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ABSTRACT 
 

 

  

We study a setting in which individual players choose their partners as well as a 

mode of behavior in 2 x 2 anti-coordination games -- games where a player's best 

response is to behave differently than the opponent. We characterize the nature of 

equilibrium networks as well as study the effects of network structure on individual 

behavior. Our analysis shows that both the network architecture and the induced 

behavior are crucially dependent on the value of the cost of forming links. In general, 

the equilibrium configurations are found to be neither unique nor efficient. This 

conclusion continues to hold if the population game is embedded in a standard 

evolutionary model of learning, since all equilibria turn out to be stochastically stable. 
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1 Introduction

In the past few years, there has been an extensive literature on social networks
which shows that the structure of interaction between individuals can be deci-
sive in determining the nature of the outcomes and, in particular, the players’
action choices in an underlying game. In much of this literature, the structure
of interaction is exogenously specified and the nature of the outcome under dif-
ferent specifications is examined (see e.g., Anderlini and Ianni (1996), Ellison
(1993), Goyal (1996), Morris (2000), Young (2002)).

Recently, interest has grown in understanding the process through which the
interaction structure itself develops. The earlier part of this literature (e.g.
Aumann and Myerson (1989), Bala and Goyal (2000), Dutta, van den Nouwe-
land and Tijs (1995), Jackson and Wolinsky (1996), among others) has focused
on contexts where players choose links with others and there is no additional
strategic dimension (i.e. there is no explicit game being played among connected
players). Later contributions, such as Goyal and Vega-Redondo (2000) and Jack-
son and Watts (2000) have studied settings in which each agent plays a game
with each of her ‘partners’ and therefore (in addition to connecting decisions)
has to choose a mode of behavior in the accompanying game. This research
has focused on a class of games where individuals have an incentive to choose
the same action as their partners; these games are referred to as coordination
games.

In the present paper, we wish to consider the role of network formation in the po-
lar case, where individuals prefer to choose an action unlike that chosen by their
partners. We shall refer to these interactions as games of anti-coordination1.
Many interesting situations can be suitably conceived in this fashion, e.g. when
the successful completion of a task requires that the individuals involved adopt
complementary actions (or skills), or when a meaningful interaction can only
be conducted when the agents adopt different roles (say, buyers and sellers), or
when in the contest for a certain resource, an optimal response is not to respond
with the same behavior (aggressive or peaceful, as in the Hawk-Dove game) as
one’s opponent.

We consider a model where individuals can form pair-wise links on their own
individual initiative, i.e. the link formation is one-sided. In addition to the links,
each player also chooses which of two actions to use in the interaction with his
partners (the same action in all of them). Each bilateral interaction provides
some gross return to the players involved according to the actions chosen. On
the other hand, links are costly, with the players initiating each link paying for
it. Thus, overall, the total net payoffs earned by a player consist of the sum

1Bramoullé (2001) analyzes anti-coordination games played on a fixed structure. He shows
that the structure has a much stronger impact on the equilibria than in the case of coordination
games.
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of the gross returns obtained from each of the pairwise interactions minus the
costs of the links she initiates. For simplicity, we make the assumption that the
gross returns accruing from each link are non-negative, so that no link initiated
by an agent will ever be refused by her partner.

In this setting, we first provide a characterization of the strict Nash equilibria
of the static game (Propositions 1-3). We find that as the costs of link forma-
tion increase the equilibrium network becomes more sparse. For low costs it is
complete, for moderate costs it is a bipartite graph, while for high costs it is
empty. The costs of link formation also have a profound impact on the number
of players who choose the two actions. In particular, for low costs of forming
links, the numbers of players choosing the two actions corresponds roughly to
the proportions that would arise in the mixed strategy equilibrium of the two-
person anti-coordination game, while for moderate costs of forming links a wide
range of proportions can be sustained in equilibrium. The intuition for this lat-
ter multiplicity is as follows: consider the class of games where a player wishes
only to form a link with another player who is doing the other action. In this
setting, a player has an incentive to be on the ‘short-side’, i.e. in the group that
chooses the less popular action, since in this way she plays the largest number
of games. However, in our setting, a player has to balance these considerations
with the fact that costly links have to be formed in order to play the game. This
argument also illustrates that as the costs of forming links increase, the distri-
bution of links can have a bigger influence on the incentives to switch actions.
Thus for larger costs levels, a player may be induced to choose an action that is
relatively popular, because the players choosing the other action are supporting
all the links with her at equilibrium.

We then study the efficiency of different network structures (Propositions 4
and 5). In general, the architecture of efficient networks becomes less dense as
the costs of link formation increase. For low costs of forming links, typically,
the efficient network is complete, while for moderate costs the efficient network
is a bipartite network. The costs of forming links also have an impact on the
proportions of players choosing different actions. In an interesting class of cases,
where the links are only worthwhile between players choosing different actions,
efficient profiles have roughly equal proportions of players choosing the two
actions. A comparison of efficient and equilibrium networks thus suggests that
equilibrium and efficient networks are very different typically.

This variety of equilibria and their inefficiency motivates an examination of the
dynamic stability of different outcomes (Propositions 6 and 7). Our analysis of
the dynamics shows that all (strict) Nash equilibria are stochastically stable,
i.e., they are robust to small but persistent perturbations. We thus find that
stochastic stability has almost no refinement power in this setting.

The above results are in sharp contrast to the findings on coordination games
reported in Jackson and Watts (2000) and Goyal and Vega-Redondo (2000).
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Our model with one-sided link formation is similar to the latter paper, and we
now discuss the differences in results in some detail. Goyal and Vega-Redondo
find that for all relevant values of the cost there is a unique stochastically stable
network architecture: the complete network. By contrast, we find that, in anti-
coordination games, the selected network architectures are generally incomplete
and their qualitative structure depends in interesting ways on the underlying
payoffs and linking cost. Similarly, the relationship between efficiency and equi-
librium (or dynamic stability) is also very different. They show that there is a
certain threshold for the linking cost below which risk dominance is selected,
while in the present paper the relationship is much richer and, in some cases
exactly the reverse: efficient outcomes are guaranteed for low linking costs but
are not attainable beyond a certain cost threshold.

The rest of the paper is organized as follows: In Section 2 we set up the model.
In Section 3 we discuss the Nash equilibrium results. The welfare analysis is
taken up in Section 4. In Section 5 we study the dynamic framework and
characterize the stochastically stable states. Finally, Section 6 summarizes the
results and concludes. The proofs that do not appear in the body of the paper
are contemplated in the Appendix.

2 The Model

2.1 Link formation

Let N = {1, 2, . . . , n} be a set of players where, for simplicity, n ≥ 3 is assumed
even. We are interested in modeling a situation where each of these players can
choose the subset of other players with whom to play a fixed bilateral game.
Formally, let gi = (gi1, . . . gii−1, gii+1, . . . gin) be the set of links formed by player
i. We suppose that gij ∈ {1, 0}, and say that player i forms a link with player
j if gij = 1. The set of link options is denoted by Gi. Any player profile of link
decisions g = (g1, g2 . . . gn) defines a directed graph, called a network.

Specifically, the network g has the set of players N as its set of vertices and its
set of arrows, Γ ⊂ N ×N, defined as follows, Γ = {(i, j) ∈ N × N : gij = 1}.
Graphically, the link (i, j) may be represented as an edge between i and j, a
filled circle lying on the edge near agent i indicating that this agent has formed
(or supports) that link. Every link profile g ∈ G has a unique representation
in this manner. Figure 1 below depicts an example. In it, player 1 has formed
links with players 2 and 3, player 3 has formed a link with player 1, while player
2 has formed no links.2

2Since agents choose strategies independently of each other, two agents may simultaneously
initiate a link, as seen in Figure 1.
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Figure 1

Given a network g, we say that a pair of players i and j are directly linked if at
least one of them has established a link with the other one, i.e. ifmax{gij , gji} =
1. To describe the pattern of players’ links, it is useful to define a modified
version of g, denoted by ḡ, that is defined as follows: ḡij = max{gij , gji} for
each i and j in N . Note that ḡij = ḡji so that the index order is irrelevant.

Let Nd(i; g) ≡ {j ∈ N : gij = 1} be the set of players in network g with
whom player i has established links, while νd(i; g) ≡ |Nd(i; g)| is its cardinality.
Similarly, let Nd(i; ḡ) ≡ {j ∈ N : ḡi,j = 1} be the set of players in network g
with whom player i is directly linked, while νd(i; ḡ) ≡ |Nd(i; ḡ)| is the cardinality
of this set.

A bipartite graph is a network in which there exists a partition of the players
into two mutually exclusive and exhaustive sets, N1 and N2, such that gij = 1
only if i ∈ N1 and j ∈ N2. A bipartite graph is complete if gij = 1 for every pair
of players i ∈ N1 and j ∈ N2 and essential if there are no redundant links, i.e.
gijgji = 0 for every i, j ∈ N . A semi-bipartite graph is a network in which there
exists a partition of the players into two mutually exclusive and exhaustive sets,
N1 and N2 such that gij = 1 only if i ∈ N1 and j ∈ N2 or if i, j ∈ Nk where
k ∈ {1, 2}. Analogously to the definitions mentioned above, a semi-bipartite
graph will be complete and essential if all possible links are formed and they are
not redundant.

2.2 Social Game

Individuals located in a social network play a 2×2 symmetric game in strategic
form with a common action set. The set of partners of player i depends on her
location in the network. We will assume that two individuals can play a game
if and only if they have a direct link between them. Thus, player i will play a
game with all other players in the set Nd(i; ḡ).

We now describe the two-person game that is played between any two partners.
The set of actions is A = {α,β}. For each pair of actions a, a ∈ A, the payoff
π(a, a ) earned by a player choosing a when the partner plays a is given by the
following table:
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α β

α d e

β f b

Table I

We shall assume that it is one of anti-coordination with two pure strategy equi-
libria, (α,β) and (β,α). In other words we consider the following restrictions
on the payoffs:

d < f and b < e. (1)

We shall assume that every player i is obliged to choose the same action in
the (generally) several bilateral games that she is engaged in. This assumption
is natural in the present context; if players were allowed to choose a different
action for every two-person game this would make the behavior of players in
any particular game insensitive to the network structure. The strategy space
of a player can be identified with Si = Gi × A, where Gi is the set of possible
link decisions by i and A is the common action space of the underlying bilateral
game.3

We start by deriving the payoffs of the social game. An important feature of
our approach is that links are assumed costly. Specifically, every agent who
establishes a link with some other player incurs a cost c > 0. Thus, we suppose
that the cost of forming a link is independent of the number of links being
established and is the same across all players.

Another important feature of our model is that links are one-sided. That is,
players’ decisions as to whether or not propose a link to some other player are
adopted individually (i.e. independently by each of them). This aspect of the
model allows us to use standard solution concepts from non-cooperative game
theory in addressing the mechanism of link formation. It raises, however, the
issue of whether a proposal to form a link might not be accepted by the player
who receives it (even though she would bear no linking cost). In the present
paper, we abstract from these complications by simply positing that the payoffs
of the bilateral game are non-negative and, therefore, no player will ever have
any incentives to refuse forming any proposed link.
This issue, however, might be addressed in more generality by an extension of
the model where genuine objections could be raised in the face of any particular
link proposal by other player. In turn, this generalization would allow not only
for the possibility of negative game payoffs, but also of a less asymmetric cost

3 In our formulation of the static model, players choose links and actions in the anti-
coordination game simultaneously.
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sharing in the formation of links. By way of illustration, one such modelling
extension could have the link formation mechanism consist of two stages. In
a first stage, action choices and link proposals would be issued. Then, in a
second stage, any agent who has received a unilateral link proposal could decide
(already knowing the relevant action choices and, therefore, the entailed payoff
consequences) whether to accept it or not. Clearly, such a model would be
equivalent to the present formulation under the maintained assumption that the
game payoffs are positive and the whole linking cost is incurred by the proposer.
If these conditions where not met, however, it would certainly introduce novel
considerations which, as indicated, we choose to ignore in the present paper.
In the setup being considered, the payoff to a player i from playing some

strategy si = (gi, ai)when the strategies of other players are s−i = (s1, . . . si−1, si+1, . . . sn)
can be written as follows:

Πi(si, s−i) =
j∈Nd(i;ḡ)

π(ai, aj)− νd(i; g) · c (2)

We note that the individual payoffs are aggregated across the games played by
him. In our framework, the number of games an individual plays is endogenous,
and we want to explicitly account for the influence of the size of the neighbor-
hood. This motivates the aggregate payoff formulation.

The above payoff expression allows us to particularize the standard notion of
Nash equilibrium as follows. A strategy profile s∗ = (s∗1, . . . s

∗
n) is said to be a

Nash equilibrium for the game if, for all i ∈ N,

Πi(s
∗
i , s
∗
−i) ≥ Πi(si, s∗−i),∀si ∈ Si. (3)

The set of Nash equilibria will be denoted by S∗. A Nash equilibrium is said
to be strict if every player gets a strictly higher payoff with his current strategy
than she would with any other strategy. The set of strict Nash equilibria will
be denoted by S∗∗.

2.3 Dynamics

Time is modeled as being discrete, t = 1, 2, 3, . . . . At each t, the state of the
system is given by the strategy profile s(t) ≡ [(gi(t), ai(t))]

n
i=1 specifying the

action played, and links established, by each player i ∈ N . Let us suppose that,
at every period t, with an independent probability p, a player revises over a par-
ticular component of her strategy, i.e. with probability p she revises a particular
link gij or her action ai. For simplicity this probability is independent across
components and across individuals. Thus, for example, there is probability pn

that a player may revise her complete strategy (all her links and her action). In
other words this dynamics includes the possibility of revising together links and
actions, but also admits doing it separately. The intuition is that sometimes it
is not feasible for an agent to change her whole strategy but only part of it. This
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could also be understood as an additional expression of bounded rationality. An
agent, once she gets a revision opportunity just considers part of her strategy.
This approach resembles the model studied by Jackson and Watts (2000) but
with a major difference: our dynamic allows for a revision of the complete strat-
egy. On the other hand, we are in a non-cooperative one sided link model where
decisions are taken unilaterally, i.e. revision opportunities over a particular link
are independent for the two individuals forming the link.

Hence, with probability pk(1 − p)n−k a player i gets the chance to revise over
k components of her strategy which, using standard notation, we write as si =
(sik , si−k) to distinguish the components which can be revised from those that
cannot. In that event, she is assumed to choose a myopic best response:

sik(t) ∈ arg max
sik∈Sik

Πi(sik , si−k(t− 1), s−i(t− 1)). (4)

That is, she selects a best response to what other players chose in the preceding
period and what she chose in the n−k components that are not open for revision.
If there are several strategies that fulfill (4), then any of them is taken to be
selected with, say, equal probability. This strategy revision process defines a
Markov chain on S ≡ S1 × ...× Sn.
In our setting, which will be seen to display multiple strict equilibria, there
are several absorbing states of the Markov chain.4 This motivates the exam-
ination of the relative robustness of each of them. To do so, we rely on the
approach proposed by Kandori, Mailath and Rob (1993), and Young (1993).
We suppose that, occasionally, players make mistakes, experiments, or simply
disregard payoff considerations in choosing their strategies. Specifically, we as-
sume that, conditional on receiving a revision opportunity, a player chooses her
strategy at random with some small “mutation” probability > 0. For any
> 0, the process defines a Markov chain that is aperiodic and irreducible and,
therefore, has a unique invariant probability distribution. Let us denote this
distribution by µ . We analyze the form of µ as the probability of mistakes
becomes very small, i.e. formally, as converges to zero. Define lim →0 µ = µ̂.
When a state s = (s1, s2, . . . , sn) has µ̂(s) > 0, i.e. it is in the support of µ̂, we
say that it is stochastically stable. Intuitively, this reflects the idea that, even
for infinitesimal mutation probability (and independently of initial conditions),
this state materializes a significant fraction of time in the long run.

3 Nash equilibria
We now characterize the set of strict Nash equilibria of the social game. First,
we describe the types of Nash networks and how they depend on the anti-
coordination game and on the cost of link formation. Second, we characterize

4Notice that the set of absorbing states of the Markov chain coincides with the set of strict
Nash equilibria of the population game with payoffs given by (2).
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the range of possible values for the number of agents playing each action (α or
β) in equilibrium. Third, we ask how the costs of link formation are divided
among agents at equilibrium.

Anti-coordination games have different possible payoffs configurations and we
will see that they also lead to different types of Nash networks. By definition,
we have d < f and e > b. Without loss of generality, assume that f > e. In
equilibrium, β-players (i.e. players who choose action β in the anti-coordination
game) earn a higher payoff than α-players (i.e. players who choose action α
in the anti-coordination game). If all the parameters are distinct (i.e. the non
degenerate case), there are three possible payoffs ordering.

Case 1 : b < e < d < f

Case 2 : b < d < e < f

Case 3 : d < b < e < f

Each ordering corresponds to a different type of anti-coordination game. In
Case 1, the payoff of coordinating on α is higher than the payoff of an α-player
in equilibrium. Therefore, Case 1 represents exploitation games akin to the
Hawk-Dove game. In Case 2 and 3, equilibrium payoffs are higher than any
other payoffs. Cases 2 and 3 represent situations of complementary, in which
both players earn higher payoffs at equilibrium than out of it. In Case 2 the
payoff of coordinating on α is higher than the payoff of coordinating on β, while
the situation is reversed in Case 3.

Since link formation is one-sided, the cost of any link, at equilibrium, is sup-
ported by one and only one agent. Hence, Nash networks are essential, i.e.,
gij = 1 ⇒ gji = 0. Nash networks, on the other hand, depend on how the
cost of link formation compares with the parameters of the game. For example,
when c > b (i.e. the cost of link formation is higher than the payoff obtained
when both agents plays β), the β-players do not have an incentive to form links
with other β-players. Therefore, in equilibrium there is no link among β-players,
i.e., the network of links among β-players is empty. Instead, when c < b, the
β-players are willing to form links and to support the cost of link formation
with any other agent playing β. In equilibrium, therefore, all the β-players
are directly linked with all the other β-players and the network of links among
β-players is essential and complete.5 The reasoning is similar for the other pa-
rameters. For example, if c > e, there is no link from α-players to β-players,
whereas if c < e, all the α-players have links with all the β-players in a complete
and essential way.

5 It is our assumption that payoffs depend linearly on the number of social neighbors playing
a strategy that causes this ‘all or nothing’ result.
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Figure 2: payoffs configurations
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The following shorthand notation will allow us to refer to all the possible
types of Nash networks. (Here, “to be linked to” is taken to mean that the links
go in only one direction, whereas “to be linked with” signifies that the links may
go in both directions.)

β ∅ α : the empty graph
β → α : all β-players are linked to all α-players,

but no α-player is linked to a β-player
β α : all β-players are linked with all α-players
β → α : all β-players are linked to all α-players,

and all α-players are linked with all α-players
β α : all α-players are linked with all α-players and with all β-players
β α : the complete graph

Hence, β → α and β α represent complete and essential bipartite graphs,
while β → α and β α are semi-bipartite graphs. Using the above notation,
the following result describes how the cost of link formation determines the type
of Nash networks.

Proposition 1 Suppose (1) holds. Then strict Nash equilibria exhibit the fol-
lowing pattern of link formation:

Case 1
0 < c < b β α
b < c < e β α
e < c < d β → α
d < c < f β → α
f < c β ∅ α

Case 2
0 < c < b β α
b < c < d β α
d < c < e β α
e < c < f β → α
f < c β ∅ α

Case 3
0 < c < d β α

d < c < b β α
b < c < e β α
e < c < f β → α
f < c β ∅ α

Several interesting points follow from the above result. First, it shows that
(except for very low costs), the nature of links is quite complicated and the link
initiation and hence the network architecture depends very much on the game
that is being played. On the one hand, if the game is one of exploitation (Case
1), it supports β → α as Nash networks. In this case, α-players are willing
to support the costs of link formation with themselves but not with β-players,
while β-players are willing to support the costs of link formation with α-players
but not with themselves. Thus, in an equilibrium, players choosing α link with
each other and free-ride on the links that players choosing β form with them.
On the other hand, if the game is one of strict complementarity (as in Cases
2 and 3), it supports bipartite graphs β α as Nash networks. In this case,
both α and β-players have an interest to be linked to players choosing the other
strategy, while they do not wish to be linked with players choosing the same
action.
A second point worth noting concerns the effects of increasing linking costs. In
each of the three cases, the effect of higher costs is broadly similar. The payoffs
of the ant i-co ordination game de fine cu t-off values such that, as t he costs of link
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Figure 3: Nash networks
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formation surpasses them, an economic opportunity disappears along with its
corresponding type of link. In general, we find that, as the cost of link formation
rises, the possible types of Nash networks become more sparse, going from the
complete network to the empty network through three intermediary cases.

We now analyze how the number of players choosing each of the different actions
in equilibrium depends on the linking cost c. Let s be any given strategy profile,
and denote by Ns

α = {i ∈ N |ai = α} the set of α-players in it with nsα =
card(Ns

α) being its cardinality, while N
s
β = {i ∈ N |ai = β} is the set of β-

players and nsβ = card(Ns
β) its cardinality. Moreover, let q

s,k
i be the number

of active links that a player i has with individuals choosing action k and rs,ki
be the number of passive links that a player i has with individuals choosing
action k, where k = α,β. We will avoid superscript s when there is no possible
confusion. Our next result derives the lower and upper bounds for nsα and n

s
β

in equilibrium. We derive this result by examining the best-responses for every
possible case.6 Denote pβ =

f−d
f−d+e−b . Notice that pβ is the probability of

playing β in the mixed strategy equilibrium of the anti-coordination game. It
is useful to introduce two auxiliary functions ϕ and ψ as follows:

ϕ(c) =


pβ if c < b

f−d
f−d+e−c if b < c < e
1 if e < c

and

ψ(c) =


pβ if c < d

f−c
f−c+e−b if d < c < f
0 if f < c

Note that ϕ and ψ are continuous, ϕ is increasing and convex, and ψ is decreas-
ing and concave. These functions bound the relative sizes of the different α-
and β-parts of the network, as established by the following result.

Proposition 2 Suppose (1) holds. Then there exists a strict Nash equilibrium
with nβ players choosing β iff (n− 1)ψ(c) < nβ < (n− 1)ϕ(c) + 1.

6The best-response equations do not depend on the particular payoffs and cost configura-
tion, but only on the type of Nash network to which this configuration leads. For example,
situations where the payoffs correspond to Case 1 and b < c < e, and where the payoffs
correspond to Case 2 and b < c < d both support β α as Nash networks. Hence, both cases
can be analyzed as one. This reduces the number of domains to analyze from 16 to 6.
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This result and Figure 2 illustrate the precise relationship between the linking
cost and the range of equilibrium behavior in the respective game. In particular,
it states that for a low cost of forming links, the proportion of players choosing
actions α and β corresponds (roughly) to the mixed-strategy of the two-person
anti-coordination game. This simply follows from the fact that, for low linking
costs, players have incentives to form the complete network and hence the link
formation mechanism has no particular influence on individual behavior. How-
ever, beyond this low range, the cost of link formation has a profound impact
on individual choice of actions. In particular, a broader range of proportions of
players choosing actions α and β becomes possible.
The intuition behind the latter conclusion is best explained in the context of

strict complementarity where a player wishes to form a link only with a partner
choosing a different action. In this setting, if both actions are symmetric, the
player has an incentive to be on the ‘short-side’, i.e. in the group that chooses
the less popular action. In adjusting her behavior, however, she has to take
into account that the creation of any new link on her part involves a cost.
This implies that, for a fixed configuration of actions, the incentives for any
given player to keep doing what she currently does are maximized when she is
the “passive recipient” of all links to the players that are choosing the other
action. This argument allows us to compute the bounds on the maximum and
minimum number of players who can be playing each action at equilibrium. It
also suggests that, as the costs of forming links increase, their distribution can
have a bigger influence on the incentives to switching actions. In particular, for
large costs levels, a player may be induced to choose an action that is relatively
popular, because the players choosing the other action are supporting all the
links with her.

Propositions 1 and 2 characterize the Nash equilibria of the social game. How-
ever, they do not always provide information on how the cost of links is divided
among players. For example when the type of Nash networks is β → α, we know
that β-players incur the costs of links with α-players but the cost distribution
among α-players is not specified. Similarly, for the case β α, the distribution
of costs of links formed between α and β-players is not specified. In general,
when the number of β-players is high, one expects that more α-players will
support the costs.
We now investigate a specific aspect of the issue of costs distribution. Con-

sider a configuration of the parameters of the game. Given the type of Nash
network and the range of possible values for nβ consistent with this configura-
tion, we say that nβ is distribution insensitive if all the possible divisions
of costs are sustainable in equilibrium. Distribution insensitiveness is a strong
notion which captures cases where the allocation of costs of link formation does
not affect equilibria. In general, the existence of distribution insensitive values
is not guaranteed. We then ask: under what conditions the equilibrium val-
ues for nβ are distribution insensitive? This question is solved in the following
Proposition.
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Proposition 3 Suppose (1) holds. If the type of the network is β → α, β → α,

or β α, all the possible equilibrium nβ are distribution insensitive.7

If the type of the network is β α, nβ is distribution insensitive iff

(n− 1) f − c
f + e− 2c < nβ < (n− 1)

f − c
f + e− 2c + 1

If the type of the network is β α, nβ is distribution insensitive iff

(n− 1) f − d
f − d+ e− c < nβ < (n− 1)

f − d
f − d+ e− c + 1

If the type of the network is
−→
β α, nβ is distribution insensitive iff

(n− 1) f − c
f − c+ e− b < nβ < (n− 1)

f − c
f − c+ e− b + 1

This result says that, in general, distribution insensitive values always exist. In
addition, either all the possible equilibrium values are distribution insensitive,
or a unique equilibrium value is distribution insensitive. In the first case, when
the Nash network is of type β → α, β → α, β α, the best responses equations
turn out to be independent on distribution considerations, which explains the
result.
We briefly discuss the arguments behind the second case, focusing for concrete-
ness on the case with b, d < c < e, f , where every equilibrium network is of type
β α. Consider any distribution insensitive nβ and let i ∈ N be an agent who
chooses α in the underlying state and supports qβi links to β-players. Then, in
order for this player to be choosing a best response, a necessary and sufficient
condition is that

ηβ > (n− 1)
f − c

f − c+ e− b + q
β
i

c− b
f − c+ e− b . (5)

Note that the right hand side of the above expression is increasing in qβi and
therefore reaches a maximum at qβi = ηβ. Therefore, substituting ηβ for q

β
i in

(5), we obtain the following condition:

ηβ > (n− 1)
f − c

f − c+ e− c , (6)

which is necessary and sufficient for distribution insensitivity to apply to α-
players. Turning now the attention to the counterpart condition for any agent
j choosing β, note that, in order for this player to be playing a best response, a
necessary and sufficient condition is:

ηβ < (n− 1)
f − d

f − d+ e− c + 1− q
α
j

c− d
f − d+ e− c ,

7 In the network β → α the direction of all the links is already determined and therefore
distribution insensitivity is not an issue.

17



where qαj denotes the number of links to α-players supported by j. The right
hand side of the above condition is decreasing in qαj and therefore it attains its
minimum value at qαj = nα. Thus substituting nα for q

α
j we obtain:

nβ < (n− 1) f − c
f − c+ e− c + 1, (7)

which is again a necessary and sufficient condition for distribution insensitivity
concerning any player choosing β. Combining (6) and (7), the desired conclusion
follows.
When α-players and β-players both want to link with the other type and the

cost of link formation is not too low, distribution insensitiveness selects a unique
equilibrium value. When the number of agents playing β is equal to this value,
a strategy profile is an equilibrium no matter how the costs of links formation
are allocated among agents (conditional on the fact that the network is Nash).
In contrast, when the size of the population of β-players is not distribution
insensitive, certain allocations of costs will not be sustained in equilibrium. The
existence of distribution insensitive values will play an important role for the
analysis of the dynamics of the game, see section 5.

4 Welfare analysis
There are many ways to measure the social welfare of a network structure.
Here, we identify welfare with the sum of individuals’ payoffs. More precisely,
the welfare of a strategy profile s = (s1, ..., sn), denoted as W (s), is made equal
to the sum of the individuals’ payoffs,

W (s) =
n

i=1

Πi(s).

Furthermore, we say that a state s is efficient if and only if W (s) W (s ), for
all s ∈ S.

First of all, notice that the welfare contribution of a link is 2b− c in the case of
two β-players, 2d − c in the case of two α-players, and e + f − c in case of an
α-player linked to a β-player.8 This implies that the appropriate classification of
payoffs configuration for the welfare analysis is different from the classification
used for the equilibrium analysis. This is worth keeping in mind in the following
results on welfare. It is also worth noting that, given any particular pattern of
connections, the division of passive and active links does not affect its welfare.
Therefore, in order to characterize an efficient profile it is enough to find the
undirected structure of its network and the number of players choosing each
action. Given a particular state s, denote nαα to be the number of links in s

8 Since the cost of a link is incurred only by one of the agents forming the link, the formation
of it can be optimal in terms of welfare, yet not feasible at equilibrium. This occurs, for
ex am ple, b etween two β p l aye r s i f b < c < 2b.
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between two α-players, nββ to be the number of links in s between two β-players,
and nαβ to be the number of links in s between players choosing different actions
(α,β).

If 2b < e + f < 2d then a link involving two players choosing α provides the
highest payoff. The following result then follows:

Proposition 4 Suppose 2b < e + f < 2d. Then if c < 2d a profile is efficient
iff its network is complete and essential and all players choose α. If c > 2d then
an efficient profile has an empty network.

The above class of games exhibit a severe form of “exploitation” in which the
welfare of the anti-coordination game is highest off-equilibrium. The other two
parameter configurations, 2b < 2d < e + f and 2d < 2b < e + f are more
complicated and we now take them up. Since they are symmetric across actions,
we focus here on the first case. To state the result, it is useful to introduce an
auxiliary function g as follows:

g(c) =


e+f−2d+ d−b

n

e+f−(d+b) if c < 2b
e+f−2d+ d−c/2

n

e+f−d−c/2 if 2b < c < 2d
1 if 2d < c,

where a refers to the integer closest to a. It is straightforward to see that g(c)
is piece-wise linear and increasing.

Proposition 5 Suppose (1) holds and in addition 2b < 2d < e + f . Then the
following statements hold: (i) If c < 2b then a profile is efficient iff it is of type
β α, and n∗β = g(c)

n
2 . (ii) If 2b < c < 2d a profile is efficient iff it is of type

β α, and n∗β = g(c)n2 . (iii) If 2d < c < e + f a profile is efficient iff it is
of type β α, and n∗β = g(c)n2 . (iv) If e + f < c a profile is efficient iff its
network is empty.

This Proposition tells us that, as the linking cost increases, efficient networks
become less connected going from the complete network to the empty network
through two intermediary cases. Moreover, efficiency generally selects a unique
relative size of the two parts. Especially, when the efficient network is bipartite,
the efficient profile is perfectly balanced for all values of the parameters (i.e.,
nβ = nα =

n
2 ). The reason is that, when the efficient network is bipartite, each

link provides the same welfare contribution e + f − c. Therefore, in order to
maximize welfare the number of links must be maximized, which is obtained
when th e two groups of players have the same size.
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If we compare Propositions 4 and 5 with Propositions 1 and 2 we conclude that,
in general, Nash profiles are not efficient and vice versa. The essential basis for
this negative conclusion is twofold.

1. First, let us consider the effect of the cost of forming links in the tension
between efficiency and equilibrium. Given that the cost is incurred only
by the proposer, the formation of a link can be welfare improving, even
if no agent wants to form it. For example, when b < c < 2b, β-players
do not have an incentive to form links with themselves, even if this would
increase the collective welfare. This problem could be somewhat alleviated
under alternative assumptions on link formation. For instance, it could be
supposed that link formation is two-sided and both players pay the same
cost c/2 to establish a link. In this case, when b < c < 2b, two β-players
would have an incentive to form a link. However, such a two-sided link
formation also has its drawbacks. For example, under equal cost sharing,
when 2e < c < f , α-players do not want to form links with β-players, even
though β-players would be willing to pay the entire cost of link formation
under a one-sided rule. Therefore, in general, there are cases where a link
would be formed under one-sided link formation but not under two-sided
link formation, and vice versa. Apart from these considerations, the cost
of link formation also has implications over the distribution of passive and
active links sustained in equilibrium. As the cost increases the range of
possible sizes in equilibrium extends. This is because when costs are high
the positive externalities induced by passive links are higher. Nevertheless,
passive and active links have no role in the welfare analysis. This is why
there is just a single relative size of the two parts in efficient profiles.

2. A more primitive reason for the discrepancy between efficiency and equi-
librium is the fact that actions in the anti-coordination game are typically
asymmetric. To distinguish this most clearly from previous considera-
tions, it is useful to consider a situation where the cost of link formation
is low. Hence, assume that c is close to 0. Both equilibrium and efficient
networks are complete. Equilibrium requires that nβnα ≈

f−d
e−b in every case.

In contrast, efficiency requires that nβ
nα

= 0 when 2b < e + f < 2d and

that nβ
nα
≈ e+f−2d

e+f−2b otherwise. In the first case, efficiency and equilibrium
requirements can never be reconciled, while in the other cases, efficiency
and equilibrium are compatible only when f−e is close to 0. Hence, when
costs are low, equivalence between equilibrium and efficient profiles is only
obtained for degenerated cases of anti-coordination games, in which ac-
tions are symmetric in equilibrium (i.e. f − e ≈ 0). In general, therefore,
collective welfare and individual incentives are not aligned.
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5 Dynamics
The analysis of the static model shows that there is a wide range of outcomes
that can arise in equilibrium. It is worth noting that these equilibria display
very different numbers of players choosing the two different actions and therefore
also have very different welfare properties — thus such a diversity is substantive.
This leads us to examine the dynamic stability of different outcomes. In this
section, we shall show that all (strict) equilibria of the static model are stochas-
tically stable. In this sense, therefore, we may conclude that the whole range of
equilibria identified in the static analysis of the model are, all of them, equally
robust configurations.

We start with a preliminary result which shows that the best-response dynamic
converges to one of the Nash equilibria whose main features are specified in
Propositions 1 and 2.

Proposition 6 Suppose (1) holds. The unperturbed dynamic process converges
to a (strict) Nash equilibrium, with probability one.

The proof of this result is given in the Appendix. We now proceed to the analysis
of the perturbed dynamic. The above result allows us to restrict our attention
to the set of strict Nash equilibria of the static game. Our analysis of stochastic
stability is summarized in the following result.

Proposition 7 Suppose (1) holds. Then all strict Nash equilibria are stochas-
tically stable.

Proof: From the previous proposition we know that the unperturbed dynamic
converges to a strict Nash equilibrium. We will now show that all strict Nash
equilibria are in the same recurrent set, i.e. for all s, s ∈ S∗∗ there exists a
path of one step mutations that leads from s to s and vice versa. This will
lead to the conclusion that all strict Nash equilibria are stochastically stable
(see Samuelson, 1994).
To this effect, it is useful to define an equivalence relation ∼ in the following

way: s ∼ s if and only if one of them is obtained from the other just by a
permutation of the indices of the nodes. It is easy to show that ∼ satisfies
all the properties required for it to be an equivalence relation. This induces
a partition of S∗∗ in equivalence classes that we will denote by Ω. First, let
us show that, for our purpose, it will be enough to prove the following two
statements.
a) There exists an equivalence class c∗ ∈ Ω satisfying that, any two of its

states are connected by a path of one step mutations, i.e. ∀s, s ∈ c∗ there exists
a one-step mutation path going from s to s and vice versa.
b) There exists a one-step mutation path connecting any two equivalence

classes, i.e., ∀c, c ∈ Ω and ∀s ∈ c there exists a state s ∈ c such that we can
reach s from s by a path of one step mutations and vice versa.
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Assuming that a) and b) are true, we can now argue that there exists a path of
one step mutations connecting any two strict Nash equilibria. The key property
used in order to prove this is that, a composition of one-step mutation paths
generates a one-step mutation path. Making use of this fact, we observe that
property a) is satisfied by any other equivalence class c ∈ Ω. This is because, if
we take s, s ∈ c then, using b), there exist two states s, s ∈ c∗ connected with s
and s respectively by their corresponding bidirectional one-step mutation paths.
Moreover, using a) the states s and s are also connected in both directions by a
path of one step mutations and therefore, by composition of these paths, we are
able to connect s and s . In order to complete the proof, we have to show that
there exists a path between any two states belonging to different equivalence
classes. As before, this path can also be constructed by composition of two
paths, one path connecting the two equivalence classes that exists due to b)
and, the other one, connecting two states inside the corresponding equivalence
class that exists due to the preceding argument.

First, to establish a), we shall rely on the following Lemma.

Lemma 1 Given an equivalence class c∗ ∈ Ω formed by distributive insensitive
states then, for any two states belonging to c∗, we can reach one from the other
by a one-step mutation path.

The proof of Lemma 1 will be presented in the Appendix. Interestingly, notice
that, the concept of distributive insensitiveness plays a crucial role for the proof
of a).

To illustrate the arguments involved in the proof of b), we present in the text
the proof for the first two parts of the classification on cases provided in Section
3 and provide the remaining four parts in the Appendix.

1: c < b, d, e, f . We have to show that, ∀c, c ∈ Ω and ∀s ∈ c there exists a state
s ∈ c such that we can reach s from s by a path of one step mutations and
vice versa. All strict Nash equilibria are complete and essential networks with
a number of β-players satisfying the following: (n− 1)pβ < nβ < (n− 1)pβ +1.
Given s ∈ c, there exists a state s ∈ c where the only difference between
them is the distribution of passive and active links. Thus, there must exist
two players i, j ∈ N such that gij = 1 in s, whereas gij = 0 in s . We know
that s is a complete graph, therefore gji = 1 in s . Assume player i mutates
and deletes her link with j. Then, with a positive probability, player j gets a
revision opportunity and initiates the link with player i. This is due to the fact
that, j’s best response, with respect to the action (α or β), only depends on
the number of players doing each action but not on her distribution of active
and passive links. Then, we would reach another Nash equilibrium ”closer” to
s . If we do the same for all the links that differ between s and s we would
reach s . Therefore, by a sequence of one step mutations, we can go from s to
s . Analogously, we can reach s from s with a path of one step mutations.
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2: b < c < d, e, f . Consider c, c ∈ Ω and s ∈ c. We will first make the
assumption that the proportion of players doing each action in c and c coincides,
that is, nβ(c) = nβ(c ) = nβ. We want to show that we can go from s to a state
s ∈ c . Recall, from Proposition 2, that β-players’ best response, with respect
to the action, is independent of the distribution of active and passive links. On
the other hand, α-players’ best response depends on the number of active links
they have with β-players but not on the number of active links they have with
other α-players. More precisely, given a number nβ of β-players nβ, there is a
maximum number of active links that an α-player can sustain with β-players in
equilibrium. Let this number be denoted by qmaxnβ

.

Consider s ∈ c such that it differs with s only in the distribution of active
and passive links.9 There exist two players i, j ∈ N such that gij = 1 in s, but
gij = 0 in s (indeed it has to be the case that gji = 1 in s ). If i and j are
both α-players the process is straightforward. If we want to go from s to s we
do the following. With positive probability i mutates and deletes her link with
player j. By best response, player j forms the link with i. A similar argument
can be made for the reverse transition, from s to s. Specifically, with positive
probability j deletes her link with i and then by best response i forms the link
back with j. This is a Nash equilibrium because any possible division of passive
and active links between α-players is sustained in equilibrium.

What would happen if i ∈ Nα and j ∈ Nβ? If we want to construct a path from
s to s , we do the following. By mutation, player i deletes her link with j. Then,
if j gets an opportunity of revising her strategy, she will form the link with i.
This is due to the fact that, in equilibrium, a β-player can be sustaining all the
links with α-players.

Assume now that, i ∈ Nβ and j ∈ Nα, then the argument is slightly more
complicated. If the number of active links of player j is less than qmaxnβ

, i.e.,
the maximum number of active links with β-players allowed in order for an
α-player to be doing a best response, then we can reason as before. That is,
player i deletes her link with j by mutation and, by best response, j forms the
link back with i. If, on the other hand, qβj = qmaxnβ

we cannot use the same
sequence of mutations and best responses as before because, if by mutation,
player i deletes her link with j, forming the link back with i is no longer player
j’s best response. By assumption, we know that s is also a Nash equilibrium
and therefore qs ,βj ≤ qmaxnβ

. This tells us that there must exist l ∈ Nβ such that

gjl = 1 in s and gjl = 0 in s . If this were not the case, then qs ,βj > qmaxnβ

because j would have in s all the active links that she has in s plus the one
with i. This would contradict the assumption that s is an equilibrium. Now,
let us describe a path of positive probability that leads from s to s . First, j
deletes her link with l. By best response, l would form the link with j. This

9 In fact, what we are saying is that the indices of the players doing each of the actions
coincide for s and s .
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would leads us to a state that we will denote by s, which is also a strict Nash
equilibrium and such that qs,βj < qmaxnβ

. We can now conclude the argument. By
mutation, player i deletes her link with j. Then, j’s best response is to form
the link back with i because qs,βj < qmaxnβ

.

We can do this with all the links that differ (with respect to the direction)
between states s and s . Therefore, with a process based on one step mutations,
we can go from s to s . The reverse path can be calculated in an analogous way.

We want to see that this is also true for classes whose states differ in the number
of players doing each action, that is, nβ(c) = nβ(c ). First, we consider c, c ∈ Ω
such that nβ(c) < nβ(c ) and s ∈ c. We want to show that, there exists a state
s ∈ c such that, by a sequence of one step mutations, we can go from s to
s . Without loss of generality, we can suppose that nβ(c ) = nβ(c) + 1. Let
us assume that s has the same indices of players choosing each action than s,
except for a given player i who is doing α in s and β in s .

By mutation, i in state s switches to β, deletes her links with β-players and
maintains all her links with the α-players. Then, by best response, the remaining
β-players delete the possible links they had with player i. They will not switch to
α because their best response does not depend on the distribution of active and
passive links, it simply depends on the proportion of players doing each action
and our assumption indicates that nsβ + 1 is sustainable as a Nash equilibrium.
Note that, α-players are also doing a best response because there is now one more
player choosing β, therefore their incentives to switch actions has diminished.
This state will be denoted by s and has the property that the players doing each
of the actions coincide with the ones in s . Now, using what we have already
proved, by a process of one step mutations we can go from s to s .

To conclude, we consider that the opposite holds, i.e., nβ(c) > nβ(c ). More
precisely, we assume nβ(c) = nβ(c ) + 1. Take s ∈ c such that, the indices of
players choosing each action coincides with s except for a given player i who is
doing β in s and α in s . Given state s, by a sequence of one step mutations, we
can reach a strict Nash equilibrium s in which all β-players are actively linked
with all α-players. This is due to the fact that, in equilibrium, β players are
choosing a best response independently of the distribution of active and passive
links. Now, we will show that we can reach s . Player i, by mutation, chooses
α and deletes all her links. Then, by best response, all β-players get a revision
opportunity and form links with i. This new state has one more player choosing
α and all links between α and β- players are formed actively by the β-players.
Hence, α-players are in the most favorable situation with respect to the direction
of the links. Moreover, given that nsβ is sustainable in equilibrium, this new state
is an equilibrium we will denote it by s. Notice that, the set of players choosing
each action in coincides for s and s . Finally, using the preceding argument,
via a process of one step mutations, we can appropriately change the direction
of some links and reach s . Analogously, we can show that there exists a path
going in the opposite direction, i.e., leading from s to s.
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6 Summary
In this paper, we study a model of social interaction between partner choice and
individual behavior in anti-coordination games i.e., games where choosing dis-
similar actions is individually optimal. In our context, two players interact only
if at least one of them has invested in establishing a costly pair-wise link, i.e.
links are one-sided. As the linking cost varies, we find that there is a wide range
of possible (strict) Nash networks structures: complete graphs, semi-bipartite
graphs, bipartite graphs and empty graphs. The relative numbers of individuals
doing each action depends crucially on the cost of forming links. More specifi-
cally we observe that, for low costs, the only stable network is complete, with
the proportion of individuals doing each action coinciding with the mixed strat-
egy equilibrium proportions of the anti-coordination game. As the cost of link
formation increases, a wider set of relative proportions become sustainable in
equilibrium, some of them representing very asymmetric bipartite graphs. This
effect arises due to the trade-off faced by any player between the advantages of
cheap passive links and the gains from being on the shorter side of the popula-
tion. In addition, the payoffs in an anti-coordination game are such that players
have an incentive to be on the short side of the ‘market’ even if aggregate welfare
is enhanced when all players choose the same action. This strategic conflict is a
second source of inefficiency. These two considerations imply that efficiency and
equilibrium requirements typically conflict in anti-coordination games. Finally,
we show that these features of equilibrium outcomes are robust with respect
to the dynamics: all strict Nash equilibria of the static game are stochastically
stable.
The importance of the cost of forming links in this analysis suggests the interest
of exploring alternative formulations. We could consider the case where a link
is formed only if both players make an investment in the link. A preliminary
analysis of this model suggests that a much larger class of network structures
can arise in equilibrium than the ones derived with one-sided link formation.
It is also left for further research to analyze the concept of distribution insensitive
configurations in more general settings. This notion reflects a stronger criterion
of stability that provides a selection with respect to the standard analysis. We
feel that distribution insensitiveness could be seen as one way of introducing
‘two-sided considerations’ in a one-sided link formation model.

7 Appendix
Proof of Proposition 2
We proceed by successive examination of all the possible domains. For each

domain, the first step is to derive the two strict best-response equations, one
for the α-players, denoted by BRα, and one for the β-players, denoted by BRβ.
The second step is to understand how the best response equations allow one
to compute the lower and upper bounds on nβ . In general, BRβ leads to the
upper bound, whereas BRα leads to the lower bound. The reason is intuitive:
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for anti-coordination games, the higher the number of people playing β, the
lower the utility of playing β compared to the utility of playing α. Hence, when
β players are too numerous, BRβ will not hold.

1: c < b, d, e, f . Nash networks are complete.

BRα⇔ (nα − 1)d+ nβe− c(qαi + qβi ) > (nα − 1)f + nβb− c(qαi + qβi )
The left term of the inequality is the utility obtained by an agent playing α.
The right term is the utility that an agent playing α would obtain if he changed
to β. Through elementary algebraic manipulations, we obtain

BRα ⇔ nβ(e− b) > (nα − 1)(f − d)
BRα ⇔ nβ(e− b+ f − d) > (n− 1)(f − d)

Similarly, we show that BRβ is given as follows:

BRβ ⇔ nβ(e− b+ f − d) < (n− 1)(f − d) + (e− b+ f − d).

2: b < c < d, e, f . Equivalently, Nash networks are of the type β α. The
α-players are linked (actively or passively) with every other agent. Thus, they
obtain e with β players and d with all α players, while they have to pay for all the
links they support. Hence, the utility of an α player is nβe+(nα−1)d−c(qαi +qβi ).
If she changed to β, she would sever her active links with β players, but keep
her active links with α players. She would still be linked (actively or passively)
with all the α players, but would now only be passively linked with β players.
The number of passive links she has with β players is equal to nβ minus the
number of active links she has with them. Therefore,

BRα⇔ nβe+ (nα − 1)d− c(qαi + qβi ) > (nα − 1)f + (nβ − qβi )b− cqαi
which yields us:

BRα ⇔ nβ(e− b+ f − d) > (n− 1)(f − d) + qβi (c− b)
Similarly, we can show that

BRβ ⇔ nβ(e− c+ f − d) < (n− 1)(f − d) + (e− c+ f − d)
Hence, BRβ directly gives the upper bound for nβ . To find the lower bound for
nβ , first note that the lowest possible value of nβ is equal to (n− 1)pβ and that
it is attained for a state such that ∀i ∈ Nα, q

β
i = 0. Second, let us show that

this state indeed leads to the lower bound. By definition, this state satisfies
BRα. This state satisfies BR β iff

(n− 1) f − d
f − d+ e− b < (n− 1)

f − d
f − d+ e− c + 1
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Since b < c, we have e − b > e − c and f−d
f−d+e−b <

f−d
f−d+e−c . Thus, the state

leading to the lowest possible lower bound is a strict Nash equilibrium.

3: d < c < b, e, f and Nash networks are of the type β α.
By symmetry, we can apply the previous result to nα by exchanging f with e
and d with b. This leads to

(n− 1)pα < nα < (n− 1) e− b
e− b+ f − c + 1

Since nβ = n − nα, we obtain that, in this case, there exists a strict Nash
equilibrium iff

(n− 1) f − c
f − c+ e− b < nβ < (n− 1)pβ + 1

4: b, d < c < e, f . In this case, Nash networks are of the type β α.
As in part 2, the proof for the upper bound unfolds in three steps. First, as
usual, we derive the best-response equations for α and β. After simplification,
both equations depend on the number of active links of the agent. Second, we
use BRβ to show that the highest possible upper bound for nβ is obtained for
a state where no β has an active link (all the active links are supported by α).
Third, we show that this state satisfies BRα, hence is a valid Nash equilibrium,
and thus leads to the actual upper bound for nβ.The lower bound of nβ can be
computed in a similar fashion.

Finally, it remains to check that all the values between these two bounds can
be sustained as a Nash equilibrium. To show this, we prove that the ranges of
values of nβ that sustain the two most asymmetric states overlap. This means
that any nβ between the two bounds can sustain one of these two states, which
completes the proof.

First, let us derive the best-response equations. The α-players are linked (ac-
tively or passively) with all the β-players. Hence, they earn e times the number
of β-players, while they have to pay for the active links they support. If they
changed to β, they would sever their active links with β players and form active
links with all the α-players. They would still be passively linked with some
β-players. These considerations yield:

BRα⇔ nβ(e− b+ f − c) > (n− 1)(f − c) + qβi (c− b)
Similarly, it can shown that,

BRβ ⇔ nβ(f − d+ e− c) < (n− 1)(f − d) + f − d+ e− c− qαi (c− d)
Hence, BRβ shows that the highest possible upper bound for nβ is equal to n̄β =
(n− 1) (f−d)

(f−d+e−c) +1 and it is obtained for the state such that ∀i ∈ Nβ , q
α
i = 0.
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In this state, the agents playing α support all the links, hence ∀i ∈ Nα, q
β
i = nβ .

Therefore, this state satisfies BRα iff

(n− 1) (f − d)
(f − d+ e− c) + 1 > (n− 1)

(f − c)
f − c+ e− c

which is satisfied.

Similarly, the lowest possible lower bound is equal to ňβ = (n−1) (f−c)
(f−c+e−b) and

it is obtained for the state such that the agents playing β support all the links,
hence ∀i ∈ Nβ, q

α
i = nα. This state satisfies BRα by construction, and satisfies

BRβ iff

(n− 1) (f − c)
(f − c+ e− b) < (n− 1)

(f − c)
f − c+ e− c + 1

which is satisfied.

5: b, e < c < f, d and the network is of type β → α. Standard considerations
suggest that

BRα ⇔ nβ(e− b+ f − d) > (n− 1)(f − d)

and

BRβ ⇔ nα(f − c) > nα(d− c)

hence BRβ is always satisfied if nα = 0.

6: b, d, e < c < f . In this case, Nash networks are of type β → α. It follows
that

BRα ⇔ nβ(f − c+ e− b) > (n− 1)(f − c)

and

BRβ ⇔ nα(f − c) > 0
BRβ ⇔ n > nβ

Proof of Proposition 3:

1: c < b, d, e, f . Directly from Proposition 2’s proof we observe that a player’s
best response does not depend on her distribution of active and passive links.
This indicates that all Nash equilibria are structure insensitive.

29



2: b < c < d, e, f . Nash networks are of the type β α. As shown in
Proposition 2’s proof an α- player with qβi active links with β-players and qαi
active links with α-players is doing a best response if and only if,

nβ > (n− 1) (f − d)
(e− b+ f − d) + q

β
i

(c− b)
(e− b+ f − d)

Note that the RHS of the above expression does not depend on qαi and it is
increasing in qβi Therefore it reaches a maximum at qβi = nβ. Substituting nβ
for qβi we obtain the following condition:

nβ > (n− 1) (f − d)
(f − d+ e− c)

which is necessary and sufficient for distribution insensitive to apply to the α-
players. Considering now the counterpart condition for a β-player, note that,
in order for this player to be playing a best response, a necessary and sufficient
condition is:

nβ < (n− 1) (f − d)
(f − d+ e− c) + 1

BRβ does not depend on the number of active links with the α-players. Hence,
this condition is again a necessary and sufficient condition for distribution in-
sensitivity, but now it concerns any β-player. Combining these two conditions
we obtain the desired result.

3: d < c < b, e, f . Nash networks are of the type β α. By symmetry, we
can apply the previous result to nα by exchanging f with e and d with b. This
leads to the following condition:

(n− 1) (e− b)
(e− b+ f − c) < nα < (n− 1)

(e− b)
(e− b+ f − c) + 1

Since nα = n− nβ , we can substitute in the above expression and calculate the
necessary and sufficient conditions for distributive insensitivity in terms of nβ ,
which is the following:

(n− 1) (f − c)
(f − c+ e− b) < nβ < (n− 1)

(f − c)
(f − c+ e− b) + 1

4: b,d < c < e, f. This case has been described precisely in the paper.

5: b, e < c < f, d and the network is of type β → α. In this part, all nβ
sustained as a Nash equilibrium will also be structure insensitive. Notice that,
the best response of a player choosing α does not depend on the distribution of
active and passive with other α-players.
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6: b, d, e < c < f . In this part, Nash networks are of type β → α therefore
the direction of all the links is already determined and therefore distribution
insensitivity is not an issue.

Proof of Proposition 4:

The welfare of a complete and essential graph with every agent choosing α is
n
2 (2d − c). Any other possible profile would provide a lower welfare because
n
2 (2d−c) ≥ nαα(2d−c)+nββ(2d−c)+ nαβ(2d−c) ≥ nαα(2d−c)+nββ(2b−c)+
nαβ(f + e− c) given that nαα + nββ + nαβ ≤ n

2 . Thus, if c < 2d the efficient
profile is a complete and essential graph of agents choosing α.

Proof of Proposition 5:

(i) If c < 2b then all links are profitable and therefore the efficient network must
be complete. In order to obtain the size of nβ that maximizes the welfare we
must work out the following maximization problem:

max
0≤nβ≤n

nαα(2d− c) + nββ(2b− c) + nαβ(f + e− c).

Taking into account that in a complete and essential network

nαα =
n− nβ
2

=
(n− nβ)(n− nβ − 1)

2
,

nββ =
nβ
2

=
(nβ)(nβ − 1)

2
,

nαβ = (nβ)(n− nβ).
the above expression reaches the maximum in,

n∗β =
e+ f − 2d+ d−b

n

e+ f − (d+ b)
n

2
= g(c)

n

2
.

(ii) If 2b < c < 2d then the links between two players choosing β are not
profitable, which implies that nββ = 0. Apart from these links all other links
will be formed. The maximization problem we have to solve is the following:

max
0≤nβ≤n

nαα(2d− c) + nαβ(f + e− c),
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It is easily seen that:

nαα =
n− nβ
2

=
(n− nβ)(n− nβ − 1)

2
,

and

nαβ = (nβ)(n− nβ).
the solution of this maximization problem is:

n∗β =
e+ f − 2d+ d−c/2

n

e+ f − d− c/2
n

2
= g(c)

n

2
,

where g(c) is piece-wise linear and increasing.
(iii) If 2d < c < e + f then the only links that will be profitable are the

ones between players choosing different actions. Thus nαα = nββ = 0 and .the
maximization problem we have to solve is the following:

max
0≤nβ≤n

nαβ(f + e− c),

It is easily seen that

nαβ = (nβ)(n− nβ).
The solution of this problem is simply

n∗β = n/2.

Proof of Proposition 6: It is sufficient to show that from any initial state s0,
there is a positive probability of reaching a strict Nash equilibrium. We have
to study 6 different cases depending on the relation between the cost c and
the parameters from the payoff table of the anti-coordination game (that is,
depending on the type of network that arises in equilibrium).

1: c < f, d, e, b . Given a state s0 we have to show that with a positive
probability we can reach a strict Nash equilibrium. Consider the following
process. One after the other, individuals have the opportunity of revising their
links (that is, one individual per period.) All links will be formed because the
linking cost is lower than all possible payoffs of the anti-coordination game. This
will leads us to a complete and essential network (β α) that we denote by s1.
If the proportion of players doing each action coincides with the one required in
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equilibrium, i.e., (n−1)pβ < ns1β < (n−1)pβ+1, then s1 would be a strict Nash
equilibrium and therefore the proof would be completed. Assume that this is
not the case, that is ns1β < (n−1)pβ .10 In this network there are more α- players
than what the equilibrium prescribes. Thus, we deduce that α-players are not
choosing a best response. With a positive probability a player choosing α gets
a revision opportunity. She would maintain her links and switch to action β.
This would leads us to a complete and essential state s2 with one more player
choosing α . If we still have ns2β < (n − 1)pβ , then players choosing α are still
not doing a best response. As described before, there is a positive probability
that one of them switches to action β. After a finite number of periods we would
reach a state sk satisfying, (n − 1)pβ < nskβ < (n − 1)pβ + 1 and therefore we
would reach a Nash equilibrium.

2: b < c < f, d, e. Consider an initial state s0. One after the other,
individuals have the opportunity of revising their links. All links will be formed
except those between two β-players. This would leads us to a state that we will
denote by s1 in which the network is of the type β α. If s1 is an equilibrium
this would complete the proof. If this is not the part, then there is at least one
individual who is not doing a best response. Recall from Proposition 3 that
there exists a number of β-players, n∗β , which is distribution insensitive. We
are assuming that s1 is not an equilibrium, therefore n∗β = ns1β . Assume that
ns1β < n∗β .

11 There are less players choosing β than what distribution insensitive
prescribes, thus, all β-players would be choosing a best response. Since s1 is not
an equilibrium, at least one α-player is not choosing a best response. Consider
a player i choosing α who is not doing a best response. If i gets a revision
opportunity, she would switch to action β and delete the possible links she might
have with β-players. Then, all players in Nβ would get a revision opportunity
and they would delete their links with i. This leads us to a network with the
structure β α that we will denote as s2. Notice that s2 has one more β-player
than s1, i.e., n

s2
β = ns1β + 1. If s2 is an equilibrium, then the proof would be

completed. If it is not an equilibrium, then ns2β < n∗β . Using the same argument
described above, we can construct a positive probability path that leads us to
a Nash equilibrium. This is due to the fact that, after a finite number of steps,
we would reach a state sk such that n

sk
β = n∗β and we know that this state is

an equilibrium, no matter how passive and active links are distributed among
players.

3: d < c < f, b, e. It is analogous to the proof of part 2. We simply have to
exchange the roles of nβ , d and f by nα, b and e, respectively.

4: d, b < c < e, f. Consider an initial state s0. All players get a revision
opportunity, one at a time, just over their links. This will leads us to a state
s1 which is a complete and essential bipartite graph (β α). Recall, from

10 If, on the contrary, ns1β > (n− 1)pβ + 1 the proof would be analogous.
11 If ns1β > n∗β the proof goes along the same lines.
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Proposition 3, that there is a particular value n∗β that is distribution insensitive.
In other words, any state with that particular proportion of players doing each
action, satisfies that all possible distributions of active and passive links between
α and β-players determine an equilibrium network. This indicates that, if s1 is
such that ns1β < n∗β the incentives for a β-player to switch to action α diminishes
Therefore, if s1 is not an equilibrium, then a player choosing α is not doing a best
response. This is because the β-players are doing a best response independently
of the distribution of active and passive links. If, by contrary, ns1β > n∗β and s1
is not an equilibrium, then a player choosing β is not doing a best response. Let
us suppose that we are in a state s which satisfies the inequality ns1β < n∗β (if
the reversed inequality holds the proof would be analogous). We want to prove
that with positive probability (using the unperturbed best response dynamics)
we can reach a strict Nash equilibrium. If s1 is an equilibrium, the proof would
be completed. If it is not, at least one player choosing α, say i, is not doing a
best response. With positive probability, i gets an opportunity of revising her
strategy. If this is the part, she would switch to action β, delete all her links
with the β-players and form links with the α-player. If then, all β-players get
a revision opportunity, they would delete the possible links they might have
with i. This new state, that we will denote as s2 has one more β-player i.e.
ns2β = ns1β +1. If s2 is an equilibrium the proof would be completed. If it is not
an equilibrium then ns2β < n∗β. Using the same process described previously, we
can construct a positive probability path that leads us to a Nash equilibrium.
This is due to the fact that after a finite number of steps we would reach a state
sk satisfying n

sk
β = n∗β and we know that this will be an equilibrium, no matter

how passive and active links are distributed among players.

5: b, e < c < d, f . Consider an initial state s0. All players, one at each time, get
a revision opportunity over their links. This would leads us to a semi-bipartite
graph (β → α). Denote this state by s1. Recall from Propositions 2 and 3, that
s1 will be a strict Nash equilibrium if and only if (n − 1)pβ < ns1β < n. If s1
satisfies this inequality, then s1 would be a Nash equilibrium and therefore the
proof would be completed. If, on the contrary, s1 is not an equilibrium then
ns1β < (n−1)pβ . In this part, α-player are not choosing a best response. With a
positive probability, one of them, say i, gets a revision opportunity and therefore
switches to action β. Then, if all α-player get a revision opportunity, just over
their links, they would delete the possible links they had with i. Also, β-players
would delete their links with i. Then, if i gets a new revision opportunity, she
will form the links with the α-player. This process leads us to a directed semi-
bipartite graph that we will denote by s2. This state has one more β-player i.e.
ns2β = ns1β +1. If n

s2
β < (n−1)pβ then we would repeat the process. After a finite

number of steps, we would reach a state sk such that the inequality is reversed,
i.e. nskβ > (n− 1)pβ . Therefore, we would have reached a Nash equilibrium.

6: b, d, e < c < f . Consider an initial state s0. All players get a revision
opportunity, one at a time, just over links. This would leads us to a state s1
which is a complete and essential bipartite graph (β → α). Notice that, from
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Proposition 2, s1 would be an equilibrium if and only if (n−1)(f−c)
(f−c)+(e−b) < n

s1
β < n.

If ns1β satisfies the inequality, then s1 would be an equilibrium, and therefore we

would have finished with the proof. If not, i.e., ns1β < (n−1)(f−c)
(f−c)+(e−b) all α-player

are not choosing a best response. Thus, with positive probability one of them,
say i, gets the opportunity of revising. In such a case, she would switch to
action β and would form all the links with α-player. If then, all β-players get
a revision opportunity, they would delete their links with player i. This would
leads us to a state s2 that has one more β-player. If s2 is not an equilibrium,
then α-player are still not doing a best response. We then repeat the process as
described above. We know that, after a finite number of steps, we would reach
a state sk such that

(n−1)(f−c)
(f−c)+(e−b) < nskβ < n, and therefore we would reach a

Nash equilibrium.

Proof of Lemma 1:
Consider c∗ ∈ Ω an equivalence class composed by distribution insensitive states.
That is, the number of β-players coincides with one of the distribution insensitive
number of β-players i.e. n∗β .
First, we will show how to go from one state to another of the equivalence

class c∗ when the difference between states just relies on permutation of indices
between players choosing the same action. For instance, consider two states
s1,s2 ∈ c∗ with the only difference between them being that strategies for player
1 and 2 are permuted but both players are choosing action α. Consider state s1,
player 1, by mutation, imitates precisely the strategy done by player 2.12 Then,
by best response, and because we are considering a distribution insensitive state,
all other players will form or delete their links ,depending on the case, with player
1. After this, we would reach a strict Nash equilibrium where player 1 will have
the exact same strategy as player 2 had previously. Even though the structure of
the network might have changed, given that we are in a distribution insensitive
state, we still have a Nash equilibrium. Analogously, player 2 can imitate the
original strategy of player 1 and end up having the exact same strategy as player
1 had in state s1. This will leads us to a state in the same equivalence set but
in which there has been a permutation between the strategies of players 1 and
2. This is precisely the state we have denoted by s2.

To finish, we would like to consider a case in which the players for which we
want to permute strategies are doing different actions. Say, for instance, that
player 1 is doing α and player 2 is doing β. Consider two states s1,s2 ∈ c∗ with
the only difference between them being that the strategies for players 1 and 2
are permuted. In contrast with the previous part, players 1 and 2 are choosing
different actions. First of all, we have to distinguish between the following cases:
i) n∗β is in the upper bound obtained for the strict Nash equilibrium,
ii) n∗β is in the lower bound obtained for the strict Nash equilibrium, and
iii) n∗β is in the interior.

12The imitation is only relevant with respect to the link formation because the action by
assumption is already the same for both players.
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Let us construct the proof just for case i).13 Notice that, for this case, Nash
networks are of the type β α.
Given state s1, by a path of one step mutations, we can reach a state in

which all β-players are forming the links. This will be a strict Nash equilibrium
because we are in a distribution insensitive state. Then, by mutation, player
2 switches to action α. Then, by best response, given that now there is one
more α-player, all β-players form the link back with player 2. Note that α-
players will be doing a best response because all the links are passive links for
them and given that n∗β is in the upper bound obtained for the strict Nash
equilibrium, we will still be in the range in which the number of β-players can
be sustained in equilibrium. Therefore, we would have reached another strict
Nash equilibrium. Then, player 1, by mutation, switches to action β and forms
actively all the links with the α-players. By best response, the α-players will
delete the possible active links they have with player 1. This will also be a
distribution insensitive state that will be denoted by s. Although s might not
be in c∗ it is easy to show that, by a path of one step mutation on the direction
of the links, we can reach a state s ∈ c∗. Notice that if s = s2 it must be because
of permutations in the indices of nodes that are choosing the same action. To
conclude, using what we showed at the beginning of the proof, we can con reach
s2 from s by a path of one step mutations.

Proof of Proposition 7:
Proof of part b)
The first two parts have been proved in the paper. Here we present the proofs
of the remaining parts.
3: d < c < b, e, f . The proof is analogous to part 2. We simply have to
exchange the roles of nβ , d and f by nα, b and e, respectively.

4: d, b < c < e, f. Recall from Proposition 3 that there is a particular value
n∗β that is distribution insensitive. This indicates that, if we consider a state s
such that nsβ < n

∗
β , then β-players can be incurring in the cost of all their links,

whereas α-player have a maximum number of active links they can support in
equilibrium. On the other hand, if we consider a state s such that nsβ > n∗β ,
then α-player are the ones that can be incurring in the cost of all their links
in equilibrium, whereas β-players have a maximum number of active links they
can support in equilibrium.

Taking this into account, let us consider two equivalence classes c, c ∈ Ω and
s ∈ c, we want to show that, there exists a state s ∈ c such that there exist
a one-step mutation path connecting s with s . Let us assume that nβ(c) =
nβ(c ) = nβ < n

∗
β.

14

Consider s ∈ c such that the indices of nodes choosing each action coincides
with s. Hence, the differences between s and s must be in the distribution of

13The remaining cases can be proved in an analogous way.
14The proof when nβ ≥ n∗β goes along the same lines.
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active and passive links. Then, there exist players i, j ∈ N such that gij = 1 in
s, but gij = 0 in s (indeed it has to be the case that gji = 1 in s ). Suppose
that i ∈ Nα and j ∈ Nβ . If we want to go from s to s , we do the following.
By mutation, player i deletes her link with j. Then if j gets an opportunity of
revising her strategy she will form the link with i. This is due to the fact that,
in equilibrium, a β-player can be sustaining all the links with α-players.

Assume, by contrary that, i ∈ Nβ and j ∈ Nα, then the argument is more
subtle. If the number of active links of player j is less than qmaxnβ

, i.e., the
maximum number of active links allowed in order for an α-player to be doing a
best response, then we can reason as before. That is, player i deletes her link
with j by mutation, and by best response, j forms the link back with i. If, on the
other hand, qβj = q

max
nβ

we cannot use the same sequence of mutations and best
responses as before, because if, by mutation, player i deletes her link with j,
forming the link back with i is no longer player j’s best response. By assumption,
we know that s is also a Nash equilibrium and therefore qs ,βj ≤ qmaxnβ

. This tells
us that there must exist l ∈ Nβ such that gjl = 1 in s and gjl = 0 in s . If this

were not the case, then qs ,βj > qmaxnβ
because j would have in s all the active

links that she has in s plus the one with i. This would contradict the assumption
that s is an equilibrium. Now, let us describe a path of positive probability
that leads from s to s . First, j deletes her link with l. By best response, l
would form the link with j. This would leads us to a state that we will denote
by s, which is also a strict Nash equilibrium and such that qs,βj < qmaxnβ

. We
can now conclude the argument. By mutation, player i deletes her link with j.
Then, j’s best response is to form the link back with i because qs,βj < qmaxnβ

.

We can do this with all the links that differ (in the sense of the direction of
the link) between states s and s . Therefore, with a process based on one step
mutations, we can go from s to s .

Now, we assume that the number of players choosing each action in c and c does
not coincide. For instance, assume that nβ(c) < nβ(c ). We want to show that
we can still find a path of one step mutations going from s to a state s ∈ c .
Also suppose that, nβ(c ) < n∗β .

15 Without loss of generality, we can assume
that nβ(c ) = nβ(c) + 1. Consider s such that the indices of nodes choosing
different actions coincides with s.except for a player i that is doing β in s and
α in s. Given s, by mutation, player i switches to action β, deletes all her links
with β-players and forms links with all α-players. Then, by best response, all
β-players delete links with i. This leads us to a Nash equilibrium, that we will
denote by s, satisfying that nsβ = nβ(c ). It is a Nash equilibrium because, now
the number of β-players is larger and therefore, α-players have less incentives to
mutate than before. Also, β-players are doing a best response because nsβ ≤ n∗β .
As we have previously proved, we can go from s to s by a process of one step
mutations.
15 If n∗β < nβ(c ) the proof would be analogous.
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Let us assume by contrary that nβ(c ) < nβ(c). Also suppose that nβ(c) < n∗β.
16

First, by a process of one step mutations, we can go from s to a state, denoted by
s, that has the property that all β-players are incurring in the cost of the links
with α-players. That is, qs,αj = nα for all j ∈ Nβ . Now, by mutation, one player j
doing β deletes her links and switches to action α. By best response, all β-players
form links with j. Now, the α-players are choosing a best response because they
are in the most favorable situation with respect to links and the number of β-
players coincides with the one in c which, by hypothesis, is sustainable as a
Nash equilibrium. Thus, this path leads us to a Nash equilibrium denoted by
s satisfying nsβ = nβ(c ). To finish, using what we have already shown, by a
process of one step mutations, we can reach state s from s.

5: b, e < c < d, f. Recall from Proposition 3 that, in this part, all possible nβ in
equilibrium are distribution insensitive. Similarly to what we have already done
in previous proofs, let us start by considering two equivalence classes c,c ∈ Ω
such that nβ(c) = nβ(c ) and s ∈ c. We will show that, by a path of one step
mutations, we can go from s to a state s ∈ c . Take s such that the indices of
the players choosing each action are the same than in s, but, the distribution of
active and passive links between α-players differs (this must be the case because
c = c ). Hence, there exist i, j ∈ Nα such that gij = 1 in s but gij = 0 in s . If
player i, in state s, mutates and deletes her link with j. Then, by best response,
player j forms the link again with i because all possible distribution of active
and passive links between α-players are sustained in equilibrium. If this is done
for all the links in which s and s differ, this would leads us to s .

Next, let us consider c and c such that nβ(c) < nβ(c ).Without loss of general-
ity, we can suppose that nβ(c ) = nβ(c) + 1. Take s ∈ c such that the indices
of nodes doing each action is the same than in s except for a given player i that
is doing β in s and α in s.We want to describe a process of one step mutations
that leads us from s to s . By mutation, player i doing α mutates, switches to
action β and forms links with all α-player. Then, by best response, α-player
delete all the possible links they had with i. Also, by best response, all β-players
delete their links with i. This would leads us to a Nash equilibrium denoted by
s, such that nsβ = nsβ . Using what we have proved in the previously, we can
construct a one-step mutation path from s to s .

To finish, consider that the inverse inequality holds, that is, nβ(c) > nβ(c ).
Now, s ∈ c is such that the indices of nodes doing each action is the same than
in s except for a given player i that is doing α in s and β in s. We also have to
show that we can go from s to s by a process of one step mutations. Player i
doing β in s, mutates and switches to action α. Then, by best response, all other
β-players form links with i. This would leads us to a Nash equilibrium denoted
by s, satisfying that nsβ = n

s
β . We know, by what we have already proved, that

we can go from s to s by a process of one step mutations.

16 If n∗β < nβ(c) the proof would be analogous.
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6: b, d, e < c < f. In this particular part, there is no flexibility in the distribution
between active and passive links because the cost of the links has to be incurred
by β-players. If two equivalence classes c and c are different, it must be because,
the number of β-players in each class is different, that is nβ(c) = nβ(c ). First,
let us assume that nβ(c) < nβ(c ). Without loss of generality, we can suppose
that nβ(c ) = nβ(c) + 1. Consider s ∈ c and s ∈ c such that the indices of
nodes doing each action coincides except for a given player i that is doing α in
s and β in s . By mutation, player i in s switches to action β and forms links
with all α-players. Then, all the other β-players, by best response, delete the
links they have with i. This leads us precisely to state s . To finish, assume that
the inverse inequality holds, that is, nβ(c) > nβ(c ). As before, we can suppose
that nβ(c) = nβ(c ) + 1. Now, s ∈ c differs from s in that there is a player i
doing β in s that is doing α in s . By mutation, player i doing β in s deletes
all her links with the α-players and switches to action α. By best response, all
β-players form links with i. This leads us precisely to state s .
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