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BUILDING UP SOCIAL CAPITAL IN A CHANGING WORLD 
 

Fernando Vega- Redondo 
 
 
 
 

ABSTRACT 
 

 

This paper models the dynamic process through which a large society may 

succeed in building up its “social capital” by establishing a stable and dense pattern of 

interaction among its members. In the model, agents interact according to a collection 

of (idyosincratic) infinitely repeated Prisoner's Dilemma played on the existing social 

network. This network not only specifies the playing partners but, crucially, also 

determines how relevant strategic information diffuses or new cooperation opportunities 

are found. Over time, the underlying payoffs randomly change, i.e. display some 

“volatility”. In response to it, agents react by creating new links and removing others. 

This combines into a complex but ergodic dynamic process, whose analysis is 

undertaken in different ways. First, we rely on its ergodicity to “compute” numerically 

its long-run regularities. Second, we use mean-field approximations to derive analytical 

results. Both routes are found in accord and also complementary. 

  

The long-run dynamics of the process sharply depends on environmental 

volatility, displaying the following features: (a) Only if volatility is not too high can the 

society sustain a dense social network and thus attain a large average payoff. (b) The 

social architecture endogenously responds to increased volatility by becoming more 

cohesive. (c) Network-based strategic effects are an essential buffer that preclude the 

abrupt collapse of the social network in the face of growing volatility. These conclusions 

are largely in tune with the points stressed in the social-capital literature. 
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1 Introduction
Within any socio-economic environment, the network of social interaction is the
backbone that underlies its overall operation. The role of the social network
is two-fold. On the one hand, of course, it determines how agents come into
contact to carry out their economic activities. But, complementary to this,
the social network also maps how the relevant information required to conduct
those activities flows among the agents. To shed light, therefore, on the inter-
play between behavior and information that is at the core of so many social
phenomena, it is important to have a proper understanding of the main forces
that underlie the network of social interaction.

In principle, this network should be conceived as an endogenous outcome
of agents’ decisions, much in the same way as any other dimension of choice,
e.g. whether to play a certain game or undertake some investment. Networking
decisions, however, are particularly interesting in that they display the following
features:

(i) A new social link is typically initiated and supported by a small collection
of players — say, bilaterally — but it may induce important externalities
on the general social system. For example, it may open new channels
of communication that could prove crucial for implementing wide social
gains.

(ii) The establishment and maintenance of links is costly (e.g. time consum-
ing) and therefore “investment” in them should respond to the usual eco-
nomic considerations, i.e. opportunity costs.

(iii) The accumulation of links is bound to be only gradual, since the adjust-
ment costs entailed by a very fast rate of link formation are typically
prohibitive.

(iv) Preexisting links depreciate in that, for example, the value of the activity
and interaction they support may become obsolete or/and not so reward-
ing (relative to other options) as it used to be.

The features listed above are standard in many problems of investment and
suggest conceiving the process of network formation as the accumulation of a
special kind of capital — social capital. The term “social capital” has been used
in recent times with a variety of different meanings, some of them perhaps too
vague or devoid of operational content.1 Here, I focus on one of the most widely
agreed incarnations of this concept. I identify the stock of social capital enjoyed
by a certain community with the density and stability of its social network. This,
of course, is motivated by the implicit assumption that some dense and stable

1Even though some have pointed to an earlier origin, it was arguably James Coleman (see
Coleman (1988)) who brought the notion of social capital to prominence in the sociological,
and then economic, literature. For a good and recent overview on the use and possible misuse
of this concept, see Woolcock (2000), whose discussion mostly focuses on development issues.
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interaction has positive welfare implications, and should typically be correlated
with high overall payoffs. (Admittedly, this assumption may not suitable for
some applications, as stressed, for example, by Durlauf (1999).)
To address the aforementioned issues in a simple and paradigmatic context,

I propose a model where players are involved in a collection of pairwise Infinitely
Repeated Prisoner’s Dilemmas (IRPD). Every pair of agents which happens to
be linked in the social network play an idiosyncratic version of this game (i.e.
cooperation and relative opportunistic gains typically differ across pairs). These
games are played independently, in the sense that the choices made in each of
them (cooperation or defection) are adopted independently at each stage by the
players involved. The different games, however, are not strategically indepen-
dent since the behavior of a player in one of the games she plays can be made
dependent on what has previously happened in other games.2 Such information
on past behavior, however, is not assumed to diffuse instantaneously. Rather, it
is supposed to “travel” gradually (one step/link at a time) along the network.
Of course, only when it arrives to any particular player can the latter’s choice
be affected by it — say, triggering a punishment to a then-revealed defector.
In this context, it is apparent that the range of incentive-compatible be-

havior that can be supported in the infinitely repeated population game must
be crucially dependent on the architecture of the underlying network. And
reciprocally, of course, the particular network that should prevail — more specif-
ically, which links will be formed and which removed — also has to depend on
the payoffs that can be earned in an incentive-compatible fashion. To formalize
these considerations, I define the notion of Pairwise-Stable Network (PSN), that
combines standard ideas from the literature on repeated games with the concept
of pairwise stability found in the matching and network-formation literatures.
Informally, a PSN is a network in which each of its extant links supports bilat-
eral cooperation when every player uses optimal trigger strategies in all of her
(repeated) interactions.
In line with the dynamic approach of the paper, a PSN may be conceived

as the rest point of an adjustment process resulting from the accumulation of
revision opportunities enjoyed by different pairs of connected players. Thus,
the first step undertaken in the paper is to characterize such networks. I find
that rather fine details of the architecture of the network, in conjunction with
players’ strategic incentives in the repeated games, are important to understand
pairwise stability. For example, a key consideration that generally underpins the
stability of a link (i.e. the incentives of both players to cooperate and thus keep
their connection) is the existence of other “valuable” neighbors who are not too
distant apart and could punish either deviation without much delay. In other

2A related approach can be found in Bernheim and Whinston (1990). These authors
explore whether multimarket interaction enhances the collusion possibilities of an oligopoly.
The key difference with the present approach is that, in their case, the same set of firms is
assumed to interact in all markets simultaneously and, consequently, the information on the
past behavior of other oligopolists may be brought to bear immediately on all markets. That
is, in their case, the strategically relevant information spreads instantaneously throughout all
interactions.
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words, some measure of network cohesiveness (or “cliquishness”) turns out to
be important in supporting network stability.
As explained, however, the primary objective of the paper is not static but

dynamic. Our aim, therefore, is to shed light on how, over time, the strategic
incentives to cooperate interplay with the considerations underlying the forma-
tion of the social network. To this end, an adjustment (evolutionary) process is
postulated that is taken to proceed on a “slow” time scale, relative to the rate
at which the stage game is repeated. The main features of this process can be
summarized as follows.
First, as a basic step in the adjustment, and prior to any actual play, every

pair of connected players is given the opportunity to check the stability of their
respective links. Doing so, only the links which are able to support bilateral
cooperation are maintained. If this mechanism were to operate by itself, it is
quite clear that it would eventually lead to a pairwise-stable network (possibly
empty) that is a certain subset of the original one. Thus, to enrich the dynamics,
we add, in every period, two sources of “change and innovation”:

(1) Update of payoff conditions: the payoffs of existing links are changed with
some (small) independent probability, say ε > 0. This probability — a key
parameter of the model — is interpreted as a stylized measure of environ-
mental volatility.

(2) Search and link creation: Each player can support a maximum pre-specified
number of total links. Within this limitation, however, every player re-
ceives (with some independent probability) the opportunity of forming a
fresh new link with some new player she “knows” — i.e. with someone to
whom she is connected through a network path.

By making search and link creation a network-bound task, the process in-
duced by (1)-(2) displays acute path dependencies that render initial conditions
overly powerful in the determination of long-run behavior. (For example, an
initially empty social network would remain so forever, since no individual ever
“knows” any other one with whom to connect.) This seems too-rigid a formu-
lation and suggests extending (2) as follows:

(2+) Enhanced search and link creation: In addition to (2), with some (small)
independent probability, every player enjoys the possibility of forming a
new link with a previously “unknown” player — i.e. with someone in
another component of the social network.

The stochastic process where the removal of pairwise-unstable links is com-
plemented by payoff update (1) and enhanced search (2+) will be proven to be
ergodic. Its long-run behavior, therefore, is univocally summarized, indepen-
dently of initial conditions, by its unique invariant distribution. This invariant
distribution will be characterized in some particular scenarios — for example,
when the range of admissible payoffs is low or when the payoff environment is
stable (i.e. ε = 0). These parameter configurations represent an useful bench-
mark of comparison for the general case. For less extreme scenarios, however,
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an analytical characterization of the long-run behavior seems unfeasible. But
then, the fact that the process is ergodic affords an indirect way of “computing”
the long-run invariant magnitudes of any variable of interest. For, by virtue of
ergodicity, the empirical averages obtained along any simulation run must con-
verge almost surely to the theoretical averages induced by the unique invariant
distribution.
The former considerations suggest that numerical simulations are a sound

way of obtaining suitable estimates of the long-run behavior of the system. Here,
therefore, we pursue this route but complement it with a summary of the ana-
lytical discussion of the model undertaken by Marsili, Slanina & Vega-Redondo
(2002). In this companion paper, we rely on the mean-field techniques widely
used in statistical physics to formulate a suitable deterministic approximation of
the dynamic behavior of the model that embodies many of its essential features.
In combination, both approaches, numerical and analytical, jointly provide a
rich perspective on the nature and intuition of the results.

In our discussion of the model, most of our efforts will be devoted to under-
standing the long-run relationships among the following variables:

• network density, as given by the average degree (or connectivity) of the
nodes (i.e. players).

• network cohesiveness, as reflected by the average distance between the
neighbors of every given node — that is, a measure of how closely connected
are the neighbors of a typical player.

• network span, as embodied by the relative size of the largest components
or, relatedly, by the number of distinct agents who fall within a some given
radius of some typical player.

• payoff performance, as given by the average payoff earned per interaction
(i.e. across all links).

As a “numerical confirmation” of ergodicity, the simulation paths indeed
show convergence of the empirical average magnitudes of the above listed vari-
ables to a given value (i.e. their ergodic mean), even when the process starts
from very different initial conditions. Our main concern then is to understand
how these long-run summaries of process depend on the underlying data of en-
vironment (i.e. on the parameters of the model). Very succinctly, the main
regularities can be summarized as follows.

(a) The long-run density of the network depends negatively on ε, the ex-
tent of payoff volatility. So happens as well with payoff performance. In
this sense, therefore, one obtains the intuitive conclusion that volatility is
detrimental not only to the accumulation of social capital but also to the
materialized payoffs.

(b) As the environment’s volatility rises, the population “protects” from it by
endogenously increasing the cohesiveness of the social network.
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(c) Whenever the society is able to sustain a dense social network, its archi-
tecture displays a high span, which turns out to be a crucial feature in
enhancing the effectiveness of search (and thus adaptability).

(d) The detrimental effect of volatility mentioned in (a) is, in fact, strongly
mitigated by the strategic effects availed by the social network. If, by way
of contrast, players refrained from using network effects to support cooper-
ation (i.e. every bilateral IRPD game were strategically independent), the
“harmful” effects of volatility would manifest themselves at much lower
levels and in a substantially more abrupt fashion.

The above conclusions underscore the intuitive point that a "stable environ-
ment" may be an important requirement for successful accumulation of social
capital. That is, only if agents’ payoff conditions are not altered too fast can
one hope that a dense social network of cooperation may be sustained over time.
Indeed, we shall also see that the transition from a low- to a high-accumulation
path may respond very drastically to just very slight changes of the underlying
conditions. In a sense, this may be regarded as a stylized explanation of sudden
"miracles" (or anti-miracles) in development or growth of the sort stressed, for
example, by Lucas (1988).
Another important insight of the analysis concerns the way in which the

architecture of social interaction responds endogenously to the underlying cir-
cumstances of the environment, thus attempting to offset its main detrimental
implications. Somewhat schematically, the essential two features of the net-
work architecture that bear on performance are cohesiveness and span. And,
in accord with intuition, we observe that this trade-off moves in favor of cohe-
siveness (and away from span) as environmental volatility increases. It is worth
advancing, however, that the process always tends to keep some balance be-
tween these two polar features, thus preserving — if volatility is not too intense
— a “small-world”3 architecture for the (endogenous) social network.
The rest of the paper is organized as follows. Next, Section 2 presents the

model — first, its static version in Subsection 2.1, then its dynamic counterpart
in Subsection 2.2. The analysis of the model starts in Section 3 with the charac-
terization of pairwise-stable networks. It proceeds with the dynamics in Section
4, which consists of two subsections: Subsection 4.1, that establishes some basic
dynamic results (e..g the ergodicity of the process), and Subsection 4.2 that
contains the bulk of our numerical analysis. In this latter subsection, the dis-
cussion starts with a benchmark scenario, followed by the consideration of a
number of extensions and variants. Next, in Section 5 the mean-field analysis
of the model is outlined, comparing its conclusions with the numerical simu-
lations. Finally, in Section 6 the related literature is reviewed, while Section
7 offers some concluding remarks and a number of possible courses for future
research.

3The notion of a small world — a network that displays both short distances and strong
cohesiveness (or clusterization) — has been the object of booming research since the seminal
work of Watts and Strogatz (1998).
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2 Model

2.1 Statics

Let N = {1, 2, ..., n} be a finite population of agents who may interact through
a collection of infinitely repeated games. For each pair of players who actually
interact, i, j ∈ N , the stage game they play is an idiosyncratic Prisoner’s
Dilemma (PD) with payoff table

j
i

C D

C ζij ζij − ν

D ζij + ν 0

(1)

with ν > ζij(= ζji) > 0. As customary, C and D will be labelled as “Coop-
erate” and “Defect,” respectively. The payoff obtained by both players if they
jointly cooperate is denoted by ζij . This payoff is ij-specific and, in the dynamic
framework to be considered later on, it will change over time. For simplicity,
the payoff of joint defection is normalized to zero, whereas in case of a unilateral
defection the gain ν obtained by the defector over ζij is made equal to the loss
incurred her partner. To fix ideas, one possible interpretation of the situation
is that the interaction between players i and j concerns the implementation of
a joint project of total value 2ζij , which is either divided equally if both be-
have “honestly” or allows the individual who unilaterally behaves dishonestly
to appropriate an excess payoff of v at the expense of the other party.
In general, of course, not all players interact among themselves. The spec-

ification of who does is given by the social network, as captured by a certain
graph g ⊂ N ×N, where the nodes are identified with the players and (i, i) /∈ g
for any i ∈ N . Naturally, this graph is undirected so that, for all i, j ∈ N,
(i, j) ∈ g ⇐⇒ (j, i) ∈ g. Typically, the more compact notation ij (or ji) will
be used to denote the link between player i and j. Furthermore, we shall write
g−ij or g+ij to represent the networks obtained from g by, respectively, adding
or removing a link ij.
Given the prevailing network g, all pairs of players i and j such that ij ∈ g

are involved in an Infinitely Repeated Prisoner’s Dilemma (IRPD) with idiosyn-
cratic stage payoffs given by their respective ζij — cf. (1). Each of these different
IRPD are choice independent, in the sense that players’ decisions in any one of
them do not restrict the feasible behavior in others. They need not be, how-
ever, strategically independent since the behavior in some of them may be made
contingent on the information of what has occurred in others.
A key feature of the present approach is that information on how players

have behaved in the past diffuses through the social network only gradually.
Specifically, it is assumed that, in every round of play of the IRPD played
between two “neighbors” (i.e. connected players), each of them informs the
other one of any worthwhile detail they might be informed at that point — most
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crucially, of any deviation by other players from notionally prescribed behavior.
In this manner, relevant strategic information “travels” along the network one
step (or link) at a time. The essential implication of this assumption is that, in
general, the architecture of the network has an important bearing on the extent
of cooperation that the population as a whole can support in an incentive-
compatible manner.
To simplify matters, let us suppose that players rely on trigger strategies

(see Remark 2 for further discussion). In the present context, these strategies
will be assumed to have the following format:

(a) first, players choose, separately with each neighbor, whether to start their
bilateral interaction by cooperation or defection;

(b) subsequently, they immediately react to the news that one of her own
neighbors has formerly behaved as a unilateral defector (with any player)
by “punishing” her, i.e. by switching to irreversible defection in the cor-
responding bilateral IRPD played with that neighbor.

Now, under the assumption that players rely on trigger strategies, let us
introduce the following convenient notation. Given some prevailing network g
and any given player i, denote by

Ni ≡ {j ∈ N : ij ∈ g}

the set of her neighbors. For any one of these neighbors j ∈ Ni, let g ij∼ a stand
for the situation (i.e. strategy profile) where cooperation is the initial action of
both players for every link in g, except for the initial action of player i in link ij
which is a ∈ {C,D}. This strategy profile univocally induces a corresponding
infinite flow of stage payoffs for player i in her interaction with neighbor k :

{ψτik(g ij∼ a)}∞τ=0 (2)

where ψτik(g
ij∼ a) represents the stage payoff earned by player i with k at stage

τ . Then, denoting by δ ∈ (0, 1) the common discount factor, the payoff flow (2)
induces a (normalized) discounted payoff equal to

(1− δ)
∞[
τ=0

δτψτik(g
ij∼ a). (3)

Finally, the latter discounted payoffs can be aggregated to obtain the total payoff
earned by player i over all her neighbors:

πi(g
ij∼ a) ≡

[
k∈Ni

+
(1− δ)

∞[
τ=0

δτψτik(g
ij∼ a)

,
. (4)

We are now in a position to define the notion of Pairwise-Stable Network
(PSN). Informally, it simply consists of a network where, for every separate link,
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the two players involved have incentives to use it for cooperation. Thus, this
notion implicitly embodies the idea that, unless both of the players connected
by each link can separately confirm its incentives for cooperation, that link will
vanish. A formal definition of this idea follows.

Definition 1 An undirected graph g ⊂ N × N is said be a Pairwise-Stable
Network if for all ij ∈ g,

πi(g
ij∼ C) ≥ πi(g

ij∼ D).

To end this subsection, the following remark clarifies certain interesting is-
sues concerning the use of trigger strategies in the present context.

Remark 2 — Trigger strategies, maximal punishment, and perfection:

As formulated, the PSN concept directly embodies the assumption that players
restrict to trigger strategies. This restriction was justified above on the grounds
of simplicity. But in line with well-known results on the theory of repeated
games (see Abreu(1988)), a further justification may be grounded in the fact that
those strategies induce maximal punishments in the IRPD. They can be used,
therefore, to support any incentive-compatible behavior — in other words, any
outcome which could be supported by other, possibly more complex, strategies
can be supported as well through those of a trigger type. In this sense, these
strategies can be postulated without loss of generality if one is interested alone
in characterizing incentive-compatible behavior.
Trigger strategies, however, raise in the present context a problem concern-

ing issues of credibility (or perfection). In particular, it is not generally optimal
for a player to punish a neighbor when news about the latter’s deviant behav-
ior arrives. For, by eschewing such a punishment, the player anticipates being
able to sustain cooperation with her neighbor, an alternative which may well
be preferred if such a reciprocal cooperation can indeed be induced. A natural
way to address this conceptual problem is to modify the stability concept (and,
correspondingly, enrich the set of admissible strategies) so that any potential
defector is given the possibility of anticipating, and reacting optimally to, ensu-
ing punishment. This, in turn, makes punishment of a (sophisticated) deviator
optimal when the news to that effect arrive, even if the deviator has always
cooperated. Such considerations give rise to what might be called a Sophisti-
cated Pairwise-Stable Network (SPSN), a concept which displays the following
advantages. Firstly, it has the virtue of guaranteeing stability with respect to
the set of all possible strategies. Secondly, it is “perfect” in the sense of be-
ing supported by strategies that are optimal after every history — in particular,
therefore, it renders punishment an optimal response in every case. In contrast,
however, the main drawback of the SPSN concept is that, while it is substan-
tially more complex to formalize and characterize than its non-sophisticated
counterpart, its qualitative implications are essentially the same — see Remark
5. All combined, therefore, it seems well advised to focus on the PSN concept,
for the sake of analytical simplicity and expositional clarity.
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2.2 Dynamics

The equilibrium approach introduced so far represents an intermediate stage
towards a fully dynamic description of the situation. To carry out the latter,
however, we first need to propose in detail the law of motion that is to govern
the social dynamics. This is the object of the present subsection.
Let time be modelled discretely, with t = 0, 1, 2, ... indexing the consecutive

periods. At every t, each player i ∈ N supports a certain number of links (what
are called her direct links), while he may be also connected to other players
through the latter’s direct links — what may be called that player’s passive links.
Each of these links (active or passive) has a certain payoff potential associated to
it, which is identified with the cooperation payoff in the stage PD game played
by the two agents thus connected. Under the assumption that the support of
a link is a resource-consuming activity, an important feature of the model is
that players are limited to supporting a maximum number of links, say m, an
exogenous parameter.
The above considerations suggest identifying the state of the system at

(the beginning of) any given t by a list ω(t) ≡ [Li(t)]i∈N where each Li(t) =
{(j1, ζij1), (j2, ζij2), ...(jr, ζijr)} specifies the collection of individuals j1, j2, ..., jr ∈
N\{i} to whom player i supports a (direct) link, as well as the corresponding
payoffs ζij1 , ζij2 , ζijr ∈ R+ associated to each such link. As indicated, the car-
dinality r of the set Li(t) must not exceed m. Given any such state ω(t), the
induced social network g(t) is simply formed by declaring two individuals i and
j linked if there is a (direct) link between them, in either direction. Thus,
formally, we have:4

ij ∈ g(t)⇔ (j, ·) ∈ Li(t) ∨ (i, ·) ∈ Lj(t),

the induced set of neighbors for any player i being denoted by Ni(g(t)).

The social dynamics defining the law of motion across consecutive states
embodies three distinct sequential components: payoff update, link formation
and search, removal of unstable links. I take up each of these in turn.

1. Payoff update

First, we suppose that the payoff of each link may be subject to a random
update of its associated payoff. More precisely, with some independent proba-
bility ε, every link (j, ζij) ∈ Li(t) of each player i is transformed into the link
(j, ζ3ij) where ζ

3
ij is drawn afresh from some non-negative real interval [ζ, ζ] ac-

cording to a stationary (and common) probability distribution with continuous
density fζ . For future reference, denote by ω3(t) = [L3i(t)]i∈N the new set of links
thus generated, with g3(t) (equal, in fact, to g(t)) standing for the corresponding
network.

4For simplicity, it will be assumed that (redundant) direct links in both directions do not
exist between any pair of players. In fact, by asuming that there are no such links at the
beginning of the process, the dynamics of link formation guarantee that they will never arise
later on.
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2. Link formation and search

In every period, every player i ∈ N may enjoy two possible routes of search
and consequent formation of fresh links: component-bound (“local”) search and
unrestricted (“global”) search. Whereas the first route is conceived as the “or-
dinary” way of accessing new information (i.e. mediated by the social network),
the second one is regarded as more extraordinary (and thus only occasional).
Formally, we shall posit that, with independent probability p, the first option
arises, whereas with probability (1−p)q the second one occurs.5 I describe each
of these alternative options in turn.

(2.a) Component-bound search

Given g3(t), let Ci(g3(t)) represent the set of players who belong to the same
component as i in g3(t) — i.e. those players for whom there is a path in g3(t)
joining them to node i.6 When some player i receives a component-bound revi-
sion opportunity, let us suppose that she receives information on new ‘projects’
to be undertaken with each of the players in her component with whom she is
not already interacting. More precisely, she is taken to observe a set of possible
new links with the individuals in Ci(g3(t))\Ni(g3(t)), with its associated pay-
offs having been drawn afresh according to the probability density fζ . Let S0i (t)
stand for the set of these links. Out of this set, player i should be interested only
in those who she perceives as pairwise-stable, given the prevailing state ω3(t)
and the induced network g3(t). Denote by S1i (t)(⊂ S0i (t)) the set of those links
which display such pairwise-stability,7 and let l∗i = (j∗, ζij∗) be the particular
link (or any one of them, randomly chosen, if there are several) which provides
the highest payoff. Then, two cases must be distinguished.

(i) If the cardinality |L3i(t)| < m, and therefore player i is not currently satu-
rating her link-supporting capability, then the new set of links supported
by her is simply made equal to L33i (t) = L

3
i(t) ∪ {(j∗, ζij∗)}.

(ii) If, instead, |L3i(t)| = m, the new set L33i (t) is formed by the m links in
L3i(t) ∪ {(j∗, ζij∗)} with highest payoffs.

5Therefore, with probability (1−p)(1−q), any given player receives no revision opportunity
whatsoever.

6 Subsection 4.2.4 considers an arguably more realistic variant of the model where fresh
links can only be formed with players who are close to them — i.e. in their own component,
but within a short “search radius” . It turns out that the main gist of the analysis is unchanged
by this modification.

7Formally, we adapt the notation used in Definition 1 and say that a new link of player i
with some player j is perceived as pairwise stable, given ω�(t), when both

π�i((g
�(t) + ij) ij∼ C) ≥ π�i((g

�(t) + ij) ij∼ D)

π�j((g
�(t) + ij) ji∼ C) ≥ π�j((g

�(t) + ij) ji∼ D),

where π�i() and π�j() reflect the payoffs displayed in ω�(t).

12



(2.b) Unrestricted search

If some player i receives a revision opportunity through global search, she
gets to observe the possibility of forming a new link l�i = (j

�, ζij�), where j is
any player in N\Ni(g3(t)) and, again, ζij� is drawn according to the probability
density fζ . Suppose that l�i is pairwise-stable, given ω3(t). Then, as above, the
set L33i (t) of new links of player i is simply made equal to L

3
i(t) ∪ {(j�, ζij�)} if

|L3i(t)| < m, whereas it is identified with the subset of m links with the highest
payoff otherwise. Finally, if l�i is not perceived as pairwise-stable by player i, it
is simply ignored and no actual revision occurs.

3. Removal of pairwise-unstable links

Let ω33(t) = [L33i (t)]i∈N , with g
33 denoting the induced network and π33i (·)

the payoffs associated to the corresponding payoff profile [ζ 33ij ]ij∈g33(t). (For no-
tational simplicity, I dispense with the time index.) Then, for every link ij ∈ g33,
let the players i and j involved in the link evaluate whether both of the following
incentive-compatibility conditions hold:

π33i (g
33 ij∼ C) ≥ π33i (g

33 ij∼ D)

π33j (g
33 ji∼ C) ≥ π33j (g

33 ji∼ D).

If either of these conditions is violated, the link ij is judged unstable by the
players and thus is removed.8 Once such a check of pairwise-stability has been
completed for all links in g33, let ω333(t) refer to the resulting state where only
the links that qualified as pairwise-stable remain. This state is then carried over
to the next period, by making ω(t+ 1) = ω333(t).

3 Static analysis: characterization of Pairwise-
Stability

As we did in the presentation of the model, it is useful to start our discussion
with an equilibrium (thus static) approach, subsequently enriching matters with
a full-fledged dynamic analysis. Proposition 3 below initiates this course by pro-
viding an intuitive characterization of Pairwise-Stable Networks. As suggested
in our informal discussion, this characterization crucially hinges upon a certain
measure of cohesiveness of the network, as given by suitably defined geodesic
distances concerning the neighbors of the different players. Formally, for any
given player i ∈ N, and any two of her neighbors j, k ∈ Ni, we define the i-
excluding distance between j and k, denoted by di(j, k), as the length of the
shortest path joining j and k which do not involve player i. The interpretation

8Note that, in the spirit of Definition 1, we are making the assumption that each player
evaluates separately the stability of each of her different links. Moreover, for the sake of
tractability, we also make the assumption that all considerations are made with respect to the
same network g�� prevailing at the start of the link-removal operation.
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of this distance is straightforward: it is the number of steps (and therefore peri-
ods, in the repeated game) which are required for an information held by j (or
k) to reach k (or j) without the concourse of player i. As usual, it is postulated
that di(j, j) = 0 for any j ∈ Ni, while if no i-excluding path exists between k
and j it will be convenient to posit that di(j, k) =∞.

Proposition 3 Consider any network g ⊂ N × N and let [ζij ]ij∈g stand for
the possible cooperation payoffs that can be earned for each of its links. Then, g
is a Pairwise-Stable Network (PSN) if, and only if, for all ij ∈ g :

1

2

[
k∈Ni

(ζik +
1− δ

δ
ν) δd

i(j,k) ≥ 1− δ

δ
ν (5)

Proof. Consider any link ij ∈ g and focus, for concreteness, on player i.
Pairwise-stability of this link requires that player i has incentives to cooperate
with j under the threat that, if she were to do otherwise, all his neighbors k ∈ Ni
will switch to defection once they learn about it — an event that, for each of
them, occurs di(j, k) periods after the contemplated defection takes place.
If player i cooperates with j, she anticipates an intertemporal payoff:9

πi(g
ij∼ C) =

[
k∈Ni

ζik.

Instead, if player i defects unilaterally upon j, her anticipated payoff is:

πi(g
ij∼ D) = (1− δ)(ζij + ν)

+
[

k∈Ni\{j}


di(j,k)−1[

s=0

(1− δ)δsζik

+ (1− δ)δd
i(j,k)(ζik − ν)


= (1− δ)(ζij + ν) +

[
k∈Ni\{j}

k
(1− δd

i(j,k)+1)ζik − (1− δ)δd
i(j,k)ν

l
.

Therefore, the stability condition

πi(g
ij∼ C) ≥ πi(g

ij∼ D)

can be written as follows:

δζij +
[

k∈Ni\{j}
δd

i(j,k)δζik ≥ (1− δ)ν −
[

k∈Ni\{j}
(1− δ)δd

i(j,k)ν

which is readily seen to be equivalent to (5).

9Recall that stage payoffs are normalized by the factor (1− δ).
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Remark 4 Network stability in the absence of network effects:

If players did not rely on network (population-wide) effects in their strategic
considerations, cooperation could be supported through any particular link ij
if, and only if, it could be done bilaterally. That is, if

ζij ≥
1− δ

δ
ν. (6)

Contrasting (5) with (6), it immediately follows that, naturally, network-based
effects can only help in supporting cooperation, i.e. the latter condition always
implies the former. In general, the strength of those effects positively depends
on the number of neighbors a player has, how valuable these are (i.e. the
opportunity cost of spoiling cooperation with them), and their relevant distance
(which impinges on the delay affecting the aforementioned costs).
It should be emphasized, however, that even in the absence of network strate-

gic effects, the architecture of players’ interaction may have an important bear-
ing on the social dynamics through its effect on search and innovation. This, in
fact, will be confirmed by the dynamic analysis of such a scenario (cf. Subsection
4.2.2), where some of the regularities displayed by the basic model still arise. For
example, payoff volatility continues to have a negative impact on long-run per-
formance, even though many of the important features that go along with this
phenomenon (e.g. network cohesiveness, payoff performance, etc.) are sharply
affected by the absence of network-mediated feedback on players’ behavior.

Remark 5 Network stability with higher player sophistication:

In Remark 2, we discussed the possibility of allowing players a superior degree
of sophistication that would allow them to anticipate the stage at which others
would punish her for a deviation, thus reacting optimally to it through non-
trigger strategies. Space limitations prevent us from developing in detail the
implications of the stability concept which would reflect these considerations and
that we called Sophisticated PSN. The interested reader, however, may verify
that, as a counterpart of (5), the condition characterizing pairwise-stability in
that case would read as follows:

ζij −
1− δ

δ
ν ≥ min{0,−

[
k∈Ni\{j}

(ζik −
1− δ

δ
ν)δd

i(j,k)−1. (7)

For the sake of a more transparent comparison, the above condition can be
contrasted with the following rewriting of (5):

ζij −
1− δ

δ
ν ≥ −

[
k∈Ni\{j}

(ζik +
1− δ

δ
ν)δd

i(j,k)−1.

One then observes that similar qualitative considerations arise in both cases —
i.e. the number, payoff value, and relevant distances of neighbors continue to
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be the key factors involved. In (7), however, the higher sophistication assumed
on the part of players (which allows them a preemptive reaction to punishment)
leads to weaker deterrence against deviations. This, in turn, narrows — but
certainly does not destroy — the range of circumstances in which a sufficiently
cohesive social network enlarges significantly the cooperation possibilities.

4 Network dynamics

4.1 Ergodicity and other preliminary results

Suppose that no fresh links were ever formed through search (i.e. p = q = 0)
and prevailing payoffs were not subject to update (ε = 0). Then, the resulting
deterministic dynamics would reduce to a mere chain of link removals, as the
links which are deemed unstable are being discontinued by the agents involved.
This restricted dynamics would obviously lead to a stationary situation, possibly
an empty network. In this sense, it may be regarded as providing a simple
dynamic foundation of the PSN concept introduced in Definition 1. But our
main interest, of course, is geared towards the study of the full-fledged stochastic
dynamics where link removal is countered by search and link formation, as well
as the underlying payoff conditions are subject to occasional change. Only in
this case, with p, q, ε > 0, the full richness of our model is suitably displayed.
A first basic step to be undertaken in the analysis of such stochastic dynam-

ics is the establishment of conditions under which the induced Markov process
can be ensured ergodic. As advanced, such ergodicity will provide a theoreti-
cal basis for the later use of numerical simulations in elucidating the long-run
behavior of the system. To state matters formally, recall that fζ(·) stands for
the probability density with governs every fresh draw of payoffs, whose support
is given by a non-negative interval [ζ, ζ]. Further remember from (6) that 1−δδ ν
is the threshold to be exceeded by any cooperation payoff ζij which is to be
supportable by players i and j without resorting to network effects (i.e. bilat-
erally). In this terms, the following result states that ergodicity is guaranteed
as long as, for any payoff value redrawn afresh, there is some prior uncertainty
as to its “supportability” in the absence of network effects.

Proposition 6 Assume ζ < 1−δ
δ ν < ζ and ε, q > 0. Then, provided the pop-

ulation N is large enough, the social dynamics described in Subsection 2.2 is
governed by an ergodic stochastic process.

Proof. The induced process is clearly aperiodic. Therefore, to establish the
desired conclusion, it is enough to show that there is some particular state to
which there is positive probability of returning, from any other state, in some
finite number of steps. In the argument, the state ωe where there are no links
established between players will play this recurrent role.
The first point to note is that, if n is large enough, there is positive prob-

ability that the network might be eventually divided into two or more disjoint
components. To see how this could occur, suppose that n is even and let the
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population be partitioned into two disjoint subsets, say N1 = {1, 2, .., n2 } and
N2 = {n2 + 1, n2 + 2, ..., n}. Then, revision opportunities may arise (possibly
through unrestricted search — recall (2.b) in Subsection 2.2) so that players in
N1 obtain payoff options ζij with players j ∈ N2 satisfying:

ζ > ζij > max{
1− δ

δ
ν, max
k∈N2

ζik},

and reciprocally for players in N2. These revision opportunities induce pairwise-
stable and payoff-improving links for each player in Nu over those that could
be supported with agents in the complementary set Nv (u, v = 1, 2, u 9= v).
Therefore, if n is large enough (in particular, it is enough that n ≥ 2(2m+ 1)),
all links across N1 and N2 would eventually be removed.
Thus suppose that players are divided into such disjoint components, and

let each player in Nu in turn receive an unrestricted revision opportunity with
some player in Nv (v 9= u) whose associated payoff is higher than any prevailing
one (but lower than ζ). Then, the corresponding link must be formed (removing
one of the pre-existing ones), since that link will be perceived as pairwise stable.
Now suppose that, subsequently, the link is subject to a payoff update, with the
consequence that its payoff is lowered below 1−δ

δ ν. This leads to the link being
removed, since it is the only link which currently connects the sets N1 and N2

and, therefore, players cannot rely on network effects to support cooperation
with it. By proceeding in this fashion with all players in turn as needed, it
is clear that the process would reach the empty network. By construction, the
chain of steps involved is finite and displays positive probability, thus completing
the proof.

The former result clarifies that some payoff volatility (i.e. ε > 0) is generally
needed to achieve ergodicity of the process. But the role played by ε in the
analysis is not merely technical (i.e. to ensure ergodicity), but represents one of
the key factors motivating both the the model and the questions asked. It is of
central interest, therefore, to gain insight into the role it plays in the long-run
dynamics of the process, understanding its interplay with other features of the
model, e.g. payoffs. At this point of the discussion, a useful first step in this
endeavor is afforded by the following result, which maintains all the hypotheses
of Proposition 6 except for assuming that ε = 0.

Proposition 7 Assume ζ < 1−δ
δ ν < ζ and q > 0. Then, if ε = 0, the social

dynamics leads almost surely to a path where the network reaches the maximum
connectivity and the induced total payoff (aggregated over the whole population)
converges to it maximum value 4mnζ.

Proof. To establish the desired conclusion, the key role is played by the follow-
ing two observations:

(1) Consider any η > 0 such that ζ − η > 1−δ
δ ν. Then, since the density fζ(·)

is assumed continuous on its support [ζ, ζ] and revision opportunities are
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independent across players and time, the following conclusion applies. For
all θ > 0, there is some T such that if t ≥ T, there is probability no lower
than 1− θ that every player i has received (in preceding periods τ < t) at
least m link formation opportunities with associated payoffs ζij > ζ − η.

(2) Any of the link opportunities described in (1) are pairwise stable. There-
fore, choosing θ and T as above, there is probability no lower than 1− θ
that, if t ≥ T, every player i is supporting m links at t (the maximum
number), all of them with associated payoffs no lower than ζ − η.

Thus, since η and θ in (1)-(2) can be chosen arbitrarily small, the desired
conclusion immediately follows.

The previous result indicates that, in the absence of payoff volatility (ε =
0), the accumulation of social capital eventually reaches its maximum level of
fruition. This in turn highlights the importance of such volatility in having
other features of the dynamics — e.g. the evolving network architecture — enjoy
some influence in shaping the long-run performance.
To further clarify the implications of Proposition 7, note that, if ε = 0,

the process is no longer guaranteed to be ergodic and, therefore, one can no
longer speak of a uniquely induced behavior in the long-run. Thus, in prin-
ciple, the conclusion stated in the above proposition may arise in conjunction
with long-run dependence of initial conditions concerning some other underlying
features of the situation — e.g. the specifics of the network architecture. How-
ever, the fact that the invariant distribution of any Markov process is always
upper hemi-continuous in its parameters implies that, for low but positive ε,
the (then unique) long run behavior of the process must continue to display,
approximately, the same features established by the result.
Finally, it is worth emphasizing that a crucial assumption in Proposition 7

is that 1−δ
δ ν < ζ. This amounts to saying that, with some positive probability,

a fresh payoff draw may give rise to a potential a link which could be supported
without resorting to network effects. To underscore the importance of this
assumption, it may be useful to introduce the following observation.

Remark 8 Network dynamics under stringent payoff conditions:
Suppose that, unlike what has been assumed above, ζ < 1−δ

δ ν. Then, it is
straightforward to see, that for any ε ≥ 0 (thus, in particular, even in no payoff
volatility exists), if the process starts with an empty network — i.e. what was
labelled state ωe in the proof of Proposition 6 — the network remains empty
forever after. The simple reason for this is that, under these circumstances, no
potential link is ever perceived as pairwise stable. Therefore, no link is ever
formed, making the state ωe an absorbing state. In contrast with Proposition
7, this points to the fact that the the long-run behavior of the system displays
some sharp qualitative dependence on the payoff conditions.

Combining Proposition 7 and Remark 8, a rich interplay is suggested be-
tween the exogenous conditions that determine payoffs and the extent of their
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volatility. To explore this relationship, possible trade-offs, and their implications
for the long-run performance of the process is the object of the next sections.

4.2 Numerical analysis

Motivated by the considerations explained in the previous Subsection, we now
undertake an analysis of the model based on numerical simulations. First, the
analysis will focus on a benchmark scenario where payoff conditions are set at
the interesting “low edge” of the relevant region and players are allowed to take
full advantage of network effects in supporting cooperation. Then, in subsequent
subsections, we shall turn to exploring how the analysis is affected if players do
not rely on network effects or the payoff conditions change — e.g. become more
stringent.

4.2.1 A benchmark scenario

Consider a environment defined by the following parameter values. There are
100(= n) individuals involved in repeated interaction with a common discount
rate δ = 3/4 and a stage PD game with payoffs as given by (1) for ν = 4.
The cooperation payoffs ζij are drawn, randomly and independently, according
to a uniform distribution over the interval [ζ, ζ] = [0.4, 1.4]. Thus, as required

by Proposition 6, the threshold ν(1−δ)
δ = 4

3 which marks the possibility of sup-
porting cooperation bilaterally (cf. (6)) belongs to the payoff support. More
specifically, it may be computed that any new payoff draw exceeds that thresh-
old with an ex-ante probability of 1/15.
The rate at which individuals receive search and revision opportunities is

chosen to be p = 0.1 if they are component-bound, and q = 0.01 if they are
unrestricted. On the other hand, the maximum number of links that any given
player can actively support is set to m = 2 (therefore, the maximum average
degree one may ever observe is equal to four).
The typical simulation runs will stretch for half million periods (T = 5×105),

a time horizon which always proves sufficient to attain long-run convergence in
a clear-cut fashion. Our analysis of these simulations will focus on the key
variables used in our earlier discussion: network density (average node degree),
network cohesiveness (average neighbor distance), network span (relative size
of the largest components), and payoff performance (average payoff earned per
link). The main concern is to determine their respective long-run magnitudes,
understanding how these long-run values depend on the essential details of the
environment. As advanced, the key parameter in the analysis turns out to be
the volatility rate ε, which will thus occupy a central role in our discussion. In
a later subsection, however, we shall also discuss briefly how the behavior of
the model is affected by changes in other parameters of the model such as, for
example, the width of the payoff support.
For the scenario just described, we start our discussion with Figures 1

and 2, which show sample paths for the average degree of the network un-
der three different volatility rates (i.e. different payoff-update probabilities),
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ε = 0.01, 0.07, 0.013. Whereas the first diagram covers the complete time
horizon of the simulation, i.e. half million periods, the second one provides a
“zoom” restricted to the first 30000 periods. In both cases, the paths start with
an empty network.
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Figure 1: Average degree, full time horizon.

These diagrams suggest a rather fast convergence of the empirical averages,
a feature that is specifically confirmed by Figure 3. Indeed, given the estab-
lished ergodicity of the process, we know that the empirical averages observed
along any simulation run must converge, a.s., to the corresponding magnitudes
induced by the unique invariant distribution of the process. The fact that this
convergence is quite fast and independent of initial conditions is further con-
firmed in Figure 4. In this latter figure, it is shown how, for each of the three
volatility rates considered, the empirical averages converge quite rapidly to a
common value, even if the alternative paths starting from polar initial condi-
tions. More specifically, one of these initial conditions correspond to the empty
network, as considered before. On the other hand, the polar case is given by
paths that start at configurations where all players are connected to their neigh-
bors through their maximum number of two active links.10

Analogous diagrams are displayed in Figures 5, 6, and 7 for the other three
variables of interest: neighbor distance, largest-component share, and average
10To be concrete, what is done in this case in order to construct the initial conditions is to

have every player i support random-payoff links to players i+1 and i+2, where these indices
are conceived “modulo n”.
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Figure 2: Average degree, short time horizon 

Figure 3: Empirical average degree 
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payoff. In every case we continue to observe that, for all three volatility rates
considered, the empirical magnitudes converge rapidly to a common value even
when staring from polar initial conditions. This shows again that the numerical
simulations are an effective way for approximating the long-run values induced
by the unique invariant distribution of the process.

The procedure outlined has been used to find approximate values for the
long-run magnitudes of the variables of interest under a wide range of volatility
rates ε. Our main interest in this respect is to understand the effect of ε on
those long-run values. This is depicted in Figures 8-13 for each of the four
cases: degree, neighbor distance, largest-component share, and link payoffs.
Next, I discuss in turn the main findings obtained for each of them.
First, Figure 8 shows that payoff volatility has a negative effect on network

connectivity. As the update probability ε rises, the density of the social net-
work, as measured by the average node degree, is seen to fall quite significantly.
Intuitively, this is a consequence of the fact that, as volatility grows, the pair-
wise stability of former links tends to deteriorate. This phenomenon may be
regarded as a sort of depreciation in formerly accumulated social capital; or, in
other words, as a reflection of the negative drift imposed on the value of exist-
ing links by the process of payoff update. For future reference (cf. Subsection
4.2.2), it is worth noting at this point that the decreasing function describing
this effect is convex, the fall being quite steep for low values of ε but flattening
significantly at higher values.
Figure 9 depicts what is possibly one of the most remarkable regularities

found in the analysis. It pertains to the fact that, as ε grows, the social network
endogenously adapts to this turn of events by becoming more cohesive. This is
in line with what has been learned (say, in Proposition 3 concerning the PSN
notion) about the role played by network effects in enhancing the incentives for
cooperation. It is interesting to find that the network dynamics is responsive to
these considerations, adapting endogenously to take advantage of them. As a
graphic illustration of this phenomenon, Figures 10 and 11 display the networks
prevailing at the end of the time horizon for two very different scenarios: one
where payoff volatility is low (ε = 0.02) and another where it is relatively high
(ε = 0.12). In line with our previous discussion, it is observed that in the first
case there are a significant number of nodes that are loose ends of network paths
— a sign of relatively low cohesiveness — while no such state of affairs is found in
the second case (where, moreover, neighbors are connected on average by shorter
paths).11 Finally, it should be emphasized that the effects at work in this respect
are strong enough to offset the important opposite forces which decrease general
connectivity as ε grows (cf. Figure 13). For, ceteris paribus, such a decrease in
node connectivity induces a marked tendency for any measure of graph-theoretic
distance (even neighbor distance) to rise. A clearer understanding of this point
will be gained in Subsection 4.2.2, where we consider a context with no network
effects (and therefore no strategic benefit for cohesiveness).

11More specifically, it may be computed that the neighbor distance of the first network (for
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Figure 4: Empirical average degree, polar initial conditions
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Figure 5: Empirical average neighbor distance, polar initial conditions
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Figure 6: Empirical share of the largest component, polar initial conditions
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Figure 7: Empirical average payoff, polar initial conditions
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Figure 8: Payoff volatility and long-run average degree
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Figure 10: Social network after 5 · 105 periods, ε = 0.02. Any directed arrow
joining two nodes represents a link, with its origin being the agent who supports
that link. Nodes which have no incoming or outgoing link are fully disconnected.

Figure 11: Social network after 5 · 105 periods, ε = 0.12. The same graphical
conventions as above apply.
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Figure 12: Payoff volatility and long-run share of two largest components
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Figure 12 depicts the effect of payoff volatility on the size of the largest two
components. The first interesting observation is that, independently of ε, most
of the connected players belong to a single major component, the second-largest
component remaining very small throughout. This conclusion is somewhat rem-
iniscent of the well known results of Theory of Random Graphs which assert
that, beyond a certain “connectivity threshold”, there arises a single large com-
ponent in the graph. (These mathematical results, however, do not seem readily
applicable here since, in our case, the formation of the social network is very
much the result of a non-random mechanism.) On the other hand, concerning
the effect of ε on the relative size of the largest component, en expected negative
dependence is observed, largely a reflection of the analogous behavior displayed
by the long-run average degree.
Finally, we turn to Figure 13, which centers on the effect of payoff volatility

on the average payoff earned per interaction (or link). The evidence gathered
now serves as an interesting complement to that displayed in Figure 8. It shows
that, as ε grows, the fall in the average payoff earned per link reinforces the
negative consequence induced by the formerly discussed decrease in the number
of links (or games played). This latter effect was explained as an embodiment
of social-capital depreciation. In contrast, the present one (a decrease in the
payoff per link) should be largely understood as a consequence of the negative
effects on search imposed by low connectivity and a small network component.
The latter has detrimental implications for the bulk of players’ search activities
(which are component-bound), in turn deteriorating the outcome of this search
(the payoffs attained), even when such search is successful (i.e. happens to find
a supportable link).
To sum up, the numerical analysis contributes the following insights on the

factors that underlie a robust process of social-capital accumulation. First and
foremost, we find that some environmental stability is required, and indeed the
underlying network dynamics always tries to respond to this feature by adapting
endogenously to the extent of prevailing volatility — in particular, by modulating
its cohesiveness accordingly. When the process is successful, the increasing span
of the social network is also exploited in order to enhance the scope of search.
This allows players to maintain high levels of overall payoff performance and
provides them with some important adaptability. Indeed, it is precisely this
adaptability that, in a changing environment, is crucial to sustaining a stable
density of interaction.
Overall, therefore, we find that positive feedback effects play a key role in

the process (i.e. the network buildup reinforces itself) since a denser network
both impairs strategic opportunism and enhances search. A useful course to
take for improving our understanding of such positive feedback is to study how
the dynamics would fare if it were either partially absent or somehow weaker.
This is the objective of the following three subsections. The first one focuses
on a context where no network effects are assumed to play any role in strate-
gic considerations and therefore players’ cooperation has to be supported just

ε = 002) is 3.6 whereas that of the second (for ε = 0.12) is 2.7.
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bilaterally. Then, the subsequent subsection explores whether a deterioration
of players’ payoffs (specifically, a downward shift in the payoff support) has a
profound and lasting effect on the build up of social capital. Finally, the third
subsection studies the long-run effects of restricting component-bound search to
lie within a relatively short radius of the agent enjoying a revision opportunity.

4.2.2 Network-free strategic behavior

Suppose that, as described in Remark 4, players’ strategic behavior no longer is
influenced by network (i.e. inter-neighbor) effects. This may be understood as
reflecting a different norm or convention used in the society — one where players
react to each of their partners only according to the information gathered on
their corresponding bilateral play. Then, strategically speaking, every pairwise
interaction is to be regarded as strategically independent of any other. The
role of the network consequently reduces to defining the channels through which
information diffuses in the population, a nevertheless important role that should
still yield interesting dynamic implications. As advanced, contrasting these
implications with those obtained in our benchmark scenario, we hope to gain
further insights on the workings of the model.
Figures 14-17 summarize the long-run effect of payoff volatility on each of

the four variables that guide our analysis: degree, neighbor distance, largest-
component share, and link payoffs. (The parameter values are all identical
to those considered in the benchmark scenario.)12 Comparing the long-run
behavior displayed with its counterpart for the basic model (cf. Figures 8-13),
the main points of contrast can be summarized as follows:

1. The bite on social performance caused by increased volatility manifests
itself at much lower rates than in the original scenario. Specifically, both
the average degree and the network span (cf. Figures 14 and 16) start
to face significant downward adjustments at starting values of ε that are
one order of magnitude smaller than before. A similar pattern is dis-
played in Figure 17 for the average payoff per link. In this case, however,
the downward movement is more limited than in the benchmark scenario
since, naturally, it is bounded below by the bilateral-cooperation thresh-
old ν(1−δ)

δ = 4
3 . Of course, such a more limited range of variation on the

materialized payoffs is achieved at the expense of a much more pronounced
reduction on the number of links as ε rises.

2. An additional, and very interesting, difference with the original framework
concerns the abruptness now observed in the transition from a high- to a
low-performance regime. In the absence of network strategic effects, this
transition takes place rather sharply, at least in two complementary senses.
On the one hand, the full change is essentially completed within a range

12By relying on ideas analogous to those used in the proof of Proposition 6, it is immediate
to show that the stochastic process induced in the present case is ergodic and thus long-run
values are uniquely defined.
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for ε that, again, is shorter than in the original framework by an order
of magnitude. On the other hand, the “shape” of the curve tracing this
change is roughly concave (i.e. with increasing differences), in contrast to
the convex shape displayed by the original setup where further increases
in ε led to progressively less significant changes in long-run magnitudes.

3. The behavior of average neighbor distance in this case also displays a
marked contrast with the evidence obtained when players could rely on
network strategic effects. Then, we emphasized that an increase in ε leads
to rising network cohesiveness (i.e. decreasing neighbor distance), as the
endogenous way in which the population ends up partially offsetting the
increased volatility. Now, however, since cohesiveness brings about no
relevant payoff consequences, an increase in ε induces a corresponding
increase in neighbor distance. In essence, this transition is a mirror image
of the parallel change experienced by the connectivity of the network,
which naturally has the effect of increasing all network distances. (Recall
the point made in this connection when discussing Figure 9.)

4.2.3 A less rewarding environment

Now, we focus on the effect of alternative payoff conditions on the behavior
of the model. As it turns out, there are little surprises in this respect, and
the essential points can be gleaned from just considering a scenario where the
original payoff conditions are subject to a simple, say downward, shift in the
payoff support. Specifically, it is supposed that this support continues to have a
unit width but its upper end ζ (and consequently it lower end ζ) are decreased by
a mere 0.05, i.e. [ζ, ζ] = [0.35, 1.35]. This is still consistent with the hypotheses
of Proposition 6 (thus ergodicity is guaranteed), but the ex-ante probability that
a fresh draw exceeds the threshold ν(1−δ)

δ = 4
3 for bilateral-based cooperation

now reduces to 1
60 .

Under these conditions, the effect of payoff volatility on long-run behav-
ior is described in Figures 18-21. Comparing each of these figures with their
counterparts obtained under the original payoff conditions, one finds the same
qualitative behavior in terms of how the long-run values of each of the four vari-
ables of interest depend on the volatility rate. In the present case, however, the
curves that reflect such dependence are seen to experience a global downward
shift of significant magnitude across all four cases.
Concerning average degree, network span, or average payoff per link, the

observed downward shift is simply the intuitive reflection of the fact that, as the
payoff conditions deteriorate, so must happen as well with the performance of the
social system. In the case of neighbor distance, on the other hand, the downward
adjustment observed for every value of ε is again an interesting indication of
how the network dynamics endogenously responds to the underlying exogenous
circumstances. Here, in particular, it leads to an increase in the cohesiveness
of the social network if, for any given volatility rate, the payoff environment
becomes less rewarding on average.
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Figure 19: Low payoff support: volatility and long-run average neighbor distance
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Figure 22: Search radius ρ = 2: volatility and long-run average degree

4.2.4 Short-radius search

One of the key features of the model has been to endow the social network with a
crucial role concerning how the information diffuses throughout the population.
This approach has been applied both to strategically-relevant information (i.e.
past behavior of neighbors) as well as to fresh payoff opportunities. In the latter
case, which arises when a player is at an “ordinary” (frequent) revision juncture,
we have assumed that search is bound by her current component. In this respect,
the interpretation has been that a revising agent can only be informed of payoff
opportunities that arrive through the network, much as the information she
receives pertaining to neighbors’ previous behavior. But, motivated by the
idea that payoff-related knowledge may be complex and thus dissipate easily in
bilateral communication, it is reasonable to contemplate the possibility that its
“travelling distance” might be severely limited. Formally, this would amount to
postulating that any fruitful search of new payoff opportunities is constrained
by a certain radius, possibly of a short magnitude.
To explore the implications of this possibility, I have considered a variation

of the original model where component-bound search (recall (2.a) in Subsection
2.2) only renders fresh payoff draws that are at a network distance of the revising
agent lower than some pre-specified search radius ρ. For a starkest contrast,
Figures 22-25 summarize the results for the lowest meaningful value of this
radius, ρ = 2, and the parameter values used in the benchmark scenario.13

Interestingly, no major changes are found at a qualitative level, when the

13 It can be readily verified that the argument used in Proposition 6 to establish ergodicity
is independent of whether or not the component-bound search is restricted to a given radius.
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Figure 23: Search radius ρ = 2: volatility and long-run average neighbor dis-
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Figure 25: Search radius ρ = 2: volatility and long-run average payoff

present results under a short search radius are compared with those for the
original model, as depicted in Figures 8-13. Focusing on the details, however,
some intuitive differences do arise, some of which are worth noting. First, as
one would expect, the short search radius translates itself into significantly lower
neighbor distances, at all values of ε — i.e. a global downward shift of the cor-
responding curve (cf. Figure 23). Naturally, this larger cohesiveness in turn
induces a larger connectivity (long-run average degree), which is a direct re-
flection of the stronger network effects that now impinge on players’ strategic
considerations (cf. Figure 22). Finally, Figure 24 displays no significant effects
on the largest-component shares observed at different volatility rates, while Fig-
ure 25 does show systematic negative differences with the average payoff earned
per link in the benchmark scenario. The latter contrast represents an interest-
ing complement to that observed with respect to network connectivity. While
connectivity rises with a short search radius because of a stronger link stability
(afforded, as explained above, by an increasing cohesiveness) the average payoff
earned per existing link falls due to the narrower search imposed by that short
radius.

5 Mean-field analysis
In this section, our objective is to undertake a so-called mean-field analysis of
the model, akin to what is customarily done in statistical physics for large com-
plex systems of interacting entities. In a nutshell, what underlies this approach
is the presumption that, in the presence of a large number of stochastic inter-
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actions, the aggregate (or average) behavior of the system can be reasonably
well understood (or approximated) in expected terms — i.e. through a simpler
deterministic representation of the process that embodies, on the one hand, an
average description of the state of the system and defines, on the other hand,
its law of motion in expected (or mean-field) terms.
As mentioned in the Introduction, such an analysis is carried out in more

detail in the companion paper of Marsili, Slanina and Vega-Redondo (2002).
Here, I simply outline part of it, the focus being to shed some new light on the
conclusions derived from the numerical analysis of the model. More specifically,
the main objective will be to study the dynamics of the network connectivity
(i.e. the average degree) and its key dependence on the rate of payoff volatility.
Concerning the latter, for example, we hope to gain some insight on why the
effect of payoff volatility is affected, both quantitatively and qualitatively, by
the presence or absence of strategic network effects. Naturally, much of what
will be done with respect to network connectivity may be suitably extended to
the study of other long-run variables, e.g. network span or average payoffs.
First, we ignore the components of the social dynamics that are concerned

with payoff update and link creation through search. We start, therefore, by
considering that part of the dynamics that deals with the gradual removal of
pairwise-unstable links. Given any possible link ij ∈ N ×N, let λij(t) ∈ {0, 1}
specify whether this link is in place at t (an event which is signified by λij(t) = 1)
or not (denoted by λij(t) = 0). Then, for any such link ij, the dynamics of link-
removal (due to pairwise instability) leads to the following law of motion:

λij(t+ 1) = λij(t) · I[ζij(t+ 1)− βij(t+ 1)], (8)

where:

• ζij(t+1) is the cooperation payoff prevailing at t+1 for the game played
by i and j (it may normalized to zero if there is no link connecting i and
j),

• I[·] is an indicator function defined by I[y] = 0 if y < 0 and I[y] = 1 if
y ≥ 0, and

• βij(t+ 1) = max{ϕij(t+ 1),ϕji(t+ 1)} with

ϕij(t+ 1) =
1− δ

δ
ν −

[
k∈Ni(t)\{j}

δd
i(k,j)(t+1)(ζij(t+ 1) +

1− δ

δ
ν) (9)

and ϕji(t+ 1) is defined reciprocally.

In the adjustment rule (8), the term βij(t + 1) quantifies the strength of
the “strategic network effects” bearing on the link ij. Those effects are to be
compared with ζij(t + 1) — i.e. must exceed this payoff — in order to confirm
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the pairwise-stability of the link (and thus its remaining in place). To see this,
simply note that the implied conditions for this state of affairs:

ζij(t+ 1) ≥ ϕij(t+ 1)

ζij(t+ 1) ≥ ϕji(t+ 1)

are a mere rewriting of the pairwise-stability condition (5), as it pertains the
link ij.
Next, we introduce a second component of the dynamics, namely, random

payoff update. As formulated in Subsection 2.2, this process subjects every ex-
isting link to an independent probability ε of having its payoff updated afresh.
Building upon the formulation used in (8), the expected law of motion that in-
cludes both payoff update and consequent link removal may be concisely written
as follows:

Et[λij(t+ 1)] = (1− ε)λij(t) + ε λij(t) Pr{ζij ≥ βij(t)}, (10)

where the implicit assumption here is that the expectation on βij is “static”,
i.e. Et[βij(t+1)] = βij(t). Therefore, every preceding link which is not subject
to a payoff update remains in place and, for those which do experience such an
update, their probability of staying pairwise-stable is:

Pr{ζij ≥ βij(t)} =
] ζ

βij(t)

fζ(z) dz,

where fζ is the (continuous) density that governs every payoff draw.
Now, the key approximation step that is undertaken by the mean-field ap-

proach is to rely on the link-specific law of motion (10) to posit an average
formulation resting on average quantities. Let κ(t) stand for the average degree
at t, i.e.

κ(t) =
1

n

[
i∈N

[
j 9=i

λij(t).

Then, if we suppose that the network effects can be suitable averaged across
players through a common β̂(t), the aggregate mean-field counterpart of (10)
may be written as follows:

Et[κ(t+ 1)] = Et

 1
n

[
i∈N

[
j 9=i

λij(t+ 1)


= Et

 1
n

[
i∈N

[
j 9=i

λij(t)

%(1− ε) + ε

] ζ

β̂(t)

fζ(z) dz

&
,

=

%
(1− ε) + ε

] ζ

β̂(t)

fζ(z) dz

&
κ(t),
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which may be rewritten as follows:

Et[κ(t+ 1)] =

%
1− ε+ ε

#
1−

] β̂(t)

ζ

fζ(z) dz

$&
κ(t)

= [1− ε

] β̂(t)

ζ

fζ(z) dz] κ(t).

Finally, we complete the dynamics by adding the process of search and cre-
ation of new links. In the spirit of our mean-field approach, this dynamics of
link creation is captured through a certain function φ(κ) of the current degree
κ ∈ [0, 2m], where recall that m is the maximum number of links that any given
individual can support (therefore, 2m is the maximum average degree). For tech-
nical convenience, φ : [0, 2m]→ R is assumed twice differentiable. Conceptually,
this function is to be interpreted as embodying the rate of link creation that
is associated to component-bound search, the “ordinary” (and more frequent)
mechanism for creating new links. We postulate, therefore, that it satisfies the
following boundary conditions:

φ(0) = φ(2m) = 0. (11)

On the one hand, the condition that φ(κ) should vanish at κ = 0 is simply a
reflection of the fact that, in an empty network, component-bound search yields
no fresh opportunities. On the other hand, the additional condition that φ(κ)
must vanish at κ = 2m is a mere consequence of the limitation assumed on
the number of active links that any single player can support — when every
player is exhausting all her linking possibilities (thus the average degree is at
its maximum), no further net increase is possible. To simplify the discussion,
we shall also complement (11) with the following two additional conditions:

φ3(0) = 0 (12)

φ(κ) > 0, ∀κ ∈ (0, 2m). (13)

The first one is not crucial, but facilitates the discussion by making κ = 0 a clear-
cut reference point in the analysis.14 The second condition, on the other hand,
merely embodies the natural idea that as long as there is still some capacity for
further connections, search always contributes, in expected terms, some positive
“drift” of link creation.
Combining the three component of the dynamics considered (link removal,

payoff update, and link creation), the mean-field law of motion for the network
average degree can be compactly written as follows:

κ(t+ 1) = [1− ε

] β̂(t)

ζ

fζ(z) dz] κ(t) + φ(κ(t)), (14)

14 If this condition did not hold, a small value of κ (its magnitude associated to the frequency
rate of search) would fulfill the same role as zero in the ensuing analysis.
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where, to in order to obtain a deterministic system, we make the further sim-
plification of substituting actual for expected motion in the LHS of the above
expression. This leads to a one-dimensional autonomous system in κ(t), which
is the basis of our ensuing analysis.
A detailed study of the above dynamics requires positing some explicit func-

tional dependence of β̂(t) on κ(t). Of course, one obvious possibility in this
respect would be to suppose that β̂ is constant, i.e. independent of κ. This,
indeed, is what characterizes the scenario where no strategic network effects are
allowed, in which case the mean-field law of motion may be written as follows:

κ(t+ 1) = [1− ε

] ν
(1−δ)
δ

ζ

fζ(z) dz] κ(t) + φ(κ(t)). (15)

The above simple formulation is a direct consequence of the fact that, under
no strategic network effects, a link can support cooperation if, an only if, it
exceeds the threshold ν (1−δ)δ . But, in the strategic scenario of interest (i.e. that
of the original model), the key feature is that β̂ and κ are functionally related,
a consideration that cannot be possibly ignored if the mean-field approach is to
respect the essential modelling aspects of original framework.
Recall that, for each ij, βij(t+ 1) = max{ϕij(t+ 1),ϕji(t+ 1)}. Therefore,

in line with our present approach, it is natural to postulate that

β̂(t) = A

ϕij(t)

�
ij∈g(t)

for some A ≥ 1, where k·l stands for suitably computed averages. Then, in view
of (9), expected magnitudes may be used to replace link-specific values to write:

β̂(t) = A

-
1− δ

δ
ν −

[
k∈Ni(t)\{j}

G
δd

c(u,v)(t)
H
c,u,v

�
kζuv(t)luv∈g(t) +

1− δ

δ
ν

�.
ij∈g(t)

= A

�
1− δ

δ
ν − κ(t)

G
δd

c(u,v)(t)
H
c,u,v

�
kζuv(t)luv∈g(t) +

1− δ

δ
ν

��
.

If, to be parsimonious, we replace the average magnitudes
G
δd

c(u,v)(t)
H
c,u,v

and kζuv(t)luv∈g(t) by constant (i.e. time-invariant values), say δ̂ and ζ̂ respec-
tively, we may write the above expression as follows:

β̂(t) = A
q
U − δ̂

k
ζ̂ + U

l
κ(t)

r
, (16)

where the notational shorthand U ≡ 1−δ
δ ν is used.

For concreteness, let us adhere to the payoff conditions prevailing in the sim-
ulations and suppose that the cooperation payoffs ζij are distributed uniformly
on the support [ζ, ζ] satisfying ζ − ζ = 1. Then, introducing (16) in (14), we
arrive at the following expression:

κ(t+ 1) =
q
1− ε ·max

k
0, A

�
U − δ̂

�
ζ̂ + U

�
κ(t)

�
− ζ

lr
κ(t) + φ(κ(t)),

(17)
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which is, under the contemplated assumptions, the mean-field approximation of
the network-degree dynamics corresponding to the original model. As advanced,
we are interested in comparing its induced dynamics will that resulting from a
a context where no strategic network effects are allowed. For this latter case,
the suitable mean-field formulation is:

κ(t+ 1) = [1− ε(U − ζ)] κ(t) + φ(κ(t)), (18)

which is obtained from (15) by introducing the aforementioned uniformity as-
sumption on the density fζ .
To start our discussion, an immediate conclusion that follows from mere

inspection of (17) is that, at least for low values of κ, higher values of ε bring
about a corresponding decrease network connectivity. That is, the higher is the
volatility rate, the lower is (ceteris paribus, if the current level is not too high)
the average degree prevailing in the next period. This represents a clear-cut
manifestation of the detrimental effect of payoff volatility that, throughout our
discussion, has played a central role in the motivation and analysis of the model.
Naturally, one expects that such negative bearing of volatility on the accu-

mulation of social capital should have a more powerful effect at low levels of
average connectivity, when network effects can play less of an offsetting role.
This, indeed, is highlighted by the dynamics given by (17), where the point
κ = 0 always turns out to be a locally stable equilibrium. (Here, of course, we
make the assumption that U ≡ 1−δ

δ ν > ζ and use that φ(0) = 0.)Worded some-
what differently, this latter conclusion can be understood as suggesting that a
discrete “upward shift” is always required if an empty configuration is to evolve
into a social network with any positive connectivity. In the context afforded by
our mean-field approximation, such an upward shift is to be conceived as the
outcome of occasional “global” search, a component of the dynamics that, as
explained, is kept only in the background.
Polar to the previous considerations, one would also expect that network con-

figurations that display high levels of κ should prove quite resilient to volatility.
And again, the mean-field dynamics (17) support this conjecture and also prove
quite useful in understanding its underpinning. First, note that if κ may reach
an arbitrarily large level (i.e. if m is sufficiently large), then the point κ = 2m
corresponding to maximally connected network is sure to be locally stable in
terms of the mean-field dynamics. Specifically, the condition for this state of
affairs to materialize is simply that

A
�
U − δ̂

�
ζ̂ + U

�
2m
�
− ζ < 0,

for which a straightforward sufficient condition is that

δ̂ >
1

2m
. (19)

Recall that δ̂ was identified with
G
δd

c(u,v)
H
c,u,v

, an average “effective discount

rate” reflecting both the underlying discount rate δ and the time steps required
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for information to move across two typical neighbors. Condition (19) does not
appear to be be demanding. For example, in our benchmark simulations , if we
were approximate δ̂ by the number that results from raising the discount rate δ
(= 3/4) to the long-run average neighbor distance (which is never higher than
4, even for very low values of ε), a lower bound for it would be 0.3. This rather
loose lower bound, in turn, is greater that 1

2m = 1
4 , which suggests that the

conditions displayed by the benchmark scenario are consistent with condition
(19).
Thus assume that this condition holds. Then, the dynamics (17) has the

two extreme points, κ = 0, 2m, each defining locally stable (i.e. “dynamically
robust) configurations. Under what conditions are these points the only robust
equilibria? To answer this question, rewrite (17) as follows:

κ(t+ 1)− κ(t) = −ε ·max
k
0, A

�
U − δ̂

�
ζ̂ + U

�
κ(t)

�
− ζ

l
κ(t) + φ(κ(t)),

(20)

and have the first term of its RHS define the function h(κ) ≡
−ε ·max

k
0, A

�
U − δ̂

�
ζ̂ + U

�
κ
�
− ζ

l
κ. When this latter function is strictly

negative (and therefore the positive truncation does not apply), it is strictly
convex. Thus, if the other function in the RHS of (20), φ(κ), does not display
an “excessive opposite curvature” which may offset that convexity for low κ
(see Proposition 9 for a suitable bound), at most one interior equilibrium of
exists and the question posed above can be answered in the affirmative. That
is, the two end points of the state space are the sole robust (asymptotically
stable) states in this case. Furthermore, it then follows that the state space can
be essentially partitioned into two disjoint basins of attraction, K0 and K2m,
which are separated by an interior threshold κ̃. When the process starts below
this threshold (i.e. κ(0) ∈ K0), it converges to the lower end of the state space
given by κ = 0. Instead, when the initial condition κ(0) lies above the threshold
(i.e. belongs to K2m), the induced path converges to the upper end κ = 2m.
To sum up the former discussion, it is useful to gather formally its main

points in the following result, whose complete proof is omitted for the sake of
brevity.

Proposition 9 Consider the discrete-time dynamics (17) defined on [0, 2m]
with U > ζ and δ̂ > 1

2m . Further assume that φ(.) satisfies (11)-(13) and

φ33(κ) > −εδ̂
�
ζ̂ + U

�
for all κ ≤ U

δ̂(ζ̂+U)
.15 Then, there is a certain thresh-

old value κ̃ ∈ (0, 2m) such that:16

(a) if the initial point κ(0) < κ̃, then limt→∞ κ(t) = 0;

15 In fact, it turns out that the lower bound on φ��(κ) can be required only for κ ≤ AU−ζ
δ̂A(ζ̂+U)

(<

U

δ̂(ζ̂+U)
).

16Note, of course, that (a) and (b) make, respectively, the points κ = 0 and κ = 2m be
locally (i.e. asymptotically) stable.
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(b) if the initial point κ(0) > κ̃, then limt→∞ κ(t) = 2m.

The above result provide an approximate analysis of the network dynam-
ics (in particular, its degree) through the expected law of motion of a typical
node/player embodying average considerations. The main implications of this
analysis is that there are just two polar configurations which are possible attrac-
tors of the model’s “representative behavior”. On the one hand, if the starting
connectivity conditions are dense enough, the adjustment dynamics leads to a
situation of maximum connectivity. Instead, if the initial average density does
not reach the required threshold, the mean-field dynamics leads towards the
eventual vanishing of all links.
Of course, the “representative-node” fiction that is used to motivate the

mean-field barouche is a heroic construct, while the average considerations that
are supposed to guide its behavior can only represent a compact way of identify-
ing the essential dynamic forces governing a very complex system. The insights
thus obtained, however, may be viewed as an expression of the tendencies that
govern the dynamics of the different network components. (Recall that the pos-
tulated mean-field dynamics only embodies component-based forces.) And, in
this vein, a first insight that arises is that, as a general tendency, one should
expect to find the network divided into two kinds of components: those where
the average connectivity reaches it maximum level and others displaying no
links whatsoever (i.e. singleton components). In a sense, therefore, the pre-
diction is that the positive feedback effects that underlie the network dynamics
should either bring about the full connecting potential or, instead, must prove
completely unable to trigger a successful buildup. Indeed, this is the behavior
observed in the simulations, as illustrated, for example, in Figures 10 and 11, or
suggested by a comparison of the figures which depict the average degree and
largest-component share (e.g. Figures 8 and 12).17

But then, building upon this line of thought, a complementary prediction is
that the relative sizes of the basins of attraction for the two polar configurations
(κ = 0, 2m) should be in line with the relative fraction of nodes observed in
each of the two types of components — i.e. maximally connected or empty ones.
This in turn suggests studying how the threshold κ̃ which marks those relative
sizes depends on the volatility rate ε, a dependence that should help clarify the
contrast between the different qualitative behavior observed in the presence or
absence of strategic network effects. In this respect, it is straightforward to rely
on the analysis that led to Proposition 9 to arrive at the following result.

Proposition 10 Consider the discrete-time dynamics (17) under the same as-
sumptions as in Proposition 9 and denote by κ̃(ε) the threshold established in
it, as a function of the underlying value of ε. Then, for any ε3 > ε (keeping the
rest of the parameters fixed), κ̃(ε3) changes continuously with ε3 in an increasing
fashion.

17For example, if one computes the ratio between the average degree and the fraction of
nodes involved in non-singleton components, the result is always barely below 4 (which is
equal to the maximum average degree in this case, where m = 2).
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The previous result provides a formal basis to understand the negative de-
pendence of the network connectivity on the underlying rate of payoff update.
This dependence, in turn, is what explains the negative effect of payoff volatil-
ity on other measures of performance such as, for example, the average payoff
earned across existing links. An important feature of this relationship between
the volatility rate and average degree is that it is gradual — or, expressed in
mathematical terms, continuous. This contrasts with the behavior observed in
the alternative scenario where players’ strategic interaction relied on no net-
work effects. In this case, the dependence on ε was still negative and gradual
within a certain low range but, at a certain point, an abrupt change in long-run
performance occurred associated to a small change in this parameter. Thus, in
comparison with the situation observed for the benchmark scenario, this latter
evidence could be understood as the indication of a discontinuous regime change
caused by a slight change in ε.18

To shed light on this contrast, let us return to the mean-field description of
the scenario with no strategic network effects (cf. (18)), which is convenient to
rewrite as follows:

κ(t+ 1)− κ(t) = φ(κ(t))− ε(U − ζ) κ(t). (21)

To draw a clearer comparison with the benchmark scenario, it is useful to
introduce some new notation. Given any volatility rate ε > 0, denote by Ω(ε)
the limit points which have a basin of attraction of positive measure in the
benchmark scenario, and let Ω̌(ε) be its counterpart for the scenario with no
strategic network effects. From Proposition 9, we know that,under the main-
tained assumptions, we have:

Ω(ε) = {0, 2m}
for all ε > 0.
Turning now to the alternative dynamics given by (21), it is clear (again

under the assumptions of Proposition 9) that, if ε is low enough albeit positive,
Ω̌(ε) includes not only κ = 0 but also some other positive values of κ. Denote
by

κ̌(ε) ≡ max {κ : κ ∈ Ω̌(ε)}
the largest limit point for any given ε > 0. Then, for low ε, is close to 2m
and changes continuously with ε. Now let ε∗ be the maximum value of ε for
which κ̌(ε) > 0. Precisely, ε∗ is the slope of the smallest minimum cone rooted
at the origin which encompasses the region in R2+ under the function φ. Under
our maintained assumptions, it is straightforward to see that ε∗ < 1. And,
by construction, it follows that, for all ε > ε∗, κ̌(ε) = 0 (or, equivalently,
Ω̌(ε) = {0}), which implies a discontinuous change in the limit behavior of
the dynamics (21). This discontinuity in the limit behavior of the mean-field

18 In statistical physicis, this behavior is often encountered and usually referred to as a
“phase transition.”
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dynamics should in turn be mirrored by a corresponding abrupt change in the
long-run behavior of the stochastic dynamics of the full-scale system.
We find, therefore, that the qualitative contrast found in the simulations

between the ε-dependence displayed by the social dynamics with, or without,
strategic network effects is reconfirmed by our present analytical approach. In
essence, what we obtain is theoretical support for the intuitive idea that network
effects may be an effective way for a society to respond effectively to a volatile
environment.

6 Related literature
In this section, I schematically review the relationship of the present paper to
a variety of different literatures.
The approach pursued here is similar in spirit to that of the evolutionary

literature, where players are assumed to interact through a certain game and the
long-run configuration is obtained through a gradual stochastic process of learn-
ing and adjustment. The seminal papers in this line of research are Kandori,
Mailath, and Rob (1993) and Young (1993). In these papers, the interaction is
global — all agents play with every other player in the population, or at least
have the same probability of doing so. This feature was altered in Ellison (1983),
where each agent’s interaction is local, play restricted to immediate neighbors
on a fixed regular network (or grid). More recent work by Droste et al. (1999),
Goyal and Vega-Redondo (1999), or Jackson and Watts (1999) have extended
the analysis to a context where the network is not fixed but co-evolves with
players’ game decisions. This latter work is, therefore, the closest in motivation
to the present endeavour.
The aforementioned evolutionary literature has typically considered contexts

where the game played by the population is a simple bilateral game in strate-
gic form — often a coordination game. Players are required to play the same
action in each interaction, since otherwise the network would have no influence
on strategic behavior. This contrasts with our present framework where the
decisions are adopted independently for each of the games being played and the
network influence on players’ behavior is only indirect through the way in which
strategically-relevant information diffuses through the population.
There is, moreover, the booming body of literature whose specific concern

is the study of pure models of network formation, in contexts where players
do not have a separate strategic decision in terms of constituent game. One
of the earliest papers in this field was Aumann and Myerson (1989), with the
more recent paper by Jackson and Wolinsky (1996) having played an important
role in reviving interest in this topic. Whereas the approach of these papers is
mostly static,19 Bala and Goyal (2000) represents an explicit dynamic approach
to the problem, and is thus more in line with the present efforts.

19For example, Jackson and Wolinsky rely on a notion of pairwise-stability that bears a
close relationship to that introduced in Definition1 .
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In the vast area of repeated games, there are two papers, Kandori (1992)
and Ellison (1994), which share some motivation with our approach. They pro-
pose a model where a large population of players are repeatedly and randomly
matched to play a Prisioner Dilemma game. They find that, in this context, it
may be still possible to induce cooperation through a social norm (equilibrium)
that reacts to any deviation by punishing subsequent partners. In a sense, the
relationship of these papers to our work is parallel to that displayed by the early
evolutionary literature with fixed and global interaction structure: they embed
players’ interaction in a population context but abstract from the effect of social
structure by postulating a fixed and global pattern of play.
Still in the area of repeated games, two additional related papers are Haag

and Lagunoff (2000) and the already mentioned by Bernheim and Whinston
(1990). The latter studies a model of multimarket collusion where a group of
firms participating in some common set of markets may decide to link their
behavior in any one of them to what has been observed in other markets. Natu-
rally, this enhances the collusion (i.e. cooperation) potential, in ways analogous
to those considered here. The key difference is that the flow of information is
instantaneous and therefore there is no interesting notion of social network that
may have a bearing on the situation. Instead, the paper by Haag and Lagunoff
does study a setup where players are involved in repeated interaction with part-
ners specified by some given social network. Its approach, however, is mostly
normative and static, with an additional important difference being that players
are forced to play the same action — cooperate or defect — with everyone of their
neighbors. Therefore, the strategic implications of the (exogenously specified)
network are directly given by the formulation of the population game (which re-
quires a common action in all encounters) rather than being of an informational
nature on a set of “decoupled” bilateral interactions. In a this light, our ap-
proach may be viewed as embedding the Kandori’s and Ellison’s aforementioned
approach with independent bilateral interaction into a endogenously changing
social network.
The study of social networks has hardly been a preserve of economists or

game theorists. Rather, it has long been a primary object of study by sociologists
or applied psychologists. Besides the research it has spawned in connection to
the notion of social capital (which is discussed later), prominent sociologists such
as Mark Granovetter (1973) or Ronald Burt (1982) have placed it at the center
of sociological inquiry. For example, the notions of “weak ties” highlighted by
Granovetter, or “structural holes” due Burt have given rise to a large body
of theoretical and empirical work in sociology, which still continues to thrive.
Other early and well-known research was carried out by Milgram (1967), an
applied psychologist, who demonstrated through clever simple experiments the
surprising low number of steps which tend to separate any two arbitrarily chosen
individuals in many large social networks. Since then, most such networks are
known to be of a so-called “small world” kind, a phenomenon that has recently
attract much attention by physicits and other researchers interested in the study
of complex systems. A strong stimulus to this literature was provided by Watts
and Strogatz (1998), which triggered a booming and wide-ranging collection of
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multidisciplinary work, in which still physicists such as Albert-Lazslo Barabasi
(see Barabasi and Albert (1999)) or Mark Newman (see Newman et al. (2000))
play a leading role.
Finally, we close this brief review by referring to the literature and ideas that

were amply invoked in the Introduction to motivate our model, namely, those
connected to the notion of social capital. Rather than attempting a necessarily
superficial survey of the vast and diverse rane of research that goes under this
heading, it should be more useful to focus on the work of James Coleman,
arguably the “father" of this concept. He is also the author who appears to
have conceived social capital more in line with the view espoused here — see
Coleman (1988) or (1990, Ch. 12). For him, social capital is an inherently
relational concept, best regarded as an attribute of the social network. It is the
key factor explaining the intensity and stability of socio-economic interaction
and also represents the basis of trust in repeated interaction (in particular,
Coleman often uses the PD as the paradigmatic example). However, for such
a trust to emerge, what he calls the closure of the social network (what we
have called its cohesiveness) is generally key. He argues, moreover, that social
capital is often underprovided, since the strong externalities associated to it are
typically not internalized by individuals’ own link-investment decisions. Finally,
he stresses that social capital is a stock which, left to itself, depreciates with
time and that, if it is to be (re)built succesfully, must have inter-agent relations
enjoy a sufficiently stable environment. The reader will recognize in these points
many of the features (both modelling and motivational) that have informed our
efforts in this paper.

7 Summary and possible extensions
This paper has studied a stylized model of network formation in which play-
ers are involved in an infinitely repeated Prisoner’s Dilemma with each of her
neighbors. Information on past behavior flows gradually along the network, a
feature that impinges crucially on the range of network configurations that can
be supported in a pairwise stable fashion. The underlying payoff conditions
change over time, which in turn may affect the stability of established links
and create the opportunity to form new ones. Our analysis has focused on the
interplay between the emerging characteristics of the endogenous network, the
long-run performance of the system, and the key parameters of the model — most
importantly, the volatility rate at which the payoffs of current links is updated.
The main insights obtained can be summarized as follows. Payoff volatility

cannot be too intense if a successfully build of the network is to be sustained
in the long run. As the environmental conditions worsen (e.g. payoffs becomes
more volatile or less rewarding), the network endogenously evolves in order
to offset this turn of events by becoming more cohesive. At a certain point,
however, even this mechanism proves unable to maintain other than a quite
sparse network. This transition, which takes place both if players can rely on
strategic network effects or not in supporting cooperation, appears much earlier
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and is more abrupt in the latter case than in the former. These conclusions
have been obtained through a “numerical computation” of the ergodic variables
of the process, but further insight has been gained on them by a mean-field
approximation of the basic model.
The model is to be conceived as a first step along an as-yet little trodden

path. Thus let me finish with some suggestions as to some extensions and issues
that are left for future research.
A natural extension would involve enriching the set of games under consider-

ation, possibly to other sorts of simple bilateral games (e.g. coordination games)
or playing the field contexts. Along these lines, one further possibility would be
to suppose that, as found in the literature (see above), players are forced to take
the same action in all games. The interplay between the network considerations
brought about by this modification and the informational aspects considered
here may yield novel insights.
Concerning payoff volatility, it would be interesting to allow for the (arguably

realistic) possibility that the realizations induced by any fresh payoff update
may be correlated in some dimension. For example, the payoffs pertaining
a particular individual might display positive correlation (the reflection of a
generally creative or well positioned player at some point in time) or, in a
somewhat similar vein, new payoff draws could include an aggregate component.
Any of these modifications is bound to yield important implications on the
network dynamics and its long-run architecture.
Payoffs, on the other hand, might be subject to some exogenous or endoge-

nous trend. Concerning the first possibility, it would be interesting to postulate
that existing payoffs are affected by some negative drift, a phenomenon that
could reflect an outside forward-moving environment that sets the benchmark
for the payoffs obtained. As for a trend of an endogenous kind, it would be in-
teresting to suppose that the payoffs earned are to be normalized by population-
average payoffs or that, new payoffs are drawn according to a moving distribu-
tion anchored to average or frontier conditions. In either case, a supplementary
competitive pressure would be added to the model that may well introduce
new considerations, as well as endow the model with a genuinely dynamic (or
growth) perspective.
To conclude, a final suggestion concerns the possibility of removing the fixed

upper bound on the number of links that an agent can support but instead
contemplate a cost to be incurred by the players involved (perhaps equally
shared, or possibly with a larger cost share paid by the initiating party). This
would make the number of links that is effectively supported an endogenous
variable, an would quite naturally link the density of the network to prevailing
payoff conditions.
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