?/dt. This
means that d measures the heterogeneity in location taste. In Appendix
1, it is shown that equation (17) is still valid when V’(x,t) varies with the
intensity of the utility gradient (14). Then V(z,t) is given by

Vit = (0 =)V t) = (e (o) =mD ) (19

where m defined by (1 — )£ measures the identity of taste for higher utility
levels.

We now describe the labor population by its average behavior. The de-
scription says how many workers end up moving there and consuming what,
but does not describe individual behavior per se. The evolution law for the
average density of workers L(x,t) is then obtained by multiplying the equa-

tion (17) by the total number of workers L in the economy

OL 0 0, OL
E(m, t) + g(V(x,t)L(x,t)) = %(d%(x,t)) (19)

where L(z,t) corresponds to g(z,t)L while V is given by (18).
Interpretation of the evolution equation
Equation (19) may be rewritten as
OL 0

—(@,t) = —5-0(a,1) (20)

where the labor flow ® may be decomposed as

O(z,t) = Oy(z,t) + Py(z, t) (21)

with &, = VL and ®&; = —doL/dz.

Labor flow (®) results from a utility differential effect (through ®,) and
from idiosyncrasies in location taste (through ®;). Let I' = [x1,x9] be a
region, and denote fff L(z,t)dz the labor population in I" at time ¢ by L(t).
By integrating (20) over region I', we get

d

L) = ~[0(,1) = D(a1,1)] (22)
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L(x,t)

D(x,.1) DX, t)

X 1 Region T X 5

Figure 2: Conservation Law of Labor

Equation (22) is a conservation law of the labor population. It asserts that
the rate of increase of the labor population L(t) in region I, is equal to
the total labor flow ®(z,t) into I' across its borders z; and z5; see Figure
2. Therefore, equation (20) is called the conservative form corresponding to
(22).

When there is no heterogeneity among workers (i.e., &; = v = 0), the
net increase of workers in region I' during time span [t, ¢ + dt] is due only to
the attraction of workers because of higher utility levels

L(t+dt)—L(t) =~ [Dy(x1,t) — Dy(xo,t)|dt (23)

= (V(xy,t)L(x1,t) — V(z2,t)L(x9,t))dt (24)

On the other hand, when there is no systematic migration in the direction

of the utility gradient (i.e., ®, = 1 — v = 0), the net increase of workers in

region I" during time span [t,t 4 dt| is due to the dispersion of workers as a
consequence of their heterogeneity

L(t+dt) — L) ~ [Balwr,t) — Dalws,t)]dt (25)
- d[—g—i’(m, £) + g—i(@, £)]dt (26)
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5 Long-Run Equilibrium Analysis

An adequate change of variables (see Appendix 2) allows us to write (9),
(10), (12), (13), (18), and (19) in the following way

Y(z,t) = (1 —p)+ pL(x, t)W(x,t) (27)
(z+IIR)T(0—1) 7(0—£1)
Oz, 1) = lé /( o MWD Y el |z—x|]dz]
(28)
1 (z+IIR)T(0—1)
W(x,t) == Y (2,8)0(2, 1) L exp|— |z — z|]dz]"/? 29
e0=lg [ L YCHOC el sl (29)
Qz,1) = O, £) "W (z, 1) (30)
or 9 L
O (0) + oV, )Lz, 1) = A (1, 1) (31)
20
Viet) = (1) (32)

where C' is defined by 2[1 — exp(—IIR7(0c — 1))] and A is a mobility index
measuring the relative importance of two effects: the heterogeneity in loca-
tion taste and the identity of taste for higher utility levels, see Appendix 2.
When the heterogeneity in location taste among consumers is high, then the
mobility index A is high. On the other hand, when the drift towards higher
utility levels is the dominant spatial force, then the mobility index A is low.

The dynamics of the model is governed by equations (27), (28), (29),
(30), (31), and (32). This set of equations describes the spatial and temporal
evolution of the state variables.

Definition 2 A long-run equilibrium is defined as a stationary state of the
system of equations (27), (28), (29), (30), (31), and (32).
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Such a long-run equilibrium is the uniform stationary state defined by

Y = 1-pw+ulW
1

(T 7 @D tIRr(o-1) -
— LW
6 - | =/ expl- |z|]dz]

i —IIR71(c-1)

[— —<o—1 2
_ Y +IIRT(0—1) o
W = © exp|— |z|]dz

C

i —IIR7(0—1)
a-we"
v 0

When L = 1, the uniform steady state is defined by
L=1Y=106=1W=1;Q=1,V=0 (33)

In such an equilibrium, the net flow of workers through any location is zero.

From now on, we will be concerned with the long-run equilibrium (33).
To address the regional convergence issue, we will study the dynamics of the
system around this long-run equilibrium.

6 Agglomeration as Local Instability

In this section we analyze the spatial stability of the long-run equilibrium
(33). The idea is to find the conditions under which a small spatial pertuba-
tion is stable or not. We will restrict our attention to the perturbations which
are in some sense close to the long-run equilibrium (33). This allows us to
focus on the linearized equations of the system. In order to study the time
evolution of a spatial perturbation, we decompose it as a sum of elementary
periodic perturbations. The reason for doing so is that any arbitrary pertur-
bation may be expressed as a linear combination of periodic perturbations
according to the Fourier decomposition. For the sake of simplicity, periodic
perturbations may be viewed as sin(kx). High (low) values of k correspond
to high (low) frequency perturbations. Later on, we need to introduce more
general periodic perturbations called normal modes. We then study whether
each of these elementary periodic perturbations grows or is damped over
time. If at least one of the elementary periodic perturbations is unstable,
that is growing over time, then the long-run equilibrium is unstable. More
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details concerning the normal mode stability analysis may be found in a gen-
eral reference in the hydrodynamic stability literature, see, e.g. Drazin and
Reid (1991).

6.1 Perturbation Linearized Equations

In order to perform the linearization of equations (27), (28), (29), (30), (31),
and (32), we decompose the variables into their steady state value and their
corresponding deviation. We denote these deviations by y, 8, w,w, [, v, and
write

L(z,t) = 14Uz, t);Y(z,t) =1+ y(z,t);W(x,t) =1+ w(z,t);
O(z,t) = 1+0(2,t);Qe,t) = L+ w(a, £);V(a,t) = 0+ v(a,t)  (34)
The perturbation equations are then obtained by the substitution of (34) in

(27), (28), (29), (30), (31), and (32). Neglecting second-order terms such as
lw leads to the following perturbation linearized equations (see Appendix 3)

y(o,t) = pll(e,t) +w(z,t))
1 (z+IIR)T(0—1)

O(z,t) = —= (— l(z,t) + w(z,t)) exp[— |z — z|]dz

C (x—IIR)7(0—1) (c—1)
1 (z+IIR)T(0—1)

w(z,t) = (y(z,t) + (0 — 1)8(z,t)) exp[— |x — z|]dz

E (z—1IR)T(0—1)
CU(I, t) = w(:p, t) - M@(I,t)

ol Ov 0l
Ow

v(x,t) = %(x, t)

6.2 Normal Mode Method

The main idea in what follows is to study how elementary periodic perturba-
tions evolve over time. To deal with our problem, we introduce the following
spatial normal modes.

Definition 3 A spatial normal mode is determined by its frequency k, and
is defined as exp[Ikz], with I* = —1.

16



REBEE kXxj] ki1 REp[l kxj] k=2

X
2 \4 8 24 10
-05 -05
-1 -1

Figure 3: Representation of Spatial Modes (k =1,k = 2)

As suggested in the case of sinusoidal functions, high (low) frequency
spatial modes have a low (large) spatial scale. The sinusoidal variations
correspond to a succession of alternating rich and poor areas. While large
spatial scales refer to configurations consisting in a small number of large
areas, low spatial scales refer to configurations consisting in a large number
of small areas. This periodic organization of the economic activities across
locations reminds the location theory of central places. Spatial theorists like
Christaller (1966) or Losch (1954) have addressed the shape that market
areas should optimally display. According to their works, it turns out that
very regular symmetric patterns arise in a spatial economy. The optimal
shape of market areas is the hexagone: it maximizes the welfare per unit
of space. The symmetric and regular nature of spatial modes is depicted in
Figure 3. The spatial scale of the mode k£ = 2 is lower than the spatial scale
of the mode k = 1, see Figure 3. This is because the alternation of poor and
rich areas takes place over a smaller distance in the case k = 2.

Since equations (35) are linear, this suggests that one looks for solutions
where all perturbations are proportional to exp[st + Ikx|, with I? = —1, and
where s(k) denotes the amplification factor related to spatial mode k. So
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perturbations are assumed to be of the following type

y(I,t) Yo
0(z,t) to
w(x,t) | wo
wiot) | = exp[st + Ikx] o (36)
l $,t> lo
| U(:L‘,t) _ L Vo ]

where 1 is the constant amplitude of the total income perturbation density;
and similarly for 6y, wo, wo, lo, and vy. Substituting (36) in (35) yields

Yo = /L(lo + wo) (37)
1
80 = —;hlo + hU)O (38)
1 —1
Wo = —hyo + g h@o (39)
o o
wWog = Wy — ,Uﬂo (40)
Slo + I]C’Uo = —Ak’2lo (41)
Vo — I]{?WO (42)

where h is defined by

2[1+ (ksin(kIIRT(0c — 1)) — cos(kIIR7 (0 — 1))) exp(—IIR7(c — 1))]
C(1+k?)
1+ [ksin(kIIRT(0 — 1)) — cos(kIIRT(0 — 1))] exp(~IIR7(c — 1)),

B (14 k2)[1 — exp(—IIR7(c — 1))] (43)

h:

Like in Fujita et al. (1999), we focus on the case of a very large economy,
that is one with a large R. This makes the relationship between the ampli-
fication factor s and the frequency k& becomes much simpler to handle. We
now use the fact that

h —

as R — oo

1+ k2
Substituting (37) and (38) into (39), we get wy = wy(lp). Next 6y(ly)
and wy(lp) are obtained by using (38) and (40) respectively. By substituting
wo(lo) in (42), and then vy(lp) in (41), we get

_1—h( 1 uh3—(1+u2)h2+,uh_
h ‘o—1 —(c—1)h? —ph+o

Alg=0  (44)

s
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Ignoring the trivial solution yg = 0y = wg = wo = lo = vg = 0, it follows that
a solution to (37), (38), (39), (40), (41), and (42) only exists if the coefficient
of lp in (44) is zero, that is, when

_1—h[ U ph? — (1 + p?)h? + uh
- h lo—1 —(c—1)h?—ph+o
The above condition gives the possible values for s and h. Since equations

(35) are linear, we may construct a general solution to (35) by adding the
normal modes (which constitute a complete set).

s(h) — 4] (45)

6.3 Stability Analysis

The general question is whether starting from a symmetric spatial equilibrium
in which manufacturing is equally divided between regions (such as defined by
the long-run equilibrium (33)), a movement of a small number of workers from
one region to another is about to lead to the emergence of agglomerations.
In the case it does so, the symmetric initial situation is said to be unstable
against small perturbations.

Definition 4 A spatial mode defined by its spatial scale h is unstable if its
amplificator factor s(h) is strictly positive.

As our goal is to describe whether spatial modes grow or decline in am-
plitude over time, we will describe the evolution of a spatial mode by its
evolution over time. While a positive value of the amplification factor means
that the spatial mode will grow in amplitude over time, a negative value of
the amplification factor means that the mode is decreasing in amplitude over
time. The interpretation is the following. Imagine periodic spatial shocks
affecting the long-run equilibrium defined by (33). While a spatial shock h
will fade away if s(h) < 0, it will grow over time if s(h) > 0.

Definition 5 The long-run equilibrium (33) is unstable if there exists a spa-
tial mode h €]0,1] such that s(h) > 0.

It then means that small initial differences among locations will snowball
into larger differences over time, so that the symmetry between identical
locations spontaneously breaks. In what follows, we need to focus our analysis
on the function s(h) and determine the conditions under which it is positive.
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Figure 4: Stability Curve (u = 0.6)

Proposition 1 If the mobility index A is below a critical value A. defined
by

o= { Bl =m0 1S
c 220 — 1)2/[(0 — 1) (12 + 4o(0 — 1))], if o — 1 >’UJ/(Z |
6

then the uniform steady state (33) is unstable.

Proof. See Appendix 4.

The tmpact of migration on the regional structure is twofold. On the one
hand, the heterogeneity in location taste leads to the dispersion of workers’
across locations, and therefore fosters convergence. On the other hand, the
wdentity of taste for higher utility levels leads to agglomerations of workers in
some locations, and therefore contributes to divergence because of increasing
returns as in Krugman (1996) or Fujita et al. (1999). The critical value A,
in Proposition 1 corresponds to the case where both effects balance exactly.
In the parameter space (A, o, i), the curve defined by A = A, corresponds
to the stability curve, that is the curve along which the amplification factor
s = 0. See Figure 4 for u = 0.6.

When dispersion is the dominant spatial force (A > A.), the long-run
equilibrium (33) is stable, and spatial convergence occurs, meaning that an
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initial spatial shock is absorbed over time. In the particular case of het-
erogeneity in taste only, meaning in the absence of incentives on behalf of
workers to move to higher indirect utility locations, the evolution equation for
labor reduces to a pure diffusion equation, in which case regional convergence
trivially occurs.

When the drift towards higher utility levels is the dominant spatial force
(A < A,), the long-run equilibrium (33) is unstable, meaning that an initial
spatial shock grows in amplitude over time. In this case, the interaction be-
tween economies of scale and endogenous market size lead to a cumulative
process of agglomeration, see Fujita et al. (1999). As mentioned earlier, the
evolution of an arbitrary shock is obtained by an appropriate linear combi-
nation of the evolution of the spatial modes.

Proposition 1 is an extension of Krugman (1996) and Fujita et al. (1999)
to the case where workers have heterogeneous location tastes. The first part
of the stability curve fi(o, 1) is to be related to Krugman’s (1991) stability
condition. It says that if the proportion of the manufacturing population
p is relatively high or if the taste for variety is large (o is relatively low)
compared to A, agglomerations emerge. Here in contrast to Krugman (1996),
heterogeneity in location taste makes convergence possible. While only high
frequency spatial modes are damped in Krugman’s work, all spatial modes are
damped over time in our model provided that the heterogeneity in location
taste is sufficiently higher than the identity of taste for higher utility levels
(A > A,).

Consider the special case of no heterogeneity in location taste (A = 0). In
this case agglomerations always emerge. First, our result is consistent with
Krugman (1993, 1996)’s works where migration driven by utility differentials
leads to instability. Furthermore, our model differs from Fujita et al. (1999)’s
model in one respect only: the range of allowed migration. While migration
is supposed to be local here, it has been considered as global in Fujita et al.
(1999). Eventhough the spatial adjustments differ in these two models, both
spatial economies always diverge. This means that scale economies at the
individual firm level and free mobility (either local as here or global in Fujita
et al. (1999) or Krugman (1996)) of workers contribute to spatial divergence,
regardless of the spatial foresight ability of workers. We also note that unlike
the corresponding two-region model of Krugman (1991), divergence always
occurs in spatial economies (e.g., Krugman (1996), Fujita et al. (1999),
and here). In other words, iceberg transport costs can never balance the
agglomeration force in a continuous spatial setting. This is because when
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space is continuous there is always a location toward which transporting the
manufacturing good can be made as cheap as you want.

So far, we have found the conditions under which agglomerations may
occur. We now turn to the characterization of the instability when it occurs.

Definition 6 The critical spatial mode he. characterizing the emerging ag-
glomeration is the spatial mode for which s(he) = 0.

Defined as such, h,, is the spatial scale of the emerging agglomeration,
and therefore constitutes a measure of the size of agglomerations.

Proposition 2 The size of agglomerations, when they occur, increases with
the taste for variety (inversely related to o) and the proportion of the manu-
facturing population p and decreases with transport costs.

Proof. Two cases must be analyzed according to (o — 1) < p/2.

First, suppose (¢ — 1) > p/2. When instability starts, the shape of the
corresponding unstable spatial mode is given by h,,. for which 9s(h..)/0h = 0,
where A = f5(0, ). According to Appendix 4, h.. belongs to |0, 1], and we
get her = (20 —1) /(2 +2(0 —1)). We then have dh, /O = (20 —1)(3u? +
20 — 2)/(p* + 20 — 2)? > 0 since (0 — 1) > u/2. Therefore, the larger
the proportion p of the manufacturing population, the larger the size h,,
of agglomerations. Also Ohe. /00 = 2u(p? — 1)/(1* + 20 — 2)* < 0 since
0 < p < 1. Therefore, the higher the taste for variety (the lower o), the
larger the size h.. of agglomerations. Second, when (o — 1) < /2, we look
for he., for which ds(h..)/Oh = 0 and where A = fi(o, ). In accordance
with Appendix 4, h., = 1. Finally, since h is always positively related to
transport costs (see how h has been rescaled from k in (43)), the higher the
transport costs, the smaller the agglomerations.

Proposition 2 makes sense. If the taste for variety is high (o low), then
increasing returns realized at equilibrium are high, and the spatial economy
displays a small number of large agglomerations (the corresponding spatial
scale h,. being large). Moreover, the effect of a high share of industry in the
economy, /4, is to increase the critical spatial mode h.,., meaning that starting
from a uniform long-run equilibrium, there are a few large agglomerations
rather than many small ones. This is because then there are less peasants to
supply in the unagglomerated areas. Furthermore, when transport costs are
high, it is then sensible for firms to locate closer to local markets in order

22



to avoid prohibitive transport costs when supplying immobile peasants in
the unagglomerated areas. We finally note that the uniform spatial mode -
of which the spatial scale is infinite - is the first to become unstable when
(0 —1) < p/2. In this case (he = 1), space plays no role in the dimension of
the emerging agglomeration.

7 Concluding comments

This model sheds light on the distribution of economic agents over space.
We have studied the interaction of global trade with labor local migration
by decoupling consumption and migration decisions. This has allowed us to
stress that local access to information, or risk related to migration, makes the
migration decisions quite distinct from consumption decisions. While prices
on markets form instantaneously as in the Walrasian tradition, migration
is a local process and can be assimilated to a Marshallian adjustment. An
evolution equation for labor over space and time has been established.

While two-country models address the question of whether agglomera-
tions take place, continuous spatial models allow to address that of how
many agglomerations form, see Fujita et al. (1999). Much of the intuition
from the core-periphery model of Krugman (1991) still holds here: the same
factors that work toward concentration of economic activity in that model
tend to produce fewer, larger agglomerations in our continuous spatial model.

The impact of migration on the regional structure is twofold. First, when
driven by utility differentials, it contributes to agglomeration because of the
presence of increasing returns resulting from the taste for variety. Second,
when reflecting heterogeneous individual choices, it fosters regional conver-
gence. The relative size of both effects is captured by a mobility index. On
the one hand, when the mobility index is above the critical value, i.e. when
heterogeneity in location taste is high, convergence to the long-run equilib-
rium is obtained. On the other hand, when the mobility index is below the
critical value, agglomerations occur, and their size increases with the taste
for variety (inversely related to o) and the proportion of the manufacturing
population, and decreases with transport costs.

The dynamics of the system depends heavily on the nature of economic
processes as shown above. It also largely depends on the interaction of the
system with the rest of the world. This interaction should be modelled by
appropriate boundary conditions. It would necessarily affect the conditions
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under which agglomerations may occur.
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Appendix 1 Labor Probability Law

Here we provide a proof for equation (17) when V' is not constant.

At time ¢, a worker at location z, may have come from a lower indirect
utility region or he may come from left or right, or simply may have chosen
to stay put. It then follows that the probability ¢(x,t), at time ¢, for a worker
to be at a location between x and = + dx is given by

q(z,t)dx = fy[%q(x —d\t—dt)+ %q(z +dA\ t —dt) + %q(x,t —dt)|dz
+(1—=7)F(x —V'dt,t — dt) (47)
where F(z — V'dt,t — dt) is the probability that at time ¢ — dt, the worker
was located between x — V'dt, and = + dx — V'dt; see Figure 5. It is given by
Flx =V'dt,t —dt) = q(z—V'dt,t —dt)[(x +dz) = V'dt — (x — V'dt)]
= q(xz—V'(z=V'dt,t — dt)dt,t — dt) -
[z 4+ dx — V' (x + de — V'dt, t — dt)dt
—(z = V'(x = V'dt, t — dt)dt)] (48)
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Figure 5: Labor Probability Law

Expanding the RHS of equations (47) and (48) in their Taylor form,

B dq 0{1 1, ,0%

+5 dtzg?+ ~ddt 882 =

gz +dX\t—dt) = qla, HdA%_dt%Jr;dngg

+5 dtZ%——d/\dtaa;atJr...

glo—Vdt,t —dt) = q(;p,t)_‘/’dt% dt% %(V’dt)Z%
q

d%q
L2l 1 dt?
g+ gV
0q 0? q
t—dt) = dt—; dt2
q(z, ) q(x,t) — 5 5z
Vi(x +de—V'dt,t —dt) = V'(z—V'dt,t— dt)
oV
Ox
Substituting (49) in (47) and (48), while assuming d\?/dt remains finite,
yields the probability law (17) governing the evolution of g(z,t) where V' is
a function of space and time.

+ ..

+ ...

(x — V'dt,t — dt)da + ... (49)

Appendix 2 Change of Variables
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Let us define L*, Y*, ©*, W*, Q* V* z* t* and A such that

(1—p)Y* = Ap*; uY* = L'W* ; V* = mQ* (0 — 1)

1

Bo 1(o— “1/(o—1) 1 Tt
eo* = /(o l)L* Wil — .
o— 1(a0) Cr(oc—1) ’

* o—1 ,U/B He x1/o *GT_l 1 %
VT (a(a—l)) ©Y o)

O = (- )T e T W
1 me)* d

v (o —1)" t (0 —1)2’ me*

where C' is defined by 2 [1 — exp(—IIR7(c — 1))].
By making the substitution L(z,t) < L(x,t)/L*; Y (z,t) < Y(x,t)/ Y™,

W ) — W (a, 0)/W* Oz, 1) O, 1) /0% D, £) — Qe 1)/ V(1)
V(xz,t)/V* x— x/x*; t — t/t* in (9), (10), (12), (13), (18) and (19), we get
(27), (28), (29), (30), (31), and (32).

Appendix 3 Perturbation Linearized Equations

Here we establish the perturbation linearized equations (35). Substituting
the decomposition (34) in the evolution equations (9), (10), (12), (13), (18)
and (19), yields the following perturbation equations

y(a,t) = plw(z,t) + Uz, 1) + 1z, tw(z, t)]
1 (z+IIR)T(0—1) |
oz t)+1 = {= (112 0) (1 + w(z, 1) expl— [z — 2])dz} s
C (z—IIR)T(0—-1)
1 (z+IIR)T(0—1) L
wlz,t)+1 = {3 (1+y(z,1)(1+0(z,1))7 " exp[— |z — 2[ldz}7
C (z—IIR)T(0—1)

w(z,t)+1 = (w(z,t)+1)(0(x,t)+1)*

0%l ol 0
22w = Ay L+ i)
vz, t) = g—z(x, t) (50)

Then by neglecting second-order terms (i.e. developing (1 +47)¢ ~ 1+ cr) we
get the perturbation linearized equations (35).

y(fb,t) = M(l(zat)_*—w(l'?t))
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1 (z+IIR)T(0—1) 1
O(z,t) = —= (— I(z,t) + w(z,t)) exp|— |z — z||dz
C (x—IIR)7(0—1) (c—1)
1 (z+IIR)T(0—1)
’LU(:E,t) = A (y(Z,t) + (U_ 1)9(Z7t)) eXp[— ‘fE—ZHdz
oC (x—TIR)T(0—1)
w(xat) = w(m,t) —MQ(I,t)
ol ov 0?l
(@) 4 52 (@,) = Ao(a,1

v(x,t) = Z—Z(x, t)

Appendix 4 Proof of Proposition 1
The proof of Proposition 1 draws on the following lemma.

Lemma 1 Consider the degree 2 function f(x) = ax® + bx + c. Suppose
b> 0 and ¢ < 0. Then f(x) admits two distinct real roots in the interval
10, 1] if and only if

b* —dac>0,a<0,a+b+c<0,2a+b<0 (51)

Proof. Sufficiency. Since b* — 4ac > 0, two real roots exist. Their sum and
their product are sure to be positive because a < 0. Since a + b+ c < 0 and
2a + b < 0, the largest of the two roots is inferior to 1.

Necessity. Since f(z) admits two distinct real roots, b* — 4ac > 0. As
they lie in the interval |0, 1], their sum and product are positive, ie. a < 0.
Moreover, since both roots are inferior to 1, we have a + b+ ¢ < 0 and
2a+b < 0.

In what follows, we determine the values of the parameters (A, o, u) for
which the long-run equilibrium (33) is unstable. This defines the instabil-
ity region ¥ in the parameter space (A,o,pu). To do so, we equivalently
determine when s(h) as given by (45), is positive.

Write (45) as

1—h [ah? + bh + (]

S ) P gy

where
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= 1+A—0—2A0 — o + Ad?,
b = w-1-A+20+A0),c=A(1l—-0)o (53)

From (52), we see that s(h) is continuous on |0, 1], admits at most two real
roots in |0, 1], and ;lLiHé s(h) = —oo < 0. Hence we may consider two cases.

If u—(1—-p)(c—1)—A(c—1) < 0, then }1;11% s(h) = 07 and the
function s(h) takes positive values in ]0, 1] according to the intermediary
values theorem. This defines the first instability region ¥; = {A: 0 < A <
fi(o, 1)} where fi(o, i) has been defined by p(1 —o 1)t —1.

If pu—(1—-p)(c—1)—A(c—1) > 0, then }13_}1% s(h) = 0~. Therefore
s(h) will take positive values on |0, 1], iff it has two real roots in between
10,1[. By using Lemma 1, we show that it is the case when o — 1 > pu/2
and pu(1 —o ™)™ —1 < A < p?(20 —1)?/[(c — 1)(u? + 40(0 — 1))]. By the
substitution of (53) in (51), we obtain the conditions under which s(h) has
two real roots in |0, 1],

A > 011 or A < gi(o, ),

A < 92(U>M) ’ A> 93(U>u) ’ A< 94(@/0 (54)
where we define g (0, 1) = [1*(20 —1)*)/[(0 = 1)(4* +40(0 = 1))], ga(0, 1) =
lop? + (o = 1)]/(0 = 1)%, gs(o, p) = op/(0 = 1) = 1, and gu(o, p) = [2(0 —

1)+ p+2p0(p — 1)]/[2(0 = 1)? + p(o — 1)].

Note that A > (0—1)7! is not compatible with the condition involving g4,
since 1/(0—1) —ga(o, 1) = [2(n— D) po]/[(oc —1)(n+2(c—1))] > 0 whatever
o> 1and 0 < p < 1. Also, the condition involving gs(o, 1) is redundant
since g1(0, ) — g2(0, 1) = —o(p? +20% — 2)*/[(0 — 1)*(u* + 4o(0 — 1))] < 0.
Condition (54) can then be reduced to max[gs,0] < A < min[g;, g4]. Hence
it suffices to show that g, < g3 < ¢1 for 0 < 1+ p/2, and g3 < g1 <
ga, for 0 > 1 4 pu/2. This is the case because of the following conditions
gi(o, 1) =gs(o,p) = (1—p)o(20—pu=2)%/[(0—1)(p?*+40(c—1))] > 0 whatever
o,y ga(o, )= gs(o, p) = [(1=p)o (20 —p—2)]/[(c—1)(p+2(c—1))] = 0 when
0 s 1+p/2,and ga(o, ) —g1 (0, ) = [2(1—p) (2+p—20)0 (1 +2(0—1))] /[(0—
1)(20+pu—2)(u?+40(c—1))] < 0 when 0 < 1+ p/2. This defines the second
instability region Yo = {A : g3(o, 1) < A < g1(o,pn),0 —1 > /2, A > 0}.
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Finally, we define the instability region ¥ as > = 3; U 3. To complete
the proof of proposition 1 we rewrite ¥ = Y3 U ¥, where we define Y3 =
{A PA< f1(0-7ll’l/)70-_ 1< M/2}7 24 = {A A< fZ(O-nU’):O-_ 1> :U’/2}7 and
falo, ) = gi(o, ).
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